
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:6788–6816
https://doi.org/10.1007/s11227-020-03516-3

1 3

Constraint programming versus heuristic approach
to MapReduce scheduling problem in Hadoop YARN
for energy minimization

Vaibhav Pandey1  · Poonam Saini1

Accepted: 16 November 2020 / Published online: 4 January 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we consider a deadline-constrained MR scheduling problem of mini-
mizing energy consumption in Hadoop’s generic resource manager known as yet
another resource negotiator. The problem has been modeled as an integer program-
ming (IP) problem using the time-indexed decision variables. We propose two solu-
tion approaches to the problem. First, we give a heuristic algorithm that generates
sub-optimal schedules in polynomial time. Second, we propose a novel constraint
programming (CP) model (as an alternative to the IP model) which always generates
optimal schedules when solved by a CP solver. The CP technique is a relatively new
and an alternative approach to IP-based branch-and-cut algorithm to exactly solve
NP-hard optimization problems. We performed several experiments to compare both
proposed solution approaches over real data traces of a wide variety of MR jobs from
the HiBench and PUMA benchmark suite. It is noticed that for large-scale big data
jobs, the heuristic algorithm provides sub-optimal results in a very small amount
of time. On the other hand, the CP approach not only gives optimal results but also
takes a small amount of time when compared to IP-based approaches. Therefore, it
can be used in non-time-critical situations for getting an optimal schedule. Besides
this, a few experiments were also performed to compare the tightest satisfiable dead-
line under both approaches with the conclusion that the CP technique is able to pro-
duce optimal schedules in tighter deadline constraints than the heuristic approach.
Moreover, we investigate the sensitivity of total energy consumption of tasks and the
execution time of both approaches separately on the number of tasks and deadlines.

Keywords  Constraint Programming · Energy efficient · MapReduce Scheduling ·
Integer Linear Programming · Hadoop YARN

 *	 Vaibhav Pandey
	 pandeyvaibhav51@gmail.com

	 Poonam Saini
	 poonamsaini@pec.edu.in

1	 Department of Computer Science and Engineering, Punjab Engineering College (Deemed to be
University), Chandigarh 160012, India

http://orcid.org/0000-0002-6235-5793
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03516-3&domain=pdf

6789

1 3

Constraint programming versus heuristic approach to MapReduce…

1  Introduction

Hadoop is an open-source implementation of the MapReduce (MR) computing
paradigm [1, 2]. The performance of Hadoop is greatly influenced by its scheduler
which has to cater to various quality of service (QoS) requirements of two stake-
holders, namely Hadoop user and administrator. Based on the scheduling entity, the
Hadoop scheduler can be classified as a job-level or a task-level scheduler [3, 4]. At
the job-level, the scheduler has many jobs at hand to decide which job is going to
be executed at what time. And in case of offline scheduling (at job-level), it simply
arranges the jobs in a particular order [5–7]. Whereas at task-level, various map and
reduce tasks of the job(s) are scheduled/assigned on different cluster machines to
achieve some objective [8–10]. Mathematically, the problem of MR scheduling (at
either level) for optimizing one or more QoS parameters simultaneously is strongly
NP-hard (Non-deterministic Polynomial time-hard) under different system models
and constraints [5, 10–12]. In practice, two variants of the Hadoop framework are
available: slot-based and container-based [13]. The container-based Hadoop uses
a generic resource manager known as Yet Another Resource Negotiator (YARN)
which overcomes the limitations of slot-based Hadoop in terms of scalability, reli-
ability, and resource utilization by introducing the concept of containers [13].

In the past few years, MapReduce (MR) scheduling has been a challenging area
of research to minimize energy consumption. Mashayekhy et al. in [8] and Yousefi
et al. in [9] have considered an energy-efficient MR scheduling problem at the task
level to minimize the energy consumption of a single MR job. The authors consid-
ered a slot-based Hadoop environment where the various map and reduce tasks have
to be scheduled on suitable energy-efficient computing slots so that overall energy
consumption is minimized and the job may complete its execution before a user-
specified deadline. In this paper, we consider the same problem, however, exclu-
sively for the YARN environment and call it as the problem of deadline-constrained
MR scheduling in YARN for energy minimization (DMRSYE). The problem has
been formally formulated as an integer program in Sect. 3. Next, we discuss how
scheduling in a YARN environment is different from slot-based Hadoop. This dif-
ference makes the considered problem very challenging and also servers as our
motivation.

1.1 � MR scheduling in slot‑based versus container‑based Hadoop

Scheduling under both variants of Hadoop (whether at job level or task level) dif-
fers in the way various computing resources of a node are allocated to map and
reduce tasks. This happens due to different mechanisms of slots and containers, that
further influences the (mathematical) scheduling model of both versions. In slot-
based Hadoop, resources are allocated to tasks at the level of a fixed-size partition
of nodes, called as slot. At each node, a static and pre-defined number of slots are

6790	 V. Pandey, P. Saini

1 3

created separately for map and reduce tasks,1 which are specifically called as map
and reduce slots, respectively. During the execution, map and reduce tasks are to be
scheduled on their respective computing slots with a restriction that a reduce task
may start only after all map task has completed its execution. In this scenario, slots
act as independent parallel machines.

Figure 1a shows the scheduling process in a slot-based Hadoop cluster compris-
ing two machines n1 and n2 where two map tasks m1 and m2 , and a single reduce
task r1 are being scheduled. Two map slots (represented by squares) and two reduce
slots (represented by triangles) are created per machine. And any slot (either map
or reduce) represents one-fourth portion of computing resources in a node. Task m1
and r1 are scheduled on one of the respective slots in machine n1 , whereas task m2 is
scheduled on one of the map slots in machine n2 . In this particular instance of the
Hadoop cluster, a maximum of two map tasks (equals to the number of map slots)
can be scheduled on any machines parallelly at any time. Given this, the slot-based
MR scheduling problem simply reduces to a traditional parallel machine scheduling
problem (PMSP). The slot-based MR scheduling problem has been modeled as a
PMSP using mathematical programming (MP) techniques in [5, 12, 14–17] for dif-
ferent objectives.2 Particularly in [5, 17], the problem has been modeled as flexible
flow shop machine scheduling.

The map and reduce tasks belonging to different jobs require a diverse amount
of resources which cannot be fulfilled exactly by the slot-based mechanism. How-
ever, YARN facilitates this by allowing the tasks to place their request for required
resources in the form of a vector �������⃗REQ = ⟨a1, a2,… , al,… , a�A�⟩ , where al represents
the amount of lth resource type requested by any particular task and |A| represents

m1 m2
M

a
ch

in
e
−
1
(n

1
)

M
a
ch

in
e
−
2
(n

2
)

r1

(a) Scheduling in slot-based
Hadoop

r1
2 MB
1 VC

m2
5 MB
2 VC

M
a
ch

in
e
−
1
(n

1
)

M
a
ch

in
e
−
2
(n

2
)

m1 m2r1

Capacity:
32 MB, 8 VC

Capacity:
64 MB, 10 VC

Available:
25 MB, 5 VC

Available:
59 MB, 8 VC

m1
5 MB
2 VC

(b) Scheduling in container-based Hadoop

Fig. 1   MR scheduling in Hadoop

1  Equals to the number of computing cores in the node.
2  Linear programming (LP), integer programming (IP), quadratic programming (QP), quadratic con-
straint programming (QCP), etc. are collectively known as mathematical programming (MP).

6791

1 3

Constraint programming versus heuristic approach to MapReduce…

total resource types. Currently, YARN supports only two resource types: memory
and CPU cores, and hence, |A| = 2 . If the amount of requested resources can be
fulfilled by any cluster node, then the exact amount of resources are allocated to the
task in the form of a container which can be thought of as a logical abstraction of all
resources available at the machine. And, due to this container concept, scheduling in
YARN needs special attention.

Figure 1b shows the resource allocation and scheduling of two map tasks m1 and
m2 , and a reduce task r1 in a YARN cluster consisting of two machines n1 and n2 .
The machine n1 has the resource capacity of 32 MB memory and 8 virtual cores
(VC), whereas n2 has 64 MB memory and 10 VCs. The tasks m1 and m2 have
resource request vector as ⟨5MB, 2VC⟩ each and task r1 has resource request vector
as ⟨2MB, 1VC⟩ . The tasks m1 and r1 are allocated to machine n1 where two contain-
ers of exact resource demand are created for both tasks. Similarly, task r1 is executed
within a container of exact capacity at machine n2 . After task allocation, available
resources at both nodes are shown in the diagram itself. At any particular time,
simultaneously maximum four map tasks on machine n1 , and maximum five map
tasks on n2 can be scheduled. In other words, the total amount of resources con-
sumed by all containers must not exceed the total capacity of a node.

Due to this kind of additional resource constraint, the task scheduling in YARN
like environment is similar to a resource-constrained parallel machine scheduling
problem (RCPMSP) [18, 19]. However, in the case of YARN, each machine has its
own set of non-shared local resources, whereas, in standard RCPMSP problems,
machines have a set of shared global resources. The problem investigated in [18] is
a type of RCPMSP problem and proved to be an NP-hard problem. Therefore, the
DMRSYE problem which is similar to [18] is also an NP-hard problem in a very
strong sense. To solve any computationally intensive NP-hard problems, there are
three main approaches:

–	 Heuristics: It solves the problems usually in polynomial time with a sub-optimal
result without any guarantee on the sub-optimality.

–	 Exact algorithms: It solves an NP-hard problem optimally, however, takes expo-
nential time, e.g., efficient graph search techniques, branch-and-bound (B&B),
branch-and-cut (B&C), etc.

–	 Approximation algorithms: It provides a sub-optimal result with an assurance
on the quality of the sub-optimal result.

1.2 � Solution approaches to DMRSYE problem

In this paper, we have adopted the heuristic and exact solution approaches to the
DMRSYE problem and compared them on the basis of various performance param-
eters. As expected, the proposed heuristic method provides sub-optimal results in
polynomial time without any guarantee on the sub-optimality. The algorithm works
in multiple rounds and performs a greedy search to find the best node for a task to
be scheduled upon for minimizing the energy consumption. And, to the best of our

6792	 V. Pandey, P. Saini

1 3

knowledge, no such static scheduling algorithm has been developed for the consid-
ered problem.

On the other hand for an exact solution, One of the options is to model it as an
integer program and use either IP-based branch-and-cut/branch-and-bound (B&C/
B&B) algorithms,3 or cutting plane methods. All of them can optimally solve any
NP-hard IP problem. Although it is possible to find optimal solutions using such
methods, it may require an enormous amount of computation time with the increas-
ing problem size. We used the in-built IP-based B&C algorithm of IBM ILOG
CPLEX optimization studio v12.8 (CPLEX studio for short) [20, 21] to solve a
small instance of considered problem and get an optimal schedule after several min-
utes. For large problem instances, we could not get the results even after several
hours, which is absolutely not desirable for deadline critical applications. Hence, our
main objective of this paper apart from designing a heuristic algorithm is to provide
an efficient methodology that generates exact solutions for the DMRSYE problem
and may compete with heuristic schemes in terms of solution time.

In recent years, researchers have been using the constraint programming (CP)
technique as an alternative to IP-based solution approaches for NP-hard optimization
problems. And, it has been observed that CP techniques are suitable for sequencing
and scheduling applications besides highly constrained and strict feasibility prob-
lems [18]. The CP optimizer embedded with CPLEX studio uses the graph search
algorithms to find the optimal solutions. The constraint propagation and problem-
specific searching techniques may speed-up the solution process [21]. We briefly
introduce CP technique in Sect. 4.2 and its applications in scheduling problem in
Sect. 2. Although the CP technique has been applied in a different kind of schedul-
ing problem, it has never been used for MR scheduling in YARN. We propose a
novel CP model for the DMRSYE problem to be solved by default search algorithm
of CP optimizer and compare it with our heuristic method for solution quality and
computational time (i.e., schedule generation time).

1.3 � Organization of the paper

The rest of the paper is organized as follows. Section 2 presents an overview of
related work. Section 3 formulates the DMRSYE problem mathematically as an
integer linear programming problem. Section 4 presents a heuristic algorithm and
a novel CP-based scheduling model for the considered problem. Section 5 presents
the experimental setup, selected workloads, and profiling techniques. Section 6
discusses the results of various experiments performed to compare both proposed
approaches. Lastly, Sect. 7 concludes the paper.

3  IP modeling is a common way to represent machine scheduling problems in general.

6793

1 3

Constraint programming versus heuristic approach to MapReduce…

2 � Related work

The closest works to ours are [8] and [9]. However, both of them assumed a slot-
based scheduling environment and adopted heuristic approaches to solve the con-
sidered problem sub-optimally in a quick time. Particularly, Mashayekhy et al.
in [8] formulated the problem of energy-aware scheduling of a single MapRe-
duce job within a deadline as an IP problem. The authors proposed two heuris-
tic methods called energy-aware MapReduce scheduling algorithms (EMRSAs)
which take the energy efficiency differences of different machines into account.
The algorithms use a metric called energy consumption rate (ECR) which speci-
fies the rate of energy consumption of map and reduce slots and induces an order
relation among the cluster machines. To further improve the performance of
EMRSA, Yousefi et al. [9] proposed a better task-based greedy heuristic to estab-
lish the mapping between slots and tasks. Their heuristic minimizes the energy
consumption of an MR job without significant loss in performance while satisfy-
ing user-specific service level agreements (SLAs).

Yigitbasi et al. [22] proposed an energy-efficient algorithm to schedule hetero-
geneous workloads to the heterogeneous cluster comprising high and low power
machines. This provides an opportunity to save energy by intelligently placing
jobs on its corresponding energy-efficient machine. The authors have not math-
ematically modeled the problem and did not consider any deadline constraint like
[8, 9]. Bampis et al. [23] proposed an energy-efficient scheduling algorithm to
minimize the weighted completion time of a set of n MapReduce job with a con-
straint of the energy budget. The authors formulated the problem as an integer
program assuming that the order of job execution is not fixed. Thereafter, they
derived a polynomial-time constant-factor approximation algorithm using linear
programming (LP) relaxation to solve the formulated problem. The authors also
developed a convex programming formulation and combined that with list sched-
uling algorithms.

Shao et al. [24] formulated the energy-efficient MR scheduling problem for
YARN architecture as a m-dimensional knapsack problem (MKP) resulting in
an integer program. Besides energy minimization, it also considered the fairness
metric and proposed a heuristic approach to produce a sub-optimal solution. Cai
et al. [25] proposed a YARN scheduler to minimize energy consumption with a
deadline as a constraint, like [8]. The proposed scheduler works at both, job level
and task level. At the job level, the scheduler is highly inspired by the automatic
resource inference and allocation (ARIA) scheduler [26] and competes for jobs
within its deadline. At the task level, the authors optimized energy consumption
through the user-space dynamic voltage and frequency scaling (DVFS) governor.

Now, we will discuss some pointers where the CP technique has been used
to solve RCPMSP problems or its variants. Edis et al. in [18, 27] and [28] pre-
sented a study comparing the application of IP and CP techniques in the par-
allel machine scheduling problem with additional resources for minimizing the
makespan. Besides this, Ham and Andy [29] proposed a CP technique with a
problem specific variable ordering heuristic for a dual resource-constrained

6794	 V. Pandey, P. Saini

1 3

scheduling problem in the field of semiconductor manufacturing. Gökgür et al.
[30] developed three CP models for parallel machine scheduling with tool load-
ing constraints and showed that their proposed models are better than MP and
tabu search techniques proposed in [31]. Arbaoui and Yalaoui [32] proposed a CP
model for unrelated parallel machines with additional resources and compared it
with two MP models proposed in [33].

3 � Problem formulation

In this section, we mathematically formulate the DMRSYE problem as an integer
programming (IP) problem. Some of the references given in [19, 28] have proposed
different IP or mixed-integer programming (MIP) formulations for a variety of
RCPMSP problems. We take motivation from those IP/MIP models and incorporate
appropriate changes in our model. The following system model assumptions have
been taken regarding the set of tasks, machines, resources, energy consumption, pro-
cessing time, etc.:

–	 We consider a MR job comprising two task sets, M = {m1,… ,m|M|} and
R = {r1,… , r|R|} , which have |M| number of map tasks and |R| number of
reduce tasks, respectively. The job is to be processed by a YARN cluster com-
prising n heterogeneous machines (or nodes in Hadoop terminology) represented
by a set N = {n1,… , n|N|}.

–	 The energy consumption and processing time of a map task mj ∈ M on machine
ni ∈ N is em

ij
 and pm

ij
 , respectively. Similarly, the energy consumption and pro-

cessing time of a reduce task rk ∈ R on machine ni ∈ N is er
ik

 and pr
ik

 , respec-
tively.

–	 Each machine has |A| types of resources represented by set A = {a1,… , a|A|} .
The total amount of resource type al ∈ A available at machine ni ∈ N is indi-
cated by capil . Moreover, the amount of resource type al ∈ A requested by any
map tasks mj is reqm

jl
 , while by any reduce task rk is reqr

kl
.

The problem here is to schedule all MR tasks over the cluster machines in such a
way so that the total energy consumption of machines is minimized. Further, it is
also required that all tasks complete their execution within a user-specified deadline
D while maintaining the temporal dependency between map and reduce tasks and
fulfilling the resource constraint, i.e., at any particular time, no more tasks can be
scheduled at any machine beyond its total capacity.

To formulate the problem as an integer program, we use two types of time-
indexed (TI) binary decision variables Xijt and Yikt which are based on discretization
of time horizon in which time t ( t = 0, 1,… , T  ) is divided into discrete time inter-
vals. The assignment of value 1 to a decision variable Xijt ( Yijt ) signals that map task
mj (reduce task rk ) is assigned to machine ni at time t. The time-indexed formulation
has been previously introduced in [34, 35] for a single machine scheduling problem.
The formulation DMRSYE-IP is given as:

6795

1 3

Constraint programming versus heuristic approach to MapReduce…

subject to

Indices used in the formulation have meanings as shown in Table 1.
In this DMRSYE-IP formulation, the objective is to minimize total energy con-

sumption. Constraints 1 and 2 are assignment constraints which ensure that each map

min

|N|∑

i=1

|M|∑

j=1

T−pm
ij∑

t=0

em
ij
Xijt +

|N|∑

i=1

|R|∑

k=1

T−pr
ik∑

t=0

er
ik
Yikt

(1)
|N|∑

i=1

T−pm
ij∑

t=0

Xijt = 1, (∀j = 1,… , |M|)

(2)
|N|∑

i=1

T−pr
ik∑

t=0

Yikt = 1, (∀k = 1,… , |R|)

(3)
|N|∑

i=1

T−pr
ik∑

t=0

(t + pr
ik
)Yikt ≤ D, (∀k = 1,… , |R|)

(4)

|M|∑

j=1

t−1∑

s=max(0,t−pm
ij
)

(reqm
jl
)Xijs +

|R|∑

k=1

t−1∑

s=max(0,t−pr
ik
)

(reqr
kl
)Yiks ≤ capil,

(∀i = 1,… , |N|; ∀l = 1,… , |A|;∀t = 0, 1,… , T − 1)

(5)

|N|∑

i=1

T−pm
ij∑

s=max(0,t−pm
ij
)

Xijs +

|N|∑

i=1

t−1∑

s=0

Yiks ≤ 1,

(∀j = 1,… , |M|; ∀k = 1,… , |R|; ∀t = 0, 1,… , T − 1)

(6)Xijt ∈ {0, 1} (∀i = 1,… , |N|; ∀j = 1,… , |M|; ∀t = 0, 1,… , T − 1)

(7)Yikt ∈ {0, 1} (∀i = 1,… , |N|; ∀k = 1,… , |R|; ∀t = 0, 1,… , T − 1).

Table 1   Indexes used in the
DMRSYE-IP formulation

Index Meaning

i Index of cluster machines (i = 1,… , |N|)
j Index of map task to be scheduled (j = 1,… , |M|)
k Index of reduce task to be scheduled (k = 1,… , |R|)
l Index of resource type (l = 1,… , |A|)
t Index of time (t = 0, 1,… ,T)

6796	 V. Pandey, P. Saini

1 3

and reduce task to be assigned to one machine only once. Constraint 3 is a deadline
constraint that requires all map tasks must finish their computation before the user-
specified deadline D. Constraint 4 is a resource constraint that ensures that at any
instance of time, the total amount of computing resources allocated to map and reduce
tasks in the form of containers, should not exceed the total capacity of any machine.
The constraint 5 establishes the temporal dependency between map and reduce tasks,
i.e., all map tasks must finish their execution before the start of any reduce task. The
last constraints 6 and 7 ensure that decision variables Xijt and Yikt may take values either
0 or 1.

4 � Proposed solution approaches

We use the in-built IP-based B&C algorithm CPLEX studio [20, 21] to the considered
problem to get the optimal schedule. However, for large problem instances, we could
not get the results even after several hours. Therefore, we choose to design a heuristic
algorithm that can generate a sub-optimal schedule in a quick time. Moreover, we also
propose a novel CP model as an alternative to the IP approach to produce an optimal
schedule in a reasonable amount of time.

We explain the working of both approaches with a simple problem instance com-
prising 5 map and 2 reduce tasks to be scheduled on two machines. Afterward, we pro-
pose a novel CP model as an alternative to the IP model to be exactly solved by the CP
optimizer of CPLEX studio.

4.1 � The heuristic solution

Our heuristic technique employs a greedy approach to schedule map and reduce tasks
on suitable energy-efficient machines. The main algorithm is shown in Algorithm 1
where it simply calls two subroutines, namely map_sched() and reduce_sched() which
handle the scheduling decisions of map and reduce tasks, respectively. After comple-
tion of these subroutines, if some map or reduce tasks are still unallocated then the
main algorithm reports no feasible schedule is possible and returns, otherwise it pro-
duces the schedule in the form of decision variables X and Y.

6797

1 3

Constraint programming versus heuristic approach to MapReduce…

Algorithm 1: Main Algorithm
Input: M,R,N ,A, Em, Pm, Er, P r, REQm, REQr,

CAP,RA
Output: X,Y

1 t = 0
2 map sched();
3 reduce sched();
4 if M �= φ‖R �= φ then
5 Print ”No feasible schedule”
6 return
7 else
8 Output: X,Y

The main algorithm requires some input parameters to fix the scheduling deci-
sions. Among these parameters, M , R , N  , and A represent the set of map tasks,
reduce tasks, machines, and resources, respectively. The parameters Em and Pm are
two dimensional matrices of size |N| × |M| each and are collection of all energy
consumption values em

ij
(i = 1,… , |N|;j = 1,… , |M|) and all processing time val-

ues pm
ij
(i = 1,… , |N|;j = 1,… , |M|) of all map tasks, respectively. Particularly,

Em[i][j] = em
ij
 and Pm[i][j] = pm

ij
 . Similarly, Er and Pr are two dimensional matrices

of size |N| × |R| each and are collection of all values of
er
ik
(i = 1,… , |N|;k = 1,… , |R|) and pr

ik
(i = 1,… , |N|;k = 1,… , |R|) , respec-

tively. Particularly, Er[i][k] = er
ik

 and Pr[i][k] = pr
ik

 . Moreover, the parameters REQm
and REQr are 2D matrices of size |M| × |A| and |R| × |A| , respectively, where
REQm is collection of all resource request values
reqm

jl
(j = 1,… , |M|;l = 1,… , |A|) of map tasks and REQr is collection of all

resource request values reqr
kl
(k = 1,… , |R|;l = 1,… , |A|) of reduce tasks. Further-

more, the parameters CAP is 2D matrix of size |N| × |A| which stores the total
capacity of each resource type at each machine, and particularly CAP[i][l] = capil .
Lastly, parameter RA is 2D matrix of size |N| × |A| which stores the total amount of
particular resource type currently allocated to various tasks at any machine, and ini-
tially at time t = 0 , RA[i][l] = 0, (∀i = 1,… , |N|;∀l = 1,… , |A|) . Few vectors also
have been used in subroutines map_sched() and reduce_sched() which are men-
tioned in Table 2 with corresponding meanings.

Table 2   The meaning of vectors used in subroutines map_sched() and reduce_sched()

Vector Meaning

�������⃗REQm
j

jth row of matrix REQm which represents the resource request vector of map task mj

�������⃗REQr
k

kth row of matrix REQr which represents the resource request vector of reduce task rk
�������⃗CAPi

ith row of matrix CAP which represents the total amount of each resource type at machine ni
����⃗RAi

ith row of matrix RA which represents the total amount of each resource type currently allocated
at machine ni

6798	 V. Pandey, P. Saini

1 3

The subroutine map_sched() is shown in Algorithm 2 that takes decision regarding
which map task is to be assigned to which machine and at what time instance. This
assignment takes place in multiple rounds until all map tasks are assigned. During any
rth round (lines 2–15), first of all, the variable round_timer , which represents the total
duration of rth round, is initialized to zero. Afterward, each unallocated map task is
picked one at a time in line 4, and for its assignment, a node is greedily searched in
while loop of lines 6–13 on the basis of minimum energy consumption. Particularly, for
a map task mj picked in line 4, a priority queue Qj of all machines is created on the
basis of energy consumption em

ij
 . After that, a node ni with minimum energy consump-

tion is extracted in line 7. If the extracted node has the required amount of resources to
accommodate the map task and its assignment will not violate the deadline constraint,
the task mj is finally assigned to it at time t in line 9 ( Xijt = 1 ). Next, few data structures
are updated in lines 9 and 10. If the processing time of task mj is greater than the cur-
rent value of round_timer , we update its value as pm

ij
 . Eventually, round_timer is set to

the maximum processing time of any map task assigned to any machine in that round.
When all unallocated map tasks are attempted to get scheduled in rth round, time vari-
able t is updated in line 14 and the algorithm enters into the next round by incrementing
the (round counter) variable r in line 15.

6799

1 3

Constraint programming versus heuristic approach to MapReduce…

After the subroutine map_sched() finishes the scheduling process of map tasks,
Algorithm 1 calls the reduce_sched() procedure which schedules reduce tasks also
in multiple rounds. The procedure reduce_sched() is shown in Algorithm 3 with
necessary modification as required. The detailed working of this procedure is similar
to map_sched() procedure and we skip its discussion.

The time complexity of proposed heuristic algorithm can be calculated by com-
bining the complexities of both subroutines called in line 2 and 3 of Algorithm 1.
Line 1 and “if” block of lines 4–8 have time complexities of O(1) each, and do
not asymptotically contribute in running time. The complexity of map_sched()
in worst case is as follows. The priority queue within the subroutine is imple-
mented as a binary heap, and hence line 5 (creating the priority queue), and line
7 (extracting an element) takes O(|N|) and O(lg|N|) time, respectively. There are
2 while loops: inner (lines 6–13), outer (lines 2–15), and a for loop from lines
4–13. The inner while loop is executed |N| times at most so its total running time is
O(|N|lg|N|) . The for loop is executed at most |N| times, hence its running time is
O(|M|(running time of line 5 and inner while loop)) = O(|M|(|N| + |N|lg|N|)) =
O|M|(|N|lg|N|) . And finally, the outer while loop is also executed at most
|M| times, hence its complexity, and eventually the map_sched() subrou-
tine’s complexity is O(|M|2(|N|lg|N|)) . Similarly, the time complexity of
reduce_sched() is O(|R|2(|N|lg|N|)) , and as a result the main algorithm has
O(|M|2(|N|lg|N|) + |R|2(|N|lg|N|)) running time in worst case.

6800	 V. Pandey, P. Saini

1 3

4.1.1 � A numerical example of heuristic algorithm

We take an example to show the working of the proposed heuristic algorithm. In
the example, an MR job, comprising 5 map tasks and 2 reduce tasks, is to be sched-
uled on two machines with characteristics shown in Table 3. The job is to be com-
pleted within a deadline D = 17s . The machine n1 has a total 10 MB of RAM and 3
VCs denoted as ⟨10MB, 3VC⟩ , whereas machine n2 has 15 MB of RAM and 4 VCs,
i.e., ⟨10MB, 3VC⟩ . The algorithm starts by initializing time variable t = 0s . It then
simply calls map_sched() and reduce_sched() subroutines one after another. The
working of subroutine map_sched() is shown in Fig. 2 where it assigns map tasks
to machines in two rounds. The first column in Fig. 2 lists the map tasks attempted
for allocation in that order during each round. The second column shows the prior-
ity queue of machines created on the basis of energy consumption of a particular
selected map task in line 4. The third column shows the final assignment of map
task to a machine (if any), and the last column shows the remaining resource capac-
ity of machines after the assignment.

At the start of first round of map_sched() when time t = 0s , the set M com-
prises all map tasks, i.e., all map tasks are unallocated. First, the map task
m1 is picked from set M and a priority queue Q1 = {n1, n2} is created based
on the energy consumption of map task m1 on both machines n1 and n2 . Next,

Table 3   Characteristics of map
and reduce tasks for heuristic
algorithm example

Task Resource requirement Processing
time (s)

Energy
consump-
tion (J)

n1 n2 n1 n2

m1 ⟨5MB, 2VC⟩ 2 3 4 5
m2 ⟨5MB, 2VC⟩ 5 5 3 5
m3 ⟨5MB, 2VC⟩ 4 7 4 4
m4 ⟨5MB, 2VC⟩ 6 5 2 3
m5 ⟨5MB, 2VC⟩ 4 4 3 4
r1 ⟨2MB, 1VC⟩ 4 3 2 8
r2 ⟨2MB, 1VC⟩ 3 2 6 5

Fig. 2   Working of map_sched() subroutine

6801

1 3

Constraint programming versus heuristic approach to MapReduce…

machine n1 is extracted from Q1 for allocation and found to be able to accom-
modate task m1 . Moreover, its processing will exceed the deadline D = 17s
once assignment to machine n1 at t = 0s . Hence, it is finally allocated to
machine n1 ( X1,1,0 = 1 ). after this assignment remaining capacity of n1 and n2
are ⟨5MB, 1VC⟩ and ⟨15MB, 4VC⟩ , respectively. All this working has been
shown in first row of the table. Next, task m2 is picked for allocation and again
a priority queue Q2 = {n1, n2} is created. However, the first node n1 of queue
Q2 is unable to accommodate task m2 . Hence, second node n2 is extracted and
found to have sufficient resources required by task m2 which is then sched-
uled on it ( X2,2,0 = 1 ). The remaining capacity of n1 and n2 are ⟨5MB, 1VC⟩ and
⟨10MB, 2VC⟩ , respectively, after this assignment. Similarly, task m3 is scheduled
on node n2(X2,3,0 = 1 ). Further, tasks m4 and m5 are picked for allocation but do
not get scheduled on any node due to resource unavailability. After the end of
first round, round_time1 is calculated as 7s and time t also is set as 7s.

In the starting of second round of map_sched() subroutine, the set M has two
map tasks m4 and m5 which are picked one by one for allocation in that order.
It is clear from Fig. 2 that task m4 and m5 are scheduled on node n1 ( X1,4,7 = 1 )
and n2 ( X2,5,7 = 1 ), respectively. After the end of second round, round_time2
is calculated as 6s and time t is set as 7 + 6 = 13s . After the completion of
map_sched() subroutine, reduce_sched() starts and completes within one round
as shown in Fig. 3 which shows that reduce tasks r1 and r2 are schedules on

Fig. 3   working of
reduce_sched() subroutine

Fig. 4   An example schedule for
deadline D = 17s generated by
heuristic algorithm

6802	 V. Pandey, P. Saini

1 3

nodes n1 ( Y1,1,13 = 1 ) and n2 ( Y2,2,13 = 1 ), respectively. At the end of this round,
round_time2 is calculated as 4s and time t is set as 13 + 4 = 17s . Figure 4 shows
the generated schedule.

4.2 � Constraint programming approach

The constraint programming (CP) technology is principally based on computer
science fundamentals and takes its origin in graph theory (GT), artificial intelli-
gence and logic programming endeavors of the 1980s. The recent improvements in
the development of a tunable and robust black-box search for constraint program-
ming engines have turned this into a powerful and easy-to-use optimization tech-
nology. A CP problem is usually represented as a constraint satisfaction problem
(CSP) which is defined as a triple (X, D, C) where X = {x1, x2,xn} is a set of n
variables, D = {D1,D2,Dn} is a set of n domains of respective variables, and
C = {c1, c2,cm} is a set of m constraints defined over different variables.

The domain Di ∈ D of a variable xi is a set of all possible values that can be
assigned to the variable. Every constraint cj ∈ C is represented as pair (Tj,Rj) where
Tj is subset X and has k variables, and Rj is a k-ary relation on the corresponding
subset of k domains. A solution to a CSP is a complete instantiation of the variables
in X satisfying all the constraints in C. The instantiation of a variable refers to the
assignment of a value from its domain, and it is considered complete if all variables
are assigned a value only once.

The CP technique considers any formulated combinatorial problem as a graph
search problem and extracts its power from the techniques of artificial intelligence,
algorithms, graph theory, operations research, etc. The search space of a CP problem
comprises all combinations of the values in the domains of the decision variables.
The CP optimizer engine explores the search space to find a solution. One way to
find a solution would be to explicitly try each combination of values until a solution
is found. This approach is sometimes called the exhaustive search technique which
is obviously time-consuming and inefficient even for a simple problem. However,
problem-specific searching techniques and constraint propagation can dramatically
speed-up the solution process [21].

The CP problem has the same conceptual elements in its definition as MP prob-
lems, e.g., both have a set of decision variables, one or more objective functions,
and a set of constraints, however, there are some basic and important differences
between them. For example, MP models support both discrete and continuous deci-
sion variables, whereas CP models have only discrete decision variables (integer or
Boolean). Another important difference is the solution approach to both models. The
MP optimizer relies on numerical linear algebra for finding the solutions while the
CP optimizer uses logic programming and graph search mechanisms. The differ-
ences and similarities of both approaches are summarized in Table 4.

In the field of scheduling, constraint programming has proven very efficient.
Smith et al. [36], Darbi-Dowman et al. [37], and Lustig and Puget [38] compare IP
and CP approaches in various scheduling problems. These studies imply that IP tech-
niques seem to be better for problems in which LP relaxations provide strong bounds

6803

1 3

Constraint programming versus heuristic approach to MapReduce…

for the objective function, whereas CP is better than IP techniques in sequencing,
scheduling applications, and strict feasibility problems.

The CP model for any combinatorial optimization problem, in contrast to the IP
model, is highly dependent on the CP package used to model the problem because of
the differences in constructs available in various modeling languages. In this paper,
the optimization programming language (OPL) framework bundled with CPLEX
Studio v12.8 has been used as the modeling language to prepare the CP model. The
details of this modeling language are beyond the scope of this paper, however, the
structures that have been used to model the considered scheduling problem has been
described next.

4.2.1 � The optimization programming language

The OPL framework [39] has special constructs to model scheduling problems that
often involve a set of activities (e.g., tasks) that need to be completed using a set of
resources, e.g., machines, operators, tools, etc. In any OPL scheduling model, The
tasks are represented by interval variables, which are defined by interval key-
word. The variable represents an interval of time during which a task is executed or
any activity happens. It is characterized by an unknown start_time and an end_time,
a known size (or duration). The position (i.e., start_time ) of an interval variable has
to be fixed during the solution of the scheduling problem. The difference of its end_
time minus and start_time must be equal to its size.

An important additional feature of interval variables is the fact that they can be
optional (declared by the optional keyword); that is, those variables may not be
included in the feasible schedule and can be left unperformed. An OPL Boolean
function presenceOf is used to represent the presence of an optional interval. If
the (interval) variable is included in the generated schedule, the function presen-
ceOf returns the Boolean value 1, otherwise 0.

The alternative function creates an alternative constraint between interval
variable i and the set of interval variables i_array and has the following syntax:
alternative(interval i, interval i_array, int cardinal-
ity = 1). The default value of cardinality is always considered as 1 if it is not
present. In such cases, only one of the intervals from i_array will be selected by the

Table 4   Characteristics of
mathematical and constraint
programming

Feature CP MP

Modeling limitations Discrete problems Discrete as well
as continuous
problems

Theoretical grounds GT and algorithmic Algebra
Specialized constraints Yes No
Logical constraints Yes Yes
Optimality proof Yes Yes
Relaxation No Yes
GAP measure No Yes

6804	 V. Pandey, P. Saini

1 3

alternative constraint and the start_time and end_time of interval i will be same as
ones of the selected interval.

The pulse function has the following syntax: pulse(interval i, int
h) which returns an elementary cumulative function expression that is equal to a
value h everywhere between the start_time and end_time of an interval variable
i. The function is equal to zero outside of the interval. This function is used in
our proposed formulation to express resource constraint.

Two more OPL functions endOf and endBeforeStart are also used in our
CP formulation where endOf(interval i) function returns the end_time of
the interval variable i if it is present. The function endBeforeStart main-
tains a minimum delay between two interval variables and has the following syn-
tax: endBeforeStart(interval predecessor, interval suc-
cessor, int minDelay = 0), where the default value for minDelay is
zero.. If both interval variables predecessor and successor are present, the succes-
sor cannot start before endOf(predecessor) + minDelay. If the predecessor
or successor is absent, then the constraint is automatically satisfied. The functions
endOf and endBeforeStart are used in proposed model for deadline and
temporal dependency constraints, respectively.

4.2.2 � The proposed CP model

In this section, we present the proposed CP model for the DMRSYE prob-
lem. The model uses four different arrays of interval variables, namely Map,
Red, Machine_Map, and Machine_Red. Among these, Map and Red are
1D arrays of |M| OPL activities mapj(j = 1,… , |M|) , and |R| OPL activities
redk(k = 1,… , |R|) , respectively. The OPL activity mapj ∈ ��� represents jth
map tasks, whereas redk ∈ ��� represents and kth reduce tasks.

Further, Machine_Map (size |N| × |M| ) and Machine_
Red (size |N| × |R| ) are 2D arrays of optional inter-
val variables machine_mapij(i = 1,… , |N|;j = 1,… , |M|) and
machine_redik(i = 1,… , |N|;k = 1,… , |R|) , respectively. The ith row of both
Machine_Map and Machine_Red matrices represents the collection of map and
reduce tasks, respectively, which are assigned to ith machine.

And when OPL Boolean function presenceOf is applied on these variables,
the return values (1 or 0) signify the assignment of tasks on machines. Particu-
larly, if presenceOf(machine_mapij ) returns the value 1, it signifies that map
task mj is assigned to machine ni and 0 otherwise. Similarly, return value 1 of
presenceOf(machine_redik ) signifies that reduce task rk is assigned to machine
ni and 0 otherwise.

Using the discussed OPL constructs, the proposed CP model is for the
DMRSYE problem is as follows.

6805

1 3

Constraint programming versus heuristic approach to MapReduce…

subject to:

In the above CP model, the objective function minimizes the total energy consump-
tion. Constraints 8 and 9 collectively ensure that all map and reduce tasks are sched-
uled to only one machine once. Constraint 10 establishes the temporal dependency
between map tasks and reduce tasks. Constraint 11 ensures that all tasks end before
the user-specified deadline. Lastly, constraint 12 (pulse constraint) ensures that total
resources consumed by all tasks scheduled on a machine at a particular time do not
exceed its resource capacity.

min

|M|∑

j=1

|N|∑

i=1

em
ij
∗ presenceOf(machine_mapij)

+

|R|∑

k=1

|N|∑

i=1

er
ik
∗ presenceOf(machine_redik)

(8)
�����������(mapj, all(i ∈ {1,… , |N|})machine_mapij),

(j = 1,… , |M|)

(9)
�����������(redk, all(i ∈ {1,… , |N|})machine_redik),

(k = 1,… , |R|)

(10)��������������(mapj, redk), (j = 1,… , |M|; k = 1,… , |R|)

(11)�����(redk) ≤ D, (k = 1,… , |R|)

(12)

|M|∑

j=1

�����(machine_mapij,RR
m
jl
) +

|R|∑

k=1

�����(machine_redik,RR
r
kl
) ≤ RCil,

(i = 1,… , |N|;l = 1,… , |A|).

Fig. 5   An example CP schedule
for deadline D = 17s

6806	 V. Pandey, P. Saini

1 3

If this CP model is used to solve the problem instance of Sect. 4.1.1 with the
same characteristics as shown in Table 3 for a deadline D = 17s , the CP optimizer
of CPLEX studio generates an optimal schedule as shown in Fig. 5 with objective
value 24J. The value of each decision variable (in this case interval variable) are
represented as a tuple (start_time, end_time, duration) . The optimizer outputs the
following result:

Map	� [(11, 13, 2), (6, 11, 5), (0, 7, 7,) (0, 6, 6), (0, 4, 4)]
Red	� [(13, 17, 4), (13, 15, 2)]
Machine_Map	� [[map1(11, 13, 2) , map2(6, 11, 5), ABSENT, map4(0, 6, 6) ,

ABSENT] [ABSENT, ABSENT, map3(0, 7, 7) , ABSENT,
map5(0, 4, 4)]]

Machine_Red	� [[reduce1(13, 17, 4) , ABSENT] ABSENT, reduce2(13, 15, 2)]].

If the deadline parameter is set as D = 12s for the same problem instance, the CP
optimizer still produces the optimal schedule with an objective value of 27J. How-
ever, the heuristic algorithm fails to produce even a feasible schedule for D = 12s .
We notice that both approaches have a lower bound on the deadline parameter which
they can meet. Moreover, the CP approach can satisfy tighter deadline constraints.

5 � Experiments: workloads, cluster setup and profiling

We perform two sets of experiments to compare the proposed heuristic and default
search algorithm of CP optimizer which solves the proposed CP model. From now
onward, we will call this default search algorithm as CP-SA. In the first set of exper-
iments (called as performance analysis), we take 8 different MR jobs from HiBench
and PUMA benchmark suite and compare heuristic and CP-SA techniques on the
basis of following performance metrics:

–	 Total energy consumption (TEC) in joule (J): This metric is defined as the total
energy consumed within the YARN cluster during the job execution while fol-
lowing the schedule generated by respective algorithm.

–	 Execution time (ET) or schedule generation time (SGT) in seconds (s): It is
defined as the time taken by algorithms to generate the (static) schedule. It is
simply the execution time of algorithms.

–	 Tightest satisfiable deadline ( DTS ) in seconds (s): It is defined as the lowest value
of user-specified deadline which can be achieved by both approaches.

In the second set of experiments, we perform the sensitivity analysis of these per-
formance metrics on the workload size (total number of map and reduce tasks), and
again on deadline, separately. For that purpose, we choose the WordCount bench-
mark job.

The selected MR jobs from HiBench [40] and PUMA [41] benchmark suite for the
first set of experiments are listed in Table 5 along with its type and category. HiBench

6807

1 3

Constraint programming versus heuristic approach to MapReduce…

is a big data benchmark suite that helps evaluate different big data frameworks in terms
of speed, throughput, and system resource utilization. There are a total of 19 work-
loads in HiBench. The workloads are divided into 6 categories: micro, machine learn-
ing (ML), SQL, graph, web search, and streaming. PUMA is a newer benchmark suite
comprising 13 workloads among which few are common to HiBench as well.

All experiments have been performed through simulations on a single machine
using the estimated value of processing time ( pm

ij
∕pr

ik
 ) and energy consumption

( em
ij
∕er

ik
 ) of tasks. This estimation is performed with the help of profiled data. As

both approaches are static and non-distributed in nature, simulative experiments on
a single machine are sufficient for a comparative study. The profiling of processing
time and the energy consumption is done by executing a single benchmark job sev-
eral times on a real YARN cluster which is described next.

5.1 � YARN cluster setup

A five node Hadoop YARN cluster has been set up to profile processing time and
energy consumption of tasks. The cluster is composed of five nodes where one node
acts as a master and the remaining four nodes as slaves. The master node has a 10
core Intel Xeon W-2155 processor, 64 GB RAM, and 2TB hard disk. One of the
slave nodes has the same configuration as the master node, two slave nodes have
6 cores Intel Xeon E5645 processor, 8 GB RAM, and 1TB hard disk each, and
lastly, one slave node has 2 cores Intel Core i5-7200U processor, 12 GB RAM and
1TB hard disk. We use Hadoop 2.7.2 framework with default HDFS block size of
128 MB, inbuilt FAIR scheduler, and file replication factor as 3. All nodes are con-
nected through a 1Gbps network switch. The cluster configuration is summarized in
Table 6.

5.2 � Profiling and estimation of energy consumption and processing time of tasks

During the profiling, we execute each selected benchmark MR job several times
with random file sizes that generate a different number of map and reduce tasks each

Table 5   Selected HiBench and
PUMA workload

Workload Type Category

Self-Join IO bound PUMA
Adjacency-List Mix bound PUMA
WordCount CPU bound HiBench (Micro)
TeraSort IO bound HiBench (Micro)
Histogram-Movies IO bound PUMA
K-Means clustering Mix bound HiBench (ML)
PageRank CPU bound HiBench (Web search)
Inverted-Index IO bound PUMA

6808	 V. Pandey, P. Saini

1 3

time. At a particular run, if map task mj is scheduled on the machine ni , then its
energy consumption em

ij
 is calculated using the following equation:

where Pcpu

i
 and Pmem

i
 are CPU and memory power consumption rate, respectively, of

machine ni in watt. Pdisk
i

 and Pnic
i

 are disk power consumption per byte read/written
and NIC power consumption per byte sent/received, respectively, of machine ni in
joule. Moreover, pm

ij
 has usual meaning, i.e., processing time of map task mj on

machine ni and can easily be noted down from the Hadoop system logs. Further-
more, The values Dm

ij
 and Nm

ij
 are total disk IO in bytes and data shuffled in bytes,

respectively, for map task mj on machine ni . The energy consumption er
ik

 of reduce
task rk is also evaluated using the similar equation if scheduled on machine ni.

We take the average energy consumption of all map tasks scheduled on machine ni
during a particular run and denote it as ēm

i
 . Similarly, the values of ēr

i
 , p̄m

i
 , and p̄r

i
 are

also calculated where the expressions ēr
i
 , p̄m

i
 , and p̄r

i
 represents average energy con-

sumption of all reduce tasks, average processing time of all map tasks, and average
processing time of all reduce tasks scheduled on machine ni at a particular run, respec-
tively. As a single job is executed several times, we have multiple values of ēm

i
 , ēr

i
 , p̄m

i
 ,

and p̄r
i
 , each for a particular run.

During the actual performance evaluation on a single machine, the value required
parameter is estimated as follows. The processing time and energy consumption of any
map task at a particular machine ni are taken randomly between the minimum and max-
imum of all ēm

i
 and p̄m

i
 values, respectively. Similarly, processing time and energy con-

sumption of reduce tasks are taken between the minimum and maximum of all ēr
i
 and

p̄r
i
 values, respectively. Further, the value of the user-specified deadline (D) has been

set according to Eq. 13 and denoted as DS so that every time we get a feasible schedule.

where T
m

j
=

∑n

i=1
pm
ij

n
 and T

r

k
=

∑n

i=1
pr
ik

n
 are average processing time of any map

task mj and reduce task rk.

em
ij
= P

cpu

i
× pm

ij
+ Pmem

i
× pm

ij
+ Pdisk

i
× Dm

ij
+ Pnic

i
× Nm

ij

(13)D = DS =

∑�M�
j=1

T
m

j
+
∑�R�

k=1
T
r

k

n
,

Table 6   Cluster configuration

Machine Processor #Physical cores RAM (GB) Disk (TB)

Master Intel Xeon W-2155 10 64 2
Slave-1 Intel Xeon W-2155 10 64 2
Slave-2 Intel Xeon E5645 6 8 1
Slave-3 Intel Xeon E5645 6 8 1
Slave-4 Intel Core i5-7200U 2 12 1

6809

1 3

Constraint programming versus heuristic approach to MapReduce…

6 � Experiments: results and discussion

In this section, we discuss the results obtained from both sets of experiments. First
of all, Sect. 6.1 discusses the results of the first set of experiments (i.e., performance
analysis) where we compare both algorithms on the basis of three performance met-
rics for each selected benchmarks as explained in Sect. 5. After this, Sect. 6.2 dis-
cusses the results of sensitivity analysis experiments.

6.1 � Performance analysis

The performance analysis experiment is repeated twice, first for small-scale work-
load denoted as (64M, 32R), comprising 64 map and 32 reduce tasks, and then for
large-scale workload denoted as (256M, 256R) which has 256 map and reduce tasks
each.

6.1.1 � Small workloads

In small-scale experiments, besides heuristic and CP-SA algorithms, the results of
CPLEX solver’s inbuilt IP-based branch-and-cut (B&C) technique are also included
which optimally solves the initial IP formulation of the DMRSYE problem. We refer
to the inbuilt B&C algorithm as OPT. The objective is here to compare our proposed
heuristic and novel CP models with that of IP formulation.

Figure 6a shows the total energy consumption of heuristic, CP-SA, and OPT
algorithms for small workloads. CP-SA and OPT always achieve optimal results as
they are intended to do so. On the other hand, the heuristic algorithm consumes at
most 12% and at least 6% with an average of 7% more energy than optimal solu-
tions. Figure 6b shows the execution time (ET) of all algorithms for each selected
benchmarks. It is observed that the execution time of heuristic, CP-SA, and OPT
algorithm is ≈ 0.04s , ≈ 0.6s , and ≈ 96.45s , respectively. Therefore, we conclude that
CP-SA takes 7.14% more time than the heuristic algorithm but always produces an
optimal schedule. when compared to the OPT algorithm, CP-SA takes far less time.
Moreover, it can also be observed that individually, ET of the heuristic, CP-SA, and
OPT algorithms are approximately the same for each benchmark job. It means, for
a fixed number of tasks and machines (in this case, 96 tasks and 5 machines), the
execution time of algorithms does not depend on energy consumption, processing
time, and resource request variations of tasks among different benchmarks.

Both heuristic and CP-SA have a lower bound for any user-specified deadline to
be met which we define as the tightest satisfiable deadline ( DTS ). Obviously, it is
better to have a smaller lower bound, which means the algorithm can schedule a
job under tighter deadline conditions. The heuristic, CP-SA, and OPT can be run
several times in a binary search manner as in [9] in order to find the tightest dead-
line that each algorithm can meet. We perform experiments to evaluate the DTS for
all three approaches under each selected benchmarks. The result in Fig. 6c shows

6810	 V. Pandey, P. Saini

1 3

that CP-SA achieves tighter deadlines than heuristic and OPT algorithm for every
benchmark. Particularly, it achieves 30% tighter deadlines than the heuristic, and 5%
tighter deadlines than the OPT algorithm on average.

6.1.2 � Large workloads

In large-scale experiments, OPT takes an enormous amount of time to solve the IP
formulation. Even for some benchmarks, we could not get the result after several
hours of an execution, hence we exclude it from our results.

Figure 7 shows the results for large-scale workloads. We observe that the opti-
mality gap in the case of total energy consumption increases between heuristic
and CP-SA. Now, the heuristic algorithm consumes at most 25% and at least 15%
with an average of 23% more energy than optimal solutions as shown in Fig. 7a.
Execution times for large workloads are shown in Fig. 7b which clearly indicates
that the heuristic approach takes ≈ 0.4s and CP-SA takes ≈ 1.14s . It means ET of

5,000

6,000

7,000

8,000

T
ot
al

en
er
gy

co
ns
um

pt
io
n
(J
) Heuristic CP-SA OPT

(a) Energy consumption

0.001

0.01

0.1

1

10

100

E
xe
cu

ti
on

ti
m
e
(s
)

Heuristic CP-SA OPT

(b) Execution time

Se
lf-
Jo
in

Ad
jac
en
cy

W
or
dC
ou
nt

Te
ra
So
rt

Hi
sto
gr
am

K-
M
ea
ns

Pa
ge
Ra
nk

In
t-I
nd
ex

0

10

20

30

40

50

60

70

Workload

Se
lf-
Jo
in

Ad
jac
en
cy

W
or
dC
ou
nt

Te
ra
So
rt

Hi
sto
gr
am

K-
M
ea
ns

Pa
ge
Ra
nk

In
t-I
nd
ex

Workload

Se
lf-
Jo
in

Ad
jac
en
cy

W
or
dC
ou
nt

Te
ra
So
rt

Hi
sto
gr
am

K-
M
ea
ns

Pa
ge
Ra
nk

In
t-I
nd
ex

Workload

T
ig
ht
es
t
sa
ti
sfi
ab

le
de

ad
lin

e
(s
) EMRSAY CP-SA OPT

(c) Tightest satisfiable deadline

Fig. 6   Performance on small workloads

6811

1 3

Constraint programming versus heuristic approach to MapReduce…

both algorithms increases as we increase the workload size. However, heuristic takes
slightly less time than CS-PA at the cost of producing sub-optimal schedules. As
far as the tightest satisfiable deadline DTS is concerned for both approaches, Fig. 7c
shows that CP-SA achieves tighter deadlines for every benchmarks.

6.2 � Sensitivity analysis

In this section, first we analyze the sensitivity of TEC, ET, and DTS metrics on work-
load size (total number of tasks) and then the sensitivity of TEC, ET on deadline
under both approaches. When analyzing the sensitivity on workload size, we take
workloads as shown in Table 7. Whereas, when the sensitivity analysis on user dead-
line is performed, the number of map and reduce tasks are fixed as (256M, 256R),

Se
lf-
Jo
in

Ad
jac
en
cy

W
or
dC
ou
nt

Te
ra
So
rt

Hi
sto
gr
am

K-
M
ea
ns

Pa
ge
Ra
nk

In
t-I
nd
ex

2

3

4

·104

Wokload

T
ot
al

en
er
gy

co
ns
um

pt
io
n
(J
)

Heuristic CP-SA

(a) Energy consumption

Se
lf-
Jo
in

Ad
jac
en
cy

W
or
dC
ou
nt

Te
ra
So
rt

Hi
sto
gr
am

K-
M
ea
ns

Pa
ge
Ra
nk

In
t-I
nd
ex

0.001

0.01

0.1

1

10

Workload
E
xe
cu

ti
on

ti
m
e
(s
)

Heuristic CP-SA

(b) Execution time

Se
lf-
Jo
in

Ad
jac
en
cy

W
or
dC
ou
nt

Te
ra
So
rt

Hi
sto
gr
am

K-
M
ea
ns

Pa
ge
Ra
nk

In
t-I
nd
ex

0

50

100

150

200

250

Workload

T
ig
ht
es
t
sa
ti
sfi
ab

le
de

ad
lin

e
(s
)

Heuristic CP-SA

(c) Tightest satisfiable deadline

Fig. 7   Performance on large workloads

6812	 V. Pandey, P. Saini

1 3

and the deadlines are varied from DS − 40 to DS + 60 where DS represent the satisfi-
able deadline calculated according to Eq. 13.

6.2.1 � Sensitivity on workload size

Figure 8a and b shows the sensitivity of TEC and ET, respectively, on the total
number of tasks. Particularly, Fig. 8a shows that energy consumption increases as
the number of map and reduce tasks are increased. For example, the total energy
consumption of Heuristic and CP-SA algorithms for the workload (128M, 128R) is
22896 and 20319J, respectively, while the total energy consumption for the work-
load (256M, 128R) are 31358 and 52552J. It is to be noted that for all workloads,
energy consumption in the heuristic approach is always greater than but very close
to CP-SA. Figure 8b shows that execution time also increases as the number of map
and reduce tasks are increased for both proposed approaches. Finally, Fig. 8c shows
the sensitive analysis of DTS on the total number of tasks. It has been found that as
we increase the number of total tasks, DTS for both approaches also increases. For
example, at workload size of (128M, 128R), DTS for heuristic and CP-SA are 240
and 200s, respectively, whereas at (256M, 128R) DTS are 280 and 230 s.

6.2.2 � Sensitivity on deadlines

In modern data centers, the deadline parameter, before which the job is to be com-
pleted, is supplied by the user when he submits the job. To investigate the sensitivity
of TEC and ET on different deadlines under both algorithms, two experiments were
performed with the results shown in Fig. 9a and b. And particularly, as shown in
Fig. 9a, the energy consumption of tasks in the heuristic algorithm does not depend
on the deadline parameter and remains constant. On the other hand, CP-SA pro-
duces optimal schedule with large objective value at tighter deadlines and optimizes
it more as the deadlines are relaxed. For example, when deadline is DS − 20 , the
energy consumption is 34743J, whereas it is 33517J when deadline is set to DS .
Further, the sensitivity of ET on deadlines is shown in Fig. 9b. It shows that ET of
heuristic and CS-PA algorithms remain constant for all deadline parameters and do
not depend on it.

Table 7   WordCount workloads
for sensitivity analysis
experiment

Workload #Total tasks #Map tasks #Reduce tasks

(64M, 32R) 64 32 96
(64M, 64R) 64 64 128
(128M, 64R) 128 64 192
(128M, 128R) 128 128 256
(256M, 128R) 256 128 384
(256M, 256R) 256 256 512
(512M, 256R) 512 256 768
(512M, 512R) 512 512 1024

6813

1 3

Constraint programming versus heuristic approach to MapReduce…

7 � Conclusion

In the era of green computing, the reduction of energy consumption in modern big
data processing frameworks like Hadoop YARN is a challenging problem. This can
be addressed through efficient scheduling of map and reduce tasks. The YARN has
a different resource management technique than slot-based Hadoop and has intro-
duced the concept of containers, which consequently influences the MR scheduling
model. In this paper, we consider the deadline-constraint MR scheduling problem in
Hadoop YARN to minimize energy consumption.

Two different solution approaches: a heuristic algorithm and a novel CP model
to be solved by IBM CPLEX studio, have been proposed to solve the considered

(6
4M

, 3
2R
)

(6
4M

, 6
4R
)

(1
28
M
, 6
4R
)

(1
28
M
, 1
28
R)

(2
56
M
, 1
28
R)

(2
56
M
, 2
56
R)

(5
12
M
, 2
56
R)

(5
12
M
, 5
12
R)

1

2

3

4

5

6

7

·104

Wokload

T
ot
al

en
er
gy

co
ns
um

pt
io
n
(J
)

Heuristic CP-SA

(a) Energy consumption sensitivity

(6
4M

, 3
2R
)

(6
4M

, 6
4R
)

(1
28
M
, 6
4R
)

(1
28
M
, 1
28
R)

(2
56
M
, 1
28
R)

(2
56
M
, 2
56
R)

(5
12
M
, 2
56
R)

(5
12
M
, 5
12
R)

0.001

0.01

0.1

1

10

Workload
E
xe
cu

ti
on

ti
m
e
(s
)

Heuristic CP-SA

(b) Execution time sensitivity

(6
4M

, 3
2R
)

(6
4M

, 6
4R
)

(1
28
M
, 6
4R
)

(1
28
M
, 1
28
R)

(2
56
M
, 1
28
R)

(2
56
M
, 2
56
R)

(5
12
M
, 2
56
R)

(5
12
M
, 5
12
R)

0

50

100

150

200

250

300

350

Workload

T
ig
ht
es
t
sa
ti
sfi
ab

le
de

ad
lin

e
(D

T
S
) Heuristic CP-SA

(c) Tightest satisfiable deadline sensitivity

Fig. 8   Sensitivity analysis on workload size

6814	 V. Pandey, P. Saini

1 3

problem. Both solution approaches have been compared on the basis of various per-
formance parameters including TEC, ET, and the tightest satisfiable deadline. We
take a wide variety of MR jobs from HiBench and PUMA benchmark suite in our
experiments. Although the CP approach takes some more time than the heuristic
technique to produce a schedule, it always gives optimal results. Hence, in situations
where we can tolerate some delay of a few seconds, the CP technique turns out to
be a better option. Besides this, the CP solution produces optimal schedules under
tighter deadline constraints. In the future, we aim to design some custom search pro-
cedures in place of the default search of the CPLEX CP engine which can further
reduce the schedule generation time.

Acknowledgements  This work is financially supported by Ministry of Electronics and Information Tech-
nology, Government of India, under the Visvesvaraya PhD scheme, award no. VISPHD-MEITY-2689.

References

	 1.	 Apache hadoop. https​://hadoo​p.apach​e.org/. Accessed: 2019-06-10
	 2.	 White T (2009) Hadoop: The definitive guide. O’Reilly Media, Inc., USA
	 3.	 Tiwari N, Sarkar S, Bellur U, Indrawan M (2015) Classification framework of mapreduce schedul-

ing algorithms. ACM Comput Surv (CSUR) 47(3):49
	 4.	 Pandey V, Saini P (2018) How heterogeneity affects the design of hadoop mapreduce schedulers: A

state-of-the-art survey and challenges. Big Data 6(2):72–95
	 5.	 Moseley B, Dasgupta A, Kumar R, Sarlós T (2011) On scheduling in map-reduce and flow-shops.

In: Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 289–298. ACM

	 6.	 Verma A, Cherkasova L, Campbell RH (2013) Orchestrating an ensemble of MapReduce jobs for
minimizing their makespan. IEEE Trans Dependable Secure Comput 10(5):314–327

	 7.	 Tian W, Li G, Yang W, Buyya R (2016) Hscheduler: an optimal approach to minimize the makespan
of multiple mapreduce jobs. J Supercomput 72(6):2376–2393

D S
−
40

D S
−
20 D S

D S
+
20

D S
+
40

D S
+
60

2

3

4

·104

Wokload

T
ot
al

en
er
gy

co
ns
um

pt
io
n
(J
)

Heuristic CP-SA

(a) Energy consumption sensitivity

D S
−
40

D S
−
20 D S

D S
+
20

D S
+
40

D S
+
60

0.01

0.1

1

10

Workload
E
xe
cu
ti
on

ti
m
e
(s
)

Heuristic CP-SA

(b) Execution time sensitivity

Fig. 9   Sensitivity analysis on deadline

https://hadoop.apache.org/

6815

1 3

Constraint programming versus heuristic approach to MapReduce…

	 8.	 Mashayekhy L, Nejad MM, Grosu D, Zhang Q, Shi W (2015) Energy-aware scheduling of mapre-
duce jobs for big data applications. IEEE Trans Parallel Distrib Syst 26(10):2720–2733

	 9.	 Yousefi MHN, Goudarzi M (2018) A task-based greedy scheduling algorithm for minimizing energy
of mapreduce jobs. J Grid Comput 16(4):535–551

	10.	 Fischer MJ, Su X, Yin Y (2010) Assigning tasks for efficiency in hadoop. In: Proceedings of the
Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp.
30–39. ACM

	11.	 Aggarwal V, Xu M, Lan T, Subramaniam S (2017) On the optimality of scheduling dependent
mapreduce tasks on heterogeneous machines. arXiv preprint arXiv:1711.09964

	12.	 Zhu Y, Jiang Y, Wu W, Ding L, Teredesai A, Li D, Lee W (2014) Minimizing makespan and total
completion time in mapreduce-like systems. In: IEEE INFOCOM 2014-IEEE Conference on Com-
puter Communications, pp. 2166–2174. IEEE

	13.	 Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H,
Seth S, et al (2013) Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of the 4th
Annual Symposium on Cloud Computing, p. 5. ACM

	14.	 Fotakis D, Milis I, Papadigenopoulos O, Vassalos V, Zois G (2016) Scheduling mapreduce jobs
under multi-round precedences. In: European Conference on Parallel Processing, pp. 209–222.
Springer

	15.	 Chen F, Kodialam M, Lakshman T (2012) Joint scheduling of processing and shuffle phases in
mapreduce systems. In: 2012 Proceedings IEEE INFOCOM, pp. 1143–1151. IEEE

	16.	 Zheng Y, Shroff NB, Sinha P (2013) A new analytical technique for designing provably efficient
mapreduce schedulers. In: 2013 Proceedings IEEE INFOCOM, pp. 1600–1608. IEEE

	17.	 Fotakis D, Milis I, Papadigenopoulos O, Zampetakis E, Zois G (2015) Scheduling mapreduce jobs
and data shuffle on unrelated processors. In: International Symposium on Experimental Algorithms,
pp. 137–150. Springer

	18.	 Edis EB, Ozkarahan I (2011) A combined integer/constraint programming approach to a resource-
constrained parallel machine scheduling problem with machine eligibility restrictions. Eng Optim
43(2):135–157

	19.	 Edis EB, Oguz C, Ozkarahan I (2013) Parallel machine scheduling with additional resources: Nota-
tion, classification, models and solution methods. Eur J Oper Res 230(3):449–463

	20.	 Ibm ilog cplex optimization studio opl language reference manual. White Paper (2018)
	21.	 Ibm ilog cplex optimization studio opl user reference manual. White Paper (2018)
	22.	 Yigitbasi N, Datta K, Jain N, Willke T (2011) Energy efficient scheduling of mapreduce workloads

on heterogeneous clusters. In: Green Computing Middleware on Proceedings of the 2nd Interna-
tional Workshop, p. 1. ACM

	23.	 Bampis E, Chau V, Letsios D, Lucarelli G, Milis I, Zois G (2014) Energy efficient scheduling of
mapreduce jobs. In: European Conference on Parallel Processing, pp. 198–209. Springer, Berlin

	24.	 Shao Y, Li C, Gu J, Zhang J, Luo Y (2018) Efficient jobs scheduling approach for big data applica-
tions. Comput Ind Eng 117:249–261

	25.	 Cai X, Li F, Li P, Ju L, Jia Z (2017) Sla-aware energy-efficient scheduling scheme for hadoop yarn. J
Supercomput 73(8):3526–3546

	26.	 Verma A, Cherkasova L, Campbell RH (2011) Aria: automatic resource inference and allocation for
mapreduce environments. In: Proceedings of the 8th ACM International Conference on Autonomic
Computing, pp. 235–244. ACM

	27.	 Edis EB, Oguz C (2011) Parallel machine scheduling with additional resources: a lagrangian-based
constraint programming approach. In: International Conference on AI and OR Techniques in Con-
striant Programming for Combinatorial Optimization Problems, pp. 92–98. Springer

	28.	 Edis EB, Oguz C (2012) Parallel machine scheduling with flexible resources. Comput Ind Eng
63(2):433–447

	29.	 Ham A (2017) Scheduling of dual resource constrained lithography production: using cp and mip/
cp. IEEE Trans Semicond Manuf 31(1):52–61. https​://doi.org/10.1109/TSM.2017.27688​99

	30.	 Gökgür B, Hnich B, Özpeynirci S (2018) Parallel machine scheduling with tool loading: a constraint
programming approach. Int J Prod Res 56(16):5541–5557

	31.	 Özpeynirci S, Gökgür B, Hnich B (2016) Parallel machine scheduling with tool loading. Appl Math
Modell 40(9–10):5660–5671

	32.	 Arbaoui T, Yalaoui F (2018) Solving the unrelated parallel machine scheduling problem with addi-
tional resources using constraint programming. In: Asian Conference on Intelligent Information and
Database Systems, pp. 716–725. Springer

https://doi.org/10.1109/TSM.2017.2768899

6816	 V. Pandey, P. Saini

1 3

	33.	 Fanjul-Peyro L, Perea F, Ruiz R (2017) Models and matheuristics for the unrelated parallel machine
scheduling problem with additional resources. Eur J Oper Res 260(2):482–493

	34.	 Van den Akker J, Hurkens CA, Savelsbergh MW (2000) Time-indexed formulations for machine
scheduling problems: Column generation. INFORMS J Comput 12(2):111–124

	35.	 Queyranne M, Schulz AS (1994) Polyhedral approaches to machine scheduling. TU, Fachbereich 3,
Berlin

	36.	 Smith BM, Brailsford SC, Hubbard PM, Williams HP (1996) The progressive party problem: Inte-
ger linear programming and constraint programming compared. Constraints 1(1–2):119–138

	37.	 Darby-Dowman K, Little J, Mitra G, Zaffalon M (1997) Constraint logic programming and inte-
ger programming approaches and their collaboration in solving an assignment scheduling problem.
Constraints 1(3):245–264

	38.	 Darby-Dowman K, Little J (1998) Properties of some combinatorial optimization problems and their
effect on the performance of integer programming and constraint logic programming. INFORMS J
Comput 10(3):276–286

	39.	 Ibm ilog cplex optimization studiogetting started with scheduling in cplexstudio. White Paper
(2018)

	40.	 Huang S, Huang J, Dai J, Xie T, Huang B (2010) The hibench benchmark suite: Characterization of
the mapreduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineer-
ing Workshops (ICDEW 2010), pp. 41–51. IEEE

	41.	 Ahmad F, Lee S, Thottethodi M, Vijaykumar T (2012) Puma: Purdue mapreduce benchmarks suite

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Constraint programming versus heuristic approach to MapReduce scheduling problem in Hadoop YARN for energy minimization
	Abstract
	1 Introduction
	1.1 MR scheduling in slot-based versus container-based Hadoop
	1.2 Solution approaches to DMRSYE problem
	1.3 Organization of the paper

	2 Related work
	3 Problem formulation
	4 Proposed solution approaches
	4.1 The heuristic solution
	4.1.1 A numerical example of heuristic algorithm

	4.2 Constraint programming approach
	4.2.1 The optimization programming language
	4.2.2 The proposed CP model

	5 Experiments: workloads, cluster setup and profiling
	5.1 YARN cluster setup
	5.2 Profiling and estimation of energy consumption and processing time of tasks

	6 Experiments: results and discussion
	6.1 Performance analysis
	6.1.1 Small workloads
	6.1.2 Large workloads

	6.2 Sensitivity analysis
	6.2.1 Sensitivity on workload size
	6.2.2 Sensitivity on deadlines

	7 Conclusion
	Acknowledgements
	References

