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Abstract
In spatial database and road network applications, the search for the nearest neigh-
bor (NN) from a given query object q is the most fundamental and important prob-
lem. Aggregate nearest neighbor (ANN) search is an extension of the NN search 
with a set of query objects Q = {q0,… , qM−1} and finds the object p∗ that minimizes 
g{d(p∗, qi), qi ∈ Q} , where g (max or sum) is an aggregate function and d() is a dis-
tance function between two objects. Flexible aggregate nearest neighbor (FANN) 
search is an extension of the ANN search with the introduction of a flexibility factor 
𝜙 (0 < 𝜙 ≤ 1) and finds the object p∗ and the set of query objects Q∗

�
 that minimize 

g{d(p∗, qi), qi ∈ Q∗
�
} , where Q∗

�
 can be any subset of Q of size �|Q| . This study pro-

poses an efficient �-probabilistic FANN search algorithm in road networks. The 
state-of-the-art FANN search algorithm in road networks, which is known as IER-
kNN , used the Euclidean distance based on the two-dimensional coordinates of 
objects when choosing an R-tree node that most potentially contains p∗ . However, 
since the Euclidean distance is significantly different from the actual shortest-path 
distance between objects, IER-kNN looks up many unnecessary nodes, thereby 
incurring many calculations of ‘expensive’ shortest-path distances and eventually 
performance degradation. The proposed algorithm transforms road network objects 
into k-dimensional Euclidean space objects while preserving the distances between 
them as much as possible using landmark multidimensional scaling (LMDS). Since 
the Euclidean distance after LMDS transformation is very close to the shortest-path 
distance, the lookup of unnecessary R-tree nodes and the calculation of expensive 
shortest-path distances are reduced significantly, thereby greatly improving the 
search performance. As a result of performance comparison experiments conducted 
for various real road networks and parameters, the proposed algorithm always 
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achieved higher performance than IER-kNN ; the performance (execution time) of 
the proposed algorithm was improved by up to 10.87 times without loss of accuracy.

Keywords  Flexible aggregate nearest neighbor · Road network · Landmark 
multidimensional scaling · Incremental Euclidean restriction

1  Introduction

The search for the nearest neighbor (NN) in spatial database and road network 
applications is the most fundamental and important problem and has been studied 
extensively for many years [1–4]. With the recent advances and wide use of mobile 
devices and GPS systems, studies on various applications and services using the NN 
search are being actively conducted. The conventional NN search finds the nearest 
object p∗ (∈ D) from a query object q among target objects D = {p0,… , pN−1} [1, 
5]. In other words, for all objects pj (0 ≤ j < N) in D , it holds that d(p∗, q) ≤ d(pj, q) , 
where d() is a distance function between two objects.

Aggregate nearest neighbor (ANN) search is an extension of the NN search 
with M (≥ 1) query objects Q = {q0,… , qM−1} , where M = |Q| [2, 4, 6, 7]. The 
ANN search finds the object p∗ that minimizes g(p,  Q) among target objects, 
where g is an aggregate function (max or sum), and g(p,  Q) is defined as 
g(p,Q) = g{d(p, qi), qi ∈ Q} . In other words, it holds that g(p∗,Q) ≤ g(pj,Q) for 
every object pj in D . The existing studies only considered g = max and sum; for 
g = min and count, the search is trivial, and for g = average, it is almost the same as 
that for g = sum. When M = 1 , the ANN search is identical to the NN search. The 
following are application examples of the ANN search:

–	 To quickly convene all members for an emergency meeting, it is advantageous to 
select a location that minimizes the (maximum) distance of the farthest member.

–	 To maximize the profit from customers when constructing a new building (e.g., 
hospital and supermarket), the location of the new building should be determined 
such that the sum of distances from all potential customers should be minimized.

Flexible aggregate nearest neighbor (FANN) search was investigated in [3, 8, 9], 
which introduced a flexibility factor 𝜙 (0 < 𝜙 ≤ 1) to extend the ANN search. The 
FANN search finds the object p∗ and the query subset Q∗

�
 that minimize 

g(p,Q𝜙) (Q𝜙 ⊂ Q) . In other words, for every object pj in D and every subset Q� of 
Q, it holds that g(p∗,Q∗

�
) ≤ g(pj,Q�) . In the applications of the ANN search 

described above, if the emergency meeting can be held only with �M members or 
if �M key customers are targeted rather than all potential customers, the FANN 
search is more useful and efficient than the ANN search. If � = 1 , the FANN 
search is identical to the ANN search. If the FANN search problem is solved sim-
ply using an ANN algorithm, the ANN algorithm must be executed for every pos-

sible Q𝜙 (⊂ Q) . Since the number of Q� , which is 
(

|Q|

|Q�|

)

 , is extremely large, this 



2140	 M. Chung, W.-K. Loh 

1 3

approach is highly inefficient. For instance, for |Q| = 1024 and � = 0.5, the ANN 
algorithm must be executed 4.48 × 10306 times.

The previous ANN and FANN algorithms were studied separately for Euclid-
ean spaces and road networks. The road network is usually represented using a 
graph data structure; each object, i.e., a point of interest (POI) corresponds to a 
vertex, and each physical/logical path between adjacent objects corresponds to an 
edge. The distance between two objects in road networks is defined as the short-
est-path distance between them. The Dijkstra’s algorithm, which is a representa-
tive shortest-path algorithm, has a complexity as high as O(E + V logV) , where 
V and E are the numbers of vertices and edges, respectively [10]. Although there 
are more efficient shortest-path algorithms proposed recently, their complexities 
are much higher than that of distance calculation between two points in a Euclid-
ean space. Yao et  al. [3] proposed various exact and approximate FANN algo-
rithms and experimentally demonstrated that the algorithm, known as IER-kNN , 
using the R-tree [5] had the highest performance for almost all road networks 
and parameters. IER-kNN used the Euclidean distance based on two-dimensional 
(2-D) coordinates of objects when choosing the R-tree node that most potentially 
contains p∗ . However, since the Euclidean distance between two objects is signif-
icantly different from the shortest-path distance between them, IER-kNN incurs 
many unnecessary node lookups and many calculations of ‘expensive’ shortest-
path distances.

This study proposes an efficient FANN search algorithm in road networks. The 
contributions of this study are summarized as follows:

–	 The proposed algorithm uses landmark multidimensional scaling (LMDS) [11, 
12] to transform all objects in a road network into k-dimensional objects (k ≥ 1) 
such that the distances between the objects are preserved as much as possible. 
The Euclidean distances between objects after LMDS transformation can be 
obtained very quickly and accurately. Since the proposed algorithm uses a more 
accurate distance than the state-of-the-art IER-kNN algorithm when choosing an 
R-tree node to visit, unnecessary node lookups and calculations of shortest-path 
distances are significantly reduced, thereby greatly improving the FANN search 
performance of the proposed algorithm.

–	 The correctness of the proposed algorithm is proven based on a probabilistic 
assumption. The proposed algorithm is probabilistic in the sense that, for a given 
probability � , it ‘assumes’ the interval of differences between the actual shortest-
path distances and the estimated k-dimensional Euclidean distances.

–	 A series of experiments were conducted to compare the performance of the pro-
posed algorithm and the state-of-the-art IER-kNN algorithm using various real 
road networks. As a result, the proposed algorithm always achieved higher per-
formance for all road networks and parameters than IER-kNN ; the performance 
(execution time) of the proposed algorithm was improved by up to 10.87 times 
without loss of accuracy.

This paper is organized as follows: Sect. 2 briefly describes the previous ANN and 
FANN search algorithms and LMDS. Section  3 explains the proposed algorithm 
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in detail, and Sect. 4 evaluates the performance of the proposed algorithm. Finally, 
Sect. 5 concludes this paper.

2 � Related work

This section briefly introduces the previous ANN and FANN search algorithms in 
Euclidean spaces and road networks. Thereafter, it explains multidimensional scal-
ing (MDS) that transforms objects in a metric space into those in a Euclidean space.

Yiu et  al.  [4] proposed three algorithms for the ANN search in road networks. 
The first algorithm was designed by applying the Incremental Euclidean Restric-
tion (IER) paradigm; it prunes an R-tree node n based on the Euclidean distances 
from the node n to query objects. The remaining two algorithms were adaptations of 
the existing top-k algorithm, which finds the k nearest query objects based on their 
shortest-path distances. Ioup et al. [2] proposed an algorithm for the ANN search in 
road networks using the M-tree [13]. However, this algorithm returns only approxi-
mate search results, and the error range of the search results is not known.

Li et al. [8, 9] investigated the FANN search in Euclidean spaces. They presented 
two exact algorithms, namely the R-tree algorithm and the list algorithm. Li et al. [8, 
9] also proposed a 3-approximate algorithm and a (1 + 2

√
2)-approximate algorithm 

for aggregate functions g = sum and max, respectively. Li et al. [9] additionally pre-
sented a 2-approximate algorithm in a 2-D space and a (1 + �)-approximate algo-
rithm in a low-dimensional space for each of g = sum and max.

Yao et  al. [3] handled the FANN search in road networks and proposed three 
algorithms, namely Dijkstra-based algorithm, R-List algorithm, and the IER-kNN 
algorithm. In addition, they presented an exact algorithm and a 2-approximate algo-
rithm requiring no indices for g = max and sum, respectively. Among these algo-
rithms, IER-kNN showed almost always the highest performance. However, as in 
[4], IER-kNN used an index constructed using 2-D Euclidean coordinates instead 
of the actual shortest-path distances between objects. The algorithms requiring no 
indices showed very low search performance as expected.

MDS [14, 15] is a method of transforming objects in a metric space into objects 
(i.e., points) in a k-dimensional Euclidean space while preserving the distances 
between objects as much as possible, where k (≥ 1) can be given arbitrarily. MDS 
is also used for dimensionality reduction and visualization for objects in a high-
dimensional Euclidean space. Classical MDS [14], which is most widely known, has 
the advantage of providing highly accurate transformation results, but it also has the 
disadvantage of very high time complexity of O(CN2 + N3) , where N is the number 
of objects and C is the cost for distance calculation. LMDS [11, 12] was proposed 
to overcome the disadvantage of classical MDS. Classical MDS requires a distance 
matrix of size N × N for every possible object pair, but LMDS uses only a distance 
matrix of size N × n for every combination between randomly chosen n (≪ N) ‘land-
mark’ objects and all objects, and has the time complexity of O(CnN + knN + n3) , 
which is much lower than that of classical MDS. The efficiency and accuracy of 
LMDS have been demonstrated in [12, 15]. Section 4 also demonstrates experimen-
tally that LMDS significantly improves FANN search performance.
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3 � IER‑LMDS: Efficient FANN algorithm in road networks

This section explains in detail the proposed FANN algorithm, which is referred to as 
IER-LMDS hereinafter. The IER-LMDS algorithm greatly improves FANN search 
performance by significantly reducing the calculations of expensive shortest-path dis-
tances between two objects compared with IER-kNN [3]. Table 1 summarizes the nota-
tions used in this study.

In this study, road network objects are mapped into those in a metric space as in [2]. 
The metric space is formally defined as a (D, d) pair, where D is a set of objects, and 
d ∶ D ×D → ℝ is a distance function between two arbitrary objects in D satisfying the 
following three properties for any objects Oa,Ob , and Oc (∈ D):

–	 d(Oa,Ob) = d(Ob,Oa)   (symmetry)
–	 d(Oa,Ob) > 0 (a ≠ b) or d(Oa,Oa) = 0   (non-negativity)
–	 d(Oa,Ob) ≤ d(Oa,Oc) + d(Ob,Oc)   (triangle inequality)

The shortest-path distance between road network objects satisfies the above three prop-
erties if all edges are undirected edges with positive weights and there is no self-loop 
edge. We consider only the road networks satisfying the conditions in this study.

Algorithm 1 outlines the IER-LMDS algorithm. The basic architecture is similar to 
that of the previous FANN algorithms in Euclidean spaces and road networks [3, 9]. 
IER-LMDS and the previous algorithms commonly store the nodes n of the R-tree in a 
priority queue H and extract them from H in the order of n.ĝ𝜙 (line 6 of Algorithm 1), 
where n.ĝ𝜙 is the estimated FANN distance of node n (explained in detail later), and is 
obtained using the estimated distance d̂ between two objects. It is obvious that the esti-
mated distance d̂ that is closer to the actual shortest-path distance d is more advanta-
geous for reducing the lookups of unnecessary nodes n and the calculations of ‘expen-
sive’ distances d for the objects in the nodes n.

Table 1   Summary of notations Notation Description

R Road network dataset
N Number of objects in R
Q Set of query objects
M Number of query objects, i.e., |Q|
� Flexibility factor (0 < 𝜙 ≤ 1)

� Search probability (0 < 𝛼 < 1)
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While IER-kNN uses the Euclidean distance d̂(2) based on 2-D coordinates of 
objects when calculating n.ĝ𝜙 , IER-LMDS uses the Euclidean distance d̂(k) based 
on the k-dimensional coordinates of objects obtained through LMDS transforma-
tion. While the distance d̂(2) is significantly different from the actual shortest-path 
distance d, the distance d̂(k) is very close to d as explained in Sect. 2. This is quanti-
tatively shown using real road network datasets in Sect. 4.

Figure 1 shows an example of distribution of X = d − d̂(k) for a sample of 10,000 
object pairs obtained after LMDS transformation of a real road network dataset. As 
shown in this figure, the sample mean X̄ is very close to 0, and the sample standard 
deviation S is also very small. To identify the distribution of X, we conducted Kol-
mogorov–Smirnov tests (K–S tests) [16] for diverse probability distributions. The 
K–S test for a probability distribution returns the ‘goodness-of-fit’ statistic, which 
represents the difference between the given sample data and the specified probabil-
ity distribution function values. Our tests yielded the best statistics for the normal 
distribution and Student’s t-distribution. Since the t-distribution becomes closer to 
a normal distribution as the degree of freedom � (= n − 1) increases, where n is the 
number of samples, we assume that X follows a normal distribution. The mean and 
standard deviation of the population are estimated as those obtained from a sample 
of a sufficiently large size, i.e., it is assumed that X ∼ N(X̄, S2).

Each line of Algorithm  1 is explained in detail as follows: first, LMDS trans-
formation is performed for the given road network dataset R . For LMDS, two 
parameters n and k (≤ n) are required as described in Sect. 2. The values of these 
two parameters are directly proportional to accuracy of the LMDS transformation. 
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However, the larger values of these two parameters generally lead to a longer trans-
formation time. In particular, if k becomes very large, the search performance is 
dramatically degraded when using a multi-dimensional index such as the R-tree 
constructed using the k-dimensional objects. This phenomenon is known as the 
high-dimensionality problem or high-dimensionality curse [17]. In the experiments 
in Sect. 4, n and k were set as n = 50 and k = 4 . After storing all the k-dimensional 
objects in an R-tree, the root node of the R-tree is stored in the priority queue H, and 
the FANN distance p̂∗.g𝜙 of the object p̂∗ is set to infinity.

The while loop in lines 5–16 of Algorithm 1 is performed once for every node n 
that has not been pruned in H. In line 6, the node with the smallest n.ĝ𝜙 is extracted 
among all nodes n in H. If n is a non-leaf node, e.ĝ𝜙 is calculated for every entry 
(i.e., node) e in n in line 9 as follows: For each query object qi (∈ Q, 0 ≤ i < M) , 
the Euclidean distance d̂ , i.e., d̂(k) between qi and the MBR e.R for e is obtained, 
where the distance d̂(qi, e.R) is defined as d̂(qi, e.R) =

√
mindist(qi, e.R) . IER-

LMDS as well as many other FANN algorithms [3, 9] uses the definition of mind-
ist() as given in [5]. Figure  2 shows the examples of d̂ distances for three query 
objects. The d̂ distance of an object residing inside of the MBR such as q3 is defined 
as 0. Among M d̂ values, the smallest m (= �|Q|) values are obtained, and without 
loss of generality, let d̂0,… , d̂m−1 be the smallest m d̂ values. Thereafter, we obtain 
e.ĝ𝜙 = g{d̂i, 0 ≤ i < m} [3, 9], where g = max or sum. If the value of e.ĝ𝜙 is less 
than or equal to p̂∗.g𝜙 − 𝜅(X̄ + z𝛼S) , e is added in H, where � is 1 if g = max or m if 
g = sum. X̄ and S are the sample mean and standard deviation for variable X, respec-
tively, and z� is the value that satisfies the probability P(z� ≤ Z) = � for the given 
� and the variable Z that follows the standard normal distribution. The following 
Lemma 1 proves that there is no false drop (i.e., false negative) by IER-LMDS if the 
variable X follows the normal distribution N(X̄, S2) as was assumed above.

Lemma 1  If the variable X (= d − d̂) follows the normal distribution N(X̄, S2) , 
there is no false drop in line 9 of Algorithm 1.

Fig. 1   Example of distribution of X (= d − d̂(k))
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Proof  In line 9, d̂(qi, e.R) is calculated for each query object qi , and e.ĝ𝜙 is obtained 
using the m smallest d̂ values (m = �|Q|) . Without loss of generality, let q0,… , qm−1 
be the query objects with the smallest m d̂ values, and d̂0,… , d̂m−1 be their d̂ val-
ues. In addition, let d̂�

0
,… , d̂�

m−1
 and d0,… , dm−1 be the d̂ and d values, respectively, 

between each qi and an arbitrary object e′ in the MBR e.R. Then, it holds that d̂i ≤ d̂′
i
 

for every qi (0 ≤ i < m).
For the given probability 𝛼 (0 < 𝛼 < 1) , z� is the value that satisfies 

P
(

z𝛼 ≤
X−X̄

S

)

= 𝛼 . In other words, it holds that X̄ + z𝛼S ≤ X for the given � . By 
replacing X with di − d̂�

i
 for two objects qi and e′ , we obtain d̂�

i
+ X̄ + z𝛼S ≤ di and 

thus g{d̂�
i
+ X̄ + z𝛼S} ≤ g{di} . Since it holds that d̂i ≤ d̂′

i
 , it is induced that 

g{d̂i + X̄ + z𝛼S} ≤ g{d̂�
i
+ X̄ + z𝛼S} , i.e., e.ĝ𝜙 + 𝜅(X̄ + z𝛼S) ≤ g{d̂�

i
+ X̄ + z𝛼S} , and 

thus e.ĝ𝜙 + 𝜅(X̄ + z𝛼S) ≤ g{di} , where � = 1 (g = max) or m (g = sum) . Therefore, 
if it holds that p̂∗.g𝜙 < e.ĝ𝜙 + 𝜅(X̄ + z𝛼S) , i.e., e.ĝ𝜙 > p̂∗.g𝜙 − 𝜅(X̄ + z𝛼S) , it is con-
cluded that p̂∗.g𝜙 < g{di} for any e′ in e.R, and thus e can be discarded safely. 	�  ◻

If the node n extracted from H in line 6 is a leaf node, in line 13, e.g� is calculated 
for every entry (i.e., object) e in n. The e.g� value is calculated in the same manner 
as e.ĝ𝜙 in line 9, except that the actual shortest-path distance d is used instead of d̂ . 
In other words, e.g� is obtained as e.g𝜙 = g{di, 0 ≤ i < m} [3, 9], where di = d(qi, e) , 
and without loss of generality, di (0 ≤ i < m) are the m smallest values among 
di (0 ≤ i < M) . If e.g� is smaller than p̂∗.g𝜙 , e is assigned as a new p̂∗ . Finally, in 
line  17, the current p̂∗ value is returned as p∗ , and the corresponding Q∗

�
 and 

p∗.g� (= g(p∗,Q∗
�
)) are also returned together.

In Algorithm 1, the number of FANN objects (k) was assumed to be 1. This algo-
rithm can be extended for the general case of k ≥ 1 as follows: instead of storing 
only one final FANN object p̂∗ , an array K is allocated to store k FANN objects. 
The p̂∗

i
 objects in K are sorted in the order of p̂∗

i
.g𝜙 , and initially, the algorithm sets 

p̂∗
i
.g𝜙 ← ∞(0 ≤ i < k) in line 4. In lines 9 and 13, p̂∗.g𝜙 is replaced with p̂∗

k−1
.g𝜙 , 

and finally, the array K is returned in line 17.
Similar to IER-kNN , IER-LMDS needs to compute an FANN distance g(p,Q�) 

for every object p in a road network R in the worst case. The FANN distance 

Fig. 2   d̂ distances for three 
query objects
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g(p,Q�) for an object p is obtained by finding k (= �M) query objects in Q nearest 
to p and then computing the aggregate of the shortest-path distances of the k query 
objects. Thus, the complexity of IER-LMDS is O(KN), where K is the cost of the k-
NN search and N is the number of objects in R [3]. The k-NN search also needs to 
calculate the shortest-path distances to all query objects in the worst case. Therefore, 
the complexity of IER-LMDS can be rewritten as O(CMN), where C is the cost of 
a shortest-path distance calculation and M is the number of query objects. Since M 
and N are set as constants, the performance of both algorithms is determined by the 
total number of shortest-path distance calculations conducted in the algorithms.

4 � Experimental evaluation

In this section, the search performance of IER-LMDS is compared with that of IER-
kNN [3] through a series of experiments using real road network datasets. Since 
IER-kNN showed the best performance among the algorithms by Yao et  al. [3], 
IER-LMDS is compared only with IER-kNN in this study. The search accuracy of 
IER-LMDS is also examined for various search probabilities � . The platform for 
the experiments is a workstation with an AMD 3970X CPU, 128 GB memory, and 
1.2TB SSD. We implemented IER-LMDS and IER-kNN in C/C++. In particular, we 
used a library named Eigen for eigendecomposition of distance matrices in LMDS.1 
In all experiments, the parameters for LMDS were set as n = 50 and k = 4.

The datasets used in the experiments are actual road networks of five states and 
Washington DC in the US. These datasets were provided by the US Census Bureau 
and have been used in the 9th DIMACS Implementation Challenge2 and in many 
previous studies [1, 3]. Table 2 lists the datasets used in the experiments. Each data-
set is a graph composed of a set of vertices and a set of undirected edges. Each ver-
tex corresponds to an object (i.e., a POI) and is composed of an ID and a geographic 
coordinate (latitude and longitude). Each edge corresponds to a path directly con-
necting two adjacent vertices and is composed of the IDs of two connected vertices, 
transportation time, geographic distance, and road type. The datasets have noises 

Table 2   Road network datasets Acronym Name Vertices Edges

DC District of Columbia 9559 14,909
AK Alaska 69,082 78,100
NH New Hampshire 116,920 133,415
NV Nevada 261,155 311,043
MN Minnesota 547,028 670,443
FL Florida 1,048,506 1,330,551

1  http://eigen​.tuxfa​mily.org/.
2  http://users​.diag.uniro​ma1.it/chall​enge9​/data/tiger​/.

http://eigen.tuxfamily.org/
http://users.diag.uniroma1.it/challenge9/data/tiger/
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such as self-loop edges and disconnected graph segments [3]. Thus, we performed 
pre-processing tasks to remove the noises.

The distance d() between two objects in a road network was defined as the short-
est-path distance between them and was obtained using the pruned highway labeling 
(PHL) algorithm [18, 19]. The PHL algorithm is known as the fastest shortest-path 
algorithm [1, 3]. In the experiments, we used the C/C++ code written by the origi-
nal authors of the PHL algorithm.3

In the first experiment, stress values were calculated using the actual shortest-
path distances d and the estimated Euclidean distances d̂ between two objects in 
road networks. We compared the stress values that were separately calculated using 
d̂(k) and d̂(2) distances, where d̂(k) is the k-dimensional distance obtained after LMDS 
transformation, and d̂(2) is the distance obtained using 2-D coordinates of objects 
(refer to Sect. 3). The stress function is defined as Eq. (1) [20]:

where di,j and d̂i,j represent the actual shortest-path distance and the Euclidean dis-
tance between two objects Oi and Oj , respectively. In both IER-LMDS and IER-
kNN , since it is advantageous that the estimated distance d̂ is close to the actual 
distance d, the smaller stress values are better. Table 3 summarizes the result of the 
first experiment. Each value is the average of stress values obtained for randomly 
chosen 1% of all possible paths or 100 million paths, whichever is larger, from each 
road network. The stress values in the second and third columns were calculated 
using d̂(k) and d̂(2) distances, respectively. The result showed that the stress values 
decreased significantly when LMDS transformation was applied for every road net-
work. Therefore, it is clear that IER-LMDS can determine the pruning bounds of 
R-tree nodes more accurately than IER-kNN , thereby significantly reducing the cal-
culation of expensive shortest-path distances d.

In the second experiment, we compare the calculation time of the shortest-path 
distance d and the Euclidean distance d̂ . Table 4 summarizes the result of the sec-
ond experiment, where the ratios are obtained by dividing the calculation time of 

(1)Stress2 =

∑�
di,j − d̂i,j

�2

∑
d2
i,j

,

Table 3   Comparison of stress 
values

Road network Using d̂(k) Using d̂(2)

DC 0.091619 0.529962
AK 0.095301 0.724610
NH 0.061504 0.606652
NV 0.068105 0.605126
MN 0.080055 0.423036
FL 0.041932 0.306429

3  https​://githu​b.com/kawat​ea/prune​d-highw​ay-label​ing.

https://github.com/kawatea/pruned-highway-labeling
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distance d by that of distance d̂ . As in the first experiment, each value is the average 
of ratios obtained by randomly chosen 1% of all possible paths or 100 million paths 
in each road network. The ratio tends to increase as the road network becomes larger 
since the size of a road network is directly proportional to the number of objects on 
the path between two objects on the average. Therefore, it is essential to reduce the 
calculation of distance d to improve the performance of any FANN search algorithm.

Table 5 lists the parameters to consider in the third to eighth experiments. The 
parameter values in parentheses indicate default values. In the third experiment, 
we compared the execution time required for the FANN search and the number of 
PHL distance calculations for each road network dataset in Table 2. The values 

Table 4   Ratios of distance 
calculation time

Road network Ratio

DC 90.333
AK 82.194
NH 158.270
NV 177.528
MN 331.028
FL 372.943

Table 5   Experimental parameters

Parameter Description Values (default value)

R Road network dataset DC, AK, NH, NV, MN, FL (NV)
M Size of Q, i.e., |Q| 64, 128, 256, 512, 1024 (256)
C Coverage ratio of Q 0.01, 0.05, 0.10, 0.15, 0.20 (0.10)
� Flexibility factor 0.1, 0.3, 0.5, 0.8, 1.0 (0.5)
k No. of FANN objects 1, 10, 20, 50, 100, 200, 500 (1)
� Search probability 0.01, 0.05, 0.10, 0.30, 0.50, 0.70, 

0.90, 0.95, 0.99 (0.50)

(a) Execution time (seconds). (b) Number of PHL distance computations.

Fig. 3   Comparison of FANN performance for various road network datasets ( R)
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of all other parameters were set as default. Figure 3 shows the result of the third 
experiment. Each value in this figure is the average of the values obtained for 
randomly generated 1000 query sets Q. The result for each of aggregate func-
tions g = max and sum was indicated by appending suffixes ‘-MAX’ and ‘-SUM’ 
to algorithm names, respectively, e.g., IER-LMDS-MAX and IER-LMDS-SUM. 
As can be observed in this figure, the execution time and the number of PHL dis-
tance calculations have similar trends for both algorithms. This indicates that the 
most dominant factor that determines the performance of the FANN algorithms 
is the number of shortest-path distance calculations. As the size of road network 
increased, more objects are contained within the pruning boundaries causing 
more distance d calculations, thereby increasing the execution time. In the third 
experiment, IER-LMDS always achieved higher performance than IER-kNN ; for 
NH dataset and g = max , the performance was improved by up to 4.37 times.

In the fourth experiment, FANN search performance was compared while 
changing the number of query objects M, and the result is shown in Fig.  4. As 
M increased, the execution time and the number of PHL distance calculations 
increased almost linearly since in line 13 of Algorithm 1, the actual distance d to 
every query object qi is calculated to determine the FANN distance e.g� for each 
object e. As in the third experiment, the performance was determined almost by 
the number of PHL distance calculations for both algorithms. In this experiment, 
IER-LMDS always achieved higher performance than IER-kNN ; the performance 
was improved by up to 2.85 times for M = 64 and g = max.

In the fifth experiment, FANN search performance was compared while chang-
ing the coverage ratio C of query objects. C was obtained by dividing the size 
of the minimal region containing all query objects by that of the region occu-
pied by the entire road network. Figure 5 shows the result of the fifth experiment. 
As C increased, the execution time also increased generally since more objects 
were contained in the query region and the number of PHL distance calcula-
tions between them also increased. In this experiment as well, IER-LMDS always 
achieved higher performance than IER-kNN ; the performance was improved by 
up to 3.61 times for C = 0.2 and g = max.

(a) Execution time (seconds). (b) Number of PHL distance computations.

Fig. 4   Comparison of FANN performance for various query sizes (M)
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In the sixth experiment, the performance was compared for various flexibility 
factors � , and the result is shown in Fig. 6. In this figure, as � increased, the execu-
tion time and the number of PHL distance calculations of IER-kNN also increased 
since, as � increased, p̂∗.g𝜙 for the candidate FANN object p̂∗ also increased caus-
ing more R-tree node lookups and more PHL distance calculations. In IER-LMDS, 
in contrast, although � increased, the increasing trend of the execution time and the 
number of PHL distance calculations was not strong; they even decreased for � = 
0.8 and 1.0. In line 9 of Algorithm 1, although � and p̂∗.g𝜙 increased, the value of 
𝜅(X̄ + z𝛼S) remained constant and thus there was only a small change in the pruning 
bound. Meanwhile, as � increased, e.ĝ𝜙 also increased for an entry e causing less 
entries e to be added in H. In this experiment as well, IER-LMDS always achieved 
higher performance than IER-kNN ; the performance was improved by up to 10.87 
times for � = 1.0 and g = max.

In the seventh experiment, the performance was compared while changing the 
number of FANN objects k. Figure 7 shows the results. For both IER-LDMS and 
IER-kNN , the pruning bound increased with k. Since more R-tree nodes were vis-
ited, the execution time and the number of PHL distance calculations increased. In 
this experiment as well, IER-LMDS always achieved higher performance than IER-
kNN ; the performance was improved by up to 2.79 times for k = 1 and g = max.

Finally, FANN search performance and accuracy were compared for various search 
probabilities � . The search accuracy of IER-LDMS was calculated as follows: for 

(a) Execution time (seconds). (b) Number of PHL distance computations.

Fig. 5   Comparison of FANN performance for various coverage ratios of query (C)

(a) Execution time (seconds). (b) Number of PHL distance computations.

Fig. 6   Comparison of FANN performance for various flexibility factors ( �)
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each query Q, the error � = p∗.g� − �∗.g� was determined, where p∗.g� and �∗.g� 
were obtained for the FANN objects p∗ and �∗ returned by IER-LDMS and IER-kNN , 
respectively. Subsequently, the mean square error (MSE), i.e., 

∑
�2∕n was calculated, 

where n is the number of queries. Since the third to eighth experiments were conducted 
for 1000 randomly generated queries, n = 1000 . The result of the final experiment is 
shown in Fig. 8. In Fig. 8a, since the pruning bound for IER-LMDS increased with 
� , the number of PHL distance calculations and the execution time also increased. In 
Fig. 8b, we could find that MSE decreased rapidly as � increased. For � ≥ 0.5 , all � 
became zero. The graph of the number of PHL distance calculations is omitted since it 
has a similar trend to the execution time as in other experiments. In the last experiment 
as well, IER-LDMS always achieved higher performance than IER-kNN ; the perfor-
mance was improved by up to 3.13 times for � = 0.5 and g = max.

(a) Execution time (seconds). (b) Number of PHL distance computations.

Fig. 7   Comparison of FANN performance for various number of nearest neighbors (k)

(a) Execution time (seconds). (b) Mean square error.

Fig. 8   Comparison of FANN performance and accuracy for various search probabilities ( �)
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5 � Conclusions

This study proposed an efficient �-probabilistic FANN search algorithm named IER-
LMDS in road networks. IER-LMDS mapped road network objects into those in a 
metric space and then transformed them into k-dimensional Euclidean space objects 
while preserving the distances between objects using LMDS [11, 12]. The state-of-
the-art FANN algorithm named IER-kNN [3] used the Euclidean distance based on 
the 2-D coordinates of objects when choosing the R-tree nodes to visit, and thus it 
could not avoid performance degradation due to significant differences between the 
Euclidean distances and the actual shortest-path distances.

A series of experiments were conducted in this study to confirm the superior-
ity of IER-LMDS by comparing its performance and accuracy with those of IER-
kNN for various real road networks and parameters. The results of all experiments 
revealed that IER-LDMS always achieved higher performance than IER-kNN for all 
road networks and parameters; the performance was improved by up to 10.87 times. 
We believe that IER-LDMS will be widely adopted for efficient FANN search in a 
variety of road network applications in the future.
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