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Abstract
This paper describes a formally based approach for parallelizing the Kohonen algo-
rithm used for the federated learning process in a special kind of neural networks—
Self-Organizing Maps. Our approach enables executing the parallel algorithm ver-
sion on the distributed data sources, taking into account the kind of data distribution 
on the nodes. Compared to the traditional approaches, we distinguish two kinds of 
data distributions—horizontal and vertical: for both, our suggested approach avoids 
gathering data in a single storage, but rather moves computations nearer to the data 
source nodes. This reduces the execution time of the algorithm, the network traffic, 
and the risk of an unauthorized access to the data during their transmission. Our 
experimental evaluation demonstrates the advantages of the approach.

Keywords Self-Organizing Maps (SOM) · Neural networks · Distributed data · 
Federated learning · Kohonen algorithm

1 Introduction

Many companies currently organize their work in a data-driven manner, i.e., they 
employ data from various sources to optimize their business. This brings the 
necessity to build platforms for data processing, which include machine learning, 
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enterprise data warehouses, data clouds, etc. A typical architecture of data pro-
cessing platforms includes, as in [1]:

– data sources, which contain domain-oriented data;
– platform, which gathers and processes all data;
– consumers, which solve different business data-driven tasks.

Figure 1 shows an example platform that processes data from distributed sources. 
There are two possible kinds of data distributions used in the business domains:

– horizontal distribution shown in Fig.  1a: data sources are related to the same 
business domain and contain the data about different facts about this domain;

– vertical distribution as shown in Fig.  1b: data sources are related to different 
business domains and contain data about the same facts about those domains.

A data platform in Fig. 1 receives data from data sources. Its goals are:

– receiving data from the data sources from same or different domains;
– enriching and transforming the source data into trustworthy data that allow for 

addressing the needs of diverse consumers;
– providing services (including data analysis based on the data sets) to the broad 

community of consumers.

This current organization of data processing platforms has some weaknesses; in 
particular, it leads to an increase in total processing time, intensive network traf-
fic, and a risk of unauthorized access to the data. At the same time, the problem 
of data security and users’ data privacy becomes increasingly critical. Therefore, 
governmental structures establish regulations to protect users’ data, for example 
GDPR in European Union [2] and CCPA [3] in the USA.

Fig. 1  Data processing platforms with a horizontally and b vertically distributed data
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As a solution to these problems, Google proposed the concept of federated learn-
ing [4]: the main idea is to build machine learning models based on data sets distrib-
uted across multiple data sources without exchanging data among them. Federated 
learning systems are typically categorized in horizontal and vertical, depending on 
how data are distributed over sources [5], as explained in Fig. 1.

One of the important business tasks in the area of data-driven management is 
market segmentation, which is usually performed using clustering methods. In the 
area of data mining, these methods refer to the so-called unsupervised learning; they 
are often used for preliminary data analysis. Clustering allocates groups (clusters) 
among the objects of the analyzed data.

Recent years have witnessed a significant growth in popularity of neural net-
works which are also applied to solve the task of clustering. A useful and popu-
lar class of neural networks are Self-Organized Maps (SOM) proposed by Kohonen 
[6]. The advantages of the SOM are as follows: (1) detection of the clusters of arbi-
trary shapes with different sizes; (2) clustering without initial knowledge about the 
data; (3) iterative processing of large amounts of streaming data; (4) data dimension 
reduction; and (5) visualization of the output.

The goal of this paper is to overcome the current drawbacks of the data platforms. 
Our approach is clustering the data at data sources: we achieve this by moving com-
putations to the data sources. For this, we decompose the SOM algorithm to perform 
its major parts locally on the data sources without transferring data in the network. 
This helps to reduce the execution time of applications and the network traffic; we 
achieve this by enhancing our earlier general approach for parallelizing data mining 
algorithms on distributed data sources [7].

2  The SOM algorithm

The SOM algorithm for building neural networks was proposed by Kohonen [6]. 
The network is trained at a set of input vectors x(t) that contain attributes (such as 
place, count, and price) of an event at time t, for example purchases, provided ser-
vices, and others.

A set of input vectors is usually represented in the form of a 2D array (data 
matrix), e.g., for discrete time indices t = 1,… , z and p attributes [8]:

where xk(tj) is the value of the kth attribute for the event at time tj , represented by 
input vector x(tj) . The input vectors d available at time tz for training are called 
epoch.

The SOM compares a set of neurons:

(1)d =

⎛
⎜⎜⎜⎜⎜⎝

x1(t1) … xk(t1) … xp(t1)

… … …

x1(tj) … xk(tk) … xp(tj)

… … …

x1(tz) … xk(tz) … xp(tz)

⎞⎟⎟⎟⎟⎟⎠
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where u is a number of the neurons, which must be a priori determined by an ana-
lyst. Each neuron ni(t) is determined at time t by a weight vector having the same 
dimensionality p as input vectors:

The SOM algorithm for each input vector x(t) finds the neuron nw(t)—so-called neu-
ron winner—with the weight most similar to it:

We use the Euclidean distance to find the degree of similarity between two vectors 
(input vector and weight vector):

Next, the algorithm corrects the weights of the winners and the winners’ neighbors:

– �—the bargaining ratio of the weight update, which is mainly influenced by the 
learn rate (commonly around 0.1);

– enriching and transforming the source data into trustworthy data that allow for 
addressing the needs of diverse consumers;

– �(i,w)—the neighborhood function which is an exponentially decreasing func-
tion that reduces the influence of input vector x on neurons (for example, Gauss-
ian neighborhood with a monotonously decreasing function): 

– �(t) represents the function which reduces the value between two values �max and 
�min , to control the size of the neighborhood, thus influencing a given cell on the 
SOM: 

Figure 2 shows the sequential pseudocode of the SOM algorithm.

m(t) = [n1(t),… ., nu(t)],

ni(t) = [�1,… ,�p].

nw(t) = argminu
i=1

�(x(t), ni(t)).

(2)�(x(t), ni(t)) =

√√√√ p∑
k=1

(xk(t) − ni(t).�k)
2

(3)ni(t + 1) = ni(t) + � ⋅ �(i,w) ⋅ �(x(t), nw(t)), where

�(i,w) = exp(�(nw(t), ni(t))
2∕�(t)2), where

�(t) = �max ⋅ (�min∕�max)
t∕z
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3  Related work

In traditional data processing platforms, data from distributed sources are gath-
ered at the central point (e.g., in a single data warehouse, or computing node) for 
analysis, which is usually implemented based on the MapReduce programming 
model [9].

The MapReduce model employs the abstraction inspired by the map and 
reduce primitives, originated from functional programming and actively exploited 
in the skeleton-based approach for parallel computing [10]. Parts of MapReduce 
can run in parallel on different nodes of the network, thereby ensuring a high per-
formance of data mining.

The adaptation of the SOM algorithm to the MapReduce programming model 
uses its batch version [11], because the original version of SOM (also called 
online SOM algorithm) is time dependent: each time step directly corresponds 
to the presentation of an input vector x(t). The batch SOM algorithm corrects the 
neuron weights for whole epoch, thus removing the time dependency from the 
input:

The analysis of the batch SOM algorithm on various data sets demonstrated a good 
quality of clusterization [11] when applied in practice.

(4)ni =

∑z

j=1
(�(i,w, j) ⋅ xj)∑z

j=1
�(i,w, j)

Fig. 2  The SOM algorithm: sequential pseudocode
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Paper [12] shows that the batch SOM algorithm has the following advantages but 
also drawbacks:

– advantages: simplicity of the computations, high performance, no adaptation 
parameters that have to be tuned, deterministic and reproducible results;

– too unbalanced clusters, strong dependence of the initialization.

There are several variants of adapting the batch SOM algorithm to the MapReduce 
programming model [13–15]. They differ in distributing computations of the win-
ning neurons, �(i,w, j) ⋅ xj and �(i,w, j) from (4) by the map and reduce functions.

Paper [13] proposes the following mapping of the SOM algorithm’s parts to the 
MapReduce model:

– The map function computes the winning neuron, �(i,w, j) ⋅ xj and �(i,w, j);
– first reduce function accumulates the denominator from (4);
– second reduce function accumulates the numerator from (4) and corrects the 

weights of neurons.

Paper [14] suggests the mapping of the SOM algorithm’s parts to two map functions 
and a single reduce function:

– first map function computes �(i,w, j) ⋅ xj from (4);
– second map computes �(i,w, j) from (4);
– reduce function corrects the weights of neurons.

In the approach of [15], the map function computes the winning neuron for each 
input vector, while the reduce function calculates the neighborhoods for each win-
ning neuron and the weight updates needed for them.

In all these existing approaches, data are communicated from distributed sources 
to the single compute node of the network where data mining takes place. In the 
existing map–reduce implementations, deploying the functions of the map–reduce 
schema on data sources is often impossible, because the sources are not part of the 
whole data processing platform and have independent management.

The traditional implementation scheme in Fig. 3a implies the following problems:

– data communication may take quite a long time which may be disadvantageous 
for the target performance;

– the network traffic may be very intensive, which limits the use of modern lim-
ited-capacity communication channels, such as satellites and wireless;

– confidential data from the data sources are communicated via public channels, 
which increases the risk of unauthorized access to the data;

– since the volumes of data are large, their collection at a single location requires 
special protection of data security and reliability.

Paper [16] describes an approach for data clustering using SOM. This approach 
uses the same SOM algorithm at data sources and compute node, but for different 
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purposes. At a data source, the algorithm is applied locally to obtain a vector of 
data indexes; these index vectors are then transferred to a compute node. At the 
compute node, the algorithm is applied again to obtain a SOM base on gathering 
the index vectors. This method is applied to vertically distributed data only.

The previous work does not address the problem of implementing the SOM 
algorithm, taking into account the different types of data distribution without 
transferring all data to the single data warehouse where the compute note is 
located.

Currently, several open-source federated learning systems are under develop-
ment [17]: TensorFlow Federated by Google [18], PySyft by open community 
OpenMined [19], Federated AI Technology Enabler by Webank’s AI Department 
[20], and PaddleFL by Baidu [21]. They use different neural networks for feder-
ated learning, but our work is the first to consider parallelizing SOM for federated 
learning.

In our envisaged approach, as shown in Fig. 3b, we aim at improving the distrib-
uted data clustering and avoiding the disadvantages mentioned above. Our idea is 
to perform parts of a SOM algorithm at data sources, while intermediate results are 
sent to the central compute node. Our approach for distributed clustering also opti-
mizes the structure of the SOM algorithm according to the type of data distribution: 
horizontal or vertical.

The trade-off is that our approach requires additional computations on the data 
sources. However, the amount of these computations is relatively low, so they can be 
performed using even low-power devices, such as mobile phones and IoT devices.

A major challenge for parallelizing federal learning is the complexity of partition-
ing the whole amount of work between the data sources on the one hand and the 
computing node on the other hand. Our general approach suggested in [7] addresses 
the issues of distributing data and correctly combining the results obtained on differ-
ent data sources. In this paper, we show how our general approach from [7] can be 
applied to the SOM algorithm. We develop and estimate two versions of the SOM 
algorithm—batch and online—for horizontal and vertical data distributions.

Fig. 3  Variants of SOM algorithm applied to distributed data: a traditional MapReduce; b our suggested 
approach
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4  Decomposition of SOM Algorithm

To deal with the SOM algorithm, we apply our general approach proposed in [7], 
which is formally based, and covers a broad class of data mining algorithms. We use 
capital letters for types and lowercase letters for variables and functions.

In our approach, a data mining algorithm is represented as a function taking a 
data set d ∈ D as input and creating a mining model m ∈ M as output:

We represent a mining model m ∈ M as an array of elements ei, i = 0,… , v ∶

In the general approach, mining model’s elements describe knowledge (classifica-
tion rules, clusters and other) extracted by a data mining algorithm from a data set. 
In case of the SOM algorithm, a model m is a SOM, represented as an array of 
elements:

– e0 is index of the winner neuron (variable w in Fig. 2);
– e1,… , eu are Euclidean distances between current input vectors x(t) and neurons 

n1,… , nu (variables �1 … �u in Fig. 2);
– eu+1,… e2u are neurons n1,… , nu (variables n1,… , nu in Fig. 2).

In the general case, we represent a data mining algorithm formally as the following 
sequential composition of functions:

where ◦ is the associative composition operator applied from right to left.
In representation (6), function f0 ∶ D → M takes a data set d ∈ D as an argument 

and returns a mining model m0 ∈ M . For the SOM algorithm, function f0 initializes 
neuron’s weights (lines 1–5 in Fig. 2).

The next functions in the composition, ft, t = 1,… , n take the mining model 
mt−1 ∈ M which is created by function ft−1 and return the updated mining model 
mt ∈ M:

Functions ft, t = 1,… , n of type (5) are called Functional Mining Blocks (FMB). 
For the SOM algorithm, the FMBs are as follows:

– f5 calculates Euclidean distance (line 11 in Fig. 2);
– f6 initializes the index of the winner (line 13 in Fig. 2);
– f8 selects the winner (lines 14–15 in Fig. 2);
– f11 corrects the weights of neurons (line 19 in Fig. 2).

Some steps of a data mining algorithm use data set d to change the mining model, 
i.e., they take the data set d as additional argument:

(5)dma ∶ D → M

m = [e0, e1,… , ev]

(6)dma = fn◦fn−1◦… ◦f1◦f0

(7)ft ∶ M → M
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To use these functions in the composition (4), we exploit partial function application 
with the fixed first argument: ft = fdt d . For SOM algorithm, FMB fd4 uses data set 
d to calculate the sum of Euclidean distance (line 9 in Fig. 2);

In the general case, we invoke function fdt in a loop, in order to apply it to all 
input vectors. We use loops over attributes and input vectors of the data set to pro-
cess the data iteratively. We use an asterisk to denote the input vector (e.g., d[j, ∗] 
refers to the jth input vector) or the attribute (e.g., d[∗, k] refers to the kth attribute) in 
a data set:

– loopc applies fdt to the attributes of d ∈ D , from index is till index ie : 

– loopr applies fdt to the input vectors of d ∈ D , from index is till index ie : 

The first four arguments are fixed for using loops in the composition (6).
To apply function ft to every neuron of the SOM m from index is till index ie , we 

invoke it in the following loop: loopn is ie ft m = (ft m[u + ie])◦… ◦(ft m[u + is]) , 
where

The first four arguments are fixed to use loopn in the composition (6). Therefore, all 
functions of the SOM algorithm are for each line as follows:

– f1 is the loop for the input vectors (lines 6–22 in Fig. 2): 

– fd2 is the loop for neurons (lines 7–12 in Fig. 2): 

– fd3 is the loop for the attributes (lines 8–10 in Fig. 2): 

– f7 is the loop for neurons (lines 14–16 in Fig. 2): 

– fd9 is the loop for neurons (lines 17–21 in Fig. 2): 

(8)fdt ∶ D → M → M

(9)
loopc ∶ I → I → (M → M) → D → M → M

loopc is ie fdt d m = (fdt d[∗, ie])◦… ◦(fdt d[∗, is]) �

(10)
loopr ∶ I → I → (M → M) → D → M → M

loopr is ie fdt d m = (fdt d[ie, ∗])◦… ◦(fdt d[is, ∗]) �

(11)loopn ∶ I → I → (M → M) → M → M

f1 = loopr 1 z (fd9 ◦ f7 ◦ f6◦ fd2);

fd2 = loopn 1 n (f5 ◦ fd3);

fd3 = loopc 1 p fd4;

f7 = loopn 2 n f8;

f9 = loopn 1 n f10;
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– fd10 is the loop for the weights of neurons (lines 18–20 in Fig. 2): 

The following composition of the functions represents the SOM algorithm:

5  SOM algorithm for distributed data

5.1  Parallelization for distributed data

Figure 4 represents a distributed storage that splits data set d among s sources [22]:

where data subset dh is located at the data source number h.
If data are located on different sources, then FMBs of type (8) can be executed on 

them in parallel, which corresponds to parallel execution on a distributed memory.
In our general approach proposed in paper [7], we introduce function paralleled that 

specifies parallel execution of FMBs on a system with distributed memory:

f10 = loopc 1 p f11;

(12)

som = fd1 ◦ f0 = (loopr 1 z(f9 ◦ f7 ◦ f6 ◦ fd2) d) ◦ f0

= (loopr 1 z (loopn 1 nf10) ◦ (loopn 2 n f8) ◦ f6 ◦ (loopn 1 n (f5 ◦ fd3)) d) ◦ f0

= (loopr 1 z (loopn 1 n (loopn 1 p f11)) ◦ (loopn 2 n f8) ◦ f6

◦ (loopn 1 n (f5 ◦ (loopc 1 p fd4))) d) ◦ f0

d = d1 ∪⋯ ∪ ds,

Fig. 4  Traditional distributions of data matrix: a horizontal; b vertical
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where function forkd can invoke FMBs in parallel on distributed memory:

and function copy yields copies of the initial mining model in disjunctive areas of 
distributed memory for processing by FMBs in parallel:

Function join combines the mining models built by FMBs for disjunctive areas of 
distributed memory:

where the union function takes elements of different mining models with the same 
index and merges them to a single mining model’s element:

Function union is implemented depending on the structure of the elements.

5.2  Parallelizing SOM algorithm for different data distributions

Assuming that data sources are distributed, function fd2 from (12) can be computed 
on the source nodes by transforming the sequential form of the SOM algorithm into 
a parallel form for a particular distribution of data.

There are two variants [23] of transforming (13): 

1. using synchronization for every input vector by inserting function paralleled into 
outer loop loopr for function fd2 (Fig. 5a): 

2. using synchronization for the whole epoch when the paralleled function is applied 
to the outer loop loopr (Fig. 5b): 

Figure 5a shows the variant using synchronization for every input vector. Since there 
are interactions between the data sources and the compute node for each input vector 

(13)
paralleled ∶ [(M → M)] → M → M

paralleled [fr,… , fs] m = join m (forkd [fr,… , fs] m),

(14)
forkd ∶ [(M → M)] → M → [M]

forkd [fr,… , fs] m = [fr copy m,… , fs copy m],

(15)
copy ∶ M → M

copy m = [m[0],m[1],… ,m[v]].

(16)

join ∶ M → [M] → M

copym[mr,… ,ms] = [m�[0],… ,m�[g],… ,m�[v]],

where m�[g] =

{
m[g] if mi[g] = m[g] for all i = r..s

union m[g] [mr[g],… ,ms[g]] otherwise

(17)union ∶ E → [E] → E.

(18)sompar1 = (loopr 1 z(f9 ◦ f7 ◦ f6 ◦ ����������[fd2]) d) ◦ f0

(19)sompar2 = (����������[loopr 1 z(f9 ◦ f7 ◦ f6 ◦ fd2)] d) ◦ f0
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(sending intermediate results to the computing node and sending back the general-
ized model), this approach is slow and generates high network traffic. This variant 
corresponds to the online version of the SOM algorithm.

Figure 5b depicts the variant using synchronization for each epoch. In this case, 
the network traffic is minimal (because interaction happens only once for an epoch 
after finishing the epoch analysis on the data source). Combining weights is per-
formed after the analysis of the epochs on all data sources is finished. This vari-
ant corresponds to the batch version of the SOM algorithm: it updates the neuron 
weights of SOM for the whole epoch, rather than for each input vector.

For the horizontal distribution of data and synchronization for every input vector, 
function join cannot combine models created by FMB fd2 at different data sources. 
The FMB fd2 calculates the Euclidean distances (elements e1,… , eu in model m) 
between the current input vector at data source and each neuron. Function join 
receives these distances from different data sources and has no criteria to select cor-
rect distances for finding the winner neuron by FMB f6 . Hence, synchronization for 
every input vector cannot be implemented with horizontally distributed data.

Fig. 5  Distributed execution of the SOM algorithm for distributed data: a with synchronization for each 
input vector; b with synchronization for whole epoch
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If synchronization is performed for the whole epoch, we invoke function union 
(17) after processing all input vectors at data sources. It calculates the weights of the 
neurons with the same indices from different data sources:

where mr , r = 1..s is a SOM built at rth data source; function � calculates the total 
weight, which, for example, is computed by averaging:

The variant with synchronization for each epoch corresponds to the batch version 
of the SOM algorithm, as function union updates the neuron weights after process-
ing all input vectors on the data sources. Therefore, the result of the batch version 
of SOM may differ from the online SOM version in which the update of weights is 
performed after processing each vector. However, this difference does not mean a 
decrease in accuracy, because even in the online SOM version different results may 
be obtained for different arrival orders of the input vectors. It is rather important that 
the obtained clusters are similar, which is demonstrated in our previous work [23], 
as well as by other authors [11–16].

If data are distributed vertically and synchronization is done for each input 
vector, then function fd4 returns the Euclidean distance between input vector x(tj) 
and neurons ni, i = 1..u in parts of the subset dh, p = 1..s:

The total distance can be calculated by function union by summarizing:

Though for Euclidean distance, the sum of the parts is not equal to the total distance:

however, the inequality relation is still preserved for this function union:

Therefore, we can select the winner neuron correctly. This results in the parallel 
implementation of the SOM algorithm for vertically distributed data with synchroni-
zation for each input vector. Another possibility is to perform synchronization for a 
whole epoch. SOM contains neurons which have weights that are partially calculated 

unionm[u + 1] = �(m1[u + 1].�,… ,ms[u + 1].�1),

�(m1[i].�,… ,ms[i].�1) = (m1[i].� +…+ ms[i].�1)∕s

m1[i] =

√√√√ g∑
k=1

(m[u + i].�k − xk(tj))
2;… ;

ms[i] =

√√√√ p∑
k=r+1

(m[u + i].�k − xk(tj))
2

union m[i] = m1[i] +… + ms[i].

m1[i] +… + ms[i] ≠

√√√√ p∑
k=1

(m[i].�k − xk(tj))
2

if m[i] < m[i + 1] then (m1[i] +… + ms[i]) < (m1[i + 1] +… + ms[i + 1]).
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at each data source for the corresponding attributes. For example, for neuron ni the 
following weights are calculated at different data sources:

Therefore, function union for each neuron must combine weights as follows:

Thus, we obtain a parallel implementation of the SOM algorithm with synchroniza-
tion for whole epoch on vertically distributed data.

The results of comparing different variants of synchronization for SOM are sum-
marized in Table 1.

In summary, by applying our general approach to the SOM algorithm, we develop 
two versions of federated learning on data sources—the online and batch version. 
Each version has their advantages and disadvantages [12], so we analyzed them both 
for the two practical data distributions—horizontal and vertical.

Our analysis shows that, for the horizontal data distribution, only the batch SOM 
algorithm can be used, because for the online version we cannot choose a common 
winner neuron for input vectors on different data sources. For the vertical data distri-
bution, both methods are applicable. However, formal analysis shows and our exper-
iments in the next section confirm that the online version implies a higher network 
traffic and, therefore, longer execution time.

6  Experimental evaluation

In this section, we describe the distributed implementation of the SOM algorithm 
[24] using the Java-based library XelopesFL [25]. We use this implementation for 
the experimental evaluation described in the following. All experiments described in 
this section can be reproduced using our library version in [24, 25].

In our experiments, the data source nodes are as follows: CPU Intel Xeon (4 
physical cores), 2.90 GHz, 4 Gb. The compute node contains: CPU Intel Xeon (12 
physical cores), 2.90 GHz, 4 Gb. The data sources are connected to the computa-
tional node by a local network with bandwidth 1 Gbps.

m1[u + i].�1 ≠ 0,… ,m1[u + i].�g ≠ 0,m1[u + i].�g+1 = 0,… ,m1[u + i],�p = 0,

…

ms[u + i].�1 = 0,… ,ms[u + i].�r ≠ 0,ms[u + i].�r+1 ≠ 0,… ,ms[u + i],�p ≠ 0.

union m[u + i] = [m1[u + i].�1,… ,m1[u + i].�g,… ,ms[u + i].�r+1,… ,ms[u + i].�p].

Table 1  Using different ways of synchronization for different types of distribution

Data distribution Version of SOM algorithm Applicable Run time Traffic

Horizontal Online (sompar1
H

) No – –
Vertical Online (sompar1

V
) Yes Slow High

Horizontal Batch (sompar2
H

) Yes Fast Low
Vertical Batch (sompar2

V
) Yes Fast Low
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We use the data set generated on the basis of a Gaussian distribution with pre-
determined centers of the clusters. Each value in our data set can be viewed as 
independent according to one-dimensional distribution, so the input vectors are 
independent.

In our experiments, we evaluate SOM with 15 neurons (width = 3, height = 5). 
While this allows for a relatively low amount of computations, this amount still 
suffices to identify three clusters on data. For parameter “neighborhood of the 
learning” we assign the constant value � = 1 , which corresponds to the “Winner 
Takes All” (WTA) configuration of SOM, and it also accelerates computations.

As shown in Table 2, data set is divided into two and four parts by input vec-
tors (to simulate horizontal distribution) and by attributes (to simulate vertical 
distribution).

In Fig. 6a, we report the execution time for horizontal and vertical distributions 
of data. The comparison is shown for the parallel SOM algorithm adapted to hori-
zontally ( sompar2H ) and vertically ( sompar1V and sompar2V ) distributed data. 
We observe that the execution time of sompar2H , sompar1V and sompar2V for 
distributed clustering at data sources is lower than for clustering at a single data 
warehouse. The measurements also show that the execution time of sompar1V 
(with synchronization for every input vector) is longer than the run time of other 
variants. The reason is the large number of interactions between data sources and 

Table 2  Distributed data sets

Type of distribution Number of 
distributed data 
sources

Number of input 
vectors in each data 
source

Number of attributes 
in each data source

Size of each 
data set (Gb)

Horizontal 4 4 ∗ 106 100 1
Vertical 4 16 ∗ 106 25 1
Horizontal 2 8 ∗ 106 100 2
Vertical 2 16 ∗ 106 50 2
Single data warehouse 1 16 ∗ 106 100 4

Fig. 6  Experiments with parallel SOM algorithm: a execution time; b network traffic
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computing node (many invocations of paralleled function) that increase the over-
head of the distributed execution.

The differences among the variants are increasing with larger source nodes. We 
explain this by the higher number of invocations of copy and join functions for the 
distributed algorithm on a higher number of data sources.

Figure 6b shows a comparison of the network traffic for both types of data dis-
tribution and variants of parallel SOM algorithm. The traffic is higher for variant 
sompar1V with synchronization for every input vector. As with the execution time, 
network traffic is also higher when gathering data in a single data warehouse. This 
is because the volume of SOM that is transferred in our parallel implementation 
is much smaller than the volume of all data that are transferred in the traditional 
implementation.

In Fig.  6, we observe that, with an increasing amount of data, there will be a 
larger difference in the execution time (Fig. 6a) and network traffic (Fig. 6b) between 
parallelized federated learning and the version with a single data warehouse. The 
difference grows because of the increasing volumes of data transferred from data 
sources toward a single data warehouse, while the size of SOM communicated in 
federated learning does not depend on the data size. Differences in execution time 
(Fig.  6a) and network traffic (Fig.  6b) between the versions with synchronization 
for every input vector (variant sompar1v) and with synchronization for every epoch 
(variants sompar2h and sompar2v) also grow with the increasing amount of data, 
because of the growing number of interactions between the data sources and the 
computing node in the version with synchronization for every input vector (due to 
the higher number of input vectors).

7  Conclusion

This paper proposes a novel approach for optimizing the parallel implementation of the 
SOM clustering algorithm. Our approach formally transforms a high-level representa-
tion of a SOM algorithm into a parallel implementation that performs major calcula-
tions at the data source nodes, rather than transferring data for processing to a central 
computing node. We show that our approach is well suited for the technology of feder-
ated learning that is currently widely used for multilayer artificial neural networks.

We analyze the two possibilities of distributed federated learning—online and 
batch SOM algorithms. Each of the versions has advantages and weaknesses; there-
fore, we have considered their implementation for different kinds of data distributions 
between the data sources: horizontal and vertical. Our analysis confirmed by experi-
ments shows that, for the horizontal data distribution, we can use only the batch SOM 
algorithm. For the vertical data distribution, our analysis shows and experiments con-
firm that the online version has a higher network traffic and longer execution time.
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