
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:8694–8715
https://doi.org/10.1007/s11227-020-03564-9

1 3

VGL: a high‑performance graph processing framework
for the NEC SX‑Aurora TSUBASA vector architecture

Ilya V. Afanasyev, et al. [full author details at the end of the article]

Accepted: 10 December 2020 / Published online: 26 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Developing efficient graph algorithms implementations is an extremely important
problem of modern computer science, since graphs are frequently used in various
real-world applications. Graph algorithms typically belong to the data-intensive
class, and thus using architectures with high-bandwidth memory potentially allows
to solve many graph problems significantly faster compared to modern multicore
CPUs. Among other supercomputer architectures, vector systems, such as the SX
family of NEC vector supercomputers, are equipped with high-bandwidth mem-
ory. However, the highly irregular structure of many real-world graphs makes it
extremely challenging to implement graph algorithms on vector systems, since these
implementations are usually bulky and complicated, and a deep understanding of
vector architectures hardware features is required. This paper presents the world first
attempt to develop an efficient and simultaneously simple graph processing frame-
work for modern vector systems. Our vector graph library (VGL) framework targets
NEC SX-Aurora TSUBASA as a primary vector architecture and provides relatively
simple computational and data abstractions. These abstractions incorporate many
vector-oriented optimization strategies into a high-level programming model, allow-
ing quick implementation of new graph algorithms with a small amount of code
and minimal knowledge about features of vector systems. In this paper, we evalu-
ate the VGL performance on four widely used graph processing problems: breadth-
first search, single source shortest paths, connected components, and page rank.
The provided comparative performance analysis demonstrates that the VGL-based
implementations achieve significant acceleration over the existing high-performance
frameworks and libraries: up to 14 times speedup over multicore CPUs (Ligra,
Galois, GAPBS) and up to 3 times speedup compared to NVIDIA GPU (Gunrock,
NVGRAPH) implementations.

Keywords NEC SX-Aurora TSUBASA · Graph algorithms · Graph frameworks ·
VGL · Vector processing · High-performance computing

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03564-9&domain=pdf

8695

1 3

VGL: a high‑performance graph processing framework for the…

1 Introduction

Developing efficient implementations of graph algorithms is an extremely impor-
tant problem in modern computer science, since graphs successfully model vari-
ous real-world objects from different areas. Graph processing is frequently used
in social networks and web graphs analysis, solving infrastructure and biological
problems, socioeconomic modeling, and many others. For example, implemented
in this paper shortest paths algorithms allow to solve navigation problems, where
graphs represent road networks, while page rank algorithm (and its modifications)
is frequently used in search engines to rank webgraph.

Graph algorithms belong to the data-intensive class; thus they usually heav-
ily stress the memory subsystem of target platforms. Using systems with HBM
(high-bandwidth memory) can significantly accelerate many graph algorithms.
Currently, HBM is installed mainly in GPUs, vector processors (NEC SX fam-
ily of supercomputers) and processors with vector extensions (A64FX), since
computational principles of these architectures allow to efficiently utilize avail-
able memory throughput using collective accesses to the memory subsystem per-
formed by GPU cores or vector units.

Though there are many high-performance implementations of various graph
algorithms for modern NVIDIA GPUs and multicore CPUs, the possibility of
efficiently implementing graph algorithms for modern vector systems is poorly
studied. Due to the highly irregular structure of many real-world graphs, it is
extremely complicated to efficiently use vector data processing, operating over
regular data structures: In order to achieve maximum performance, vector units
have to perform operations of the same type over adjacent memory cells using
vector instructions with a fixed vector length. Moreover, even when graph algo-
rithms can be efficiently vectorized, their implementations tend to be bulky
and extremely complicated. For example, each implementation described in [1,
2] includes up to 1000 lines of code and a large number of micro-architectural
optimizations.

Developing high-level graph processing frameworks allows application devel-
opers (framework users) to significantly simplify implementation of efficient
vector-oriented graph algorithms even for those developers, who are not familiar
with concepts of vectorization and parallel programming.

2 Target architecture: NEC SX‑Aurora TSUBASA vector processors

The NEC SX-Aurora TSUBASA architecture with dedicated vector processors
[14, 26] is the primary target architecture of the VGL framework. This archi-
tecture inherits the design concepts of vector supercomputer and enhances its
advantages to achieve higher sustained performance and higher usability. Dif-
ferent from its predecessors in the SX supercomputer series [7, 13], the system
architecture of SX-Aurora TSUBASA mainly consists of vector engines (VEs),

8696 I. V. Afanasyev et al.

1 3

equipped with a vector processor and a vector host (VH) of an x86 node. The VE
is used as a primary processor for executing applications, while the VH is used as
a secondary processor for executing a basic operating system (OS) functions that
are offloaded from the VE. The VE has eight powerful vector cores. As each core
provides 537.6 GFlop/s of single-precision performance at 1.40 GHz frequency,
the peak performance of the VE reaches 4.3 TFlop/s.

Each SX-Aurora vector core consists of three components: scalar processing unit
(SPU), vector processing unit (VPU), and memory subsystem. Most computations
are performed by VPUs, while SPUs provide the functionality of a typical CPU.
Since SX-Aurora is not just a typical accelerator, but rather a self-sufficient proces-
sor, SPUs are designed to provide relatively high performance on scalar computa-
tions. VPU of each vector core has its own relatively simple instruction pipeline
aimed at decoding and reordering vector instructions incoming from SPU. Decoded
instructions are executed on vector-parallel pipelines (VPP). In order to store the
results of intermediate calculations, each vector core is equipped with 64 vector reg-
isters with a total register capacity equal to 128 KB. Each register is designed to
store a vector of 256 double-precision (DP) elements. On the memory subsystem
side, six HBM modules in the vector processor can deliver the 1.22 TB/s memory
bandwidth [7] with up to 48 GB total capacity.

Parallel programs for the NEC SX-Aurora architecture are implemented using the
OpenMP programming model, while vectorization is performed by the NEC com-
piler: A developer inserts compiler-specific directives, which help the compiler to
perform automatic vectorization. Although NEC SX-Aurora TSUBASA has many
similar hardware and architecture features with NVIDIA GPUs [3], special program-
ming models such as CUDA (Compute Unified Device Architecture) or OpenCL
cannot be used to port the existing graph processing frameworks to SX-Aurora. At
the same time, the existing frameworks for multicore CPUs demonstrate poor per-
formance on vector systems, since they do not take into an account vector computa-
tional feature.

3 Related work: graph algorithms and vector systems

Graph processing frameworks typically include several highly optimized com-
putational and data abstractions, which allow to express various graph algorithms
for different target architectures. Such abstractions usually represent some graph-
related objects (graphs, vertices, and edges) and computational operations on them.
Framework user implements the desired graph algorithms as a combination of these
abstractions and uses the developed implementations to process real-world graphs
from a specific application area. When using graph frameworks, the user saves a lot
of time and efforts compared to the situation, when he needs to manually implement
and optimize a specific graph algorithm for a specified target architecture.

Many high-level graph processing frameworks have been proposed for different
supercomputing architectures. Ligra [21] and Galois [18] are the most well-known
multicore CPUs frameworks, while Gunrock [24], CuSHA [12], Medusa [28], and
Enterprise [15] frameworks target NVIDIA GPU architecture. However, no existing

8697

1 3

VGL: a high‑performance graph processing framework for the…

frameworks are aimed at operating on modern vector systems, such as NEC SX-
Aurora TSUBASA.

3.1 Conventional high‑level GPU frameworks

Medusa [28] is one of the first high-level parallel graph processing system for
NVIDIA GPUs, which is based on using a message-passing model. CuSha [12] uses
different Gather Apply Scatter (GAS) abstraction by using parallel sliding window
to avoid non-coalesced memory access and the efficiency of using shared memory.
MapGraph [8] also adopts the GAS abstraction. Gunrock [24] implements a very
different data-driven abstraction, which is based on representing subsets of graph
vertices and edges called "frontiers.” Frontiers are used to advance (traverse) graphs,
similar to how breadth-first search algorithm operate. Gunrock currently achieves
one of the best performance among programmable single-node GPU graph com-
putations. Unfortunately, all these frameworks cannot be used for vector systems
such as SX-Aurora, since their implementation is based on the CUDA programming
model.

3.2 Conventional high‑level CPU frameworks

Ligra [21] is a multicore CPU-based framework for shared-memory systems. Its
abstraction is based on using vertex and edge maps—objects, similar to the Gunrock
frontiers. Galois [18] is another high-level abstraction for shared-memory systems,
which supports priority scheduling, dynamic graphs, and working with subsets of
vertices called active elements. However, the Galois model does not abstract the
internal details of the loop. Graph application developers have to generate the active
elements set directly for different graph algorithms. Cagra [27] is another interesting
framework, which aims to improve the utilization of CPU caches using so-called
segmentation and clusterization. Unfortunately, these frameworks also cannot be
used for vector systems, since they do not include any vector-oriented optimizations.

3.3 Evaluating the performance of graph applications

Roofline [25] and cache-aware roofline [11] models are frequently used to estimate
the efficiency of executions of various applications, including graph algorithms.
Since most of graph algorithms have low computational complexity, it is possible
to avoid generating a full roofline model for estimating efficiency of graph appli-
cations. Instead, the efficiency can be calculated as SB

TB
 , where SB is the sustained

bandwidth of a graph application, equal to the amount of bytes requested divided
by the execution time of the algorithm. TB is the theoretical bandwidth of a target
platform that is 1.2 TB/s for NEC SX-Aurora TSUBASA. This approach to calculat-
ing the efficiency in the VGL framework will be frequently used further in the paper.

8698 I. V. Afanasyev et al.

1 3

4 VGL high‑level graph processing abstractions

The VGL framework is designed to easily implement various iterative graph algo-
rithms including breadth-first search (BFS) graph traversals, calculating shortest
paths (SSSP), (strongly)connected components (CC), minimal spanning tree (MST),
maximum flow (MF), page ranking (PR), and many others. The iterative graph algo-
rithms process a certain subset of graph vertices and edges at each iteration, when
some computational operations are performed over vertices and edges of the input
graph. The iterative graph algorithms usually provide enough data-driven parallel-
ism: Vertices and edges can be processed at each iteration independently (and there-
fore in parallel) using the same compute operations over each vertex or edge, which
allows to efficiently utilize vector-processing features of NEC SX-Aurora TSUB-
ASA architecture.

The frontier (a subset of graph vertices) is a central data abstraction of the VGL
framework, similar to Gunrock and Ligra. Typically, users of the VGL framework
define various subsets of graph vertices based on some criteria. Afterwards, the user
applies various computational operations (further in the paper refereed as “abstrac-
tions” or “computational abstractions”) to these frontiers. Thus, the VGL frame-
work implements a bulk synchronous parallel (BSP) computational model: The
user describes an algorithm as multiple steps, each of which involves applying some
computational abstraction to a specific subset of graph vertices and edges. While
data dependencies between different steps may exist, vertices and edges in the fron-
tier (or subset) can be processed in parallel. Unlike the conventional frameworks
such as Gunrock and Ligra, VGL does not provide a concept of edge frontiers. All
VGL computational abstractions are arranged around processing a specific subset of
graph vertices and all their adjacent edges.

VGL provides four basic computational abstractions: advance, generate_new_
frontier, compute, and reduce.

4.1 Data abstractions

4.1.1 Graph

A graph is the main data abstraction of the VGL framework. Graphs in VGL are
stored in the optimized and preprocessed format (VectCSR), which is based on the
compressed sparse row (CSR) representation. The VGL framework provides a con-
venient interface for working with both directed and undirected graphs. For directed
graphs, outgoing and incoming edges are stored for each vertex. For undirected
graphs, all edges are stored as outgoing. This allows VGL users to easily implement
pull-based, push-based [5], and mixed [4] algorithms for any type of graph

4.1.2 Frontier

Frontier of graph vertices is the second important data abstraction in VGL. Frontier
in VGL can be one of three types: “all-active,” “dense,” or “mixed.” “All-active”

8699

1 3

VGL: a high‑performance graph processing framework for the…

frontiers include all graph vertices and allow us to significantly reduce an overhead
for the frontier maintenance. “All-active” frontiers are beneficial for implement-
ing graph algorithms, in which all graph vertices and edges have to be processed
at each algorithm iteration (e.g., Bellman–Ford). “Dense” and “mixed” frontiers,
respectively, represent cases when most/few graph vertices belong to the frontier. A
detailed description of VGL frontier representations will be provided in the follow-
ing sections.

4.1.3 Vertices array

The VerticesArray abstraction allows storing information about graph vertices, for
example current level of each vertex (in BFS algorithms) or current distances to
each vertex (in shortest paths algorithms). VerticesArray abstraction has a straight-
forward implementation using aligned arrays.

4.1.4 Edges array

The EdgesArray abstraction allows storing information about graph edges. Using
EdgesArray VGL supports storing weighted graphs. This way weighted edges are
stored as a structure of arrays, providing better memory access pattern for each vec-
tor instruction, which loads information about graph edges.

4.2 Computational abstractions

4.2.1 Advance

The advance abstraction is the main tool of traversing graph in VGL. For many
real-world graphs, the advance has highly irregular computational workflow due to
the irregular distribution of vertex degrees and a large number of indirect memory
accesses. The advance input consists of a graph, an input frontier, and several user-
defined handler functions: vertex_preprocess_op, edge_op, vertex_postprocess_op
as shown in listing 1. During its execution, the advance applies vertex_preproc-
ess_op to each vertex of input frontier, edge_op to each of its adjacent edges, and
then vertex_postprocess_op to the vertex again. It is guaranteed that the execution of
vertex_preprocess_op, edge-processing, and vertex_postprocess_op operations for
each vertex is serialized. However, all edge_op operations for each adjacent edge are
executed in parallel. In addition, all frontier vertices can also be processed in paral-
lel. A computational scheme of the advance abstraction is provided in Fig. 1. Typi-
cally, vertex preprocess (or postprocess) operations are used to initialize (or finalize)
some data processing, to be performed during edge traversals. For example, in the
page rank algorithm, the edge_op operation can be defined to accumulate new ranks,
while postprocess operations can be implemented to save the result using the input
of dangling nodes and the coefficients of the page rank.

VGL also provides an additional version of the advance abstraction, which gen-
erates a new frontier as an output. This version of advance in addition requires a

8700 I. V. Afanasyev et al.

1 3

user-defined function used to determine whether a graph vertex belongs to the new
frontier or not. The output frontier of the advance abstraction may only include ver-
tices, adjacent to the input frontier, which significantly reduces the computational
complexity required for generating the frontier.

For processing directed graphs, VGL provides two wrappers over the advance
abstraction: gather and scatter. The scatter executes the advance over outgoing
edges of each vertex, while gather—over incoming. When working with undirected
graphs, advance, gather, and scatter can be used, providing the same results.

Fig. 1 Main VGL computational abstractions: advance, compute, reduce, and generate_new_frontier

8701

1 3

VGL: a high‑performance graph processing framework for the…

4.2.2 Generate new frontier

The generate_new_frontier abstraction allows a user to create a new frontier of
graph vertices. As an input, this abstraction receives a graph and user-defined condi-
tion. Then, this abstraction generates a new frontier of vertices for which the pro-
vided condition returns IN_FRONTIER (true) flag.

4.2.3 Compute

The compute abstraction applies a user-defined compute_op operation to each vertex
of the given input frontier. Since all compute_op operations can be independently
executed, the compute abstraction can be implemented in a straightforward way on
NEC SX-Aurora TSUBASA architecture. Typicality, this abstraction is used for
wide range of operations over graph vertices: initializing distances in shortest paths,
implementing the "hook” phase in connected component algorithms, and many
others.

4.2.4 Reduce

The reduce abstraction applies a user-defined reduce_op operation (which returns
some value) to each vertex of a given input frontier. The returned values are reduced
using additionally specified reduction operation (SUM, MAX, MIN, AVG). This
abstraction can be used for a large number of applications: estimating future frontier
size in BFS, calculating dangling nodes inputs in page rank, etc. The conventional
frameworks, such as Gunrock, implement functionality of the reduce abstraction
using a combination of the compute abstraction (or its analogues) and user-defined
operations with atomic instructions. However, atomic operations on the SX-Aurora
architecture easily becomes a performance bottleneck compared to GPUs and mul-
ticore CPUs. Thus, the atomic operation must be avoided in the VGL framework.
Furthermore, the reduction implementation for the SX-Aurora architecture is much
more efficient compared to highly optimized thrust and "modernGPU” GPU librar-
ies [3], which is the main reason behind implementing the reduce as a separate
abstraction in the VGL.

5 VGL implementation details

5.1 The Graph Storage Format

The VGL framework extends the vector-oriented graph storage format called
"VectCSR” proposed in [1], which is effective for page rank and shortest paths algo-
rithms implementations on the NEC SX-Aurora TSUBASA.

In VGL, graphs are always prepossessed as shown in Fig. 2. All graph vertices
are sorted and then renumbered in the descending order with a sort key equal to
the number of adjacent edges for each vertex. This sorting implements clustering

8702 I. V. Afanasyev et al.

1 3

optimization [27], which allows us to use cache memory more efficiently by storing
only the most frequently accessed graph vertices into the cache.

In addition, in the VectCSR format, graph vertices are split into three groups
based on the number of adjacent edges for each vertex. The first group stores verti-
ces with the "large” number of adjacent edges (≥ 8 ∗ 256), second—with "medium”
(≥256 , < 8 ∗ 256), third—with "small” (< 256). Afterward, we will denote these
groups with “large-degree,” “medium-degree”, and “small-degree” groups, or as
“first,” “second,” and “third.” Computational abstractions process vertices of each
group differently: Vertices from the “medium-degree” and “large-degree” groups
generally allow vector processing of their adjacent edges using vector instructions
with the maximum length, while vertices from the “small” group—do not. In order
to improve memory access pattern when processing “small-degree” vertices, their
adjacent edges are stored separately in a vector extension (Fig. 2, right). Both vector
extension and CSR representations are used inside computational abstractions: Vec-
tor extension is used when working with dense frontiers, while the CSR representa-
tion is used when working with mixed (sparse).

As it was mentioned earlier in the paper, VGL framework supports working with
both directed and undirected graphs. In directed graphs, incoming and outgoing
edges are stored in two separate VectCSR data structures. Since the same vertex can
possibly have drastically different incoming and outgoing degree in directed graph,
graph vertices usually have different numbers and positions inside two VectCSR for-
mats, used to store incoming and outgoing edges. To allow switching between dif-
ferent traversal directions (gather and scatter), the VGL stores multiple index reor-
dering arrays, as well as provides special API functions for reordering VertexArrays
and frontiers.

Fig. 2 VectCSR graph storage format: preprocessed CSR part (left) and its vector extension (right).
Graph is split on three sample groups based on degrees of vertices

8703

1 3

VGL: a high‑performance graph processing framework for the…

5.2 Frontier representation

The frontier representation in VGL largely depends on the number of vertices com-
posing it. Each frontier tracks the number of vertices placed inside it during each
frontier modification, while not allowing duplicate vertices (with the same ID) to be
stored inside.

“All-active” frontiers are represented in VGL as a single flag, which reflects
weather all graph vertices belong to the frontier or not. A frontier can be either
directly initialized as "all-active” (using special class method or user-defined cri-
teria), or frontiers of the other types can become all-active during computations,
which is very easy to check since each frontier is tracking the number of its vertices
and also removes duplicate vertices.

The dense frontier in VGL is represented as an array of flags and is used when
most of graph vertices belong to it. Each flag has the 4-byte integer type, since
SX-Aurora does not allow vectorized processing of smaller data types (char, short,
bool). Each flag is equal to the result of user-defined conditional operation, passed
to some computational abstraction capable of updating the frontier (advance and
generate_new_frontier).

When the frontier consists only of a small number of vertices, it has a “mixed”
type. Vertices of the “mixed” frontier are divided into three groups, based on the
number of adjacent edges for each vertex—exactly with the same thresholds used
in the VectCSR graph representation. Each group of vertices can be either dense
or sparse independently from others: Dense groups are represented via arrays of
flags, while sparse groups are represented via lists of vertex IDs. Splitting vertices of
“mixed” frontiers into three groups are motivated by two reasons. First, many graph
algorithms usually visit more “high-degree” vertices in the first iterations, while
more “small-degree” vertices on the later iterations for various real-world graphs. In
addition, the operation of generating a list of vertex IDs on the SX-Aurora architec-
ture is not vector friendly (to be shown in next section) and thus should be avoided
if possible.

Computational abstractions, which are allowed to create new frontiers (advance
and generate_new_frontier) automatically, determine the output frontier type based
on build-in criteria of the frontier sparsity. The standard criteria are based on ratios
of vertices currently stored in each group to the maximum possible number of ver-
tices in each group. For example, a dense “small-degree” group of vertices becomes
sparse when it contains less them 30% of total "small-degree” graph vertices. Each
criterion can be altered by user. For example, one may chose the criteria for a group,
depending on the total number of outgoing frontier edges, as it implemented in
Ligra [21].

5.3 Generating a new frontier

A user of VGL framework generates a new frontier by either using the gener-
ate_new_frontier abstraction or obtaining it as a result of the advance abstraction
(variation which returns a frontier). Further in this section, we will discuss in detail

8704 I. V. Afanasyev et al.

1 3

algorithm used in the generate_new_frontier abstraction. First, an array of flag is
generated, which determines whether each vertex belongs to the generated frontier
or not. Each flag can be easily obtained by checking the return value of the con-
ditional operator passed into the generate_new_frontier abstraction, and this flag
will be further used in dense and mixed frontier representations. When generating
an array of flags, the number of vertices in each of three vertex groups (“large,”
“medium,” “small”) is calculated, which can be implemented without any over-
head by accumulating the desired numbers in vector registers and using reduction
OpenMP directives. The total number of vertices inside the frontier is calculated as
a sum of 3 obtained values for different groups. Consequently, each group is classi-
fied as sparse or dense based on the obtained numbers. If all three groups are dense,
the frontier is considered to have a “dense” type, otherwise—“mixed.” Finally, for
each sparse group a parallel copy_if operation is invoked, which generates a list of
vertex IDs inside the group.

Efficiently implementing the copy_if operation on NEC SX-Aurora TSUBASA
poses a significant challenge. For the NVIDIA GPU architecture, this operation is
usually based on parallel prefix sum algorithm [10], which, however, is poorly suit-
able for the SX-Aurora architecture. Therefore, the following copy_if algorithm is
used in VGL. First, each vector core allocates temporary buffers for each element of
vector instruction. Each buffer has a |V|

256∗8
 size, and totally 256 ∗ 8 buffers are allo-

cated. Next, all vector indices with nonzero flags are copied into the buffers in a sin-
gle traversal through array of flags. Data are copied to buffers via scatter operations
to the desired positions inside buffers, stored in a special vector register. Next, each
vector core calculates the number of elements inside its vector buffers, and then all
vector cores exchange obtained numbers in order to calculate offsets for each core
inside the output array. Finally, each vector core copies elements from vector buff-
ers to the output array starting from previously calculated offsets, thus generating a
list of vertex IDs, which belong to the new frontier. The efficiency and the sustained
bandwidth of two main parts of the generate_new_frontier abstraction are provided
in Table 1. For comparison, Table 1 also provides the sustained memory bandwidth
and the efficiency of the STREAM benchmark.

5.4 Advance

The advance abstraction input consists of a preprocessed graph (in VectCSR format)
and a frontier, both of which have their vertices sorted and split into three groups
based on their degree. In addition, each group of frontier vertices has its own spar-
sity characteristic, determined during frontier updates. The advance abstraction
implements three types of handler functions, each one aimed at processing vertices
of each separate group using different techniques for parallel inter-core workload
balancing and using vector instructions (Fig. 3). Additionally, each handler function
is optimized to work with three different representations of the input frontier: all-
active, dense, and sparse.

8705

1 3

VGL: a high‑performance graph processing framework for the…

Each “high-degree” vertex from the first group is processed using entire SX-
Aurora vector engine. All eight vector cores process adjacent edges of each vertex
using vector instructions of the 256 vector length, applying a user-defined edge_op
operation to each adjacent edge. This edge traversal is implemented via simultane-
ously parallelized and vectorized loop. Vertex pre/postprocessing operations are
executed on master thread before/after edge processing loop without vectorization.

Each “medium-degree” vertex from the second group is processed using a single
vector core, which processes 256 adjacent edges at a time using vector instructions.
Edge traversal of each vertex is implemented as a vectorized loop, while paralleliza-
tion between different cores is implemented among different vertices.

Processing “small-degree” vertices in VGL is implemented in a fundamentally
different way. Due to the low degree of each vertex in this group, each vertex is
processed by one element of the vector instruction. Thus, each vector core processes
256 consecutive vertices of the input frontier. Due to the fact that frontier vertices
are preliminary sorted, for most real-world graphs, each vector instruction processes
approximately the same number of adjacent edges. Processing only the vertices,
which belong to the input frontier for the dense cases is implemented via vector
masking: Each vector instruction processes 256 consecutive vertices of graph (not
frontier), deactivating those which have frontier flags set to false value. In addition,
vector extension data structure (Fig. 2) is used when working with dense frontiers,
which allows to load information about graph edges (destination IDs and weights)
with a sequential memory access pattern, using LOAD vector instructions instead
of GATHER, thus maximizing effective memory bandwidth during graph traversal.
When working with sparse frontiers, the information about adjacent edges is loaded

Table 1 The sustained
bandwidth and the efficiency of
different parts of the generate
new frontier abstraction

Algorithm Sustained band-
width (GB/s)

Efficiency (% of
peak bandwidth)

VGL copy_if 261 21
Generate flags array 667 55
STREAM benchmark 983 81

Fig. 3 Load balancing strategy used in VGL advance abstraction

8706 I. V. Afanasyev et al.

1 3

using vector GATHER instructions from the CSR graph representation. This pat-
tern is significantly less effective; however, it allows to load only the information
required for processing specific frontier vertices, while masked vector loads on SX-
Aurora are implemented so they load a significant amount of excessive data from
memory if input frontier is sparse. The efficiency and the sustained bandwidth of the
advance are provided in Table 2.

In the advance abstraction, the following optimizations have been used.

Parallel workload balancing Parallel workload balancing between different vec-
tor cores in VGL is implemented via the OpenMP schedule (static, 8) clause. Using
static workload balancing in VGL is possible due to the preliminary applied clusteri-
zation [27] (vertices in VectCSR graph storage format are sorted according to their
degree). Thus, 8 SX-Aurora vector cores always process 64 consecutive graph ver-
tices, which usually have approximately the same number of adjacent edges, since
all graph vertices are sorted. This allows all vector cores to process approximately
the same number of edges even for highly irregular real-world graphs, as shown in
Table 3. Consequently, all OpenMP threads have similar execution times, as shown
in Table 4 (“min/max time among all threads”).

Scheduling mode theoretically could be changed to (static, 1) in order to even
further improve parallel efficiency. However, in this case vector cores start process-
ing edges, located in consecutive memory regions. Such memory access pattern is
significantly less efficient for the NEC SX architecture, which results in (static, 1)
demonstrating significantly lower performance. However, (static, 1) is still used in
VGL when working with very sparse frontiers. In this case, vertices processed by
different vector cores are usually located far away from each other (since the frontier
is sparse), increasing the efficiency of memory access pattern.

Using vector instructions with the maximum vector length The performance
(including the effective memory bandwidth) of SX-Aurora vector instructions
decreases in proportion to their length; thus, using vector instructions with a vector
length of 256 is highly desired. Processing graph vertices in separate groups allows
using vector instructions of length close to 256 (Table 4 “average vector length”).

Table 2 The sustained bandwidth and the efficiency of different parts of the advance abstraction, applied
to RMAT graphs with scale 23

Graph problem “Medium-degree” group “Small-degree” group

Sustained band-
width (GB/s)

Efficiency (%) Sustained band-
width (GB/s)

Efficiency (%)

BFS 321 26 384 32
SSSP 505 42 589 49
PR 524 43 428 35
CC 219 18 543 45

8707

1 3

VGL: a high‑performance graph processing framework for the…

Efficiently vectorizing different user-defined operations In order to vectorize ver-
tex and edge traversals, specialized nc++ compiler directives are used, which indi-
cate the absence of data dependencies within user-defined operations: ivdep, vover-
take, novob, gather_reorder. These directives allow to avoid partially vectorized
loops (Table 4 “vector op. ratio”), as well as enable both types of indirect memory
accesses—gather and scatter.

Improving last-level cache (LLC) usage For power-law graphs, the advance
abstraction efficiently caches most of indirect memory accesses in LLC due to clus-
terization [27] optimization included into VectCSR graph representation (Table 4
“LLC hit rate”). In addition, VGL provides advance interface, which allows to
directly prefetch specific indirectly accessed arrays into LLC cache using the nc++
prefetch directives.

Push/pull traversal The advance abstraction supports efficient implementations of
both push- and pull-based graph algorithms. Generally, pull-based algorithms are
more efficient on SX-Aurora, since gather vector instructions, implementing indi-
rect memory loads, have better performance compared to scatter instructions, which
implement indirect stores (Fig. 4 left).

Packing indirectly accessed 4-byte values into 8-byte On the SX-Aurora TSUB-
ASA architecture, indirect memory accesses to 8-byte values are approximately
twice more faster compared to accesses to 4-byte data due to the scatter/gather

Table 3 Percent of graph edges, processed by each vector core during one iteration of PageRank algo-
rithm

Each edges is processed only once, all graph edges are processed

Graph Core 1
(%)

Core 2
(%)

Core 3
(%)

Core 4
(%)

Core 5
(%)

Core 6
(%)

Core 7
(%)

Core 8 (%)

Rmat
(scale
21)

13.16 12.8 12.72 12.68 12.6 12.18 11.93 11.88

Live
journal

12.93 12.72 12.61 12.51 12.42 12.34 12.26 12.16

Pokec 13.40 12.94 12.71 12.49 12.33 12.17 12.03 11.89

Table 4 Main profiling metrics collected for the advance abstraction on several real-world graphs

Graph Min time among
all threads (ms)

Max time among
all threads (ms)

Average
vector
length

Vector op.
ratio (%)

LLC
hit rate
(%)

Rmat (scale 21) 172 192 250.2 98.9 56
Wiki_ru 49 50 253.9 99 52
Uniform-random (scale 24) 1106 1110 245.8 99 40
Pokec 78 81 255.7 99.1 61

8708 I. V. Afanasyev et al.

1 3

vector instructions implementation (Fig. 4 right). Thus, for many graph algorithms it
can be beneficial to pack 4-byte values into 8-byte, if two different 4-byte values are
loaded per graph edge: levels and parents in BFS algorithm, page ranks, and outgo-
ing degrees for PR algorithm. VGL provides a special API to perform such packing/
unpacking operations in compute and advance abstractions.

6 Implementation of graph problems and algorithms using VGL

Using VGL abstractions, we implemented several algorithms aimed at solving
the following fundamental graph problems: shortest paths, page rank, connected
components, and breadth-first search (Fig. 5). These problems are typically
implemented in most existing graph processing frameworks and libraries and thus
can be used for the comparative performance analysis, which will be provided in
the next section.

Breadth-first search. The BFS algorithms operate with frontiers of vertices—con-
cept, natively implemented using the VGL data abstractions. The initial frontier is
set to contain only a source vertex, and in each iteration, a new frontier of verti-
ces is generated from all unvisited vertices, which are neighbours of the previous
frontier. In VGL, both direction-optimizing [4] and top-down BFS algorithms are
implemented.

Shortest paths. The single-source shortest paths problem involves finding paths
between a given source vertex and all other graph vertices, such that all weights
on the path between source and destination vertices are minimized. Multiple paral-
lel shortest paths algorithms exist, including the Bellman−Ford [9] and the delta
stepping [16]. In VGL, push-based and pull-based versions of the Bellman–Ford

Fig. 4 Comparative bandwidth values for various scatter/gather benchmarks (left) on SX-Aurora archi-
tecture. Comparative bandwidth values for benchmarks, indirectly accessing 4-byte and 8-byte data
(right)

8709

1 3

VGL: a high‑performance graph processing framework for the…

algorithm are implemented, where in each iteration all graph vertices and their adja-
cent edges are used for updating paths. In addition, VGL implements a more compu-
tationally optimal version of the Bellman–Ford algorithm, when only vertices with
recently updated labels participate in computations in each iteration.

Page rank. The page rank [19] algorithm assigns a numerical weighting to each
element of a hyperlinked set of documents (e.g., web graph) with the purpose of
quantifying its relative importance within the set. In VGL, the pull-based page rank
algorithm is implemented, since it allows to avoid using atomic operations, which
are very inefficient on the SX-Aurora architecture. During each iteration of the page
rank algorithm, all graph vertices participate in calculations; thus, "all-active” fron-
tier API part is used.

Connected Components. The connected component problem involves labeling
graph vertices using unique component IDs. VGL connected components imple-
mentation is based on Shiloach–Vishkin [20] and bfs-based algorithms.

7 Performance evaluation

The performance of VGL-based implementations has been evaluated in compari-
son with other existing frameworks and libraries for multicore CPUs and NVIDIA
GPUs. We ran all the experiments on the cluster equipped with: (1) 12-core Intel(R)
Xeon(R) Gold 6126 CPU of Intel Skylake architecture, (2) NVIDIA V100 GPU of
Volta architecture, and (3) vector engine SX-Aurora TSUBASA Type 10B, installed
in different cluster partitions. Ligra, Galois, and GAPBS graph libraries have been
used in order to evaluate the VGL performance against Intel Xeon, each of which is
the latest available version at the moment of this writing. Each CPU library has been
compiled using GCC version 8.3, and during execution, a number of threads equal
to the number of Intel Xeon cores have been used. Gunrock, cuSHA and Enterprise
frameworks have been used in order to evaluate VGL performance against NVIDIA
GPUs, as well as NVGRAPH and Lonestar GPU libraries, built using GCC v8.3 and

Fig. 5 Operation flowcharts for selected graph problems implemented via VGL abstractions

8710 I. V. Afanasyev et al.

1 3

NVIDIA CUDA Toolkit v10.2. VGL-based implementations have been compiled
using nc++ of version 3.0.6.

Graphs used in our experiments include synthetic RMAT [6] and multiple real-
world graphs from [22, 23] collections. Main characteristics of several graphs are
provided in Table 5. For each implementation, exactly the same synthetic graphs
have been used, externally loaded into each framework. Mega Traversed Edges Per
Second (MTEPS) [17] has been used as the main performance evaluation metric.

The comparative VGL performance analysis is demonstrated in Figs. 7, 6, 8 and
9. Provided performance results have been obtained using the following methodol-
ogy: For each graph problem (PR, SSSP, BFS, CC), the VGL-based implementation
performance has been compared with two fastest multicore CPU and NVIDIA GPU
implementations, available for each problem. This is the main reason why some
frameworks (such as cuSHA) are not present in the figures below—their perfor-
mance is significantly lower compared to other frameworks and libraries. In order to
exclude possible differences in performance caused by different computational com-
plexity of algorithms being used in different frameworks, only the same algorithms
(or minor variations of the same algorithm) have been compared.

The first important thing to observe VGL achieves up to 14 times acceleration
compared to multicore CPU implementations. Such a significant performance dif-
ference is caused by different peak memory bandwidth values for these platforms:
90 GB/s for Intel Xeon versus 1.2 TB/s for NEC SX-Aurora TSUBASA. The fact
that the performance difference is approximately proportional to bandwidths val-
ues proves our observation expressed in the beginning of the paper about significant
potential of using systems with high-bandwidth memory for graph applications.

The comparison of the VGL performance with implementations targeting V100
GPU is more fair, since both systems have approximately the same theoretical
memory bandwidth: 900 GB/s for V100 GPU versus 1.2 TB/s for NEC SX-Aurora
TSUBASA. However, in most cases (BFS, PR, SSSP problems) we can observe up
to 3x better performance of the VGL implementations. Such acceleration can be
explained by the combination of the following factors. First, SX-Aurora TSUBASA
has a slightly higher theoretical memory bandwidth, which, of course, contributes
to the performance difference. Second, VGL uses graph preprocessing techniques
(clusterization), which allows to significantly increase LLC hit rate when processing
indirect memory accesses and, in addition, improves parallel workload balancing.

Table 5 Main properties and characteristics of graphs used during performance evaluation

Graph name Vertices count Edges count Type Degree-distribution Maximum
vertex
degree

Rmat (scale 21) 2 M 67 M Synthetic Power law 137610
Rmat (scale 26) 67 M 2.14 bn Synthetic Power law 1.1 M
Friendster 67 M 2.5 bn Web Power law 5214
Twitter 41 M 1.4 bn Social Power law 2.9 M
Wiki_en 12 M 378 M Web Power law 7888

8711

1 3

VGL: a high‑performance graph processing framework for the…

Other frameworks, such as Gunrock, do not use preprocessing-based optimizations.
Finally, SX-Aurora TSUBASA has a significantly larger LLC cache (compared to
NVIDIA GPUs), which allows to store a significant part of most frequently accessed
graph vertices, since all the graphs used for the performance evaluation are scale-
free. Unfortunately, it is hard to conclude which factor provides a higher contribu-
tion to the performance increase. On the final note, for the connected components
problem Gunrock demonstrates better performance for multiple real-world graphs
(Fig. 9), most probably due to the harmful for SX-Aurora TSUBASA memory
access patterns during the “jump” phase of Shiloach–Vishkin algorithm.

Fig. 6 The performance (per iteration) of VGL page rank implementation compared to four fastest mul-
ticore CPU and NVIDIA GPU frameworks and libraries: NVGRAPH, Ligra, GAPBS, Gunrock. Other
frameworks and their fastest available page rank method (including push-based)

Fig. 7 The performance of VGL shortest paths implementation compared to three fastest multicore CPU
and NVIDIA GPU frameworks and libraries: NVGRAPH, Ligra, GAPBS

8712 I. V. Afanasyev et al.

1 3

8 Future plans

Our future plans include the following main research and development directions.

1. Extending the list of graph algorithms implemented in the VGL. Currently, in
addition the algorithms discussed in this paper, algorithms for solving maximum
flow, community detection, widest paths, strongly connected components and
all-pairs shortest paths problems are implemented.

2. Implementing the possibility of using multiple SX-Aurora vector engines for
graph processing. This direction is motivated by the fact that supercomputer

Fig. 8 The performance of VGL breadth-first search implementation compared to three fastest multicore
CPU and NVIDIA GPU frameworks and libraries: Gunrock, Ligra, GAPBS

Fig. 9 The performance of VGL connected components implementation compared to three fastest multi-
core CPU and NVIDIA GPU frameworks and libraries: Gunrock, Ligra, GAPBS

8713

1 3

VGL: a high‑performance graph processing framework for the…

nodes based on SX-Aurora TSUBASA architecture are equipped with up to eight
vector engines, using all of which can potentially even further accelerate graph
processing.

3. Extending the VGL framework to other systems with high-bandwidth memory
and vector-processing features, such as Intel KNL, A64FX (vector extensions),
and NVIDIA GPUs (warps). According to our experience, such systems require
similar optimization approaches (using specific memory access patterns, SIMD
instructions of maximum available length, workload balancing), which need to
be used in order to efficiently utilize high-bandwidth memory.

9 Conclusions

In this paper, we presented the world first attempt to develop a high-level program-
mable graph processing framework for modern NEC SX-Aurora TSUBASA vector
architecture. NEC SX-Aurora TSUBASA is equipped with memory of a 1.2TB/s
bandwidth, which allows to drastically accelerate various graph algorithms, if they
are accurately implemented. In this paper, we discussed the VGL computational and
data abstractions, as well as their implementation details and possible applications.

As was shown in this paper, VGL allows to solve a number of fundamental graph
problems, including SSSP, BFS, PR, and CC. The VGL-based implementations of
these problems demonstrate a significant acceleration compared to existing most
advanced frameworks and libraries, developed for other platforms. For example, the
VGL-based implementations are up to 14 times faster compared to Ligra, Galois and
GAPBS multicore CPU frameworks and libraries, and up to 3 times faster compared
to Gunrock and NVGRAPH implementations for various synthetic and real-world
graphs. Finally, due to the 48 GB of high-bandwidth memory available in the SX-
Aurora architecture, VGL is capable of processing relatively large datasets including
Twitter and Friendster social graphs—the largest available in KONECT [23] and
SNAP [22] collections.

Acknowledgements The results described in Section 5 were obtained in Lomonosov Moscow State Uni-
versity with the financial support of the Russian Science Foundation (Agreement N 20-11-20194). The
reported study was funded by RFBR, Project Number 19-37-90002.

References

 1. Afanasyev I, Voevodin VV, Voevodin VV, Komatsu K, Kobayashi H (2019) Developing efficient
implementations of shortest paths and page rank algorithms for NEC SX-Aurora TSUBASA archi-
tecture. Lobachevskii J Math 40(11):1753−1762

 2. Afanasyev IV, Antonov AS, Nikitenko DA, Voevodin VV, Voevodin VV, Komatsu K, Watanabe O,
Musa A, Kobayashi H (2018) Developing efficient implementations of bellman-ford and forward-
backward graph algorithms for nec sx-ace. Supercomput Front Innov 5(3):65–69

8714 I. V. Afanasyev et al.

1 3

 3. Afanasyev IV, Voevodin VV, Voevodin VV, Komatsu K, Kobayashi H (2019) Analysis of relation-
ship between simd-processing features used in nvidia gpus and nec sx-aurora tsubasa vector proces-
sors. In: International Conference on Parallel Computing Technologies. Springer, pp 125–139

 4. Beamer S, AsanoviÄ‡ K, Patterson D (2013) Direction-optimizing breadth-first search. Sci Program
21(3–4):137–148

 5. Besta M, Podstawski M, Groner L, Solomonik E, Hoefler T (2017) To push or to pull: On reducing
communication and synchronization in graph computations. In: Proceedings of the 26th interna-
tional symposium on high-performance parallel and distributed computing. pp 93–104

 6. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-mat: a recursive model for graph mining. In: Proceed-
ings of the 2004 SIAM International Conference on Data Mining. SIAM, pp 442–446

 7. Egawa R, Komatsu K, Momose S, Isobe Y, Musa A, Takizawa H, Kobayashi H (2017) Potential of
a modern vector supercomputer for practical applications: performance evaluation of SX-ACE. pp
3948–3976

 8. Fu Z, Personick M, Thompson B (2014) Mapgraph: a high level api for fast development of high
performance graph analytics on gpus. In: Proceedings of workshop on GRAph data management
experiences and systems. pp 1–6

 9. Goldberg A, Radzik T (1993) A heuristic improvement of the bellman-ford algorithm. Stanford
Univ CA Dept of Computer Science, Technical report

 10. Hillis WD, Steele GL Jr (1986) Data parallel algorithms. Commun ACM 29(12):1170–1183
 11. Ilic A, Pratas F, Sousa L (2013) Cache-aware roofline model: upgrading the loft. IEEE Comput

Archit Lett 13(1):21–24
 12. Khorasani F, Vora K, Gupta R, Bhuyan LN (2014) Cusha: vertex-centric graph processing on gpus.

In: Proceedings of the 23rd international symposium on High-performance parallel and distributed
computing. pp 239–252

 13. Komatsu K, Egawa R, Isobe Y, Ogata R, Takizawa H, Kobayashi H (2015) An approach to the
highest efficiency of the HPCG benchmark on the SX-ACE supercomputer. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis (SC15). Poster, pp
1–2

 14. Komatsu K, Momose S, Isobe Y, Watanabe O, Musa A, Yokokawa M, Aoyama T, Sato M, Kob-
ayashi H (2018) Performance evaluation of a vector supercomputer sx-aurora tsubasa. In: Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage, and
Analysis, SC ’18. IEEE Press, Piscataway, pp 54:1–54:12

 15. Liu H, Huang HH (2015) Enterprise: breadth-first graph traversal on gpus. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. pp
1–12

 16. Meyer U, Sanders P (2003) $\delta $-stepping: a parallelizable shortest path algorithm. J Algorithms
49(1):114–152

 17. Murphy RC, Wheeler KB, Barrett BW, Ang JA (2010) Introducing the graph 500. Cray Users Group
(CUG) 19:45–74

 18. Nguyen D, Lenharth A, Pingali K (2013) A lightweight infrastructure for graph analytics. In: Pro-
ceedings of the twenty-fourth ACM symposium on operating systems principles. pp 456–471

 19. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the
web. Technical report, Stanford InfoLab

 20. Shiloach Y, Vishkin U (1980) An o (log n) parallel connectivity algorithm. Technical report, Com-
puter Science Department, Technion

 21. Shun J, Blelloch GE (2013) Ligra: a lightweight graph processing framework for shared memory.
In: ACM sigplan notices, vol. 48. ACM, pp 135–146

 22. Stanford Large Network Dataset Collection-SNAP. https ://snap.stanf ord.edu/data/
 23. The Koblenz Network Collection-KONECT. http://konec t.uni-koble nz.de
 24. Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD (2016) Gunrock: a high-performance graph

processing library on the gpu. In: Proceedings of the 21st ACM SIGPLAN symposium on principles
and practice of parallel programming. pp 1–12

 25. Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for
multicore architectures. Commun ACM 52(4):65–76

https://snap.stanford.edu/data/
http://konect.uni-koblenz.de

8715

1 3

VGL: a high‑performance graph processing framework for the…

 26. Yamada Y, Momose S (2018) Vector engine processor of nec brand-new supercomputer sx-aurora
TSUBASA. In: Intenational symposium on high performance chips (Hot Chips2018)

 27. Zhang Y, Kiriansky V, Mendis C, Amarasinghe S, Zaharia M (2017) Making caches work for graph
analytics. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE, pp 293–302

 28. Zhong J, He B (2013) Medusa: simplified graph processing on gpus. IEEE Trans Parallel Distrib
Syst 25(6):1543–1552

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Ilya V. Afanasyev1 · Vladimir V. Voevodin2 · Kazuhiko Komatsu3 ·
Hiroaki Kobayashi3

 * Ilya V. Afanasyev
 afanasiev_ilya@icloud.com

1 Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia 119991
2 Research Computing Center of Moscow State University, Moscow, Russia 119234
3 Tohoku University, Sendai, Miyagi 980-8579, Japan

http://orcid.org/0000-0002-0202-1548

	VGL: a high-performance graph processing framework for the NEC SX-Aurora TSUBASA vector architecture
	Abstract
	1 Introduction
	2 Target architecture: NEC SX-Aurora TSUBASA vector processors
	3 Related work: graph algorithms and vector systems
	3.1 Conventional high-level GPU frameworks
	3.2 Conventional high-level CPU frameworks
	3.3 Evaluating the performance of graph applications

	4 VGL high-level graph processing abstractions
	4.1 Data abstractions
	4.1.1 Graph
	4.1.2 Frontier
	4.1.3 Vertices array
	4.1.4 Edges array

	4.2 Computational abstractions
	4.2.1 Advance
	4.2.2 Generate new frontier
	4.2.3 Compute
	4.2.4 Reduce

	5 VGL implementation details
	5.1 The Graph Storage Format
	5.2 Frontier representation
	5.3 Generating a new frontier
	5.4 Advance

	6 Implementation of graph problems and algorithms using VGL
	7 Performance evaluation
	8 Future plans
	9 Conclusions
	Acknowledgements
	References

