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Abstract
Multilevel thresholding image segmentation is an important technique, which 
has attracted much attention in recent years. The conventional exhaustive search 
method for image segmentation is efficient for bilevel thresholding. However, they 
are time expensive when dealing with multilevel thresholding image segmenta-
tion. To better tackle this problem, an improved cuckoo search algorithm (ICS) is 
proposed to search for the optimal multilevel thresholding in this paper, and Otsu 
is considered as its objective function. In the ICS, two modifications are used to 
improve the standard cuckoo search algorithm. First, a parameter adaptation strat-
egy is utilized to improve exploration performance. Second, a dynamic weighted 
random-walk method is adopted to enhance the local search efficiency. A total of 
six benchmark test images are used to perform the experiments, and seven state-of-
the-art metaheuristic algorithms are introduced to compare with the ICS. A series 
of measure indexes such as objective function value and standard deviation, PSNR, 
FSIM, and SSIM as well as the Wilcoxon rank sum and convergence performance 
are performed in the experiments; the experimental results show that the proposed 
algorithm is superior to other seven well-known heuristic algorithms.
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1 Introduction

Image segmentation is an important image preprocessing technology. The cal-
culation of thresholding image segmentation is simple and effective [1]. Hence, 
thresholding has become a popular approach for image segmentation. Basically, 
thresholding is used to separate an image into targets and background on the basis 
of the gray histogram. Assume that an image can be divided into two regions, 
such as the background region and object region, which is known as the bilevel 
thresholding image segmentation method [2]. In the case of an image contain-
ing more than one object, bilevel thresholding does not achieve the desired result 
[3]. On account of multilevel thresholding, we can accurately segment the image 
into different significant regions [4]. For traditional exhaustive methods, mul-
tilevel thresholding can be very time-consuming. It is an NP-hard optimization 
problem. In such cases, the metaheuristic algorithms are proposed to solve the 
optimal multilevel thresholding. Many related works are based on metaheuristic 
algorithms, such as the improved particle swarm optimization (IPSO) [5], the 
improved electromagnetism optimization algorithm (IEMO) [6], the modified 
artificial bee colony (MABC) [7] algorithm, the improved harmony search algo-
rithm (IHSA) [8], the crow search algorithm (CSA) [9], the cuckoo search algo-
rithm (CS) [10], the improved emperor penguin optimization (IEPO) [11], the 
improved flower pollination algorithm (IFPA) [12], the wind-driven optimization 
(WDO) [13], the hybrid Harris Hawks optimization (HHHO) [14], and the fuzzy 
adaptive gravitational search algorithm (FAGSA) [15]. Moreover, a number of 
modified and improved metaheuristic algorithms have been applied to multilevel 
thresholding [16–18].

The cuckoo search algorithm is a popular metaheuristic algorithm that was 
inspired by the egg-laying behavior of natural cuckoo birds [19]. More recently, 
CS has been widely used in feature selection [20], numerical optimization [21], 
data clustering [22], and many-objective optimization [23]. Studies have shown 
that CS is an effective algorithm for solving various optimization problems [24]. 
The successes recorded by the CS are that fewer parameters need to be adjusted 
for execution, and the robustness of the algorithm is perfect. However, although 
the CS algorithm has been well-applied for solving different practical application 
problems when dealing with complex optimization problems, the CS still needs 
to be improved to enhance the performance. An adaptive parameter strategy was 
proposed in the CS by Wang and Zhou. The experimental tests indicated that the 
proposed algorithm was superior to CS with fixed parameters [25]. Guerrero M 
et al. [26] proposed a fuzzy cuckoo search (FCS), in which a fuzzy system was 
designed to dynamically adjust the control parameters. The results demonstrated 
that the FCS outperformed the standard CS. Walton S et al. [27] presented a mod-
ified cuckoo search (MCS). In MCS, a dynamic parameter control strategy for 
step size α was used. The results showed that the MCS had advantage over DE, 
PSO, and CS. Wang G et  al. [28] proposed a chaotic cuckoo search (CCS), in 
which 12 chaotic maps were used to adjust the step size of the CS. The experi-
mental results showed that a suitable chaotic map was superior to the CS. Huang 
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et al. proposed a fully informed cuckoo search algorithm (FICS). In FICS, a fully 
informed strategy was firstly proposed to improve particle swarm optimization. 
The proposed FICS was tested by four benchmark images; the results suggested 
that the FICS was better than other algorithms [29]. A hybrid adaptive cuckoo 
search squirrel search algorithm (ACSS) for brain MR image segmentation was 
proposed [30]. In ACSS, an adaptive step size strategy was used to improve the 
convergence and a new hybrid search was also adopted. The experimental results 
indicated that the ACSS was superior to CS, ACS, and SS. In a word, the stand-
ard CS can be categorized as adaptive, self-adaptive, and hybridizing accord-
ing to the kinds of parameter control strategies. In conclusion, all operations are 
adopted to balance exploration and exploitation [31].

All the above-mentioned CS variants are aimed to improve the convergence speed 
and accuracy of the algorithm and then obtain the desired results when solving dif-
ferent optimization problems. The improvement of CS focused on the control param-
eters. In this paper, we propose novel parameter adaptation strategies to enhance the 
CS and then apply it to solve the optimal multilevel thresholding. The main con-
tribution of this study is that two modifications are proposed to improve the stand-
ard CS: (1) the adaptive control parameters method and (2) the dynamic weighted 
random-walk strategy. We evaluate the performance of the ICS on six test images 
as well as seven well-known metaheuristic algorithms. Some measure indexes such 
as objective function value and standard deviation, PSNR, FSIM, and SSIM as 
well as the Wilcoxon rank sum and convergence performance are performed in the 
experiments.

The rest of the paper is organized as follows: Section 2 shows the theory of multi-
level thresholding based on the Otsu method. In Sect. 3, the cuckoo search algorithm 
is described. The improved cuckoo search algorithm is shown in Sect.  4. Experi-
mental results are discussed in Sect. 5. In Sect. 6, conclusions are drawn.

2  Segmentation based on between‑class variance

A multilevel threshold value image segmentation method based on the image one-
dimensional gray histogram is proposed. Based on that, the image can be segmented 
into different regions. The process of thresholding image segmentation is to obtain 
the best objective function value by employing an intelligent optimization algorithm 
and then obtaining approximate optimal thresholds. The multilevel thresholding 
image segmentation method is utilized to find the best possible threshold in the seg-
mented histogram by meeting some criteria. In 1979, image thresholding based on 
the Otsu method was proposed. This method obtains the optimal solution by maxi-
mizing the objective function [32]. In the present work, Otsu’s nonparametric seg-
mentation method, called between-class variance, is considered. In addition, some 
nonparametric criteria, such as Kapur’s [33] and Tsallsi entropy [34], are used for 
image thresholding segmentation. A detailed description of the between-class vari-
ance method can be found in bilevel thresholding image segmentation. An image 
can be segmented into two classes, A1 and A2 (objects and background), by a thresh-
old at a level “t.” Class A1 encloses the gray levels in the range 0–t − 1, and class A2 
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encloses the gray levels from t to L − 1. The probability distributions for gray levels 
A1 and A2 can be expressed as:

where pi is the gray-level probability,�1(t) =
∑t−1

i=0
pi, �2(t) =

∑L−1

i=t
pi, and L = 256, 

and the mean levels μ1 and μ2 for A1 and A2 can be measured by:

The average intensity (μT) of the entire image can be calculated by:

The objective function for the bilevel thresholding problem can be defined as:

where �1 = �1

(

u1 − uT
)2

and �2 = �2

(

u2 − uT
)2
.

Bilevel thresholding can be extended to a multilevel thresholding problem by 
increasing the number of threshold values “m” as follows. Assume that there are 
“m” thresholds (t1, t2…,tm), which divide the image into “m + 1” classes: A1 with 
gray levels in the range 0–t − 1, A2 with enclosed gray levels in the range t1–t2 − 1…, 
and Am+1 with gray levels from tm to L − 1. The objective function for the multilevel 
thresholding problem can be measured by [35]:

where �1 = �1

(

u1 − uT
)2
, �2 = �2

(

u2 − uT
)2

, ..., �m+1 = �m+1

(

um+1 − uT
)2
.

3  Cuckoo search algorithm

The cuckoo search algorithm is a nature-inspired algorithm that was proposed by 
Yang in 2009. The CS mimics the process of cuckoo egg-laying. Cuckoos normally 
lay their fertilized eggs in host nests with the hope of their offspring being raised 
by proxy parents. Sometimes, the host identifies that the eggs in their nests do not 
belong to them. Under these circumstances, the foreign eggs are thrown out of the 
nests, or the whole nests are discarded. The CS optimization algorithm is generally 
based on the following three principles:

1. Interestingly, each cuckoo bird lays one egg at a time and randomly places its egg 
in a host bird’s nest.

2. Usually, the best nests containing high-quality eggs are carried over to the next 
generations.

(1)A1 =
p0

�1(t)
...

pt−1

�1(t)
, A2 =

pt

�2(t)
...

pL−1

�2(t)

(2)�1 =

t−1
∑

i=0

ipi

�1(t)
, �2 =

L−1
∑

i=t

ipi

�2(t)

(3)uT = �1�1 + �2u2, �1 + �2 = 1

(4)F
opt
t = argmax

(

�1 + �2
)

(5)F
opt
t = argmax

(

�1 + �2 + ... + �m+1
)
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3. The number of available host nests is fixed. The host bird discovers foreign eggs 
with a probability pα, and the range of pα is from 0 to 1. Note that the best nests 
are selected for further calculations. For simplicity, principle 3 can be explained 
as follows: the n nests will be replaced by new nests with a probability pα.

Based on these three principles, the CS process can be summarized as follows:
While generating new solution xt+1

i
 for cuckoo i, a Lévy flight is performed [36]:

where α0 is the step size, α0 > 0, and xbest represents the current optimal solution. 
Lévy flights are drawn from a Lévy distribution, which can be defined by:

where

where Γ(λ) is the standard gamma function with an index λ.
In the CS algorithm, the worst nest is abandoned with a probability pα, and a new 

nest is built with random walks by the following formula:

where r represents a random number and xt
j
 and xt

k
 are the random solutions at itera-

tion t. The pseudocode of the CS algorithm is summarized in Table 1.

4  The improved cuckoo search algorithm

CS is also a metaheuristic global search algorithm that is widely used to solve dif-
ferent optimization problems, such as gray image segmentation [37] or color image 
segmentation [38]. The CS has fewer parameters compared to other algorithms. It is 
easy to set the parameter of the algorithm. Hence, CS may be useful for nonlinear 
problems and many-objective optimizations. Although CS is efficient, it has some 
drawbacks, such as time consumption and premature convergence for a number of 
real-world optimization problems. Therefore, the basic structure of the CS has been 
modified to improve its performance.

4.1  Adaptive control parameters

The control parameters are sensitive to the performance of the metaheuristic algo-
rithms; a lot of parameter strategies are proposed to improve the performance. 
The control parameters like linear, piece-wise, or curve decrease with the genera-
tion, which is called adaptive parameter strategy [29], if the control parameters 

(6)xt+1
i

= xt
i
+ 𝛼0

(

xt
i
− xbest

)

⊕ Levy(s, 𝜆)

(7)Levy(s, 𝜆) ∼ u = t−𝜆, (1 < 𝜆 ≤ 3)

(8)Levy(s, 𝜆) =
𝜆Γ(𝜆) sin (𝜋𝜆∕2)

𝜋

1

s1+𝜆
,
(

s >> s0 > 0
)

(9)xt+1
i

= xt
i
+ r

(

xt
j
− xt

k

)
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changed with the fitness value or optimization problem named self-adaptive strat-
egy such as fuzzy parameter strategy and parameter archiving mechanism [16]. 
In CS, the parameters pα and α0 are introduced to help the algorithm find globally 
locally improved solutions. The parameters pα and α0 are very important param-
eters and can potentially be utilized in controlling the convergence rate. The 
original CS algorithm adopts a fixed value for both pα and α0. In facing different 
problems, the parameters should be adjusted based on personal experience. If the 
value of pα is small and the value of α0 is large, the performance of the algorithm 
will be poor and lead to a considerable increase in the number of iterations. If the 
value of pα is large and the value of α0 is small, the speed of convergence is high, 
but it may be unable to find the best solutions [31]. To improve the performance 
of the CS algorithm, we propose adaptive variables pα and α0. At the beginning 
of the iteration, the values of pα and α0 must be large enough to increase the 
diversity of the population. However, these values should decrease in the final 
generations. In this paper, we propose an adaptive control parameter strategy. The 
values of pα and α0 dynamically change with the number of generations and are 
expressed in the following equations:

Table 1  Pseudocode for the cuckoo search algorithm
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where pαi is a predefined constant, Gm is the maximum number of iterations, and G 
is the current number of iterations. Figure 1 shows the parameter values changed 
with the number of generation when Gm = 1000, pai = 0.25.

4.2  A dynamic weighted random‑walk strategy

A new nest built with random walks often leads to a slow convergence rate and 
vibration. To enhance the local search, we propose that a larger ω leads to greater 
control of exploration or exploitation of host nest positions (solutions). Based on 
formulas 12 and 13, ω linearly decreases from a relatively large value to a small 
value throughout the course so that the CS can effectively enhance the local search 
ability.

where ω is a weighted coefficient. ωmax and ωmin are user-defined constants. Corre-
spondingly, the pseudocode of the improved CS algorithm is summarized in Table 2.

(10)p� = p�i ⋅ 2
� , � = e

1−
Gm

Gm+1−G

(11)�0 = 0.5 ∗ exp

(

−
G − 1

Gm

)

(12)xt+1
i

= �xt
i
+ r

(

xt
j
− xt

k

)

(13)� = �max −
G
(

�max − �min

)

Gm
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Fig. 1  The parameter values changed with the number of generations
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5  Experiments and analysis

In this section, the performance of the proposed algorithm was evaluated by six 
test images. In the following, the objective function value, image segmentation 
quality, and Wilcoxon rank sum are compared with FCS [27], MCS [28], CS [10], 
FICS [29], ACSS [30], FAGSA [16], and IEPO [11].

5.1  Experimental setting

A maximum between-class variance based on the proposed ICS was tested under 
a set of benchmark images. Six classic images from the Benchmarks 500 named 
“Hunter,” “House,” “Baboon,” “Couple,” “Lena,” and “Peppers” are used in the 

Table 2  Pseudocode for an improved cuckoo search algorithm
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Fig. 2  The test images and cor-
responding histograms
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experiment. The size of all images is 512 × 512. The test images and correspond-
ing histograms are shown in Fig. 2.

The experiments were performed on a Lenovo Laptop with an Intel Core i7 pro-
cessor and 8 GB memory, running the Windows 10 operating system. The algorithm 
was carried out by MATLAB R2019a. In the next subsections, the ICS will be com-
pared with CS variants such as CS, FCS, MCS, FICS, ACSS and other two newly 
proposed metaheuristic algorithms FAGSA and IEPO. The comparison with differ-
ent algorithms was mainly used to test the advantages of the ICS. For the sake of 
fairness, all the algorithms were performed under the same conditions. Generally, 
the thresholds were set as m = 2, 3, 4, 5. The number of maximum iterations was 
300; the population size was 30. All experiments were repeated 25 times. The cor-
responding parameters used for the presented four algorithms are listed in Table 3, 
which originate from related references.

5.2  Results on the objective function value

As the aim of multilevel thresholding is to maximize the given objective function, 
the objective function value obtained by the involved algorithms directly shows the 
algorithm’s performance. In detail, the mean objective function values are shown 
in Table 4 (the optimal value is marked in bold) and Fig. 3 (the average objective 
function value), where “m” stands for the number of thresholds. The corresponding 
standard deviation values are given in Table 5.

From Table  4 and Fig.  3, it is clear that our algorithm outperformed the other 
methods, and the ICS obtained the best results in 22 cases (total 30 cases), whereas 
MCS was the second-best but did not show an advantage in any case when com-
pared meticulously with the other six algorithms. However, the differences in the 
maximum objective function values obtained by the eight algorithms are not more 
than 10. Correspondingly, the standard deviation of the objective function values is 

Table 3  Parameters of the 
heuristic algorithms

Algorithms Parameters Value or range

FAGSA Inertia weight (ω) [0.2, 1.2]
Control parameter (α) [10, 50]

IEPO Levy (L) 1.5
FICS Probability (pα) 0.5

Scale factor (ɑ) 1.5
Variable (Ne) 3

ACSS Probability (pα) 0.1
Fly constant 1.9

CS Probability (pα) 0.25
Variable α0 0.01

ICS Variable pαi 0.25
Weighted values ωmax,ωmin 0.9, 0.2

FCS Variable α0 0.01
MCS Probability (pα) 0.75
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shown in Table 5; the results show that the stability of the ICS was the best, which 
obtained the best results in 21 cases (total 30 cases). However, the stability of ACSS, 
FICS, FCS, and MCS was worse than that of the ICS. From the result analysis, the 
proposed algorithm is better than other algorithms in most case, but for the image 
“Baboon,” the algorithm did not perform well, but the difference of the objective 
function values is small.

Table 4  Comparison of the mean objective function values

Bold values represent the optimal solution

Images m ICS FCS MCS CS FICS ACSS FAGSA IEPO

Hunter 2
3
4
5

3064.2
3213.4
3269.5
3308.1

3064.1
3212.5
3268.1
3305.5

3064.2
3213.5
3269.3
3307.8

3063.8
3212.3
3267.9
3304.1

3064.2
3212.3
3269.1
3307.6

3064.1
3211.8
3268.6
3306.4

3064.0
3210.1
3268.5
3305.2

3064.1
3211.4
3268.2
3307.6

House 2
3
4
5

3543.9
3755.6
3846.9
3902.6

3542.6
3753.4
3845.7
3899.3

3543.9
3755.4
3846.5
3898.4

3542.1
3752.8
3845.0
3896.5

3543.8
3755.1
3845.9
3901.4

3542.3
3754.6
3844.9
3901.7

3542.1
3753.6
3843.2
3901.3

3543.5
3754.9
3847.2
3901.1

Baboon 2
3
4
5

1609.2
1751.2
1798.4
1850.1

1604.1
1740.2
1794.6
1848.8

1609.2
1751.0
1798.2
1847.8

1603.7
1738.1
1787.0
1845.6

1608.2
1750.9
1794.3
1849.5

1608.8
1750.2
1798.6
1848.7

1607.2
1749.8
1796.3
1849.6

1608.5
1751.4
1796.6
1848.7

Couple 2
3
4
5

1616.5
1758.9
1828.6
1870.6

1616.6
1752.4
1828.9
1867.5

1616.4
1758.6
1828.4
1869.3

1614.7
1748.7
1827.5
1867.0

1616.5
1757.7
1827.4
1868.9

1615.4
1757.2
1827.9
1866.2

1615.2
1750.6
1827.9
1868.5

1615.7
1758.5
1826.2
1867.7

Lena 2
3
4
5

1416.5
1604.9
1646.1
1668.1

1415.3
1603.2
1645.7
1667.3

1416.2
1604.3
1645.7
1667.8

1415.1
1602.5
1644.3
1666.2

1415.3
1605.1
1445.7
1667.2

1415.7
1602.8
1644.2
1666.5

1415.8
1603.1
1644.7
1666.9

1415.9
1603.2
1645.5
1667.8

Peppers 2
3
4
5

2803.2
3066.1
3139.8
3194.5

2802.1
3065.4
3137.9
3193.4

2802.6
3065.9
3140.2
3193.8

2801.8
3064.4
3136.7
3191.6

2803.1
3065.7
3140.1
3193.3

2802.6
3065.5
3139.1
3193.4

2802.3
3064.7
3136.4
3192.8

2802.0
3064.5
3139.2
3193.7

Fig. 3  The average objective function values of the algorithms over all images
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5.3  Quality measures of segmented images

To further verify the performance of the proposed algorithm, the time consump-
tion (seconds) and appropriate performance indicators, including the peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM), 
were calculated to evaluate the corresponding image segmentation performance 
of the results. Image quality measurement was performed using PSNR, which is 
defined as [39]:

where

and C and I are original and segmented images of size M × N, respectively. A higher 
value of PSNR indicates a better quality segmented image.

(14)PSNR = 20 log10

(

255

RMSE

)

, (dB)

(15)RMSE =

�

∑M

i=1

∑N

j=1
(I(i, j) − C(i, j))2

M × N

Table 5  Results of the standard deviation of objective function values

Bold values represent the optimal solution

Images m ICS FCS MCS CS FICS ACSS FAGSA IEPO

Hunter 2
3
4
5

0.01196
0.03054
0.03219
0.04316

0.14925
0.03083
0.03456
0.05687

0.01194
0.03061
0.32255
0.04423

0.01540
0.03143
0.03571
0.05723

0.01430
0.03057
0.03124
0.04965

0.01463
0.03014
0.03456
0.05429

0.01526
0.03128
0.03345
0.05229

0.01356
0.02986
0.03247
0.05143

House 2
3
4
5

0.01844
0.02029
0.02981
0.04143

0.02064
0.02625
0.03542
0.04764

0.01832
0.02159
0.03012
0.04151

0.01983
0.02413
0.03036
0.04154

0.01895
0.02354
0.03452
0.04219

0.01862
0.02153
0.02864
0.04256

0.01912
0.02564
0.03141
0.04216

0.01899
0.02453
0.03246
0.04029

Baboon 2
3
4
5

0.01646
0.02421
0.03317
0.04251

0.01754
0.03767
0.34671
0.04778

0.01646
0.02516
0.03421
0.04627

0.01861
0.03847
0.03914
0.04472

0.01658
0.02546
0.03452
0.04339

0.01753
0.02654
0.03452
0.04443

0.01821
0.03414
0.03692
0.04671

0.01784
0.02536
0.03799
0.04561

Couple 2
3
4
5

0.01208
0.02230
0.02992
0.03842

0.01177
0.02751
0.03064
0.03956

0.01206
0.02341
0.03015
0.03945

0.01842
0.02561
0.03374
0.04221

0.01425
0.02356
0.02920
0.04113

0.01354
0.02351
0.03129
0.04101

0.01539
0.02286
0.03412
0.04216

0.01638
0.02452
0.03157
0.03976

Lena 2
3
4
5

0.01012
0.01894
0.02596
0.03568

0.15698
0.02654
0.03365
0.04269

0.01357
0.02395
0.03124
0.04031

0.02138
0.03135
0.04312
0.05321

0.01121
0.01813
0.03252
0.03754

0.01246
0.02134
0.02861
0.03875

0.01356
0.02265
0.02934
0.03961

0.01324
0.02013
0.02968
0.03754

Peppers 2
3
4
5

0.01354
0.02631
0.02963
0.03784

0.01965
0.03652
0.03845
0.04564

0.01652
0.02985
0.03125
0.04023

0.02013
0.03651
0.04569
0.05612

0.01510
0.02623
0.02865
0.03869

0.01946
0.02864
0.03218
0.04123

0.01893
0.02768
0.03429
0.04326

0.01689
0.25897
0.31569
0.04326
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The SSIM was used to compare the structures of the original and segmented 
images. The SSIM index is described as follows [40]:

where μC and δC represent the pixel mean and variance, respectively, of the original 
image; μI and δI represent the pixel mean and variance, respectively, of the seg-
mented image; δCI is the covariance of the original image and the segmented image; 
and C1 and C2 are constants, where C1 = C2 = 6.5025. A higher value of SSIM indi-
cates better performance. In addition, the FSIM is employed to measure the feature 
similarity between two images. It is calculated between two images C and I as [41]:

where

T1 and T2 are constants. Here, we choose T1 = 0.85 and T2 = 160 in the experi-
ments, G(x) represents the gradient magnitude of an image, and PC(x) is the phase 
congruency of an image [12]. A higher value of FSIM indicates better performance.

Furthermore, Table  6 and Fig.  4 display the PSNR index values, Table  7 and 
Fig. 5 show the SSIM index values, and Table 8 and Fig. 6 show the FSIM index 
values. The experimental results show that the ICS obtained the best values in 23 
cases, 25 cases, and 25 cases for PSNR, SSIM, and FSIM, respectively. The experi-
mental results show that the ICS outperforms the other seven algorithms in image 
segmentation quality, but IEPO, MCS, ICS, and FICS have little difference on 
PSNR, SSIM, and FSIM.

5.4  Statistical results analysis

A Wilcoxon rank sum is performed to verify the experimental results, which has 
been conducted with 5% significance level [42]. The null hypothesis is expressed 
as: There is no significant difference between the ICS algorithm and other seven 
algorithms. Nevertheless, the alternative hypothesis seems a significant difference 
among them. Based on the Wilcoxon rank sum, the p value is used to judge the null 
hypothesis whether to accept the null hypothesis or not. If the p value is greater 

(16)SSIM(C, I) =

(

2�C�I + C1

) (

2�CI + C2

)

(

�2
C
+ �2

I
+ C1

) (

�2
C
+ �2

I
+ C2

)

(17)FSIM =

∑

x∈Ω SL(x)PCm(x)
∑

x∈Ω PCm(x)

(18)

SL(x) = SPC(x)SG(x);

SPC(x) =
2PC1(x)PC2(x) + T1

PC2
1
(x) + PC2

2
(x) + T1

;

SG(x) =
2G1(x)G2(x) + T2

G2
1
(x) + G2

2
(x) + T2

;

PCm(x) = max
{

PC1(x), PC2(x)
}

.
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than 0.05, the null hypothesis will be rejected; it implies there is no significant dif-
ference between all algorithms. On the contrary, if the p value is less than 0.05, the 
alternative hypothesis will be accepted. Table 9 shows the p value results, which is 
executed on the objective function value, PSNR, SSIM, and FSIM. It can be sum-
marized from Table 9 that there is no significantly difference between ICS and FCS 

Table 6  Comparison of the mean PSNR

Bold values represent the optimal solution

Images m ICS FCS MCS CS FICS ACSS FAGSA IEPO

Hunter 2
3
4
5

18.9237
20.8898
22.5912
23.9406

18.9235
20.8886
22.2013
23.8985

18.9237
20.8771
22.5346
23.9316

18.9128
20.7541
21.9999
23.8061

18.9237
20.8914
22.4865
23.9342

18.9124
20.8861
22.0253
23.8179

18.9131
20.7698
22.5273
23.8124

18.9134
20.7759
22.5894
23.9347

House 2
3
4
5

21.0346
23.0367
25.0831
26.3729

21.0342
23.0345
24.9532
26.3610

21.0350
23.0351
25.0830
26.3657

21.0339
22.9629
24.9214
26.3444

21.0336
23.0289
25.0726
26.3621

21.0319
22.9897
24.9982
26.1254

21.0321
22.9754
24.9876
26.3510

21.0368
23.0425
25.0969
26.2713

Baboon 2
3
4
5

19.3728
22.0215
24.8939
26.9548

19.3728
21.9872
24.7519
26.8614

19.3725
22.0210
24.8812
26.9431

19.3714
21.8219
24.3198
25.8035

19.3721
22.0126
24.8836
26.9125

19.3714
22.0292
24.8967
26.8387

19.3684
22.0193
24.5692
26.6014

19.3685
22.0235
24.8213
26.9401

Couple 2
3
4
5

20.0459
22.9763
25.1360
26.9398

20.0459
22.9673
25.1248
26.9261

20.0459
22.9684
25.1159
26.9395

19.9824
22.9742
24.8227
26.5745

20.0133
22.9567
25.1129
26.8453

20.0351
22.9682
25.1351
26.8955

20.0362
22.9015
25.1352
26.9384

20.0364
22.9325
25.1246
26.9012

Lena 2
3
4
5

19.8467
22.9805
24.2904
24.7540

19.7865
22.9012
24.1026
24.6243

19.8356
22.3024
24.1523
24.6952

19.7234
22.7658
23.9865
24.1356

19.8365
22.9814
24.2698
24.6846

19.8278
22.8647
23.9846
24.5275

19.8312
22.8965
24.2013
24.7361

19.8322
22.9175
24.2013
24.4731

Peppers 2
3
4
5

18.7187
21.3342
25.1712
26.4906

18.6128
21.2236
24.9755
25.8937

18.6985
21.1256
25.2322
26.3982

18.5962
21.0986
24.9358
25.8659

18.7169
21.3326
25.1682
26.4239

18.7012
21.3267
25.1025
26.4192

18.7023
21.3269
25.1476
26.4307

18.7125
21.3325
24.1477
25.4093

Fig. 4  The average PSNR values of the algorithms over all images
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MCS, CS, FICS, ACSS, FAGSA, and IEPO for all metrics. Analyzing the whole 
data, the ICS has a remarkable improvement, and it is feasible and effective for mul-
tilevel thresholding image segmentation.

Table 7  Comparison of the mean SSIM

Bold values represent the optimal solution

Images m ICS FCS MCS CS FICS ACSS FAGSA IEPO

Hunter 2
3
4
5

0.4108
0.5217
0.5792
0.6496

0.4108
0.5209
0.5761
0.6410

0.4120
0.5211
0.5814
0.6425

0.4107
0.5131
0.5620
0.6441

0.4120
0.5212
0.5739
0.6489

0.4104
0.5189
0.5721
0.6482

0.4100
0.5142
0.5626
0.6451

0.4124
0.5196
0.5784
0.6425

House 2
3
4
5

0.3722
0.6501
0.7431
0.7959

0.3722
0.6499
0.7420
0.7952

0.3722
0.6493
0.7354
0.7944

0.3694
0.6495
0.7412
0.7955

0.3721
0.6463
0.7396
0.7926

0.3720
0.6414
0.7423
0.7938

0.3721
0.6452
0.7423
0.7942

0.3720
0.6498
0.7442
0.7936

Baboon 2
3
4
5

0.3849
0.5193
0.5969
0.6847

0.3847
0.5186
0.5945
0.6840

0.3846
0.5190
0.5970
0.6842

0.3829
0.5183
0.5927
0.6833

0.3845
0.5182
0.5979
0.6826

0.3836
0.5191
0.5893
0.6425

0.3838
0.5182
0.5886
0.6402

0.3842
0.5198
0.5971
0.6837

Couple 2
3
4
5

0.4496
0.5435
0.6179
0.6848

0.4482
0.5424
0.6153
0.6788

0.4491
0.5431
0.6171
0.6841

0.4471
0.5421
0.6139
0.6684

0.4482
0.5412
0.6168
0.6843

0.4479
0.5401
0.6132
0.6752

0.4476
0.5392
0.6128
0.6475

0.4489
0.5431
0.6170
0.6842

Lena 2
3
4
5

0.4384
0.5336
0.5636
0.5987

0.4273
0.5216
0.5489
0.5845

0.4296
0.5247
0.5538
0.5892

0.4125
0.5139
0.5386
0.5737

0.4256
0.5362
0.5596
0.5821

0.4266
0.5312
0.5542
0.5791

0.4251
0.5306
0.5412
0.5687

0.4296
0.5312
0.5624
0.5943

Peppers 2
3
4
5

0.3687
0.4260
0.4875
0.5084

0.3587
0.4145
0.4691
0.4892

0.3598
0.4186
0.4769
0.4988

0.3458
0.4032
0.4596
0.4789

0.3542
0.4129
0.4865
0.5012

0.3641
0.4130
0.4793
0.4905

0.3640
0.4126
0.4785
0.4936

0.3645
0.4267
0.4862
0.5021

Fig. 5  The average SSIM values of the algorithms over all images
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5.5  Convergence performance

The nature-inspired metaheuristic algorithms are stochastic process that execute ran-
domly operations. For this reason, it is not practical to conduct a complexity analy-
sis from a deterministic point of view. However, it is possible to have an idea of this 
complexity through the mathematical notation called Big O notation [43]. To find the 

Table 8  Comparison of the mean FSIM

Bold values represent the optimal solution

Images m ICS FCS MCS CS FICS ACSS FAGSA IEPO

Hunter 2
3
4
5

0.7760
0.8488
0.8906
0.9214

0.7756
0.8486
0.8901
0.9209

0.7760
0.8487
0.8902
0.9211

0.7752
0.8483
0.8888
0.9207

0.7760
0.8452
0.8925
0.9212

0.7758
0.8445
0.8915
0.9210

0.7757
0.8481
0.8902
0.9201

0.7760
0.8485
0.8903
0.9211

House 2
3
4
5

0.7726
0.8722
0.9093
0.9278

0.7698
0.8722
0.9054
0.9264

0.7700
0.8721
0.9091
0.9273

0.7692
0.8721
0.9049
0.9259

0.7695
0.8712
0.9082
0.9236

0.7691
0.8718
0.9054
0.9285

0.7682
0.8712
0.9041
0.9264

0.7726
0.8720
0.9097
0.9243

Baboon 2
3
4
5

0.6898
0.7892
0.8454
0.9010

0.6898
0.7881
0.8448
0.9001

0.6894
0.7889
0.8452
0.9008

0.6876
0.7878
0.8352
0.8879

0.6892
0.7885
0.8463
0.8969

0.6895
0.7890
0.8462
0.8964

0.6878
0.7852
0.8385
0.8936

0.6890
0.7902
0.8446
0.8998

Couple 2
3
4
5

0.7415
0.8212
0.8720
0.9067

0.7358
0.8210
0.8719
0.9056

0.7415
0.8211
0.8716
0.9061

0.7324
0.8209
0.8717
0.9044

0.7389
0.8110
0.8689
0.9051

0.7358
0.8223
0.8642
0.9045

0.7352
0.8201
0.8706
0.9052

0.7345
0.8211
0.8713
0.9049

Lena 2
3
4
5

0.7354
0.8269
0.8684
0.8925

0.7125
0.8112
0.8439
0.8842

0.7322
0.8285
0.8568
0.8913

0.7102
0.8024
0.8329
0.8768

0.7352
0.8294
0.8675
0.8891

0.7263
0.8215
0.8569
0.8814

0.7284
0.8211
0.8438
0.8795

0.7342
0.8269
0.8677
0.8856

Peppers 2
3
4
5

0.7270
0.7817
0.8415
0.8677

0.7025
0.7658
0.8156
0.8357

0.7128
0.7715
0.8389
0.8568

0.6986
0.7524
0.8025
0.8169

0.7162
0.7765
0.8357
0.8574

0.7187
0.7625
0.8269
0.8477

0.7168
0.7603
0.8569
0.8365

0.7213
0.7796
0.8413
0.8657

Fig. 6  The average FSIM values of the algorithms over all images
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optimal solutions, the proposed metaheuristic algorithms have an initialization stage 
and a subsequent stage of iterations. The computational complexity of nature-inspired 
algorithm depends upon n, Popsize and Maxiter:

For all the proposed metaheuristic algorithms, the maximum computational com-
plexity in terms of Big O notation is

From the analysis of computational complexity, it may be difficult to judge 
the performance of each algorithm. To further measure the ICS, the convergence 

(19)Computation complexity = O(n × Popsize ×Maxiter)

(20)Computation complexity = O(n × 30 × 300) = O(9000n)

Table 9  Wilcoxon rank-sum test 
results

Metrics Vs.ICS p-value Metrics Vs.ICS p-value

Objective 
function 
value

FCS
MCS
CS
FICS
ACSS
FAGSA
IEPO

0.8125
0.8366
0.7807
0.8123
0.8285
0.7966
0.8446

PSNR FCS
MCS
CS
FICS
ACSS
FAGSA
IEPO

0.7336
0.7965
0.5990
0.8366
0.7966
0.7336
0.9424

FSIM FCS
MCS
CS
FICS
ACSS
FAGSA
IEPO

0.6061
0.8045
0.5027
0.8181
0.7763
0.6553
0.8186

SSIM FCS
MCS
CS
FICS
ACSS
FAGSA
IEPO

0.8045
0.8689
0.6725
0.7966
0.7028
0.6279
0.8608

Fig. 7  The convergence performance of all algorithms
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performance on 5 levels of thresholding was also studied. For the sake of fairness, 
all the parameters and settings keep it the same as the previous setting. In the same 
way, the six test images are tested to exemplify the performance. The results are 
shown in Fig.  7. It can be found in Fig.  7 that most of the algorithms like FCS, 
MCS, CS, FICS, ACSS, FAGSA, and IEPO encountered the premature conver-
gence, whereas only ICS overcame the problems and obtained the best objective 
function values. It also demonstrated that the success of the improved CS is effec-
tive. In conclusion, the proposed algorithm achieved significant improvements based 
on the standard CS, and the other seven algorithms seem a little difference in con-
vergence performance.

6  Conclusion and future work

This paper proposed an improved cuckoo search algorithm for multilevel thresh-
olding image segmentation. Two modifications were adopted. First, an adaptive 
control parameter method was utilized to perform effective exploration. Second, 
the dynamic weighted random-walk strategy was used to improve exploitation and 
enhance the convergence. The experiments demonstrated the success of our modi-
fication. In the experiments, the results show that the proposed algorithm is better 
than other seven state-of-the-art metaheuristic algorithms for multilevel threshold-
ing in terms of the objective function value, standard deviation PSNR, SSIM, FSIM, 
Wilcoxon rank sum and convergence performance. Future works of this study will 
focus on studying the performance of the proposed algorithm on remote sensing 
images.

Acknowledgments This work is supported by National Natural Science Foundation of China (61972184, 
61562032, 61662027, 61762042); Modern Agricultural Research Collaborative Innovation Project of 
Jiangxi (JXXTCXQN201906); Special Fund Project for Graduate Innovation of Jiangxi (YC2017-B065)

References

 1. Elaziz MA, Lu S (2019) Many-objectives multilevel thresholding image segmentation using Knee 
Evolutionary Algorithm[J]. Expert Syst Appl 125:305–316

 2. Zheng X, Ye H, Tang Y et al (2017) Image Bi-Level thresholding based on gray level-local variance 
histogram[J]. Entropy 19(5):191

 3. Khairuzzaman AK, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for 
image segmentation[J]. Expert Syst Appl 86:64–76

 4. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame opti-
mization for multilevel thresholding image segmentation[J]. Expert Syst Appl 83:242–256

 5. Chakraborty R, Sushil R, Garg ML (2019) Hyper-spectral image segmentation using an improved 
PSO aided with multilevel fuzzy entropy[J]. Multimed Tools Appl 78(23):34027–34063

 6. Hemeida AM, Mansour R, Hussein ME (2019) Multilevel thresholding for image segmentation 
using an improved electromagnetism optimization algorithm[J]. IJIMAI 5(4):102–112

 7. Zhang S, Jiang W, Satoh S et al (2018) Multilevel thresholding color image segmentation using a 
modified artificial bee colony algorithm[J]. IEICE Trans Inf Syst E101.D:2064–2071

 8. Erwin E, Saparudin S, Saputri W et  al (2018) Hybrid multilevel thresholding and improved har-
mony search algorithm for segmentation[J]. Int J Electr Comput Eng 8(6):4593–4602



6752 L. Duan et al.

1 3

 9. Upadhyay P, Chhabra JK (2019) Kapur’s entropy based optimal multilevel image segmentation 
using crow search algorithm[J]. Appl Soft Comput 97:105522

 10. Suresh S, Lal S (2016) An efficient cuckoo search algorithm based multilevel thresholding for seg-
mentation of satellite images using different objective functions[J]. Expert Syst Appl 58:184–209

 11. Xing Z (2020) An improved emperor penguin optimization based multilevel thresholding for color 
image segmentation[J]. Knowl-Based Syst 194:105570

 12. Li K, Tan Z (2019) An improved flower pollination optimizer algorithm for multilevel image 
thresholding[J]. IEEE Access 7:165571–165582

 13. Kotte S, Pullakura RK, Injeti SK (2018) Optimal multilevel thresholding selection for brain MRI 
image segmentation based on adaptive wind driven optimization[J]. Measurement 130:340–361

 14. Bao X, Jia H, Lang C (2019) A novel hybrid harris hawks optimization for color image multilevel 
thresholding segmentation[J]. Ieee Access 7:76529–76546

 15. Tan Z, Zhang D (2020) A fuzzy adaptive gravitational search algorithm for two-dimensional multi-
level thresholding image segmentation[J]. J Ambient Intell Humaniz Comput 11:2–12

 16. Bansal S (2019) A comparative study of nature-inspired metaheuristic algorithms in search of near-
to-optimal Golomb rulers for the FWM crosstalk elimination in WDM systems[J]. Appl Artif Intell 
33(14):1199–1265

 17. Xiong L, Zhang D, Li K et al (2019) The extraction algorithm of color disease spot image based on 
Otsu and watershed[C]. Soft Comput 24:1–11

 18. Xiong L, Chen RS, Zhou X et al (2019) Multi-feature fusion and selection method for an improved 
particle swarm optimization[J]. J Ambient Intell Humaniz Comput. https ://doi.org/10.1007/s1265 
2-019-01624 -4

 19. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to 
solve structural optimization problems[J]. Eng Comput 29(1):17–35

 20. Aziz MA, Hassanien AE (2018) Modified cuckoo search algorithm with rough sets for feature 
selection[J]. Neural Comput Appl 29(4):925–934

 21. Thirugnanasambandam K, Prakash S, Subramanian V et al (2019) Reinforced cuckoo search algo-
rithm-based multimodal optimization[J]. Appl Intell 49(6):2059–2083

 22. Boushaki SI, Kamel N, Bendjeghaba O et al (2018) A new quantum chaotic cuckoo search algo-
rithm for data clustering[J]. Expert Syst Appl 96:358–372

 23. Zhang M, Wang H, Cui Z et al (2018) Hybrid multi-objective cuckoo search with dynamical local 
search[J]. Memetic Comput 10(2):199–208

 24. Wang Z, Li Y (2015) Irreversibility analysis for optimization design of plate fin heat exchangers 
using a multi-objective cuckoo search algorithm[J]. Energy Convers Manag 101:126–135

 25. Wang J, Zhou B, Zhou S (2016) An improved cuckoo search optimization algorithm for the problem 
of chaotic systems parameter estimation[J]. Comput Intell Neurosci 2016:8

 26. Guerrero M, Castillo O, Garcia M (2015) Fuzzy dynamic parameters adaptation in the Cuckoo 
Search Algorithm using fuzzy logic[C]. In: 2015 IEEE Congress on Evolutionary Computation 
(CEC), Sendai, pp. 441–448. https ://doi.org/10.1109/CEC.2015.72569 23

 27. Walton S, Hassan O, Morgan K et al (2011) Modified cuckoo search: a new gradient free optimisa-
tion algorithm[J]. Chaos Solitons Fractals 44(9):710–718

 28. Wang G, Deb S, Gandomi AH et al (2016) Chaotic cuckoo search[C]. Soft Comput 20(9):3349–3362
 29. Huang X, Shen L, Fan C, et al (2020) Multilevel image thresholding using a fully informed cuckoo 

search algorithm[J]. arXiv preprint arXiv: 2006.09987
 30. Agrawal S, Samantaray L, Panda R et  al (2020) A new hybrid adaptive cuckoo search-squirrel 

search algorithm for brain mr image analysis[m]//hybrid machine intelligence for medical image 
analysis. Springer, Singapore, pp 85–117

 31. Joshi AS, Kulkarni O, Kakandikar GM et al (2017) Cuckoo search optimization-a review[J]. Mater 
Today Proc 4(8):7262–7269

 32. Merzban MH, Elbayoumi M (2019) Efficient solution of Otsu multilevel image thresholding: a com-
parative study[J]. Expert Syst Appl 116:299–309

 33. Manic KS, Priya RK, Rajinikanth V (2016) Image multithresholding based on Kapur/Tsallis entropy 
and firefly algorithm[J]. Indian J Sci Technol 9(12):89949

 34. Zhang Y, Wu L (2011) Optimal multi-level thresholding based on maximum Tsallis entropy via an 
artificial bee colony approach[J]. Entropy 13(4):841–859

 35. Vala HJ, Baxi A (2013) A review on Otsu image segmentation algorithm[J]. Int J Adv Res Comput 
Eng Technol (IJARCET) 2(2):387–389

https://doi.org/10.1007/s12652-019-01624-4
https://doi.org/10.1007/s12652-019-01624-4
https://doi.org/10.1109/CEC.2015.7256923


6753

1 3

Multilevel thresholding using an improved cuckoo search…

 36. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Bio-
logically Inspired Computing (NaBIC), Coimbatore, pp. 210–214. https ://doi.org/10.1109/NABIC 
.2009.53936 90

 37. Pare S, Kumar A, Bajaj V et al (2016) A multilevel color image segmentation technique based on 
cuckoo search algorithm and energy curve[J]. Appl Soft Comput 47:76–102

 38. Agrawal S, Panda R, Bhuyan S et al (2013) Tsallis entropy based optimal multilevel thresholding 
using cuckoo search algorithm[J]. Swarm Evolut Comput 11:16–30

 39. Nandy S, Yang X, Sarkar PP et  al (2015) Color image segmentation by cuckoo search[J]. Intell 
Autom Soft Comput 21(4):673–685

 40. Jia H, Lang C, Oliva D et al (2019) Hybrid grasshopper optimization algorithm and differential evo-
lution for multilevel satellite image segmentation[J]. Remote Sens 11(9):1134

 41. Bhandari AK (2018) A novel beta differential evolution algorithm-based fast multilevel thresholding 
for color image segmentation[J]. Neural Comput Appl 32:1–31

 42. Garcia S, Molina D, Lozano M et al (2009) A study on the use of non-parametric tests for analyz-
ing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real 
parameter optimization[J]. J Heuristics 15(6):617–644

 43. Bansal S (2020) Performance comparison of five metaheuristic nature-inspired algorithms to find 
near-OGRs for WDM systems[J]. Artif Intell Rev 53:1–47

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690

	Multilevel thresholding using an improved cuckoo search algorithm for image segmentation
	Abstract
	1 Introduction
	2 Segmentation based on between-class variance
	3 Cuckoo search algorithm
	4 The improved cuckoo search algorithm
	4.1 Adaptive control parameters
	4.2 A dynamic weighted random-walk strategy

	5 Experiments and analysis
	5.1 Experimental setting
	5.2 Results on the objective function value
	5.3 Quality measures of segmented images
	5.4 Statistical results analysis
	5.5 Convergence performance

	6 Conclusion and future work
	Acknowledgments 
	References




