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Abstract
In this paper, we consider a deadline-constrained MR scheduling problem of mini-
mizing energy consumption in Hadoop’s generic resource manager known as yet 
another resource negotiator. The problem has been modeled as an integer program-
ming (IP) problem using the time-indexed decision variables. We propose two solu-
tion approaches to the problem. First, we give a heuristic algorithm that generates 
sub-optimal schedules in polynomial time. Second, we propose a novel constraint 
programming (CP) model (as an alternative to the IP model) which always generates 
optimal schedules when solved by a CP solver. The CP technique is a relatively new 
and an alternative approach to IP-based branch-and-cut algorithm to exactly solve 
NP-hard optimization problems. We performed several experiments to compare both 
proposed solution approaches over real data traces of a wide variety of MR jobs from 
the HiBench and PUMA benchmark suite. It is noticed that for large-scale big data 
jobs, the heuristic algorithm provides sub-optimal results in a very small amount 
of time. On the other hand, the CP approach not only gives optimal results but also 
takes a small amount of time when compared to IP-based approaches. Therefore, it 
can be used in non-time-critical situations for getting an optimal schedule. Besides 
this, a few experiments were also performed to compare the tightest satisfiable dead-
line under both approaches with the conclusion that the CP technique is able to pro-
duce optimal schedules in tighter deadline constraints than the heuristic approach. 
Moreover, we investigate the sensitivity of total energy consumption of tasks and the 
execution time of both approaches separately on the number of tasks and deadlines.
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1 Introduction

Hadoop is an open-source implementation of the MapReduce (MR) computing 
paradigm [1, 2]. The performance of Hadoop is greatly influenced by its scheduler 
which has to cater to various quality of service (QoS) requirements of two stake-
holders, namely Hadoop user and administrator. Based on the scheduling entity, the 
Hadoop scheduler can be classified as a job-level or a task-level scheduler [3, 4]. At 
the job-level, the scheduler has many jobs at hand to decide which job is going to 
be executed at what time. And in case of offline scheduling (at job-level), it simply 
arranges the jobs in a particular order [5–7]. Whereas at task-level, various map and 
reduce tasks of the job(s) are scheduled/assigned on different cluster machines to 
achieve some objective [8–10]. Mathematically, the problem of MR scheduling (at 
either level) for optimizing one or more QoS parameters simultaneously is strongly 
NP-hard (Non-deterministic Polynomial time-hard) under different system models 
and constraints [5, 10–12]. In practice, two variants of the Hadoop framework are 
available: slot-based and container-based [13]. The container-based Hadoop uses 
a generic resource manager known as Yet Another Resource Negotiator (YARN) 
which overcomes the limitations of slot-based Hadoop in terms of scalability, reli-
ability, and resource utilization by introducing the concept of containers [13].

In the past few years, MapReduce (MR) scheduling has been a challenging area 
of research to minimize energy consumption. Mashayekhy et al. in [8] and Yousefi 
et al. in [9] have considered an energy-efficient MR scheduling problem at the task 
level to minimize the energy consumption of a single MR job. The authors consid-
ered a slot-based Hadoop environment where the various map and reduce tasks have 
to be scheduled on suitable energy-efficient computing slots so that overall energy 
consumption is minimized and the job may complete its execution before a user-
specified deadline. In this paper, we consider the same problem, however, exclu-
sively for the YARN environment and call it as the problem of deadline-constrained 
MR scheduling in YARN for energy minimization (DMRSYE). The problem has 
been formally formulated as an integer program in Sect. 3. Next, we discuss how 
scheduling in a YARN environment is different from slot-based Hadoop. This dif-
ference makes the considered problem very challenging and also servers as our 
motivation.

1.1  MR scheduling in slot‑based versus container‑based Hadoop

Scheduling under both variants of Hadoop (whether at job level or task level) dif-
fers in the way various computing resources of a node are allocated to map and 
reduce tasks. This happens due to different mechanisms of slots and containers, that 
further influences the (mathematical) scheduling model of both versions. In slot-
based Hadoop, resources are allocated to tasks at the level of a fixed-size partition 
of nodes, called as slot. At each node, a static and pre-defined number of slots are 
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created separately for map and reduce tasks,1 which are specifically called as map 
and reduce slots, respectively. During the execution, map and reduce tasks are to be 
scheduled on their respective computing slots with a restriction that a reduce task 
may start only after all map task has completed its execution. In this scenario, slots 
act as independent parallel machines.

Figure 1a shows the scheduling process in a slot-based Hadoop cluster compris-
ing two machines n1 and n2 where two map tasks m1 and m2 , and a single reduce 
task r1 are being scheduled. Two map slots (represented by squares) and two reduce 
slots (represented by triangles) are created per machine. And any slot (either map 
or reduce) represents one-fourth portion of computing resources in a node. Task m1 
and r1 are scheduled on one of the respective slots in machine n1 , whereas task m2 is 
scheduled on one of the map slots in machine n2 . In this particular instance of the 
Hadoop cluster, a maximum of two map tasks (equals to the number of map slots) 
can be scheduled on any machines parallelly at any time. Given this, the slot-based 
MR scheduling problem simply reduces to a traditional parallel machine scheduling 
problem (PMSP). The slot-based MR scheduling problem has been modeled as a 
PMSP using mathematical programming (MP) techniques in [5, 12, 14–17] for dif-
ferent objectives.2 Particularly in [5, 17], the problem has been modeled as flexible 
flow shop machine scheduling.

The map and reduce tasks belonging to different jobs require a diverse amount 
of resources which cannot be fulfilled exactly by the slot-based mechanism. How-
ever, YARN facilitates this by allowing the tasks to place their request for required 
resources in the form of a vector �������⃗REQ = ⟨a1, a2,… , al,… , a�A�⟩ , where al represents 
the amount of lth resource type requested by any particular task and |A| represents 
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Fig. 1  MR scheduling in Hadoop

1 Equals to the number of computing cores in the node.
2 Linear programming (LP), integer programming (IP), quadratic programming (QP), quadratic con-
straint programming (QCP), etc. are collectively known as mathematical programming (MP).
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total resource types. Currently, YARN supports only two resource types: memory 
and CPU cores, and hence, |A| = 2 . If the amount of requested resources can be 
fulfilled by any cluster node, then the exact amount of resources are allocated to the 
task in the form of a container which can be thought of as a logical abstraction of all 
resources available at the machine. And, due to this container concept, scheduling in 
YARN needs special attention.

Figure 1b shows the resource allocation and scheduling of two map tasks m1 and 
m2 , and a reduce task r1 in a YARN cluster consisting of two machines n1 and n2 . 
The machine n1 has the resource capacity of 32 MB memory and 8 virtual cores 
(VC), whereas n2 has 64 MB memory and 10 VCs. The tasks m1 and m2 have 
resource request vector as ⟨5MB, 2VC⟩ each and task r1 has resource request vector 
as ⟨2MB, 1VC⟩ . The tasks m1 and r1 are allocated to machine n1 where two contain-
ers of exact resource demand are created for both tasks. Similarly, task r1 is executed 
within a container of exact capacity at machine n2 . After task allocation, available 
resources at both nodes are shown in the diagram itself. At any particular time, 
simultaneously maximum four map tasks on machine n1 , and maximum five map 
tasks on n2 can be scheduled. In other words, the total amount of resources con-
sumed by all containers must not exceed the total capacity of a node.

Due to this kind of additional resource constraint, the task scheduling in YARN 
like environment is similar to a resource-constrained parallel machine scheduling 
problem (RCPMSP) [18, 19]. However, in the case of YARN, each machine has its 
own set of non-shared local resources, whereas, in standard RCPMSP problems, 
machines have a set of shared global resources. The problem investigated in [18] is 
a type of RCPMSP problem and proved to be an NP-hard problem. Therefore, the 
DMRSYE problem which is similar to [18] is also an NP-hard problem in a very 
strong sense. To solve any computationally intensive NP-hard problems, there are 
three main approaches:

– Heuristics: It solves the problems usually in polynomial time with a sub-optimal 
result without any guarantee on the sub-optimality.

– Exact algorithms: It solves an NP-hard problem optimally, however, takes expo-
nential time, e.g., efficient graph search techniques, branch-and-bound (B&B), 
branch-and-cut (B&C), etc.

– Approximation algorithms: It provides a sub-optimal result with an assurance 
on the quality of the sub-optimal result.

1.2  Solution approaches to DMRSYE problem

In this paper, we have adopted the heuristic and exact solution approaches to the 
DMRSYE problem and compared them on the basis of various performance param-
eters. As expected, the proposed heuristic method provides sub-optimal results in 
polynomial time without any guarantee on the sub-optimality. The algorithm works 
in multiple rounds and performs a greedy search to find the best node for a task to 
be scheduled upon for minimizing the energy consumption. And, to the best of our 
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knowledge, no such static scheduling algorithm has been developed for the consid-
ered problem.

On the other hand for an exact solution, One of the options is to model it as an 
integer program and use either IP-based branch-and-cut/branch-and-bound (B&C/
B&B) algorithms,3 or cutting plane methods. All of them can optimally solve any 
NP-hard IP problem. Although it is possible to find optimal solutions using such 
methods, it may require an enormous amount of computation time with the increas-
ing problem size. We used the in-built IP-based B&C algorithm of IBM ILOG 
CPLEX optimization studio v12.8 (CPLEX studio for short) [20, 21] to solve a 
small instance of considered problem and get an optimal schedule after several min-
utes. For large problem instances, we could not get the results even after several 
hours, which is absolutely not desirable for deadline critical applications. Hence, our 
main objective of this paper apart from designing a heuristic algorithm is to provide 
an efficient methodology that generates exact solutions for the DMRSYE problem 
and may compete with heuristic schemes in terms of solution time.

In recent years, researchers have been using the constraint programming (CP) 
technique as an alternative to IP-based solution approaches for NP-hard optimization 
problems. And, it has been observed that CP techniques are suitable for sequencing 
and scheduling applications besides highly constrained and strict feasibility prob-
lems [18]. The CP optimizer embedded with CPLEX studio uses the graph search 
algorithms to find the optimal solutions. The constraint propagation and problem-
specific searching techniques may speed-up the solution process [21]. We briefly 
introduce CP technique in Sect.  4.2 and its applications in scheduling problem in 
Sect. 2. Although the CP technique has been applied in a different kind of schedul-
ing problem, it has never been used for MR scheduling in YARN. We propose a 
novel CP model for the DMRSYE problem to be solved by default search algorithm 
of CP optimizer and compare it with our heuristic method for solution quality and 
computational time (i.e., schedule generation time).

1.3  Organization of the paper

The rest of the paper is organized as follows. Section  2 presents an overview of 
related work. Section  3 formulates the DMRSYE problem mathematically as an 
integer linear programming problem. Section 4 presents a heuristic algorithm and 
a novel CP-based scheduling model for the considered problem. Section 5 presents 
the experimental setup, selected workloads, and profiling techniques. Section  6 
discusses the results of various experiments performed to compare both proposed 
approaches. Lastly, Sect. 7 concludes the paper.

3 IP modeling is a common way to represent machine scheduling problems in general.
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2  Related work

The closest works to ours are [8] and [9]. However, both of them assumed a slot-
based scheduling environment and adopted heuristic approaches to solve the con-
sidered problem sub-optimally in a quick time. Particularly, Mashayekhy et  al. 
in [8] formulated the problem of energy-aware scheduling of a single MapRe-
duce job within a deadline as an IP problem. The authors proposed two heuris-
tic methods called energy-aware MapReduce scheduling algorithms (EMRSAs) 
which take the energy efficiency differences of different machines into account. 
The algorithms use a metric called energy consumption rate (ECR) which speci-
fies the rate of energy consumption of map and reduce slots and induces an order 
relation among the cluster machines. To further improve the performance of 
EMRSA, Yousefi et al. [9] proposed a better task-based greedy heuristic to estab-
lish the mapping between slots and tasks. Their heuristic minimizes the energy 
consumption of an MR job without significant loss in performance while satisfy-
ing user-specific service level agreements (SLAs).

Yigitbasi et al. [22] proposed an energy-efficient algorithm to schedule hetero-
geneous workloads to the heterogeneous cluster comprising high and low power 
machines. This provides an opportunity to save energy by intelligently placing 
jobs on its corresponding energy-efficient machine. The authors have not math-
ematically modeled the problem and did not consider any deadline constraint like 
[8, 9]. Bampis et  al. [23] proposed an energy-efficient scheduling algorithm to 
minimize the weighted completion time of a set of n MapReduce job with a con-
straint of the energy budget. The authors formulated the problem as an integer 
program assuming that the order of job execution is not fixed. Thereafter, they 
derived a polynomial-time constant-factor approximation algorithm using linear 
programming (LP) relaxation to solve the formulated problem. The authors also 
developed a convex programming formulation and combined that with list sched-
uling algorithms.

Shao et  al. [24] formulated the energy-efficient MR scheduling problem for 
YARN architecture as a m-dimensional knapsack problem (MKP) resulting in 
an integer program. Besides energy minimization, it also considered the fairness 
metric and proposed a heuristic approach to produce a sub-optimal solution. Cai 
et al. [25] proposed a YARN scheduler to minimize energy consumption with a 
deadline as a constraint, like [8]. The proposed scheduler works at both, job level 
and task level. At the job level, the scheduler is highly inspired by the automatic 
resource inference and allocation (ARIA) scheduler [26] and competes for jobs 
within its deadline. At the task level, the authors optimized energy consumption 
through the user-space dynamic voltage and frequency scaling (DVFS) governor.

Now, we will discuss some pointers where the CP technique has been used 
to solve RCPMSP problems or its variants. Edis et al. in [18, 27] and [28] pre-
sented a study comparing the application of IP and CP techniques in the par-
allel machine scheduling problem with additional resources for minimizing the 
makespan. Besides this, Ham and Andy [29] proposed a CP technique with a 
problem specific variable ordering heuristic for a dual resource-constrained 
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scheduling problem in the field of semiconductor manufacturing. Gökgür et  al. 
[30] developed three CP models for parallel machine scheduling with tool load-
ing constraints and showed that their proposed models are better than MP and 
tabu search techniques proposed in [31]. Arbaoui and Yalaoui [32] proposed a CP 
model for unrelated parallel machines with additional resources and compared it 
with two MP models proposed in [33].

3  Problem formulation

In this section, we mathematically formulate the DMRSYE problem as an integer 
programming (IP) problem. Some of the references given in [19, 28] have proposed 
different IP or mixed-integer programming (MIP) formulations for a variety of 
RCPMSP problems. We take motivation from those IP/MIP models and incorporate 
appropriate changes in our model. The following system model assumptions have 
been taken regarding the set of tasks, machines, resources, energy consumption, pro-
cessing time, etc.:

– We consider a MR job comprising two task sets, M = {m1,… ,m|M|} and 
R = {r1,… , r|R|} , which have |M| number of map tasks and |R| number of 
reduce tasks, respectively. The job is to be processed by a YARN cluster com-
prising n heterogeneous machines (or nodes in Hadoop terminology) represented 
by a set N = {n1,… , n|N|}.

– The energy consumption and processing time of a map task mj ∈ M on machine 
ni ∈ N  is em

ij
 and pm

ij
 , respectively. Similarly, the energy consumption and pro-

cessing time of a reduce task rk ∈ R on machine ni ∈ N  is er
ik

 and pr
ik

 , respec-
tively.

– Each machine has |A| types of resources represented by set A = {a1,… , a|A|} . 
The total amount of resource type al ∈ A available at machine ni ∈ N  is indi-
cated by capil . Moreover, the amount of resource type al ∈ A requested by any 
map tasks mj is reqm

jl
 , while by any reduce task rk is reqr

kl
.

The problem here is to schedule all MR tasks over the cluster machines in such a 
way so that the total energy consumption of machines is minimized. Further, it is 
also required that all tasks complete their execution within a user-specified deadline 
D while maintaining the temporal dependency between map and reduce tasks and 
fulfilling the resource constraint, i.e., at any particular time, no more tasks can be 
scheduled at any machine beyond its total capacity.

To formulate the problem as an integer program, we use two types of time-
indexed (TI) binary decision variables Xijt and Yikt which are based on discretization 
of time horizon in which time t ( t = 0, 1,… , T  ) is divided into discrete time inter-
vals. The assignment of value 1 to a decision variable Xijt ( Yijt ) signals that map task 
mj (reduce task rk ) is assigned to machine ni at time t. The time-indexed formulation 
has been previously introduced in [34, 35] for a single machine scheduling problem. 
The formulation DMRSYE-IP is given as:
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subject to

Indices used in the formulation have meanings as shown in Table 1.
In this DMRSYE-IP formulation, the objective is to minimize total energy con-

sumption. Constraints 1 and 2 are assignment constraints which ensure that each map 

min

|N|∑

i=1

|M|∑

j=1

T−pm
ij∑

t=0

em
ij
Xijt +

|N|∑

i=1

|R|∑

k=1

T−pr
ik∑

t=0

er
ik
Yikt

(1)
|N|∑

i=1

T−pm
ij∑

t=0

Xijt = 1, (∀j = 1,… , |M|)

(2)
|N|∑

i=1

T−pr
ik∑

t=0

Yikt = 1, (∀k = 1,… , |R|)

(3)
|N|∑

i=1

T−pr
ik∑

t=0

(t + pr
ik
)Yikt ≤ D, (∀k = 1,… , |R|)

(4)

|M|∑

j=1

t−1∑

s=max(0,t−pm
ij
)

(reqm
jl
)Xijs +

|R|∑

k=1

t−1∑

s=max(0,t−pr
ik
)

(reqr
kl
)Yiks ≤ capil,

(∀i = 1,… , |N|; ∀l = 1,… , |A|;∀t = 0, 1,… , T − 1)

(5)

|N|∑

i=1

T−pm
ij∑

s=max(0,t−pm
ij
)

Xijs +

|N|∑

i=1

t−1∑

s=0

Yiks ≤ 1,

(∀j = 1,… , |M|; ∀k = 1,… , |R|; ∀t = 0, 1,… , T − 1)

(6)Xijt ∈ {0, 1} (∀i = 1,… , |N|; ∀j = 1,… , |M|; ∀t = 0, 1,… , T − 1)

(7)Yikt ∈ {0, 1} (∀i = 1,… , |N|; ∀k = 1,… , |R|; ∀t = 0, 1,… , T − 1).

Table 1  Indexes used in the 
DMRSYE-IP formulation

Index Meaning

i Index of cluster machines (i = 1,… , |N|)
j Index of map task to be scheduled (j = 1,… , |M|)
k Index of reduce task to be scheduled (k = 1,… , |R|)
l Index of resource type (l = 1,… , |A|)
t Index of time (t = 0, 1,… ,T)



6796 V. Pandey, P. Saini 

1 3

and reduce task to be assigned to one machine only once. Constraint 3 is a deadline 
constraint that requires all map tasks must finish their computation before the user-
specified deadline D. Constraint 4 is a resource constraint that ensures that at any 
instance of time, the total amount of computing resources allocated to map and reduce 
tasks in the form of containers, should not exceed the total capacity of any machine. 
The constraint 5 establishes the temporal dependency between map and reduce tasks, 
i.e., all map tasks must finish their execution before the start of any reduce task. The 
last constraints 6 and 7 ensure that decision variables Xijt and Yikt may take values either 
0 or 1.

4  Proposed solution approaches

We use the in-built IP-based B&C algorithm CPLEX studio [20, 21] to the considered 
problem to get the optimal schedule. However, for large problem instances, we could 
not get the results even after several hours. Therefore, we choose to design a heuristic 
algorithm that can generate a sub-optimal schedule in a quick time. Moreover, we also 
propose a novel CP model as an alternative to the IP approach to produce an optimal 
schedule in a reasonable amount of time.

We explain the working of both approaches with a simple problem instance com-
prising 5 map and 2 reduce tasks to be scheduled on two machines. Afterward, we pro-
pose a novel CP model as an alternative to the IP model to be exactly solved by the CP 
optimizer of CPLEX studio.

4.1  The heuristic solution

Our heuristic technique employs a greedy approach to schedule map and reduce tasks 
on suitable energy-efficient machines. The main algorithm is shown in Algorithm 1 
where it simply calls two subroutines, namely map_sched() and reduce_sched() which 
handle the scheduling decisions of map and reduce tasks, respectively. After comple-
tion of these subroutines, if some map or reduce tasks are still unallocated then the 
main algorithm reports no feasible schedule is possible and returns, otherwise it pro-
duces the schedule in the form of decision variables X and Y.



6797

1 3

Constraint programming versus heuristic approach to MapReduce…

Algorithm 1: Main Algorithm
Input: M,R,N ,A, Em, Pm, Er, P r, REQm, REQr,

CAP,RA
Output: X,Y

1 t = 0
2 map sched();
3 reduce sched();
4 if M �= φ‖R �= φ then
5 Print ”No feasible schedule”
6 return
7 else
8 Output: X,Y

The main algorithm requires some input parameters to fix the scheduling deci-
sions. Among these parameters, M , R , N  , and A represent the set of map tasks, 
reduce tasks, machines, and resources, respectively. The parameters Em and Pm are 
two dimensional matrices of size |N| × |M| each and are collection of all energy 
consumption values em

ij
(i = 1,… , |N|;j = 1,… , |M|) and all processing time val-

ues pm
ij
(i = 1,… , |N|;j = 1,… , |M|) of all map tasks, respectively. Particularly, 

Em[i][j] = em
ij
 and Pm[i][j] = pm

ij
 . Similarly, Er and Pr are two dimensional matrices 

of size |N| × |R| each and are collection of all values of 
er
ik
(i = 1,… , |N|;k = 1,… , |R|) and pr

ik
(i = 1,… , |N|;k = 1,… , |R|) , respec-

tively. Particularly, Er[i][k] = er
ik

 and Pr[i][k] = pr
ik

 . Moreover, the parameters REQm 
and REQr are 2D matrices of size |M| × |A| and |R| × |A| , respectively, where 
REQm is collection of all resource request values 
reqm

jl
(j = 1,… , |M|;l = 1,… , |A|) of map tasks and REQr is collection of all 

resource request values reqr
kl
(k = 1,… , |R|;l = 1,… , |A|) of reduce tasks. Further-

more, the parameters CAP is 2D matrix of size |N| × |A| which stores the total 
capacity of each resource type at each machine, and particularly CAP[i][l] = capil . 
Lastly, parameter RA is 2D matrix of size |N| × |A| which stores the total amount of 
particular resource type currently allocated to various tasks at any machine, and ini-
tially at time t = 0 , RA[i][l] = 0, (∀i = 1,… , |N|;∀l = 1,… , |A|) . Few vectors also 
have been used in subroutines map_sched() and reduce_sched() which are men-
tioned in Table 2 with corresponding meanings.

Table 2  The meaning of vectors used in subroutines map_sched() and reduce_sched()

Vector Meaning

�������⃗REQm
j

jth row of matrix REQm which represents the resource request vector of map task mj

�������⃗REQr
k

kth row of matrix REQr which represents the resource request vector of reduce task rk
�������⃗CAPi

ith row of matrix CAP which represents the total amount of each resource type at machine ni
����⃗RAi

ith row of matrix RA which represents the total amount of each resource type currently allocated 
at machine ni



6798 V. Pandey, P. Saini 

1 3

The subroutine map_sched() is shown in Algorithm 2 that takes decision regarding 
which map task is to be assigned to which machine and at what time instance. This 
assignment takes place in multiple rounds until all map tasks are assigned. During any 
rth round (lines 2–15), first of all, the variable round_timer , which represents the total 
duration of rth round, is initialized to zero. Afterward, each unallocated map task is 
picked one at a time in line 4, and for its assignment, a node is greedily searched in 
while loop of lines 6–13 on the basis of minimum energy consumption. Particularly, for 
a map task mj picked in line 4, a priority queue Qj of all machines is created on the 
basis of energy consumption em

ij
 . After that, a node ni with minimum energy consump-

tion is extracted in line 7. If the extracted node has the required amount of resources to 
accommodate the map task and its assignment will not violate the deadline constraint, 
the task mj is finally assigned to it at time t in line 9 ( Xijt = 1 ). Next, few data structures 
are updated in lines 9 and 10. If the processing time of task mj is greater than the cur-
rent value of round_timer , we update its value as pm

ij
 . Eventually, round_timer is set to 

the maximum processing time of any map task assigned to any machine in that round. 
When all unallocated map tasks are attempted to get scheduled in rth round, time vari-
able t is updated in line 14 and the algorithm enters into the next round by incrementing 
the (round counter) variable r in line 15.
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After the subroutine map_sched() finishes the scheduling process of map tasks, 
Algorithm 1 calls the reduce_sched() procedure which schedules reduce tasks also 
in multiple rounds. The procedure reduce_sched() is shown in Algorithm  3 with 
necessary modification as required. The detailed working of this procedure is similar 
to map_sched() procedure and we skip its discussion.

The time complexity of proposed heuristic algorithm can be calculated by com-
bining the complexities of both subroutines called in line 2 and 3 of Algorithm 1. 
Line 1 and “if” block of lines 4–8 have time complexities of O(1) each, and do 
not asymptotically contribute in running time. The complexity of map_sched() 
in worst case is as follows. The priority queue within the subroutine is imple-
mented as a binary heap, and hence line 5 (creating the priority queue), and line 
7 (extracting an element) takes O(|N|) and O(lg|N|) time, respectively. There are 
2 while loops: inner (lines 6–13), outer (lines 2–15), and a for loop from lines 
4–13. The inner while loop is executed |N| times at most so its total running time is 
O(|N|lg|N|) . The for loop is executed at most |N| times, hence its running time is 
O(|M|(running time of line 5 and inner while loop)) = O(|M|(|N| + |N|lg|N|)) =
O|M|(|N|lg|N|) . And finally, the outer while loop is also executed at most 
|M| times, hence its complexity, and eventually the map_sched() subrou-
tine’s complexity is O(|M|2(|N|lg|N|)) . Similarly, the time complexity of 
reduce_sched() is O(|R|2(|N|lg|N|)) , and as a result the main algorithm has 
O(|M|2(|N|lg|N|) + |R|2(|N|lg|N|)) running time in worst case.



6800 V. Pandey, P. Saini 

1 3

4.1.1  A numerical example of heuristic algorithm

We take an example to show the working of the proposed heuristic algorithm. In 
the example, an MR job, comprising 5 map tasks and 2 reduce tasks, is to be sched-
uled on two machines with characteristics shown in Table 3. The job is to be com-
pleted within a deadline D = 17s . The machine n1 has a total 10 MB of RAM and 3 
VCs denoted as ⟨10MB, 3VC⟩ , whereas machine n2 has 15 MB of RAM and 4 VCs, 
i.e., ⟨10MB, 3VC⟩ . The algorithm starts by initializing time variable t = 0s . It then 
simply calls map_sched() and reduce_sched() subroutines one after another. The 
working of subroutine map_sched() is shown in Fig. 2 where it assigns map tasks 
to machines in two rounds. The first column in Fig. 2 lists the map tasks attempted 
for allocation in that order during each round. The second column shows the prior-
ity queue of machines created on the basis of energy consumption of a particular 
selected map task in line 4. The third column shows the final assignment of map 
task to a machine (if any), and the last column shows the remaining resource capac-
ity of machines after the assignment.

At the start of first round of map_sched() when time t = 0s , the set M com-
prises all map tasks, i.e., all map tasks are unallocated. First, the map task 
m1 is picked from set M and a priority queue Q1 = {n1, n2} is created based 
on the energy consumption of map task m1 on both machines n1 and n2 . Next, 

Table 3  Characteristics of map 
and reduce tasks for heuristic 
algorithm example

Task Resource requirement Processing 
time (s)

Energy 
consump-
tion (J)

n1 n2 n1 n2

m1 ⟨5MB, 2VC⟩ 2 3 4 5
m2 ⟨5MB, 2VC⟩ 5 5 3 5
m3 ⟨5MB, 2VC⟩ 4 7 4 4
m4 ⟨5MB, 2VC⟩ 6 5 2 3
m5 ⟨5MB, 2VC⟩ 4 4 3 4
r1 ⟨2MB, 1VC⟩ 4 3 2 8
r2 ⟨2MB, 1VC⟩ 3 2 6 5

Fig. 2  Working of map_sched() subroutine
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machine n1 is extracted from Q1 for allocation and found to be able to accom-
modate task m1 . Moreover, its processing will exceed the deadline D = 17s 
once assignment to machine n1 at t = 0s . Hence, it is finally allocated to 
machine n1 ( X1,1,0 = 1 ). after this assignment remaining capacity of n1 and n2 
are ⟨5MB, 1VC⟩ and ⟨15MB, 4VC⟩ , respectively. All this working has been 
shown in first row of the table. Next, task m2 is picked for allocation and again 
a priority queue Q2 = {n1, n2} is created. However, the first node n1 of queue 
Q2 is unable to accommodate task m2 . Hence, second node n2 is extracted and 
found to have sufficient resources required by task m2 which is then sched-
uled on it ( X2,2,0 = 1 ). The remaining capacity of n1 and n2 are ⟨5MB, 1VC⟩ and 
⟨10MB, 2VC⟩ , respectively, after this assignment. Similarly, task m3 is scheduled 
on node n2(X2,3,0 = 1 ). Further, tasks m4 and m5 are picked for allocation but do 
not get scheduled on any node due to resource unavailability. After the end of 
first round, round_time1 is calculated as 7s and time t also is set as 7s.

In the starting of second round of map_sched() subroutine, the set M has two 
map tasks m4 and m5 which are picked one by one for allocation in that order. 
It is clear from Fig. 2 that task m4 and m5 are scheduled on node n1 ( X1,4,7 = 1 ) 
and n2 ( X2,5,7 = 1 ), respectively. After the end of second round, round_time2 
is calculated as 6s and time t is set as 7 + 6 = 13s . After the completion of 
map_sched() subroutine, reduce_sched() starts and completes within one round 
as shown in Fig.  3 which shows that reduce tasks r1 and r2 are schedules on 

Fig. 3  working of 
reduce_sched() subroutine

Fig. 4  An example schedule for 
deadline D = 17s generated by 
heuristic algorithm
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nodes n1 ( Y1,1,13 = 1 ) and n2 ( Y2,2,13 = 1 ), respectively. At the end of this round, 
round_time2 is calculated as 4s and time t is set as 13 + 4 = 17s . Figure 4 shows 
the generated schedule.

4.2  Constraint programming approach

The constraint programming (CP) technology is principally based on computer 
science fundamentals and takes its origin in graph theory (GT), artificial intelli-
gence and logic programming endeavors of the 1980s. The recent improvements in 
the development of a tunable and robust black-box search for constraint program-
ming engines have turned this into a powerful and easy-to-use optimization tech-
nology. A CP problem is usually represented as a constraint satisfaction problem 
(CSP) which is defined as a triple (X, D, C) where X = {x1, x2, ....xn} is a set of n 
variables, D = {D1,D2, ....Dn} is a set of n domains of respective variables, and 
C = {c1, c2, ....cm} is a set of m constraints defined over different variables.

The domain Di ∈ D of a variable xi is a set of all possible values that can be 
assigned to the variable. Every constraint cj ∈ C is represented as pair (Tj,Rj) where 
Tj is subset X and has k variables, and Rj is a k-ary relation on the corresponding 
subset of k domains. A solution to a CSP is a complete instantiation of the variables 
in X satisfying all the constraints in C. The instantiation of a variable refers to the 
assignment of a value from its domain, and it is considered complete if all variables 
are assigned a value only once.

The CP technique considers any formulated combinatorial problem as a graph 
search problem and extracts its power from the techniques of artificial intelligence, 
algorithms, graph theory, operations research, etc. The search space of a CP problem 
comprises all combinations of the values in the domains of the decision variables. 
The CP optimizer engine explores the search space to find a solution. One way to 
find a solution would be to explicitly try each combination of values until a solution 
is found. This approach is sometimes called the exhaustive search technique which 
is obviously time-consuming and inefficient even for a simple problem. However, 
problem-specific searching techniques and constraint propagation can dramatically 
speed-up the solution process [21].

The CP problem has the same conceptual elements in its definition as MP prob-
lems, e.g., both have a set of decision variables, one or more objective functions, 
and a set of constraints, however, there are some basic and important differences 
between them. For example, MP models support both discrete and continuous deci-
sion variables, whereas CP models have only discrete decision variables (integer or 
Boolean). Another important difference is the solution approach to both models. The 
MP optimizer relies on numerical linear algebra for finding the solutions while the 
CP optimizer uses logic programming and graph search mechanisms. The differ-
ences and similarities of both approaches are summarized in Table 4.

In the field of scheduling, constraint programming has proven very efficient. 
Smith et al. [36], Darbi-Dowman et al. [37], and Lustig and Puget [38] compare IP 
and CP approaches in various scheduling problems. These studies imply that IP tech-
niques seem to be better for problems in which LP relaxations provide strong bounds 
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for the objective function, whereas CP is better than IP techniques in sequencing, 
scheduling applications, and strict feasibility problems.

The CP model for any combinatorial optimization problem, in contrast to the IP 
model, is highly dependent on the CP package used to model the problem because of 
the differences in constructs available in various modeling languages. In this paper, 
the optimization programming language (OPL) framework bundled with CPLEX 
Studio v12.8 has been used as the modeling language to prepare the CP model. The 
details of this modeling language are beyond the scope of this paper, however, the 
structures that have been used to model the considered scheduling problem has been 
described next.

4.2.1  The optimization programming language

The OPL framework [39] has special constructs to model scheduling problems that 
often involve a set of activities (e.g., tasks) that need to be completed using a set of 
resources, e.g., machines, operators, tools, etc. In any OPL scheduling model, The 
tasks are represented by interval variables, which are defined by interval key-
word. The variable represents an interval of time during which a task is executed or 
any activity happens. It is characterized by an unknown start_time and an end_time, 
a known size (or duration). The position (i.e., start_time ) of an interval variable has 
to be fixed during the solution of the scheduling problem. The difference of its end_
time minus and start_time must be equal to its size.

An important additional feature of interval variables is the fact that they can be 
optional (declared by the optional keyword); that is, those variables may not be 
included in the feasible schedule and can be left unperformed. An OPL Boolean 
function presenceOf is used to represent the presence of an optional interval. If 
the (interval) variable is included in the generated schedule, the function presen-
ceOf returns the Boolean value 1, otherwise 0.

The alternative function creates an alternative constraint between interval 
variable i and the set of interval variables i_array and has the following syntax: 
alternative(interval i, interval i_array, int cardinal-
ity = 1). The default value of cardinality is always considered as 1 if it is not 
present. In such cases, only one of the intervals from i_array will be selected by the 

Table 4  Characteristics of 
mathematical and constraint 
programming

Feature CP MP

Modeling limitations Discrete problems Discrete as well 
as continuous 
problems

Theoretical grounds GT and algorithmic Algebra
Specialized constraints Yes No
Logical constraints Yes Yes
Optimality proof Yes Yes
Relaxation No Yes
GAP measure No Yes
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alternative constraint and the start_time and end_time of interval i will be same as 
ones of the selected interval.

The pulse function has the following syntax: pulse(interval i, int 
h) which returns an elementary cumulative function expression that is equal to a 
value h everywhere between the start_time and end_time of an interval variable 
i. The function is equal to zero outside of the interval. This function is used in 
our proposed formulation to express resource constraint.

Two more OPL functions endOf and endBeforeStart are also used in our 
CP formulation where endOf(interval i) function returns the end_time of 
the interval variable i if it is present. The function endBeforeStart main-
tains a minimum delay between two interval variables and has the following syn-
tax: endBeforeStart(interval predecessor, interval suc-
cessor, int minDelay = 0), where the default value for minDelay is 
zero.. If both interval variables predecessor and successor are present, the succes-
sor cannot start before endOf(predecessor) + minDelay. If the predecessor 
or successor is absent, then the constraint is automatically satisfied. The functions 
endOf and endBeforeStart are used in proposed model for deadline and 
temporal dependency constraints, respectively.

4.2.2  The proposed CP model

In this section, we present the proposed CP model for the DMRSYE prob-
lem. The model uses four different arrays of interval variables, namely Map, 
Red, Machine_Map, and Machine_Red. Among these, Map and Red are 
1D arrays of |M| OPL activities mapj(j = 1,… , |M|) , and |R| OPL activities 
redk(k = 1,… , |R|) , respectively. The OPL activity mapj ∈ ��� represents jth 
map tasks, whereas redk ∈ ��� represents and kth reduce tasks.

Further, Machine_Map (size |N| × |M| ) and Machine_
Red (size |N| × |R| ) are 2D arrays of optional inter-
val variables machine_mapij(i = 1,… , |N|;j = 1,… , |M|) and 
machine_redik(i = 1,… , |N|;k = 1,… , |R|) , respectively. The ith row of both 
Machine_Map and Machine_Red matrices represents the collection of map and 
reduce tasks, respectively, which are assigned to ith machine.

And when OPL Boolean function presenceOf is applied on these variables, 
the return values (1 or 0) signify the assignment of tasks on machines. Particu-
larly, if presenceOf(machine_mapij ) returns the value 1, it signifies that map 
task mj is assigned to machine ni and 0 otherwise. Similarly, return value 1 of 
presenceOf(machine_redik ) signifies that reduce task rk is assigned to machine 
ni and 0 otherwise.

Using the discussed OPL constructs, the proposed CP model is for the 
DMRSYE problem is as follows.
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subject to:

In the above CP model, the objective function minimizes the total energy consump-
tion. Constraints 8 and 9 collectively ensure that all map and reduce tasks are sched-
uled to only one machine once. Constraint 10 establishes the temporal dependency 
between map tasks and reduce tasks. Constraint 11 ensures that all tasks end before 
the user-specified deadline. Lastly, constraint 12 (pulse constraint) ensures that total 
resources consumed by all tasks scheduled on a machine at a particular time do not 
exceed its resource capacity.

min

|M|∑

j=1

|N|∑

i=1

em
ij
∗ presenceOf(machine_mapij)

+

|R|∑

k=1

|N|∑

i=1

er
ik
∗ presenceOf(machine_redik)

(8)
�����������(mapj, all(i ∈ {1,… , |N|})machine_mapij),

(j = 1,… , |M|)

(9)
�����������(redk, all(i ∈ {1,… , |N|})machine_redik),

(k = 1,… , |R|)

(10)��������������(mapj, redk), (j = 1,… , |M|; k = 1,… , |R|)

(11)�����(redk) ≤ D, (k = 1,… , |R|)

(12)

|M|∑

j=1

�����(machine_mapij,RR
m
jl
) +

|R|∑

k=1

�����(machine_redik,RR
r
kl
) ≤ RCil,

(i = 1,… , |N|;l = 1,… , |A|).

Fig. 5  An example CP schedule 
for deadline D = 17s
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If this CP model is used to solve the problem instance of Sect.  4.1.1 with the 
same characteristics as shown in Table 3 for a deadline D = 17s , the CP optimizer 
of CPLEX studio generates an optimal schedule as shown in Fig. 5 with objective 
value 24J. The value of each decision variable (in this case interval variable) are 
represented as a tuple (start_time, end_time, duration) . The optimizer outputs the 
following result: 

Map  [(11, 13, 2), (6, 11, 5), (0, 7, 7, ) (0, 6, 6), (0, 4, 4)]
Red  [(13, 17, 4), (13, 15, 2)]
Machine_Map  [[map1(11, 13, 2) , map2(6, 11, 5), ABSENT, map4(0, 6, 6) , 

ABSENT] [ABSENT, ABSENT,   map3(0, 7, 7) , ABSENT, 
map5(0, 4, 4)]]

Machine_Red  [[reduce1(13, 17, 4) , ABSENT] ABSENT, reduce2(13, 15, 2)]].

If the deadline parameter is set as D = 12s for the same problem instance, the CP 
optimizer still produces the optimal schedule with an objective value of 27J. How-
ever, the heuristic algorithm fails to produce even a feasible schedule for D = 12s . 
We notice that both approaches have a lower bound on the deadline parameter which 
they can meet. Moreover, the CP approach can satisfy tighter deadline constraints.

5  Experiments: workloads, cluster setup and profiling

We perform two sets of experiments to compare the proposed heuristic and default 
search algorithm of CP optimizer which solves the proposed CP model. From now 
onward, we will call this default search algorithm as CP-SA. In the first set of exper-
iments (called as performance analysis), we take 8 different MR jobs from HiBench 
and PUMA benchmark suite and compare heuristic and CP-SA techniques on the 
basis of following performance metrics:

– Total energy consumption (TEC) in joule (J): This metric is defined as the total 
energy consumed within the YARN cluster during the job execution while fol-
lowing the schedule generated by respective algorithm.

– Execution time (ET) or schedule generation time (SGT) in seconds (s): It is 
defined as the time taken by algorithms to generate the (static) schedule. It is 
simply the execution time of algorithms.

– Tightest satisfiable deadline ( DTS ) in seconds (s): It is defined as the lowest value 
of user-specified deadline which can be achieved by both approaches.

In the second set of experiments, we perform the sensitivity analysis of these per-
formance metrics on the workload size (total number of map and reduce tasks), and 
again on deadline, separately. For that purpose, we choose the WordCount bench-
mark job.

The selected MR jobs from HiBench [40] and PUMA [41] benchmark suite for the 
first set of experiments are listed in Table 5 along with its type and category. HiBench 
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is a big data benchmark suite that helps evaluate different big data frameworks in terms 
of speed, throughput, and system resource utilization. There are a total of 19 work-
loads in HiBench. The workloads are divided into 6 categories: micro, machine learn-
ing (ML), SQL, graph, web search, and streaming. PUMA is a newer benchmark suite 
comprising 13 workloads among which few are common to HiBench as well.

All experiments have been performed through simulations on a single machine 
using the estimated value of processing time ( pm

ij
∕pr

ik
 ) and energy consumption 

( em
ij
∕er

ik
 ) of tasks. This estimation is performed with the help of profiled data. As 

both approaches are static and non-distributed in nature, simulative experiments on 
a single machine are sufficient for a comparative study. The profiling of processing 
time and the energy consumption is done by executing a single benchmark job sev-
eral times on a real YARN cluster which is described next.

5.1  YARN cluster setup

A five node Hadoop YARN cluster has been set up to profile processing time and 
energy consumption of tasks. The cluster is composed of five nodes where one node 
acts as a master and the remaining four nodes as slaves. The master node has a 10 
core Intel Xeon W-2155 processor, 64 GB RAM, and 2TB hard disk. One of the 
slave nodes has the same configuration as the master node, two slave nodes have 
6 cores Intel Xeon E5645 processor, 8  GB RAM, and 1TB hard disk each, and 
lastly, one slave node has 2 cores Intel Core i5-7200U processor, 12 GB RAM and 
1TB hard disk. We use Hadoop 2.7.2 framework with default HDFS block size of 
128 MB, inbuilt FAIR scheduler, and file replication factor as 3. All nodes are con-
nected through a 1Gbps network switch. The cluster configuration is summarized in 
Table 6.

5.2  Profiling and estimation of energy consumption and processing time of tasks

During the profiling, we execute each selected benchmark MR job several times 
with random file sizes that generate a different number of map and reduce tasks each 

Table 5  Selected HiBench and 
PUMA workload

Workload Type Category

Self-Join IO bound PUMA
Adjacency-List Mix bound PUMA
WordCount CPU bound HiBench (Micro)
TeraSort IO bound HiBench (Micro)
Histogram-Movies IO bound PUMA
K-Means clustering Mix bound HiBench (ML)
PageRank CPU bound HiBench (Web search)
Inverted-Index IO bound PUMA
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time. At a particular run, if map task mj is scheduled on the machine ni , then its 
energy consumption em

ij
 is calculated using the following equation:

where Pcpu

i
 and Pmem

i
 are CPU and memory power consumption rate, respectively, of 

machine ni in watt. Pdisk
i

 and Pnic
i

 are disk power consumption per byte read/written 
and NIC power consumption per byte sent/received, respectively, of machine ni in 
joule. Moreover, pm

ij
 has usual meaning, i.e., processing time of map task mj on 

machine ni and can easily be noted down from the Hadoop system logs. Further-
more, The values Dm

ij
 and Nm

ij
 are total disk IO in bytes and data shuffled in bytes, 

respectively, for map task mj on machine ni . The energy consumption er
ik

 of reduce 
task rk is also evaluated using the similar equation if scheduled on machine ni.

We take the average energy consumption of all map tasks scheduled on machine ni 
during a particular run and denote it as ēm

i
 . Similarly, the values of ēr

i
 , p̄m

i
 , and p̄r

i
 are 

also calculated where the expressions ēr
i
 , p̄m

i
 , and p̄r

i
 represents average energy con-

sumption of all reduce tasks, average processing time of all map tasks, and average 
processing time of all reduce tasks scheduled on machine ni at a particular run, respec-
tively. As a single job is executed several times, we have multiple values of ēm

i
 , ēr

i
 , p̄m

i
 , 

and p̄r
i
 , each for a particular run.

During the actual performance evaluation on a single machine, the value required 
parameter is estimated as follows. The processing time and energy consumption of any 
map task at a particular machine ni are taken randomly between the minimum and max-
imum of all ēm

i
 and p̄m

i
 values, respectively. Similarly, processing time and energy con-

sumption of reduce tasks are taken between the minimum and maximum of all ēr
i
 and 

p̄r
i
 values, respectively. Further, the value of the user-specified deadline (D) has been 

set according to Eq. 13 and denoted as DS so that every time we get a feasible schedule.

where T
m

j
=

∑n

i=1
pm
ij

n
 and T

r

k
=

∑n

i=1
pr
ik

n
 are average processing time of any map 

task mj and reduce task rk.

em
ij
= P

cpu

i
× pm

ij
+ Pmem

i
× pm

ij
+ Pdisk

i
× Dm

ij
+ Pnic

i
× Nm

ij

(13)D = DS =

∑�M�
j=1

T
m

j
+
∑�R�

k=1
T
r

k

n
,

Table 6  Cluster configuration

Machine Processor #Physical cores RAM (GB) Disk (TB)

Master Intel Xeon W-2155 10 64 2
Slave-1 Intel Xeon W-2155 10 64 2
Slave-2 Intel Xeon E5645 6 8 1
Slave-3 Intel Xeon E5645 6 8 1
Slave-4 Intel Core i5-7200U 2 12 1
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6  Experiments: results and discussion

In this section, we discuss the results obtained from both sets of experiments. First 
of all, Sect. 6.1 discusses the results of the first set of experiments (i.e., performance 
analysis) where we compare both algorithms on the basis of three performance met-
rics for each selected benchmarks as explained in Sect. 5. After this, Sect. 6.2 dis-
cusses the results of sensitivity analysis experiments.

6.1  Performance analysis

The performance analysis experiment is repeated twice, first for small-scale work-
load denoted as (64M, 32R), comprising 64 map and 32 reduce tasks, and then for 
large-scale workload denoted as (256M, 256R) which has 256 map and reduce tasks 
each.

6.1.1  Small workloads

In small-scale experiments, besides heuristic and CP-SA algorithms, the results of 
CPLEX solver’s inbuilt IP-based branch-and-cut (B&C) technique are also included 
which optimally solves the initial IP formulation of the DMRSYE problem. We refer 
to the inbuilt B&C algorithm as OPT. The objective is here to compare our proposed 
heuristic and novel CP models with that of IP formulation.

Figure  6a shows the total energy consumption of heuristic, CP-SA, and OPT 
algorithms for small workloads. CP-SA and OPT always achieve optimal results as 
they are intended to do so. On the other hand, the heuristic algorithm consumes at 
most 12% and at least 6% with an average of 7% more energy than optimal solu-
tions. Figure 6b shows the execution time (ET) of all algorithms for each selected 
benchmarks. It is observed that the execution time of heuristic, CP-SA, and OPT 
algorithm is ≈ 0.04s , ≈ 0.6s , and ≈ 96.45s , respectively. Therefore, we conclude that 
CP-SA takes 7.14% more time than the heuristic algorithm but always produces an 
optimal schedule. when compared to the OPT algorithm, CP-SA takes far less time. 
Moreover, it can also be observed that individually, ET of the heuristic, CP-SA, and 
OPT algorithms are approximately the same for each benchmark job. It means, for 
a fixed number of tasks and machines (in this case, 96 tasks and 5 machines), the 
execution time of algorithms does not depend on energy consumption, processing 
time, and resource request variations of tasks among different benchmarks.

Both heuristic and CP-SA have a lower bound for any user-specified deadline to 
be met which we define as the tightest satisfiable deadline ( DTS ). Obviously, it is 
better to have a smaller lower bound, which means the algorithm can schedule a 
job under tighter deadline conditions. The heuristic, CP-SA, and OPT can be run 
several times in a binary search manner as in [9] in order to find the tightest dead-
line that each algorithm can meet. We perform experiments to evaluate the DTS for 
all three approaches under each selected benchmarks. The result in Fig. 6c shows 
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that CP-SA achieves tighter deadlines than heuristic and OPT algorithm for every 
benchmark. Particularly, it achieves 30% tighter deadlines than the heuristic, and 5% 
tighter deadlines than the OPT algorithm on average.

6.1.2  Large workloads

In large-scale experiments, OPT takes an enormous amount of time to solve the IP 
formulation. Even for some benchmarks, we could not get the result after several 
hours of an execution, hence we exclude it from our results.

Figure 7 shows the results for large-scale workloads. We observe that the opti-
mality gap in the case of total energy consumption increases between heuristic 
and CP-SA. Now, the heuristic algorithm consumes at most 25% and at least 15% 
with an average of 23% more energy than optimal solutions as shown in Fig.  7a. 
Execution times for large workloads are shown in Fig.  7b which clearly indicates 
that the heuristic approach takes ≈ 0.4s and CP-SA takes ≈ 1.14s . It means ET of 
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both algorithms increases as we increase the workload size. However, heuristic takes 
slightly less time than CS-PA at the cost of producing sub-optimal schedules. As 
far as the tightest satisfiable deadline DTS is concerned for both approaches, Fig. 7c 
shows that CP-SA achieves tighter deadlines for every benchmarks.

6.2  Sensitivity analysis

In this section, first we analyze the sensitivity of TEC, ET, and DTS metrics on work-
load size (total number of tasks) and then the sensitivity of TEC, ET on deadline 
under both approaches. When analyzing the sensitivity on workload size, we take 
workloads as shown in Table 7. Whereas, when the sensitivity analysis on user dead-
line is performed, the number of map and reduce tasks are fixed as (256M, 256R), 
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and the deadlines are varied from DS − 40 to DS + 60 where DS represent the satisfi-
able deadline calculated according to Eq. 13.

6.2.1  Sensitivity on workload size

Figure  8a and b shows the sensitivity of TEC and ET, respectively, on the total 
number of tasks. Particularly, Fig. 8a shows that energy consumption increases as 
the number of map and reduce tasks are increased. For example, the total energy 
consumption of Heuristic and CP-SA algorithms for the workload (128M, 128R) is 
22896 and 20319J, respectively, while the total energy consumption for the work-
load (256M, 128R) are 31358 and 52552J. It is to be noted that for all workloads, 
energy consumption in the heuristic approach is always greater than but very close 
to CP-SA. Figure 8b shows that execution time also increases as the number of map 
and reduce tasks are increased for both proposed approaches. Finally, Fig. 8c shows 
the sensitive analysis of DTS on the total number of tasks. It has been found that as 
we increase the number of total tasks, DTS for both approaches also increases. For 
example, at workload size of (128M, 128R), DTS for heuristic and CP-SA are 240 
and 200s, respectively, whereas at (256M, 128R) DTS are 280 and 230 s.

6.2.2  Sensitivity on deadlines

In modern data centers, the deadline parameter, before which the job is to be com-
pleted, is supplied by the user when he submits the job. To investigate the sensitivity 
of TEC and ET on different deadlines under both algorithms, two experiments were 
performed with the results shown in Fig. 9a and b. And particularly, as shown in 
Fig. 9a, the energy consumption of tasks in the heuristic algorithm does not depend 
on the deadline parameter and remains constant. On the other hand, CP-SA pro-
duces optimal schedule with large objective value at tighter deadlines and optimizes 
it more as the deadlines are relaxed. For example, when deadline is DS − 20 , the 
energy consumption is 34743J, whereas it is 33517J when deadline is set to DS . 
Further, the sensitivity of ET on deadlines is shown in Fig. 9b. It shows that ET of 
heuristic and CS-PA algorithms remain constant for all deadline parameters and do 
not depend on it.

Table 7  WordCount workloads 
for sensitivity analysis 
experiment

Workload #Total tasks #Map tasks #Reduce tasks

(64M, 32R) 64 32 96
(64M, 64R) 64 64 128
(128M, 64R) 128 64 192
(128M, 128R) 128 128 256
(256M, 128R) 256 128 384
(256M, 256R) 256 256 512
(512M, 256R) 512 256 768
(512M, 512R) 512 512 1024



6813

1 3

Constraint programming versus heuristic approach to MapReduce…

7  Conclusion

In the era of green computing, the reduction of energy consumption in modern big 
data processing frameworks like Hadoop YARN is a challenging problem. This can 
be addressed through efficient scheduling of map and reduce tasks. The YARN has 
a different resource management technique than slot-based Hadoop and has intro-
duced the concept of containers, which consequently influences the MR scheduling 
model. In this paper, we consider the deadline-constraint MR scheduling problem in 
Hadoop YARN to minimize energy consumption.

Two different solution approaches: a heuristic algorithm and a novel CP model 
to be solved by IBM CPLEX studio, have been proposed to solve the considered 
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problem. Both solution approaches have been compared on the basis of various per-
formance parameters including TEC, ET, and the tightest satisfiable deadline. We 
take a wide variety of MR jobs from HiBench and PUMA benchmark suite in our 
experiments. Although the CP approach takes some more time than the heuristic 
technique to produce a schedule, it always gives optimal results. Hence, in situations 
where we can tolerate some delay of a few seconds, the CP technique turns out to 
be a better option. Besides this, the CP solution produces optimal schedules under 
tighter deadline constraints. In the future, we aim to design some custom search pro-
cedures in place of the default search of the CPLEX CP engine which can further 
reduce the schedule generation time.
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