
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:7149–7170
https://doi.org/10.1007/s11227-020-03526-1

1 3

Enhancing HDFS with a full‑text search system for massive
small files

Wentao Xu1 · Xin Zhao1 · Bin Lao3 · Ge Nong1,2

Accepted: 17 November 2020 / Published online: 4 January 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
HDFS is a popular open-source system for scalable and reliable file management,
which is designed as a general-purpose solution for distributed file storage. While it
works well for medium or large files, it will suffer heavy performance degradations
in case of lots of small files. To overcome this drawback, we propose here a sys-
tem to enhance HDFS with a distributed true full-text search system SAES of 100%
recall and precision ratios. By indexing the meta data of each file, e.g., name, size,
date and description, files can be quickly accessed by efficient searches over meta-
data. Moreover, by merging many small files into a large file to be stored with better
space and I/O efficiencies, the negative performance impacts caused by directly stor-
ing each small file individually are avoided. An experimental study is conducted for
function and performance tests on both realistic and artificial data. The experimental
results show that the system works well for file operations such as uploading, down-
loading and deleting. Moreover, the RAM consumption for managing massive small
files is dramatically reduced, which is critical for good system performance. The
proposed system could be a potential storage solution for massive small files.

Keywords Lots of small files · HDFS · Elasticsearch · Full-text search

The work of X. Zhao was done in his Master program in Sun Yat-sen University.

 * Ge Nong
 issng@mail.sysu.edu.cn

 Wentao Xu
 xuwt7@mail2.sysu.edu.cn

 Xin Zhao
 zhaox79@mail2.sysu.edu.cn

 Bin Lao
 laobin@gdufs.edu.cn

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2 Guangdong Province Key Laboratory of Information Security Technology, Guangzhou, China
3 School of Information Science and Technology, Guangdong University of Foreign Studies,

Guangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03526-1&domain=pdf

7150 W. Xu et al.

1 3

1 Introduction

Data as lots of small files (LOSF) such as pictures, logs and emails are widely
observed in modern information applications. These small files are of typical sizes
from several thousands to millions bytes. Efficient storage of massive small files
requires the underlying file system to scale with increasing number and volume of
files. However, it has been recognized that existing general-purpose file systems are
commonly designed without specific concerns for small files. This inspires R&D
efforts contributed to LOSF systems, the existing solutions are roughly classified
into three categories [28] as follows.

1.1 Existing solutions

The first category is the proprietary distributed file systems developed by a num-
ber of institutes, e.g., Taobao File System (TFS)1 from Taobao and Cassandra [16]
from Twitter. Specifically, TFS is designed for managing small files less than 1 MiB,
and Cassandra maintains the meta data of all files in RAM to speed up file seeking.
Because these systems are designed with specific objectives to support applications
in these institutes, efforts are required to deploy them in a third-party environment.
As a result, these systems have not been widely adopted in the public domain.

The second category is to optimize existing frameworks of managing small files
[13]. For example, Priyanka et al. [26] designed a mechanism called Combine-
FileInputFormat to improve the performance of accessing massive small files based
on MapReduce framework, then Chang Choi et al. [6] integrated CombineFileIn-
putFormat with Java Virtual Machine (JVM) to run multiple mappers on a single
JVM for reducing JVM creation time and improving MapReduce’s processing per-
formance for small files. In addition, some researchers have modified the file man-
agements of operating systems to scale with massive small files [9]. While these sys-
tems provide stronger supports for small files, their designs are tightly coupled with
the underlying systems such as JVM and OS [5, 10, 15, 20]. This makes difficulties
for deploying these systems in practice.

Different from the aforementioned solutions, the third category uses a general-
purpose distributed file system by compacting many small files into a large file to
reduce the number of physical files stored in the underlying file system. For exam-
ple, HDFS provides three mechanisms for storing small files mainly for read-only
accesses: (1) Hadoop Archive (HAR)2 for read-only archive purpose, which merges
multiple small files into a large file with meta and file data. Once a HAR is created,
it is frozen and can not be modified any more. (2) SequenceFile3 for storing many
small files as a sequential stream of key-value records, where key and value for meta
and file data, respectively. The small files in a SequenceFile can only be accessed

1 https ://githu b.com/aliba ba/tfs.
2 https ://hadoo p.apach e.org/docs/curre nt/hadoo p-archi ves/Hadoo pArch ives.html.
3 https ://hadoo p.apach e.org/docs/r2.7.5/api/org/apach e/hadoo p/io/Seque nceFi le.html.

https://github.com/alibaba/tfs
https://hadoop.apache.org/docs/current/hadoop-archives/HadoopArchives.html
https://hadoop.apache.org/docs/r2.7.5/api/org/apache/hadoop/io/SequenceFile.html

7151

1 3

Enhancing HDFS with a full-text search system for massive small…

sequentially. (3) MapFile4 built on SequenceFile for faster accesses to small files
using an index for meta data of small files. The index is loaded into RAM and
searched for locating each small file to be accessed. Specifically, all keys are sorted,
then 1 per 128 keys is selected to build the index. MapFile can be considered as an
accelerated alternative of SequenceFile.

Among these three categories, the third turns out to be more promising for the
development of a general-purpose file system for massive small files. Currently,
Hadoop and HDFS are the very popular open-source software for developing dis-
tributed data processing and storage systems [4, 27, 31], HDFS is the choice of
technology for building the underlying file system. The three mechanisms currently
provided by HDFS for storing small file are mainly for read-only archive purpose,
random access to small files are not supported very well. Among them, MapFile pro-
vides the strongest support for random access. However, the index used by MapFile
to store keys for locating small files contains only a part of all keys, and it is required
to be fully loaded in RAM for searches. This index scheme might be improved by
another scalable one for managing massive small files with flexible random opera-
tions such as adding, deleting and updating.

1.2 Our solution

A typical HDFS configuration is shown in the down-left box of Fig. 1, which
includes: (1) a master node called NameNode to manage the namespace composed
of meta data; and (2) multiple slave nodes called DataNodes to store files as blocks.
To store a file, the metadata for accessing this file from DataNodes is added to
NameNode, and the file is segmented into blocks to be stored in DataNodes [22, 30].

Fig. 1 The architecture of our proposed system for massive small files, where the parts in dashed boxes
are developed by this work to enhance HDFS with SAES

4 https ://hadoo p.apach e.org/docs/r2.6.2/api/org/apach e/hadoo p/io/MapFi le.html.

https://hadoop.apache.org/docs/r2.6.2/api/org/apache/hadoop/io/MapFile.html

7152 W. Xu et al.

1 3

While HDFS is efficient for managing medium to large files of sizes over ten MiB,
it sees challenges for managing massive small files due to that both time and space
requirements for file management increase with the number of files. For massive
small files, a heavy burden is put on NameNode for maintaining the file management
information in RAM, which brings negative performance impacts to NameNode and
eventually becomes a performance bottleneck of the whole system.

With the default configuration of HDFS, the metadata maintained in RAM of
NameNode consists of 250 bytes per file and 368 per block of 3 replicas [3, 33].
Each small file occupies a block, managing one million small files will consume
(250 + 368) × 106∕220 = 589.3 MiB RAM in NameNode, i.e., 2 million files will
require about 1 GiB. Different from years ago, the cost of RAM has been reduced
remarkably, and a large RAM such as 64 GiB can be reasonably assumed for
NameNode. Even though the RAM’s capacity can be increased, file management
operations in NameNode will become slower when the number of files grows, and
efficient managing massive small files on HDFS can not be done by simply using a
NameNode of large RAM. To meet the demand of efficient storage of massive small
files, our recent attempt for enhancing HDFS with a full-text search system called
SAES is reported here.

The key idea for us to develop the enhanced system is to merge many small files
into a big file, and use a full-text search system to manage the meta data such as
name, date, size, description for file access. Given that the full-text search system
is efficient enough to pace up with HDFS, we will have an enhanced HDFS with
performance independent of file sizes, i.e., universally efficient for small, medium
and big files. Currently, Elasticsearch5 with Lucene as search engine plays a key role
for text search. Because Lucene uses the inverted index of data, searches in Elas-
ticsearch are not true full-text, in terms of that searches are performed over prede-
fined words instead of all data. Some results may not be found even if it exists and
the recall ratio is not guaranteed to be 100%. For example, a sentence “This is a
book” can be divided into a word set {This, is, a, book} by the standard tokenizer of
Elasticsearch, and each word is added to the inverted index. Later on, this sentence
can be found by searching these words over the inverted index. However, indexing
words in this way can support searches over full words only, i.e., searches over par-
tial words are not supported. For instance, the sentence can not be found by search-
ing the substring “ok” of “book”, because “ok” has not been added as a word to
the inverted index. As a resort to support full-text searches, Elasticsearch may use
the N-gram tokenizer6 instead of the standard one, in the expensive cost of dramati-
cally increased index size. This tokenizer can extract from data all N-grams with
a given size as words to be indexed. However, a size-n text with gram size k will
produce O(n) size-k words to be indexed, the required space O(nk) is too much to be
employed for supporting full-text searches over massive data.

Currently, it is challenging for Elasticsearch with inverted index to support time
and space efficient true full-text searches. Such a drawback prevents Elasticsearch

5 https ://www.elast ic.com/cn/blog/elast ic-searc h-7-2-0-relea sed
6 https ://www.elast ic.co/guide /en/elast icsea rch/refer ence/curre nt/analy sis-ngram -token izer.html.

https://www.elastic.com/cn/blog/elastic-search-7-2-0-released
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html

7153

1 3

Enhancing HDFS with a full-text search system for massive small…

from managing meta data of massive files, since both precision and recall ratios of
100% are required for purpose of file management. Recently, we built a true full-
text search system called SAES by replacing the inverted index in Elasticsearch
with a suffix index. Given a size-n text, the suffix index requires a space of O(n)
only. Using the suffix index, SAES supports efficient exact and approximate full-text
searches demanded for file management. Provided with HDFS and SAES, we need
to integrate them for working together to access a file in two steps: (1) locating the
file by SAES to search answers for the given query; (2) access the located file by
HDFS.

1.3 Contributions

This article presents our work on the R&D of a scalable distributed file system for
managing massive small files. The contributions of this work mainly consist of two
parts: (1) A system architecture is proposed to enhance HDFS with SAES by adding
an integration layer on top of HDFS and SAES. Such an architecture allows both
HDFS and SAES to evolve independently, so as to avoid possible fatal software
engineering problems caused by the future developments of HDFS and SAES. (2)
An experimental prototype system is built for functionality verification and perfor-
mance evaluation. A set of experiments with realistic and artificial data are con-
ducted on this prototype system to assess the feasibility of our proposed solution for
efficient storage of massive small files.

2 Our system architecture

Figure 1 shows the architecture of our proposed system for managing massive small
files. On top of HDFS and SAES, an integration layer of three modules for file man-
agement, index management and file search is added to provide application pro-
gramming interface (API) for clients to access the system’s services. A file access
request from the client is processed by the file search module to produce searching
tasks on SAES to find the file’s metadata, then the metadata is supplied to the file
management module to locate and access the file stored in DataNodes. When a file
is added or deleted, the index management module produces index updating tasks
to be executed in SAES. In this way, SAES serves as the middleware in between the
client and HDFS, which translates a request of file access into the tasks performed
on HDFS. SAES provides true full-text searching capability necessary for file man-
agement in this system. Such a searching capability is fundamental for the system
to function correctly. To support full-text searches, a suffix index for the meta data
of all files is maintained in real-time. When a file is added or deleted, the index is
updated on-the-fly to track the file’s status for management.

Figure 2 shows the file storage scheme for merging many small files into a large
file. Each large file serves as a logical disk of many blocks. The occupation status of
each block in a large file is tracked by the file management module. When a file is
added, depending on the file’s size, one or multiple idle blocks are allocated to store

7154 W. Xu et al.

1 3

Fig. 2 The storage scheme for merging many small files into a large file

Fig. 3 The data flow for adding a file in our proposed system, where the upper part is processed by the
full-text search engine while the functionalities in the lower part are provided by HDFS

7155

1 3

Enhancing HDFS with a full-text search system for massive small…

the file; when a file is deleted, the file is marked as obsolete and its blocks are freed
by periodically reorganization of large files. In order to avoid too many fragments in
a large file for better space utilization, the blocks of each large file are reorganized
periodically to cluster idle block together.

For more details of operations in the system, Fig. 3 shows the data flows for add-
ing files. Basically, files can be added one by one, but adding files in this way is slow
due to the communication delay for uploading each file. To speed up the process
for uploading multiple files, these files can be merged as a group to be uploaded
as a whole to reduce the total communication delay. In this figure, some files are
organized as a group, and some files are uploaded individually. A document to be
indexed is produced by extracting the meta data of each file, which consists of a
set of fields such as DocID, Filename, Path, Offset, etc. To facilitate searching a
field for file access, an index is dynamically built on documents for the field. SAES
allows the flexible definitions of metadata for a file, saying that any field can be
added, removed or indexed at anytime. With this distinct advantage, our system pro-
vides friendly user interface for accessing files by exact or approximate searches on
the indexed fields of metadata. In the rest of this section, we further explain how
SAES is integrated with HDFS and the processes for file operations, i.e., indexing,
uploading, downloading and deleting.

2.1 SAES system

The architecture of SAES is shown in the down-right box of Fig. 1, which uses suf-
fix index for true full-text searches instead of inverted index for keyword searches in
the original Elasticsearch. The three upper layers are inherited from Elasticsearch,
and the two lower layers are revised for using suffix index. We further explain how
the suffix index is built for metadata of files.

The index management module interacts with the index and suffix array (SA)
modules in the service layer to maintaining the suffix index. When a file is added,
a document for the file’s metadata is produced by the index management mod-
ule for indexing. If this file is deleted, the document is removed from the index.
The suffix index consists of the SA for each indexed field of document. The SA
of each field is built by lexicographically sorting all suffixes of the field data in
each document, which was initially proposed in [19] for online string searches,
and has become a fundamental index data structure for full-text searches [2, 11,
29]. Figure 4 shows a suffix array example, where an arrow from the SA points
to the corresponding suffix in data. Given the SA of each field, searching on the

Fig. 4 An example suffix array for data “animal_book.txt”

7156 W. Xu et al.

1 3

field is done by performing binary searches on the sorted suffixes in SA. Exactly
searching a size-m substring in the size-n data is equivalent to finding all the suf-
fixes in data starting with the substring, which takes O(m log n) time, given that a
searching comparison needs to compare up to m characters.

Efficient construction of SA is critical for the usability of suffix index, many
efficient suffix sorting algorithms have been proposed for different comput-
ing models by intensive researches during the past two decades, see [1, 7] for
a quick survey. In particular, using the tools proposed in [12, 14, 17, 21, 23,
24, 32], SAES is capable of achieving an index building speed over millions
bytes per second, which is fast enough to pace up with file accesses to HDFS
in most applications. Provided with the suffix index, SAES performs exact or
approximate full-text searches to locate files satisfying each client’s request,
then the located file is accessed by HDFS to execute the related file management
operations.

2.2 File indexing

The metadata for each file is currently defined as {name, bigfile, offset, size,
path, date}, and each element of metadata is a field to be indexed. Using these
fields’ indexes, the system can locate a file by exact or approximate searches
over meta data, e.g., to access a file by its name, size, date or their combina-
tion. Given a file access request, locating the target files is done in two steps: (1)
SAES conducts searches to find the IDs of files matching the request; and (2)
find the locations of matching files by IDs for retrieving the files from HDFS.

In more detail, Fig. 5 shows the process for retrieving a small file via the sys-
tem API. For each file, its metadata is indexed and searched by SAES for access-
ing files according to the client’s request. For each small file x, a record {ID,
offset, size, Info} is indexed with ID as key, where ID refers to the host hyperfile
storing the small file, offset and size give the position and length of x in the
hyperfile, respectively. The host hyperfile is located in HDFS by its ID, and x is
further accessed by offset and size.

Fig. 5 The process for retrieving a small file via the system API

7157

1 3

Enhancing HDFS with a full-text search system for massive small…

2.3 File uploading

HDFS manages its storage space in units of blocks and the typical default block
size L is 128 MiB. Depending of file size, a file may occupy one or multiple
blocks, and a part of tail block may not be used and wasted. One way to reduce
the wasted space of a block is to merge small files into a hyperfile. Moreover, the
utilization status of each hyperfile is dynamically tracked when small files are
added to or deleted from the hyperfile. For hyperfiles with wasted space more
than a predefined threshold, all their remaining small files are merged immedi-
ately or periodically to produce new hyperfiles with high utilizations, and the
index is updated accordingly.

In practice, multiple new files likely arrive as a batch to the system, these
files can be packed as a group to speed up the uploading process. Specifically,
the maximum size of uploading group is set as L, i.e., the block size in HDFS, a
file will be directly uploaded if it is not smaller than L, or else it will be merged
with its succeeding files with the maximum merged size not more than L. Once
a group has been received by the system, the files in group are unpacked and
stored in one or multiple hyperfiles, and the metadata of files are indexed for
searches.

A greedy merging method is employed by Algorithm 1 for adding small files
to hyperfiles. The space usage of current under-utilized hyperfile H is recorded,
and F is the queue of newly arriving files. Whenever F is non-empty, the hyper-
file H is checked to see if its free space is enough to accommodate the head file
of F. If it is, the file is stored in the hyperfile and the hyperfile’s occupation
status is updated, or else a new hyperfile is created to store the file. The under-
utilized hyperfiles are periodically merged by system maintenance jobs for better
space efficiency.

Using this greedy merging method, a file not less than L will cause the crea-
tion of a hyperfile to store it, and a small file will likely be merged into the cur-
rent under-utilized hyperfile for better space utilization. Even though this greedy
method is not optimal, it works well in our experiments by significantly improv-
ing the space utilization of HDFS for massive small files.

7158 W. Xu et al.

1 3

2.4 File downloading and deleting

The client can issue a file downloading request by exact or approximate queries
on the indexed meta data of files, i.e., name, size, date, etc. The query is exe-
cuted by SAES to find the access information of each file meeting the query, and
the access information of found files is returned to the client. Given the access
information of a file, HDFS can quickly locate and retrieve the file stored in a
hyperfile.

The process for deleting a file consists of two steps: (1) logically deleting the
file by marking it as obsolete in the file’s management record; and (2) physically
deleting the obsolete file by releasing its occupied space. Specifically, given the
name of a file to be deleted, the file’s ID is found by SAES, then the file’s man-
agement record is found by the ID and updated to mark the file as obsolete.
Moreover, the system periodically executes maintenance jobs to clean up obso-
lete files in hyperfiles and merge hyperfiles as needed for better space utilization.

Fig. 6 The topology of our
experimental platform, where
the LOSF system is installed in
a LAN, and the client communi-
cates with the LOSF via campus
network

Table 1 Configurations of server and client nodes on our experimental platform

Node Node type RAM (GiB) Disk (TiB) CPU Operating
system

JVM

-Xmx (GiB) -Xms (GiB)

1 Storage 16 1.8 1 of 4 cores CentOS 6.6 4 0.2
2 Storage 8 1.8 1 of 4 cores CentOS 6.10 2 0.1
3 Storage 32 1.8 2 of 12 cores CentOS 6.7 8 0.5
4 Index 64 0.5 2 of 12 cores CentOS 6.8 16 1.0
5 Index 16 1.8 1 of 4 cores CentOS 6.7 4 0.2
6 Index 16 2.0 1 of 4 cores CentOS 6.8 4 0.2
7 Client 8 0.6 1 of 4 cores Windows 10 2 0.1

7159

1 3

Enhancing HDFS with a full-text search system for massive small…

3 Experiments

Both HDFS and SAES are developed in Java, and our software system is also
developed in Java as an application running on SAES and HDFS. The software is
deployed on our experimental platform with network topology shown in Fig. 6, and
the configurations of servers and client are given in Table 1. Three servers are used
to build the HDFS of a NameNode and three DataNodes, i.e., Node 1 is used as
NameNode and DataNode, Node 2 and 3 are used as DataNodes, and the small files
are stored in DataNodes. Moreover, Nodes 4, 5 and 6 are used to build the SAES for
indexing the meta data of small files. The system services are accessed by the client
via Node 4. In particular, Node 4 accepts job requests from the client, produces the
tasks for each request and assigns the tasks to their destined nodes for processing,
then collects the processing results to respond to the client.

A series of experiments were conducted for function verification and perfor-
mance evaluation of our experimental system on both realistic and artificial datasets.
The functions to be verified are file uploading, downloading, deleting and updating,
the performance to be evaluated are time for retrieving files and memory consump-
tion for NameNode of HDFS. Table 2 shows the realistic data composed of texts and
pictures. For evaluating memory consumption of NameNode, we adopt the far more
larger artificial data of text, picture and XML files generated by a model built on
statistics collected from realistic data. Specifically, the text, XML and log files are
produced with file size distribution as datasets novel, annotations and logs, respec-
tively, and the picture files are produced with file size distribution as datasets coco,
voc2009 and pet. The artificial dataset comprises one million files with size distribu-
tion shown in Fig. 7, where the volume percentages for picture, text, XML and log
files are 89.41%, 9.78%, 0.07% and 0.75%, respectively.

3.1 File Storing and Searching

Table 3 shows the experimental results for verifying whether the system can prop-
erly store and search small files. All files in dataset “pet” are uploaded to the system,
then some exact or approximate queries are issued to retrieve files by name, data or
size for verifying with the original ones. For each query, the search time is for the
system to search all matching files, and the download time is for the client to down-
load all found files one by one.

After uploading the dataset, 6 hyperfiles are generated and stored in HDFS,
which is consist with the merging scheme. Moreover, the number and size of files
are checked to be correct. In order to test the correctness of file indexes, the queries
listed in Table 3 are submitted to search files. For each query, the found files are
checked to be identical with our statistics on the dataset. All the files for each query
are found correctly, both recall and precision ratios for each search are 100%, saying
that a file is in the searching results if and only if it meets the query. For example,
the first approximate query is to find each file of name with “beagle” as prefix and
“.jpg” as suffix, and a total of 200 files are found, which consists of all the matching

7160 W. Xu et al.

1 3

Ta
bl

e
2

 R
ea

lis
tic

 d
at

as
et

s u
se

d
in

 th
e

ex
pe

rim
en

ts

D
at

as
et

Ty
pe

Fi
le

s
To

ta
l s

iz
e

(M
iB

)
M

ea
n

si
ze

(K
iB

)
D

es
cr

ip
tio

n

co
co

 [1
8]

Pi
ct

ur
e

53
28

56
83

86
5.

6
16

1.
2

C
oc

o
is

 a
 la

rg
e-

sc
al

e
ob

je
ct

 d
et

ec
tio

n
an

d
se

gm
en

ta
tio

n
da

ta
se

t,
at

ht
tp

://
co

co
d a

ta
se

 t.o
rg

/#
do

w
nl

 oa
d

no
ve

l
Te

xt
10

52
69

9.
0

68
0.

4
En

gl
is

h
no

ve
l,

at
ht

tp
://

no
ve

l .t
in

gr
 oo

m
.c

om
vo

c2
00

9
[8

]
Pi

ct
ur

e
11

32
1

85
7.

0
77

.5
V

is
ua

l i
m

ag
e

da
ta

, a
t

ht
tp

://
ho

st.
ro

bo
t s

.o
x.

ac
.u

k/
pa

sc
a l

/V
O

C
/v

oc
20

 09
an

no
ta

tio
ns

 [8
]

X
M

L
48

09
10

.8
2.

3
A

nn
ot

at
io

n
fo

r t
he

 v
oc

20
09

 d
at

ab
as

e,
 e

ac
h

xm
l fi

le
 g

iv
es

 th
e

de
ta

ils
 o

f e
ac

h
im

ag
e

pe
t [

25
]

Pi
ct

ur
e

73
93

75
9.

6
10

5.
2

O
xf

or
d

im
ag

e
da

ta
, a

t h
ttp

://
w

w
w.

ro
bo

t s
.o

x.
ac

.u
k/

~v
gg

/d
at

a/
pe

ts
lo

gs
Lo

g
90

53
.7

61
1.

0
Lo

g
fil

es
, a

t h
ttp

s :
//c

od
el

 oa
d.

gi
th

u b
.c

om
/k

ev
in

 aa
ng

s t
ad

t/q
ua

dc
 op

te
r -l

og
s/

zi
p/

m
as

te
 r

http://cocodataset.org/#download
http://novel.tingroom.com
http://host.robots.ox.ac.uk/pascal/VOC/voc2009
http://www.robots.ox.ac.uk/~vgg/data/pets
https://codeload.github.com/kevinaangstadt/quadcopter-logs/zip/master

7161

1 3

Enhancing HDFS with a full-text search system for massive small…

files in dataset. For all queries, the searching time do not vary much, but the down-
load time are dependent of volumes of found files. The 1st and 3rd queries have
much faster mean download speeds than the other two, because their mean sizes of
found files are much larger. Given that the round-trip communication delay for file
download control is almost fixed, a larger file will see a faster mean download speed.

3.2 File deleting and updating

Table 4 shows the results for deleting 3 files. First, the file of name “2007_000676.
xml” is deleted from dataset “annotations”. Before the deletion, all files in data-
set “annotations” were uploaded on December 31, 2019, and there is only one
file named “2007_000676.xml” in all datasets. The searches in top two rows are
performed to verify this deletion: (1) the exact searches at row 1 for file name
“2007_000676.xml” find 1 and 0 matching file before and after deletion, respec-
tively; (2) the exact searches at row 2 for “20191231” find 7818 and 7817 files
before and after deletion, respectively. This confirms that one file has been deleted
as expected. Next, the files of name prefix “newfound” and suffix “jpg” are deleted
from dataset “pet”. Before the deletion, all 200 files of name prefix “newfound” and
suffix “jpg” are from dataset “pet” uploaded on December 30, 2019. The searches at
rows 3 and 4 verify these deleting operations, i.e. 200 out of 7393 files are removed.
Similarly, the tests in last 3 rows are observed to work correctly.

Updating a file can be done by deleting the file and then uploading a new file
of the same name, our system also provides the updating function. Table 5 shows
the experimental results for testing file updates. First, rows 1 and 2 delete files of
names “The Story-book of Science.txt” and “Flowers of the Sky.txt”, respec-
tively. The index information for each file before and after updating show that the
file has been updated as expected, i.e., both file size and date are modified accord-
ingly. Next, 17 files in dataset “novel” are updated. When the files in “novel” were
uploaded to the system, they were merged to be stored in a hyperfile “MyLife.

Fig. 7 The size distribution of one million files in the artificial data

7162 W. Xu et al.

1 3

Ta
bl

e
3

 R
et

rie
vi

ng
 fi

le
s i

n
da

ta
se

t “
pe

t”
 b

y
ex

ac
t o

r a
pp

ro
xi

m
at

e
qu

er
ie

s o
n

m
et

ad
at

a

Q
ue

ry
Se

ar
ch

 fi
el

d
Fo

un
d

fil
es

Fi
le

s i
n

da
ta

se
t

Se
ar

ch
 ti

m
e

(s
)

D
ow

nl
oa

d
tim

e
(s

)
M

ea
n

si
ze

 o
f f

ou
nd

fil

es
 (M

iB
)

M
ea

n
do

w
nl

oa
d

sp
ee

d
(M

iB
/s

)

be
ag

le
*.

jp
g

N
am

e
20

0
20

0
0.

61
15

.1
7

0.
11

1.
51

A
by

ss
in

ia
n_

66
.jp

g
N

am
e

1
1

0.
28

1.
90

0.
02

0.
01

20
19

12
30

D
at

e
73

93
73

93
0.

51
13

04
.5

1
0.

10
0.

58
66

10
9

Si
ze

1
1

0.
30

1.
92

0.
06

0.
03

7163

1 3

Enhancing HDFS with a full-text search system for massive small…

Ta
bl

e
4

 V
er

ifi
ca

tio
n

ex
pe

rim
en

t f
or

 fi
le

 d
el

et
in

g
op

er
at

io
ns

Q
ue

ry
D

at
as

et
Se

ar
ch

 fi
el

d
D

el
et

ed
 fi

le
s

D
el

et
in

g
cr

ite
rio

n
M

at
ch

in
g

fil
es

 b
ef

or
e

de
le

tin
g

M
at

ch
in

g
fil

es
 a

fte
r

de
le

tin
g

20
07

_0
00

67
6.

xm
l

A
nn

ot
at

io
ns

N
am

e
1

20
07

_0
00

67
6.

xm
l

1
0

20
19

12
31

A
nn

ot
at

io
ns

D
at

e
1

20
07

_0
00

67
6.

xm
l

78
18

78
17

ne
w

fo
un

d*
jp

g
Pe

t
N

am
e

20
0

ne
w

fo
un

d*
jp

g
20

0
0

20
19

12
30

Pe
t

D
at

e
20

0
ne

w
fo

un
d*

jp
g

73
93

71
93

Fl
ow

er
s o

f t
he

 S
ky

.tx
t

N
ov

el
N

am
e

1
Fl

ow
er

s o
f t

he
 S

ky
.tx

t
1

0
20

09
_0

05
29

9.
jp

g
vo

c2
00

9
N

am
e

1
20

09
_0

05
29

9.
jp

g
1

0
te

st1
.lo

g
Lo

gs
N

am
e

1
te

st1
.lo

g
1

0

7164 W. Xu et al.

1 3

Ta
bl

e
5

 V
er

ifi
ca

tio
n

ex
pe

rim
en

t f
or

 fi
le

 u
pd

at
in

g
op

er
at

io
ns

Q
ue

ry
D

at
as

et
Se

ar
ch

in
g

fie
ld

M
at

ch
in

g
fil

es
 b

ef
or

e
de

le
tin

g
M

at
ch

in
g

fil
es

 a
fte

r
de

le
tin

g
In

de
x

in
fo

rm
at

io
n

B
ef

or
e

up
da

tin
g

A
fte

r u
pd

at
in

g

Th
e

St
or

y-
bo

ok
 o

f S
ci

en
ce

.tx
t

N
ov

el
N

am
e

1
1

si
ze

: 5
17

82
7B

;
si

ze
: 9

02
27

B
;

da
te

: 2
02

0-
01

-0
2

da
te

: 2
02

0-
01

-0
2

11
:2

6:
49

17
:5

2:
26

Fl
ow

er
s o

f t
he

 S
ky

.tx
t

N
ov

el
N

am
e

1
1

si
ze

: 3
38

62
8B

;
si

ze
: 1

36
67

2B
;

da
te

: 2
02

0-
01

-0
2

da
te

: 2
02

0-
01

-0
2

11
: 2

1:
52

17
:5

2:
26

M
yL

ife
.tx

t2
02

00
10

41
54

63
49

86
N

ov
el

H
yp

er
fil

e
na

m
e

16
7

15
0

–
–

N
ew

G
ru

bS
tre

et
.tx

t
20

20
01

04
15

55
45

69
3

N
ov

el
H

yp
er

fil
e

na
m

e
0

17
–

–

7165

1 3

Enhancing HDFS with a full-text search system for massive small…

txt20200104154634986”. By updating, these 17 files are removed from this hyper-
file shown at row 3, then their modified copies are uploaded and stored into a new
hyperfile called “NewGrubStreet.txt20200104155545693” shown at row 4. The
index information for hyperfile is invisible for client and shown here only for ver-
ification. The experiment results in this table confirm the correctness of updating
operations.

3.3 File reorganizing

In our system, a hyperfile with space usage less than 50% is marked as underuti-
lized. A file reorganization is triggered when the number of underutilized hyperfiles
exceeds a given threshold or a periodical system maintenance schedule happens.
For better space utilization, the threshold should not be too large and some values
around ten are reasonable. Table 6 shows the experiments for file reorganization,
where the thresholds for underutilized hyperfiles are ranging from 12 to 6. At row 1,
the small files in 12 underutilized hyperfiles are merged to 2 new hyperfiles with the
average space usage improved from 14.8 to 88.2%. For the other rows, significant
space usages are also observed to be improved from around 35% to beyond 75%.
The improvement for threshold 6 is substantially less than that for larger thresholds.
The reason should be that more small files are stored in more underutilized files, and
merging more small files will likely increase the space usage of a hyperfile.

Given the merging mechanism in our system, the number of hyperfiles after reor-
ganization can be estimated as ⌈(St − Sf)∕L⌉ , where St and Sf are the total and free
sizes of hyperfiles for reorganization, respectively, and L is set as the default block
size of 128 MiB. By this formula, the numbers of hyperfiles after reorganization are
estimated as {2, 4, 4, 3}, which are consistent with the experiment results shown in
the table and can be considered as a verification for the reorganizing operations.

3.4 Performance of NameNode

The NameNode can become a performance bottleneck of HDFS. When more files
are stored in HDFS, more RAM are required in the NameNode to maintain file
management information and the response for a file access will become slower. By
merging multiple small files into a hyperfile, the number of files managed by HDFS
is dramatically reduced. Consequently, the burden on HDFS is decreased and the
NameNode can keep working efficiently. Figure 8 shows the RAM consumptions of
managing metadata in NameNode with or without merging small files in the artifi-
cial dataset with size distribution given in Fig. 7, where the RAM consumptions are
given in logarithmic scale. The gap between two lines is very large, i.e., merging
small files can reduce the RAM consumption to be less than 1% of that in the origi-
nal HDFS. Since the RAM consumption of metadata is reversely proportional to the
performance of NameNode, HDFS in our system will see far more less negative per-
formance impacts caused by small files, i.e., the system’s performance can remain
stable for files of various size distributions.

7166 W. Xu et al.

1 3

Ta
bl

e
6

 V
er

ifi
ca

tio
n

ex
pe

rim
en

t f
or

 fi
le

 re
or

ga
ni

za
tio

n

H
yp

er
fil

es
 fo

r r
eo

r-
ga

ni
za

tio
n

Sp
ac

e
us

ag
e

(%
)

To
ta

l s
iz

e
(b

yt
e)

Fr
ee

 si
ze

 (b
yt

e)
H

yp
er

fil
es

 a
fte

r r
eo

r-
ga

ni
za

tio
n

Sp
ac

e
us

ag
e

af
te

r r
eo

r-
ga

ni
za

tio
n

(%
)

To
ta

l s
iz

e
af

te
r

re
or

ga
ni

za
tio

n
(b

yt
e)

12
14

.8
16

03
47

85
82

13
66

74
31

53
2

88
.2

23
67

35
42

9
10

36
.5

13
25

38
63

36
83

49
94

73
5

4
91

.3
49

03
91

60
1

9
33

.6
10

22
20

82
46

61
65

21
03

4
4

75
.6

40
56

87
21

2
6

35
.8

73
32

30
18

5
44

48
18

43
3

3
71

.6
28

84
11

75
2

7167

1 3

Enhancing HDFS with a full-text search system for massive small…

3.5 Stress testing

The Apache JMeter7 is a widely used tool for stress testing, which is employed
to generate concurrent tasks for searching and downloading files in dataset “pet”.

Fig. 8 The memory consumptions of metadata for NameNodes of HDFS with or without merging files

Table 7 Stress testing for concurrent searching and downloading files in dataset “pet”

Query Operation Threads Throughput Response time

Abyssinian_66.jpg Search 20 115.0 0.1
60 160.4 0.3

100 169.5 0.5
200 172.9 1.0

Download 20 7.2 2.8
60 8.0 6.9

100 6.8 14.3
200 4.0 48.1

Abyssi*66.jpg Search 20 170.9 0.1
60 187.5 0.3

100 177.0 0.5
200 162.6 1.1

Download 20 3.7 5.4
60 3.0 20.1

100 4.1 24.4
200 3.2 62.5

7 https ://jmete r.apach e.org/.

https://jmeter.apache.org/

7168 W. Xu et al.

1 3

Table 7 shows the experimental results for retrieving files by names given as exact
or approximate queries. The number of concurrent threads for searching a query and
downloading the matching files varies from 20 to 200. The throughput is the average
number of finished tasks per second, and the response time is the average execution
time for each task. For each query, all the concurrent tasks were done successfully,
i.e., no failed task was observed. The throughputs and response time are reason-
able for our experiment platform, which are constrained by the network bandwidth
between the client and system.

4 Conclusion

HDFS has seen rich successes as a scalable solution for distributed file storage. File
access jobs in HDFS are typically streaming, saying that a batch of files instead of a
single file are uploaded or downloaded. In the original HDFS, a heavy burden is put
on the NameNode for managing lots of small files. In order to avoid the NameNode
to be overloaded, we adapt a distributed full-text search system SAES recently
developed in our laboratory for merging multiple small files into a large hyperfile
to be managed as ordinary files by the NameNode. SAES is built for true full-text
searches by replacing the inverted index in Elasticsearch with the suffix index and
hence inherits the good scalability of Elasticsearch. The design of our experimental
system for enhancing HDFS by SAES is presented in this article, and a series of
experiments have been conducted for function verification and performance evalu-
ation of this system. The experiment results show that the capability of SAES for
true full-text searches is efficient enough to enhance HDFS for massive small files.
Given the popularity of HDFS, instead of revising HDFS, an integration layer with
three modules is developed to enhance HDFS by SAES, and our system is built as
an application on HDFS and SAES. Such a system design allows HDFS and SAES
to evolve independently, which helps reduce the burden for software engineering of
our system. As a next step to apply our solution in practice, we are currently improv-
ing the system for higher performance, e.g., designing better algorithms for merging
small files and refining the code. We hope that this work suggests a potential solu-
tion for enhancing HDFS to provide efficient storage for massive small files.

Acknowledgements This work was funded by the National Natural Science Foundation of China (Grant
number 61872391), the Guangzhou Science and Technology Program (Grant No. 201802010011),
and the Foundation for Young Talents in Higher Education of Guangdong, China (Grant number
2019KQNCX031).

References

 1. Apostolico A, Crochemore M, Farach-Colton M, Galil Z, Muthukrishnan S (2016) 40 years of suffix
trees. Commun ACM 59(4):66–73

 2. Arroyuelo D, Bonacic C, Gil-Costa V, Marin M, Navarro G (2014) Distributed text search using suf-
fix arrays. Parallel Comput 40(9):471–495

7169

1 3

Enhancing HDFS with a full-text search system for massive small…

 3. Chandrasekar A, Chandrasekar K, Ramasatagopan H, Rafica AR, Balasubramaniyan J (2012) Clas-
sification based metadata management for HDFS. In: HPCC 2012 and ICESS 2012

 4. Chen G, Hu T, Jiang D, Lu P, Tan KL, Vo HT, Wu S (2014) BestPeer++: a peer-to-peer based
large-scale data processing platform. IEEE Trans Knowl Data Eng 26(6):1316–1331

 5. Chen Y, Zhou Y, Taneja S, Qin X, Huang J (2017) aHDFS: an erasure-coded data archival system
for Hadoop clusters. IEEE Trans Parallel Distrib Syst 28(11):3060–3073

 6. Choi C, Choi C, Choi J, Kim P (2016) Improved performance optimization for massive small files in
cloud computing environment. Ann Oper Res 265(2):305–317

 7. Dhaliwal J, Puglisi SJ, Turpin A (2012) Trends in suffix sorting: a survey of low memory algo-
rithms. In: Proceedings of the Thirty-Fifth Australasian Computer Science Conference-Volume, vol
122, pp 91–98

 8. Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2009) The pascal visual object
classes (VOC) challenge. Int J Comput Vis 88(2):303–338

 9. Fu S, He L, Huang C, Liao X, Li K (2015) Performance optimization for managing massive num-
bers of small files in distributed file systems. IEEE Trans Parallel Distrib Syst 26(12):3433–3448

 10. Gao Z, Qin Y, Niu K (2016) An effective merge strategy based hierarchy for improving small file
problem on HDFS. In: 2016 4th International Conference on Cloud Computing and Intelligence
Systems

 11. Gupta S, Yadav S, Prasad R (2018) Document retrieval using efficient indexing techniques. In:
Information retrieval and management, pp 1745–1764

 12. Han LB, Wu Y, Nong G (2020) Succinct suffix sorting in external memory. Inf Process Manag.
https ://doi.org/10.1016/j.ipm.2020.10237 8

 13. He H, Du Z, Zhang W, Chen A (2015) Optimization strategy of Hadoop small file storage for big
data in healthcare. J Supercomput 72(10):3696–3707

 14. Kärkkäinen J, Kempa D, Puglisi SJ (2015) Parallel external memory suffix sorting. In: Proceedings
of the 26th Annual Symposium on Combinatorial Pattern Matching, pp 329–342

 15. Kim H, Yeom H (2017) Improving small file I/O performance for massive digital archives. In: 2017
IEEE 13th International Conference on E-Science

 16. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. ACM SIGOPS
Oper Syst Rev 44(2):35–40

 17. Lao B, Nong G, Chan WH, Xie JY (2018) Fast in-place suffix sorting on a multicore computer.
IEEE Trans Comput 67(12):1737–1749

 18. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft
COCO: common objects in context. In: Computer Vision—ECCV, pp 740–755

 19. Manber U, Myers G (1993) Suffix arrays: a new method for on-line string searches. SIAM J Comput
22(5):935–948

 20. Meng B, Bin Guo W, Sheng Fan G, Wu Qian N (2016) A novel approach for efficient accessing
of small files in HDFS: TLB-MapFile. In: 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

 21. Mori Y Libdivsufsort, a software library that implements a lightweight suffix array construction
algorithm. Available: https ://githu b.com/y-256/libdi vsufs ort

 22. Nguyen MC, Won H, Son S, Gil MS, Moon YS (2017) Prefetching-based metadata management in
advanced multitenant Hadoop. J Supercomput 2:1–21

 23. Nong G (2013) Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM
Trans Inf Syst 31(3):1–15

 24. Nong G, Zhang S, Chan WH (2011) Two efficient algorithms for linear time suffix array construc-
tion. IEEE Trans Comput 60(10):1471–1484

 25. Parkhi O.M, Vedaldi A, Zisserman A, Jawahar CV (2012) Cats and dogs. In: 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pp 3498–3505

 26. Phakade P, Raut S (2014) An innovative strategy for improved processing of small files in Hadoop.
Int J Appl Innov Eng Manag 3(7):278–280

 27. Song J, He H, Thomas R, Bao Y, Yu G (2019) Haery: a Hadoop based query system on accumula-
tive and high-dimensional data model for big data. IEEE Trans Knowl Data Eng 32(7):1362–1377

 28. Tchaye-Kondi J, Zhai Y, Lin KJ, Tao W, Yang K (2019) Hadoop perfect file: a fast access container
for small files with direct in disc metadata access. arXiv preprint arXiv :1903.05838

 29. Transier F, Sanders P (2010) Engineering basic algorithms of an in-memory text search engine.
ACM Trans Inf Syst 29(1):1–37

https://doi.org/10.1016/j.ipm.2020.102378
https://github.com/y-256/libdivsufsort
http://arxiv.org/abs/1903.05838

7170 W. Xu et al.

1 3

 30. Wang Y, Ma C, Wang W, Meng D (2014) An approach of fast data manipulation in HDFS with sup-
plementary mechanisms. J Supercomput 71(5):1736–1753

 31. Wu S, Chen G, Chen K, Li F, Shou L (2015) HM: a column-oriented MapReduce system on hybrid
storage. IEEE Trans Knowl Data Eng 27(12):3304–3317

 32. Xie JY, Nong G, Lao B, Xu W (2020) Scalable suffix sorting on a multicore machine. IEEE Trans
Comput 69(9):1364–1375

 33. Zhang Y, Liu D (2012) Improving the efficiency of storing for small files in HDFS. In: 2012 Inter-
national Conference on Computer Science and Service System

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Enhancing HDFS with a full-text search system for massive small files
	Abstract
	1 Introduction
	1.1 Existing solutions
	1.2 Our solution
	1.3 Contributions

	2 Our system architecture
	2.1 SAES system
	2.2 File indexing
	2.3 File uploading
	2.4 File downloading and deleting

	3 Experiments
	3.1 File Storing and Searching
	3.2 File deleting and updating
	3.3 File reorganizing
	3.4 Performance of NameNode
	3.5 Stress testing

	4 Conclusion
	Acknowledgements
	References

