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Abstract
HDFS is a popular open-source system for scalable and reliable file management, 
which is designed as a general-purpose solution for distributed file storage. While it 
works well for medium or large files, it will suffer heavy performance degradations 
in case of lots of small files. To overcome this drawback, we propose here a sys-
tem to enhance HDFS with a distributed true full-text search system SAES of 100% 
recall and precision ratios. By indexing the meta data of each file, e.g., name, size, 
date and description, files can be quickly accessed by efficient searches over meta-
data. Moreover, by merging many small files into a large file to be stored with better 
space and I/O efficiencies, the negative performance impacts caused by directly stor-
ing each small file individually are avoided. An experimental study is conducted for 
function and performance tests on both realistic and artificial data. The experimental 
results show that the system works well for file operations such as uploading, down-
loading and deleting. Moreover, the RAM consumption for managing massive small 
files is dramatically reduced, which is critical for good system performance. The 
proposed system could be a potential storage solution for massive small files.
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1 Introduction

Data as lots of small files (LOSF) such as pictures, logs and emails are widely 
observed in modern information applications. These small files are of typical sizes 
from several thousands to millions bytes. Efficient storage of massive small files 
requires the underlying file system to scale with increasing number and volume of 
files. However, it has been recognized that existing general-purpose file systems are 
commonly designed without specific concerns for small files. This inspires R&D 
efforts contributed to LOSF systems, the existing solutions are roughly classified 
into three categories [28] as follows.

1.1  Existing solutions

The first category is the proprietary distributed file systems developed by a num-
ber of institutes, e.g., Taobao File System (TFS)1 from Taobao and Cassandra [16] 
from Twitter. Specifically, TFS is designed for managing small files less than 1 MiB, 
and Cassandra maintains the meta data of all files in RAM to speed up file seeking. 
Because these systems are designed with specific objectives to support applications 
in these institutes, efforts are required to deploy them in a third-party environment. 
As a result, these systems have not been widely adopted in the public domain.

The second category is to optimize existing frameworks of managing small files 
[13]. For example, Priyanka et  al. [26] designed a mechanism called Combine-
FileInputFormat to improve the performance of accessing massive small files based 
on MapReduce framework, then Chang Choi et  al. [6] integrated CombineFileIn-
putFormat with Java Virtual Machine (JVM) to run multiple mappers on a single 
JVM for reducing JVM creation time and improving MapReduce’s processing per-
formance for small files. In addition, some researchers have modified the file man-
agements of operating systems to scale with massive small files [9]. While these sys-
tems provide stronger supports for small files, their designs are tightly coupled with 
the underlying systems such as JVM and OS [5, 10, 15, 20]. This makes difficulties 
for deploying these systems in practice.

Different from the aforementioned solutions, the third category uses a general-
purpose distributed file system by compacting many small files into a large file to 
reduce the number of physical files stored in the underlying file system. For exam-
ple, HDFS provides three mechanisms for storing small files mainly for read-only 
accesses: (1) Hadoop Archive (HAR)2 for read-only archive purpose, which merges 
multiple small files into a large file with meta and file data. Once a HAR is created, 
it is frozen and can not be modified any more. (2) SequenceFile3 for storing many 
small files as a sequential stream of key-value records, where key and value for meta 
and file data, respectively. The small files in a SequenceFile can only be accessed 

1 https ://githu b.com/aliba ba/tfs.
2 https ://hadoo p.apach e.org/docs/curre nt/hadoo p-archi ves/Hadoo pArch ives.html.
3 https ://hadoo p.apach e.org/docs/r2.7.5/api/org/apach e/hadoo p/io/Seque nceFi le.html.

https://github.com/alibaba/tfs
https://hadoop.apache.org/docs/current/hadoop-archives/HadoopArchives.html
https://hadoop.apache.org/docs/r2.7.5/api/org/apache/hadoop/io/SequenceFile.html
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sequentially. (3) MapFile4 built on SequenceFile for faster accesses to small files 
using an index for meta data of small files. The index is loaded into RAM and 
searched for locating each small file to be accessed. Specifically, all keys are sorted, 
then 1 per 128 keys is selected to build the index. MapFile can be considered as an 
accelerated alternative of SequenceFile.

Among these three categories, the third turns out to be more promising for the 
development of a general-purpose file system for massive small files. Currently, 
Hadoop and HDFS are the very popular open-source software for developing dis-
tributed data processing and storage systems [4, 27, 31], HDFS is the choice of 
technology for building the underlying file system. The three mechanisms currently 
provided by HDFS for storing small file are mainly for read-only archive purpose, 
random access to small files are not supported very well. Among them, MapFile pro-
vides the strongest support for random access. However, the index used by MapFile 
to store keys for locating small files contains only a part of all keys, and it is required 
to be fully loaded in RAM for searches. This index scheme might be improved by 
another scalable one for managing massive small files with flexible random opera-
tions such as adding, deleting and updating.

1.2  Our solution

A typical HDFS configuration is shown in the down-left box of Fig.  1, which 
includes: (1) a master node called NameNode to manage the namespace composed 
of meta data; and (2) multiple slave nodes called DataNodes to store files as blocks. 
To store a file, the metadata for accessing this file from DataNodes is added to 
NameNode, and the file is segmented into blocks to be stored in DataNodes [22, 30]. 

Fig. 1  The architecture of our proposed system for massive small files, where the parts in dashed boxes 
are developed by this work to enhance HDFS with SAES

4 https ://hadoo p.apach e.org/docs/r2.6.2/api/org/apach e/hadoo p/io/MapFi le.html.

https://hadoop.apache.org/docs/r2.6.2/api/org/apache/hadoop/io/MapFile.html
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While HDFS is efficient for managing medium to large files of sizes over ten MiB, 
it sees challenges for managing massive small files due to that both time and space 
requirements for file management increase with the number of files. For massive 
small files, a heavy burden is put on NameNode for maintaining the file management 
information in RAM, which brings negative performance impacts to NameNode and 
eventually becomes a performance bottleneck of the whole system.

With the default configuration of HDFS, the metadata maintained in RAM of 
NameNode consists of 250 bytes per file and 368 per block of 3 replicas [3, 33]. 
Each small file occupies a block, managing one million small files will consume 
(250 + 368) × 106∕220 = 589.3 MiB RAM in NameNode, i.e., 2 million files will 
require about 1 GiB. Different from years ago, the cost of RAM has been reduced 
remarkably, and a large RAM such as 64 GiB can be reasonably assumed for 
NameNode. Even though the RAM’s capacity can be increased, file management 
operations in NameNode will become slower when the number of files grows, and 
efficient managing massive small files on HDFS can not be done by simply using a 
NameNode of large RAM. To meet the demand of efficient storage of massive small 
files, our recent attempt for enhancing HDFS with a full-text search system called 
SAES is reported here.

The key idea for us to develop the enhanced system is to merge many small files 
into a big file, and use a full-text search system to manage the meta data such as 
name, date, size, description for file access. Given that the full-text search system 
is efficient enough to pace up with HDFS, we will have an enhanced HDFS with 
performance independent of file sizes, i.e., universally efficient for small, medium 
and big files. Currently, Elasticsearch5 with Lucene as search engine plays a key role 
for text search. Because Lucene uses the inverted index of data, searches in Elas-
ticsearch are not true full-text, in terms of that searches are performed over prede-
fined words instead of all data. Some results may not be found even if it exists and 
the recall ratio is not guaranteed to be 100%. For example, a sentence “This is a 
book” can be divided into a word set {This, is, a, book} by the standard tokenizer of 
Elasticsearch, and each word is added to the inverted index. Later on, this sentence 
can be found by searching these words over the inverted index. However, indexing 
words in this way can support searches over full words only, i.e., searches over par-
tial words are not supported. For instance, the sentence can not be found by search-
ing the substring “ok” of “book”, because “ok” has not been added as a word to 
the inverted index. As a resort to support full-text searches, Elasticsearch may use 
the N-gram tokenizer6 instead of the standard one, in the expensive cost of dramati-
cally increased index size. This tokenizer can extract from data all N-grams with 
a given size as words to be indexed. However, a size-n text with gram size k will 
produce O(n) size-k words to be indexed, the required space O(nk) is too much to be 
employed for supporting full-text searches over massive data.

Currently, it is challenging for Elasticsearch with inverted index to support time 
and space efficient true full-text searches. Such a drawback prevents Elasticsearch 

5 https ://www.elast ic.com/cn/blog/elast ic-searc h-7-2-0-relea sed
6 https ://www.elast ic.co/guide /en/elast icsea rch/refer ence/curre nt/analy sis-ngram -token izer.html.

https://www.elastic.com/cn/blog/elastic-search-7-2-0-released
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html
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from managing meta data of massive files, since both precision and recall ratios of 
100% are required for purpose of file management. Recently, we built a true full-
text search system called SAES by replacing the inverted index in Elasticsearch 
with a suffix index. Given a size-n text, the suffix index requires a space of O(n) 
only. Using the suffix index, SAES supports efficient exact and approximate full-text 
searches demanded for file management. Provided with HDFS and SAES, we need 
to integrate them for working together to access a file in two steps: (1) locating the 
file by SAES to search answers for the given query; (2) access the located file by 
HDFS.

1.3  Contributions

This article presents our work on the R&D of a scalable distributed file system for 
managing massive small files. The contributions of this work mainly consist of two 
parts: (1) A system architecture is proposed to enhance HDFS with SAES by adding 
an integration layer on top of HDFS and SAES. Such an architecture allows both 
HDFS and SAES to evolve independently, so as to avoid possible fatal software 
engineering problems caused by the future developments of HDFS and SAES. (2) 
An experimental prototype system is built for functionality verification and perfor-
mance evaluation. A set of experiments with realistic and artificial data are con-
ducted on this prototype system to assess the feasibility of our proposed solution for 
efficient storage of massive small files.

2  Our system architecture

Figure 1 shows the architecture of our proposed system for managing massive small 
files. On top of HDFS and SAES, an integration layer of three modules for file man-
agement, index management and file search is added to provide application pro-
gramming interface (API) for clients to access the system’s services. A file access 
request from the client is processed by the file search module to produce searching 
tasks on SAES to find the file’s metadata, then the metadata is supplied to the file 
management module to locate and access the file stored in DataNodes. When a file 
is added or deleted, the index management module produces index updating tasks 
to be executed in SAES. In this way, SAES serves as the middleware in between the 
client and HDFS, which translates a request of file access into the tasks performed 
on HDFS. SAES provides true full-text searching capability necessary for file man-
agement in this system. Such a searching capability is fundamental for the system 
to function correctly. To support full-text searches, a suffix index for the meta data 
of all files is maintained in real-time. When a file is added or deleted, the index is 
updated on-the-fly to track the file’s status for management.

Figure 2 shows the file storage scheme for merging many small files into a large 
file. Each large file serves as a logical disk of many blocks. The occupation status of 
each block in a large file is tracked by the file management module. When a file is 
added, depending on the file’s size, one or multiple idle blocks are allocated to store 
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Fig. 2  The storage scheme for merging many small files into a large file

Fig. 3  The data flow for adding a file in our proposed system, where the upper part is processed by the 
full-text search engine while the functionalities in the lower part are provided by HDFS
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the file; when a file is deleted, the file is marked as obsolete and its blocks are freed 
by periodically reorganization of large files. In order to avoid too many fragments in 
a large file for better space utilization, the blocks of each large file are reorganized 
periodically to cluster idle block together.

For more details of operations in the system, Fig. 3 shows the data flows for add-
ing files. Basically, files can be added one by one, but adding files in this way is slow 
due to the communication delay for uploading each file. To speed up the process 
for uploading multiple files, these files can be merged as a group to be uploaded 
as a whole to reduce the total communication delay. In this figure, some files are 
organized as a group, and some files are uploaded individually. A document to be 
indexed is produced by extracting the meta data of each file, which consists of a 
set of fields such as DocID, Filename, Path, Offset, etc. To facilitate searching a 
field for file access, an index is dynamically built on documents for the field. SAES 
allows the flexible definitions of metadata for a file, saying that any field can be 
added, removed or indexed at anytime. With this distinct advantage, our system pro-
vides friendly user interface for accessing files by exact or approximate searches on 
the indexed fields of metadata. In the rest of this section, we further explain how 
SAES is integrated with HDFS and the processes for file operations, i.e., indexing, 
uploading, downloading and deleting.

2.1  SAES system

The architecture of SAES is shown in the down-right box of Fig. 1, which uses suf-
fix index for true full-text searches instead of inverted index for keyword searches in 
the original Elasticsearch. The three upper layers are inherited from Elasticsearch, 
and the two lower layers are revised for using suffix index. We further explain how 
the suffix index is built for metadata of files.

The index management module interacts with the index and suffix array (SA) 
modules in the service layer to maintaining the suffix index. When a file is added, 
a document for the file’s metadata is produced by the index management mod-
ule for indexing. If this file is deleted, the document is removed from the index. 
The suffix index consists of the SA for each indexed field of document. The SA 
of each field is built by lexicographically sorting all suffixes of the field data in 
each document, which was initially proposed in [19] for online string searches, 
and has become a fundamental index data structure for full-text searches [2, 11, 
29]. Figure 4 shows a suffix array example, where an arrow from the SA points 
to the corresponding suffix in data. Given the SA of each field, searching on the 

Fig. 4  An example suffix array for data “animal_book.txt”
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field is done by performing binary searches on the sorted suffixes in SA. Exactly 
searching a size-m substring in the size-n data is equivalent to finding all the suf-
fixes in data starting with the substring, which takes O(m log n) time, given that a 
searching comparison needs to compare up to m characters.

Efficient construction of SA is critical for the usability of suffix index, many 
efficient suffix sorting algorithms have been proposed for different comput-
ing models by intensive researches during the past two decades, see [1, 7] for 
a quick survey. In particular, using the tools proposed in [12, 14, 17, 21, 23, 
24, 32], SAES is capable of achieving an index building speed over millions 
bytes per second, which is fast enough to pace up with file accesses to HDFS 
in most applications. Provided with the suffix index, SAES performs exact or 
approximate full-text searches to locate files satisfying each client’s request, 
then the located file is accessed by HDFS to execute the related file management 
operations.

2.2  File indexing

The metadata for each file is currently defined as {name, bigfile, offset, size, 
path, date}, and each element of metadata is a field to be indexed. Using these 
fields’ indexes, the system can locate a file by exact or approximate searches 
over meta data, e.g., to access a file by its name, size, date or their combina-
tion. Given a file access request, locating the target files is done in two steps: (1) 
SAES conducts searches to find the IDs of files matching the request; and (2) 
find the locations of matching files by IDs for retrieving the files from HDFS.

In more detail, Fig. 5 shows the process for retrieving a small file via the sys-
tem API. For each file, its metadata is indexed and searched by SAES for access-
ing files according to the client’s request. For each small file x, a record {ID, 
offset, size, Info} is indexed with ID as key, where ID refers to the host hyperfile 
storing the small file, offset and size give the position and length of x in the 
hyperfile, respectively. The host hyperfile is located in HDFS by its ID, and x is 
further accessed by offset and size.

Fig. 5  The process for retrieving a small file via the system API
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2.3  File uploading

HDFS manages its storage space in units of blocks and the typical default block 
size L is 128 MiB. Depending of file size, a file may occupy one or multiple 
blocks, and a part of tail block may not be used and wasted. One way to reduce 
the wasted space of a block is to merge small files into a hyperfile. Moreover, the 
utilization status of each hyperfile is dynamically tracked when small files are 
added to or deleted from the hyperfile. For hyperfiles with wasted space more 
than a predefined threshold, all their remaining small files are merged immedi-
ately or periodically to produce new hyperfiles with high utilizations, and the 
index is updated accordingly.

In practice, multiple new files likely arrive as a batch to the system, these 
files can be packed as a group to speed up the uploading process. Specifically, 
the maximum size of uploading group is set as L, i.e., the block size in HDFS, a 
file will be directly uploaded if it is not smaller than L, or else it will be merged 
with its succeeding files with the maximum merged size not more than L. Once 
a group has been received by the system, the files in group are unpacked and 
stored in one or multiple hyperfiles, and the metadata of files are indexed for 
searches.

A greedy merging method is employed by Algorithm 1 for adding small files 
to hyperfiles. The space usage of current under-utilized hyperfile H is recorded, 
and F is the queue of newly arriving files. Whenever F is non-empty, the hyper-
file H is checked to see if its free space is enough to accommodate the head file 
of F. If it is, the file is stored in the hyperfile and the hyperfile’s occupation 
status is updated, or else a new hyperfile is created to store the file. The under-
utilized hyperfiles are periodically merged by system maintenance jobs for better 
space efficiency.

Using this greedy merging method, a file not less than L will cause the crea-
tion of a hyperfile to store it, and a small file will likely be merged into the cur-
rent under-utilized hyperfile for better space utilization. Even though this greedy 
method is not optimal, it works well in our experiments by significantly improv-
ing the space utilization of HDFS for massive small files.



7158 W. Xu et al.

1 3

2.4  File downloading and deleting

The client can issue a file downloading request by exact or approximate queries 
on the indexed meta data of files, i.e., name, size, date, etc. The query is exe-
cuted by SAES to find the access information of each file meeting the query, and 
the access information of found files is returned to the client. Given the access 
information of a file, HDFS can quickly locate and retrieve the file stored in a 
hyperfile.

The process for deleting a file consists of two steps: (1) logically deleting the 
file by marking it as obsolete in the file’s management record; and (2) physically 
deleting the obsolete file by releasing its occupied space. Specifically, given the 
name of a file to be deleted, the file’s ID is found by SAES, then the file’s man-
agement record is found by the ID and updated to mark the file as obsolete. 
Moreover, the system periodically executes maintenance jobs to clean up obso-
lete files in hyperfiles and merge hyperfiles as needed for better space utilization.

Fig. 6  The topology of our 
experimental platform, where 
the LOSF system is installed in 
a LAN, and the client communi-
cates with the LOSF via campus 
network

Table 1  Configurations of server and client nodes on our experimental platform

Node Node type RAM (GiB) Disk (TiB) CPU Operating 
system

JVM

-Xmx (GiB) -Xms (GiB)

1 Storage 16 1.8 1 of 4 cores CentOS 6.6 4 0.2
2 Storage 8 1.8 1 of 4 cores CentOS 6.10 2 0.1
3 Storage 32 1.8 2 of 12 cores CentOS 6.7 8 0.5
4 Index 64 0.5 2 of 12 cores CentOS 6.8 16 1.0
5 Index 16 1.8 1 of 4 cores CentOS 6.7 4 0.2
6 Index 16 2.0 1 of 4 cores CentOS 6.8 4 0.2
7 Client 8 0.6 1 of 4 cores Windows 10 2 0.1
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3  Experiments

Both HDFS and SAES are developed in Java, and our software system is also 
developed in Java as an application running on SAES and HDFS. The software is 
deployed on our experimental platform with network topology shown in Fig. 6, and 
the configurations of servers and client are given in Table 1. Three servers are used 
to build the HDFS of a NameNode and three DataNodes, i.e., Node 1 is used as 
NameNode and DataNode, Node 2 and 3 are used as DataNodes, and the small files 
are stored in DataNodes. Moreover, Nodes 4, 5 and 6 are used to build the SAES for 
indexing the meta data of small files. The system services are accessed by the client 
via Node 4. In particular, Node 4 accepts job requests from the client, produces the 
tasks for each request and assigns the tasks to their destined nodes for processing, 
then collects the processing results to respond to the client.

A series of experiments were conducted for function verification and perfor-
mance evaluation of our experimental system on both realistic and artificial datasets. 
The functions to be verified are file uploading, downloading, deleting and updating, 
the performance to be evaluated are time for retrieving files and memory consump-
tion for NameNode of HDFS. Table 2 shows the realistic data composed of texts and 
pictures. For evaluating memory consumption of NameNode, we adopt the far more 
larger artificial data of text, picture and XML files generated by a model built on 
statistics collected from realistic data. Specifically, the text, XML and log files are 
produced with file size distribution as datasets novel, annotations and logs, respec-
tively, and the picture files are produced with file size distribution as datasets coco, 
voc2009 and pet. The artificial dataset comprises one million files with size distribu-
tion shown in Fig. 7, where the volume percentages for picture, text, XML and log 
files are 89.41%, 9.78%, 0.07% and 0.75%, respectively.

3.1  File Storing and Searching

Table 3 shows the experimental results for verifying whether the system can prop-
erly store and search small files. All files in dataset “pet” are uploaded to the system, 
then some exact or approximate queries are issued to retrieve files by name, data or 
size for verifying with the original ones. For each query, the search time is for the 
system to search all matching files, and the download time is for the client to down-
load all found files one by one.

After uploading the dataset, 6 hyperfiles are generated and stored in HDFS, 
which is consist with the merging scheme. Moreover, the number and size of files 
are checked to be correct. In order to test the correctness of file indexes, the queries 
listed in Table 3 are submitted to search files. For each query, the found files are 
checked to be identical with our statistics on the dataset. All the files for each query 
are found correctly, both recall and precision ratios for each search are 100%, saying 
that a file is in the searching results if and only if it meets the query. For example, 
the first approximate query is to find each file of name with “beagle” as prefix and 
“.jpg” as suffix, and a total of 200 files are found, which consists of all the matching 



7160 W. Xu et al.

1 3

Ta
bl

e 
2 

 R
ea

lis
tic

 d
at

as
et

s u
se

d 
in

 th
e 

ex
pe

rim
en

ts

D
at

as
et

Ty
pe

Fi
le

s
To

ta
l s

iz
e

(M
iB

)
M

ea
n 

si
ze

(K
iB

)
D

es
cr

ip
tio

n

co
co

 [1
8]

Pi
ct

ur
e

53
28

56
83

86
5.

6
16

1.
2

C
oc

o 
is

 a
 la

rg
e-

sc
al

e 
ob

je
ct

 d
et

ec
tio

n 
an

d 
se

gm
en

ta
tio

n 
da

ta
se

t, 
at

ht
tp

://
co

co
d a

ta
se

 t.o
rg

/#
do

w
nl

 oa
d

no
ve

l
Te

xt
10

52
69

9.
0

68
0.

4
En

gl
is

h 
no

ve
l, 

at
ht

tp
://

no
ve

l .t
in

gr
 oo

m
.c

om
vo

c2
00

9 
[8

]
Pi

ct
ur

e
11

32
1

85
7.

0
77

.5
V

is
ua

l i
m

ag
e 

da
ta

, a
t

ht
tp

://
ho

st.
ro

bo
t s

.o
x.

ac
.u

k/
pa

sc
a l

/V
O

C
/v

oc
20

 09
an

no
ta

tio
ns

 [8
]

X
M

L
48

09
10

.8
2.

3
A

nn
ot

at
io

n 
fo

r t
he

 v
oc

20
09

 d
at

ab
as

e,
 e

ac
h 

xm
l fi

le
 g

iv
es

 th
e 

de
ta

ils
 o

f e
ac

h 
im

ag
e

pe
t [

25
]

Pi
ct

ur
e

73
93

75
9.

6
10

5.
2

O
xf

or
d 

im
ag

e 
da

ta
, a

t h
ttp

://
w

w
w.

ro
bo

t s
.o

x.
ac

.u
k/

~v
gg

/d
at

a/
pe

ts
lo

gs
Lo

g
90

53
.7

61
1.

0
Lo

g 
fil

es
, a

t h
ttp

s :
//c

od
el

 oa
d.

gi
th

u b
.c

om
/k

ev
in

 aa
ng

s t
ad

t/q
ua

dc
 op

te
r -l

og
s/

zi
p/

m
as

te
 r

http://cocodataset.org/#download
http://novel.tingroom.com
http://host.robots.ox.ac.uk/pascal/VOC/voc2009
http://www.robots.ox.ac.uk/~vgg/data/pets
https://codeload.github.com/kevinaangstadt/quadcopter-logs/zip/master


7161

1 3

Enhancing HDFS with a full-text search system for massive small…

files in dataset. For all queries, the searching time do not vary much, but the down-
load time are dependent of volumes of found files. The 1st and 3rd queries have 
much faster mean download speeds than the other two, because their mean sizes of 
found files are much larger. Given that the round-trip communication delay for file 
download control is almost fixed, a larger file will see a faster mean download speed.

3.2  File deleting and updating

Table 4 shows the results for deleting 3 files. First, the file of name “2007_000676.
xml” is deleted from dataset “annotations”. Before the deletion, all files in data-
set “annotations” were uploaded on December 31, 2019, and there is only one 
file named “2007_000676.xml” in all datasets. The searches in top two rows are 
performed to verify this deletion: (1) the exact searches at row 1 for file name 
“2007_000676.xml” find 1 and 0 matching file before and after deletion, respec-
tively; (2) the exact searches at row 2 for “20191231” find 7818 and 7817 files 
before and after deletion, respectively. This confirms that one file has been deleted 
as expected. Next, the files of name prefix “newfound” and suffix “jpg” are deleted 
from dataset “pet”. Before the deletion, all 200 files of name prefix “newfound” and 
suffix “jpg” are from dataset “pet” uploaded on December 30, 2019. The searches at 
rows 3 and 4 verify these deleting operations, i.e. 200 out of 7393 files are removed. 
Similarly, the tests in last 3 rows are observed to work correctly.

Updating a file can be done by deleting the file and then uploading a new file 
of the same name, our system also provides the updating function. Table 5 shows 
the experimental results for testing file updates. First, rows 1 and 2 delete files of 
names “The Story-book of Science.txt” and “Flowers of the Sky.txt”, respec-
tively. The index information for each file before and after updating show that the 
file has been updated as expected, i.e., both file size and date are modified accord-
ingly. Next, 17 files in dataset “novel” are updated. When the files in “novel” were 
uploaded to the system, they were merged to be stored in a hyperfile “MyLife.

Fig. 7  The size distribution of one million files in the artificial data
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txt20200104154634986”. By updating, these 17 files are removed from this hyper-
file shown at row 3, then their modified copies are uploaded and stored into a new 
hyperfile called “NewGrubStreet.txt20200104155545693” shown at row 4. The 
index information for hyperfile is invisible for client and shown here only for ver-
ification. The experiment results in this table confirm the correctness of updating 
operations.

3.3  File reorganizing

In our system, a hyperfile with space usage less than 50% is marked as underuti-
lized. A file reorganization is triggered when the number of underutilized hyperfiles 
exceeds a given threshold or a periodical system maintenance schedule happens. 
For better space utilization, the threshold should not be too large and some values 
around ten are reasonable. Table  6 shows the experiments for file reorganization, 
where the thresholds for underutilized hyperfiles are ranging from 12 to 6. At row 1, 
the small files in 12 underutilized hyperfiles are merged to 2 new hyperfiles with the 
average space usage improved from 14.8 to 88.2%. For the other rows, significant 
space usages are also observed to be improved from around 35% to beyond 75%. 
The improvement for threshold 6 is substantially less than that for larger thresholds. 
The reason should be that more small files are stored in more underutilized files, and 
merging more small files will likely increase the space usage of a hyperfile.

Given the merging mechanism in our system, the number of hyperfiles after reor-
ganization can be estimated as ⌈(St − Sf )∕L⌉ , where St and Sf  are the total and free 
sizes of hyperfiles for reorganization, respectively, and L is set as the default block 
size of 128 MiB. By this formula, the numbers of hyperfiles after reorganization are 
estimated as {2, 4, 4, 3}, which are consistent with the experiment results shown in 
the table and can be considered as a verification for the reorganizing operations.

3.4  Performance of NameNode

The NameNode can become a performance bottleneck of HDFS. When more files 
are stored in HDFS, more RAM are required in the NameNode to maintain file 
management information and the response for a file access will become slower. By 
merging multiple small files into a hyperfile, the number of files managed by HDFS 
is dramatically reduced. Consequently, the burden on HDFS is decreased and the 
NameNode can keep working efficiently. Figure 8 shows the RAM consumptions of 
managing metadata in NameNode with or without merging small files in the artifi-
cial dataset with size distribution given in Fig. 7, where the RAM consumptions are 
given in logarithmic scale. The gap between two lines is very large, i.e., merging 
small files can reduce the RAM consumption to be less than 1% of that in the origi-
nal HDFS. Since the RAM consumption of metadata is reversely proportional to the 
performance of NameNode, HDFS in our system will see far more less negative per-
formance impacts caused by small files, i.e., the system’s performance can remain 
stable for files of various size distributions.
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3.5  Stress testing

The Apache JMeter7 is a widely used tool for stress testing, which is employed 
to generate concurrent tasks for searching and downloading files in dataset “pet”. 

Fig. 8  The memory consumptions of metadata for NameNodes of HDFS with or without merging files

Table 7  Stress testing for concurrent searching and downloading files in dataset “pet”

Query Operation Threads Throughput Response time

Abyssinian_66.jpg Search 20 115.0 0.1
60 160.4 0.3

100 169.5 0.5
200 172.9 1.0

Download 20 7.2 2.8
60 8.0 6.9

100 6.8 14.3
200 4.0 48.1

Abyssi*66.jpg Search 20 170.9 0.1
60 187.5 0.3

100 177.0 0.5
200 162.6 1.1

Download 20 3.7 5.4
60 3.0 20.1

100 4.1 24.4
200 3.2 62.5

7 https ://jmete r.apach e.org/.

https://jmeter.apache.org/
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Table 7 shows the experimental results for retrieving files by names given as exact 
or approximate queries. The number of concurrent threads for searching a query and 
downloading the matching files varies from 20 to 200. The throughput is the average 
number of finished tasks per second, and the response time is the average execution 
time for each task. For each query, all the concurrent tasks were done successfully, 
i.e., no failed task was observed. The throughputs and response time are reason-
able for our experiment platform, which are constrained by the network bandwidth 
between the client and system.

4  Conclusion

HDFS has seen rich successes as a scalable solution for distributed file storage. File 
access jobs in HDFS are typically streaming, saying that a batch of files instead of a 
single file are uploaded or downloaded. In the original HDFS, a heavy burden is put 
on the NameNode for managing lots of small files. In order to avoid the NameNode 
to be overloaded, we adapt a distributed full-text search system SAES recently 
developed in our laboratory for merging multiple small files into a large hyperfile 
to be managed as ordinary files by the NameNode. SAES is built for true full-text 
searches by replacing the inverted index in Elasticsearch with the suffix index and 
hence inherits the good scalability of Elasticsearch. The design of our experimental 
system for enhancing HDFS by SAES is presented in this article, and a series of 
experiments have been conducted for function verification and performance evalu-
ation of this system. The experiment results show that the capability of SAES for 
true full-text searches is efficient enough to enhance HDFS for massive small files. 
Given the popularity of HDFS, instead of revising HDFS, an integration layer with 
three modules is developed to enhance HDFS by SAES, and our system is built as 
an application on HDFS and SAES. Such a system design allows HDFS and SAES 
to evolve independently, which helps reduce the burden for software engineering of 
our system. As a next step to apply our solution in practice, we are currently improv-
ing the system for higher performance, e.g., designing better algorithms for merging 
small files and refining the code. We hope that this work suggests a potential solu-
tion for enhancing HDFS to provide efficient storage for massive small files.
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