
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:6197–6213
https://doi.org/10.1007/s11227-020-03509-2

1 3

Parallelization of the self‑organized maps algorithm
for federated learning on distributed sources

Ivan Kholod1 · Andrey Rukavitsyn1 · Alexey Paznikov1 · Sergei Gorlatch2

Accepted: 2 November 2020 / Published online: 25 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper describes a formally based approach for parallelizing the Kohonen algo-
rithm used for the federated learning process in a special kind of neural networks—
Self-Organizing Maps. Our approach enables executing the parallel algorithm ver-
sion on the distributed data sources, taking into account the kind of data distribution
on the nodes. Compared to the traditional approaches, we distinguish two kinds of
data distributions—horizontal and vertical: for both, our suggested approach avoids
gathering data in a single storage, but rather moves computations nearer to the data
source nodes. This reduces the execution time of the algorithm, the network traffic,
and the risk of an unauthorized access to the data during their transmission. Our
experimental evaluation demonstrates the advantages of the approach.

Keywords Self-Organizing Maps (SOM) · Neural networks · Distributed data ·
Federated learning · Kohonen algorithm

1 Introduction

Many companies currently organize their work in a data-driven manner, i.e., they
employ data from various sources to optimize their business. This brings the
necessity to build platforms for data processing, which include machine learning,

 * Ivan Kholod
 iiholod@mail.ru

 Andrey Rukavitsyn
 rkvtsn@gmail.com

 Alexey Paznikov
 ashxz@mail.ru

 Sergei Gorlatch
 gorlatch@uni-muenster.de

1 Saint Petersburg Electrotechnical University ”LETI”, Saint Petersburg, Russia
2 University of Muenster, Muenster, Germany

http://orcid.org/0000-0002-7255-5035
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03509-2&domain=pdf

6198 I. Kholod et al.

1 3

enterprise data warehouses, data clouds, etc. A typical architecture of data pro-
cessing platforms includes, as in [1]:

– data sources, which contain domain-oriented data;
– platform, which gathers and processes all data;
– consumers, which solve different business data-driven tasks.

Figure 1 shows an example platform that processes data from distributed sources.
There are two possible kinds of data distributions used in the business domains:

– horizontal distribution shown in Fig. 1a: data sources are related to the same
business domain and contain the data about different facts about this domain;

– vertical distribution as shown in Fig. 1b: data sources are related to different
business domains and contain data about the same facts about those domains.

A data platform in Fig. 1 receives data from data sources. Its goals are:

– receiving data from the data sources from same or different domains;
– enriching and transforming the source data into trustworthy data that allow for

addressing the needs of diverse consumers;
– providing services (including data analysis based on the data sets) to the broad

community of consumers.

This current organization of data processing platforms has some weaknesses; in
particular, it leads to an increase in total processing time, intensive network traf-
fic, and a risk of unauthorized access to the data. At the same time, the problem
of data security and users’ data privacy becomes increasingly critical. Therefore,
governmental structures establish regulations to protect users’ data, for example
GDPR in European Union [2] and CCPA [3] in the USA.

Fig. 1 Data processing platforms with a horizontally and b vertically distributed data

6199

1 3

Parallelization of the self-organized maps algorithm for…

As a solution to these problems, Google proposed the concept of federated learn-
ing [4]: the main idea is to build machine learning models based on data sets distrib-
uted across multiple data sources without exchanging data among them. Federated
learning systems are typically categorized in horizontal and vertical, depending on
how data are distributed over sources [5], as explained in Fig. 1.

One of the important business tasks in the area of data-driven management is
market segmentation, which is usually performed using clustering methods. In the
area of data mining, these methods refer to the so-called unsupervised learning; they
are often used for preliminary data analysis. Clustering allocates groups (clusters)
among the objects of the analyzed data.

Recent years have witnessed a significant growth in popularity of neural net-
works which are also applied to solve the task of clustering. A useful and popu-
lar class of neural networks are Self-Organized Maps (SOM) proposed by Kohonen
[6]. The advantages of the SOM are as follows: (1) detection of the clusters of arbi-
trary shapes with different sizes; (2) clustering without initial knowledge about the
data; (3) iterative processing of large amounts of streaming data; (4) data dimension
reduction; and (5) visualization of the output.

The goal of this paper is to overcome the current drawbacks of the data platforms.
Our approach is clustering the data at data sources: we achieve this by moving com-
putations to the data sources. For this, we decompose the SOM algorithm to perform
its major parts locally on the data sources without transferring data in the network.
This helps to reduce the execution time of applications and the network traffic; we
achieve this by enhancing our earlier general approach for parallelizing data mining
algorithms on distributed data sources [7].

2 The SOM algorithm

The SOM algorithm for building neural networks was proposed by Kohonen [6].
The network is trained at a set of input vectors x(t) that contain attributes (such as
place, count, and price) of an event at time t, for example purchases, provided ser-
vices, and others.

A set of input vectors is usually represented in the form of a 2D array (data
matrix), e.g., for discrete time indices t = 1,… , z and p attributes [8]:

where xk(tj) is the value of the kth attribute for the event at time tj , represented by
input vector x(tj) . The input vectors d available at time tz for training are called
epoch.

The SOM compares a set of neurons:

(1)d =

⎛
⎜⎜⎜⎜⎜⎝

x1(t1) … xk(t1) … xp(t1)

… … …

x1(tj) … xk(tk) … xp(tj)

… … …

x1(tz) … xk(tz) … xp(tz)

⎞⎟⎟⎟⎟⎟⎠

6200 I. Kholod et al.

1 3

where u is a number of the neurons, which must be a priori determined by an ana-
lyst. Each neuron ni(t) is determined at time t by a weight vector having the same
dimensionality p as input vectors:

The SOM algorithm for each input vector x(t) finds the neuron nw(t)—so-called neu-
ron winner—with the weight most similar to it:

We use the Euclidean distance to find the degree of similarity between two vectors
(input vector and weight vector):

Next, the algorithm corrects the weights of the winners and the winners’ neighbors:

– �—the bargaining ratio of the weight update, which is mainly influenced by the
learn rate (commonly around 0.1);

– enriching and transforming the source data into trustworthy data that allow for
addressing the needs of diverse consumers;

– �(i,w)—the neighborhood function which is an exponentially decreasing func-
tion that reduces the influence of input vector x on neurons (for example, Gauss-
ian neighborhood with a monotonously decreasing function):

– �(t) represents the function which reduces the value between two values �max and
�min , to control the size of the neighborhood, thus influencing a given cell on the
SOM:

Figure 2 shows the sequential pseudocode of the SOM algorithm.

m(t) = [n1(t),… ., nu(t)],

ni(t) = [�1,… ,�p].

nw(t) = argminu
i=1

�(x(t), ni(t)).

(2)�(x(t), ni(t)) =

√√√√ p∑
k=1

(xk(t) − ni(t).�k)
2

(3)ni(t + 1) = ni(t) + � ⋅ �(i,w) ⋅ �(x(t), nw(t)), where

�(i,w) = exp(�(nw(t), ni(t))
2∕�(t)2), where

�(t) = �max ⋅ (�min∕�max)
t∕z

6201

1 3

Parallelization of the self-organized maps algorithm for…

3 Related work

In traditional data processing platforms, data from distributed sources are gath-
ered at the central point (e.g., in a single data warehouse, or computing node) for
analysis, which is usually implemented based on the MapReduce programming
model [9].

The MapReduce model employs the abstraction inspired by the map and
reduce primitives, originated from functional programming and actively exploited
in the skeleton-based approach for parallel computing [10]. Parts of MapReduce
can run in parallel on different nodes of the network, thereby ensuring a high per-
formance of data mining.

The adaptation of the SOM algorithm to the MapReduce programming model
uses its batch version [11], because the original version of SOM (also called
online SOM algorithm) is time dependent: each time step directly corresponds
to the presentation of an input vector x(t). The batch SOM algorithm corrects the
neuron weights for whole epoch, thus removing the time dependency from the
input:

The analysis of the batch SOM algorithm on various data sets demonstrated a good
quality of clusterization [11] when applied in practice.

(4)ni =

∑z

j=1
(�(i,w, j) ⋅ xj)∑z

j=1
�(i,w, j)

Fig. 2 The SOM algorithm: sequential pseudocode

6202 I. Kholod et al.

1 3

Paper [12] shows that the batch SOM algorithm has the following advantages but
also drawbacks:

– advantages: simplicity of the computations, high performance, no adaptation
parameters that have to be tuned, deterministic and reproducible results;

– too unbalanced clusters, strong dependence of the initialization.

There are several variants of adapting the batch SOM algorithm to the MapReduce
programming model [13–15]. They differ in distributing computations of the win-
ning neurons, �(i,w, j) ⋅ xj and �(i,w, j) from (4) by the map and reduce functions.

Paper [13] proposes the following mapping of the SOM algorithm’s parts to the
MapReduce model:

– The map function computes the winning neuron, �(i,w, j) ⋅ xj and �(i,w, j);
– first reduce function accumulates the denominator from (4);
– second reduce function accumulates the numerator from (4) and corrects the

weights of neurons.

Paper [14] suggests the mapping of the SOM algorithm’s parts to two map functions
and a single reduce function:

– first map function computes �(i,w, j) ⋅ xj from (4);
– second map computes �(i,w, j) from (4);
– reduce function corrects the weights of neurons.

In the approach of [15], the map function computes the winning neuron for each
input vector, while the reduce function calculates the neighborhoods for each win-
ning neuron and the weight updates needed for them.

In all these existing approaches, data are communicated from distributed sources
to the single compute node of the network where data mining takes place. In the
existing map–reduce implementations, deploying the functions of the map–reduce
schema on data sources is often impossible, because the sources are not part of the
whole data processing platform and have independent management.

The traditional implementation scheme in Fig. 3a implies the following problems:

– data communication may take quite a long time which may be disadvantageous
for the target performance;

– the network traffic may be very intensive, which limits the use of modern lim-
ited-capacity communication channels, such as satellites and wireless;

– confidential data from the data sources are communicated via public channels,
which increases the risk of unauthorized access to the data;

– since the volumes of data are large, their collection at a single location requires
special protection of data security and reliability.

Paper [16] describes an approach for data clustering using SOM. This approach
uses the same SOM algorithm at data sources and compute node, but for different

6203

1 3

Parallelization of the self-organized maps algorithm for…

purposes. At a data source, the algorithm is applied locally to obtain a vector of
data indexes; these index vectors are then transferred to a compute node. At the
compute node, the algorithm is applied again to obtain a SOM base on gathering
the index vectors. This method is applied to vertically distributed data only.

The previous work does not address the problem of implementing the SOM
algorithm, taking into account the different types of data distribution without
transferring all data to the single data warehouse where the compute note is
located.

Currently, several open-source federated learning systems are under develop-
ment [17]: TensorFlow Federated by Google [18], PySyft by open community
OpenMined [19], Federated AI Technology Enabler by Webank’s AI Department
[20], and PaddleFL by Baidu [21]. They use different neural networks for feder-
ated learning, but our work is the first to consider parallelizing SOM for federated
learning.

In our envisaged approach, as shown in Fig. 3b, we aim at improving the distrib-
uted data clustering and avoiding the disadvantages mentioned above. Our idea is
to perform parts of a SOM algorithm at data sources, while intermediate results are
sent to the central compute node. Our approach for distributed clustering also opti-
mizes the structure of the SOM algorithm according to the type of data distribution:
horizontal or vertical.

The trade-off is that our approach requires additional computations on the data
sources. However, the amount of these computations is relatively low, so they can be
performed using even low-power devices, such as mobile phones and IoT devices.

A major challenge for parallelizing federal learning is the complexity of partition-
ing the whole amount of work between the data sources on the one hand and the
computing node on the other hand. Our general approach suggested in [7] addresses
the issues of distributing data and correctly combining the results obtained on differ-
ent data sources. In this paper, we show how our general approach from [7] can be
applied to the SOM algorithm. We develop and estimate two versions of the SOM
algorithm—batch and online—for horizontal and vertical data distributions.

Fig. 3 Variants of SOM algorithm applied to distributed data: a traditional MapReduce; b our suggested
approach

6204 I. Kholod et al.

1 3

4 Decomposition of SOM Algorithm

To deal with the SOM algorithm, we apply our general approach proposed in [7],
which is formally based, and covers a broad class of data mining algorithms. We use
capital letters for types and lowercase letters for variables and functions.

In our approach, a data mining algorithm is represented as a function taking a
data set d ∈ D as input and creating a mining model m ∈ M as output:

We represent a mining model m ∈ M as an array of elements ei, i = 0,… , v ∶

In the general approach, mining model’s elements describe knowledge (classifica-
tion rules, clusters and other) extracted by a data mining algorithm from a data set.
In case of the SOM algorithm, a model m is a SOM, represented as an array of
elements:

– e0 is index of the winner neuron (variable w in Fig. 2);
– e1,… , eu are Euclidean distances between current input vectors x(t) and neurons

n1,… , nu (variables �1 … �u in Fig. 2);
– eu+1,… e2u are neurons n1,… , nu (variables n1,… , nu in Fig. 2).

In the general case, we represent a data mining algorithm formally as the following
sequential composition of functions:

where ◦ is the associative composition operator applied from right to left.
In representation (6), function f0 ∶ D → M takes a data set d ∈ D as an argument

and returns a mining model m0 ∈ M . For the SOM algorithm, function f0 initializes
neuron’s weights (lines 1–5 in Fig. 2).

The next functions in the composition, ft, t = 1,… , n take the mining model
mt−1 ∈ M which is created by function ft−1 and return the updated mining model
mt ∈ M:

Functions ft, t = 1,… , n of type (5) are called Functional Mining Blocks (FMB).
For the SOM algorithm, the FMBs are as follows:

– f5 calculates Euclidean distance (line 11 in Fig. 2);
– f6 initializes the index of the winner (line 13 in Fig. 2);
– f8 selects the winner (lines 14–15 in Fig. 2);
– f11 corrects the weights of neurons (line 19 in Fig. 2).

Some steps of a data mining algorithm use data set d to change the mining model,
i.e., they take the data set d as additional argument:

(5)dma ∶ D → M

m = [e0, e1,… , ev]

(6)dma = fn◦fn−1◦… ◦f1◦f0

(7)ft ∶ M → M

6205

1 3

Parallelization of the self-organized maps algorithm for…

To use these functions in the composition (4), we exploit partial function application
with the fixed first argument: ft = fdt d . For SOM algorithm, FMB fd4 uses data set
d to calculate the sum of Euclidean distance (line 9 in Fig. 2);

In the general case, we invoke function fdt in a loop, in order to apply it to all
input vectors. We use loops over attributes and input vectors of the data set to pro-
cess the data iteratively. We use an asterisk to denote the input vector (e.g., d[j, ∗]
refers to the jth input vector) or the attribute (e.g., d[∗, k] refers to the kth attribute) in
a data set:

– loopc applies fdt to the attributes of d ∈ D , from index is till index ie :

– loopr applies fdt to the input vectors of d ∈ D , from index is till index ie :

The first four arguments are fixed for using loops in the composition (6).
To apply function ft to every neuron of the SOM m from index is till index ie , we

invoke it in the following loop: loopn is ie ft m = (ft m[u + ie])◦… ◦(ft m[u + is]) ,
where

The first four arguments are fixed to use loopn in the composition (6). Therefore, all
functions of the SOM algorithm are for each line as follows:

– f1 is the loop for the input vectors (lines 6–22 in Fig. 2):

– fd2 is the loop for neurons (lines 7–12 in Fig. 2):

– fd3 is the loop for the attributes (lines 8–10 in Fig. 2):

– f7 is the loop for neurons (lines 14–16 in Fig. 2):

– fd9 is the loop for neurons (lines 17–21 in Fig. 2):

(8)fdt ∶ D → M → M

(9)
loopc ∶ I → I → (M → M) → D → M → M

loopc is ie fdt d m = (fdt d[∗, ie])◦… ◦(fdt d[∗, is]) �

(10)
loopr ∶ I → I → (M → M) → D → M → M

loopr is ie fdt d m = (fdt d[ie, ∗])◦… ◦(fdt d[is, ∗]) �

(11)loopn ∶ I → I → (M → M) → M → M

f1 = loopr 1 z (fd9 ◦ f7 ◦ f6◦ fd2);

fd2 = loopn 1 n (f5 ◦ fd3);

fd3 = loopc 1 p fd4;

f7 = loopn 2 n f8;

f9 = loopn 1 n f10;

6206 I. Kholod et al.

1 3

– fd10 is the loop for the weights of neurons (lines 18–20 in Fig. 2):

The following composition of the functions represents the SOM algorithm:

5 SOM algorithm for distributed data

5.1 Parallelization for distributed data

Figure 4 represents a distributed storage that splits data set d among s sources [22]:

where data subset dh is located at the data source number h.
If data are located on different sources, then FMBs of type (8) can be executed on

them in parallel, which corresponds to parallel execution on a distributed memory.
In our general approach proposed in paper [7], we introduce function paralleled that

specifies parallel execution of FMBs on a system with distributed memory:

f10 = loopc 1 p f11;

(12)

som = fd1 ◦ f0 = (loopr 1 z(f9 ◦ f7 ◦ f6 ◦ fd2) d) ◦ f0

= (loopr 1 z (loopn 1 nf10) ◦ (loopn 2 n f8) ◦ f6 ◦ (loopn 1 n (f5 ◦ fd3)) d) ◦ f0

= (loopr 1 z (loopn 1 n (loopn 1 p f11)) ◦ (loopn 2 n f8) ◦ f6

◦ (loopn 1 n (f5 ◦ (loopc 1 p fd4))) d) ◦ f0

d = d1 ∪⋯ ∪ ds,

Fig. 4 Traditional distributions of data matrix: a horizontal; b vertical

6207

1 3

Parallelization of the self-organized maps algorithm for…

where function forkd can invoke FMBs in parallel on distributed memory:

and function copy yields copies of the initial mining model in disjunctive areas of
distributed memory for processing by FMBs in parallel:

Function join combines the mining models built by FMBs for disjunctive areas of
distributed memory:

where the union function takes elements of different mining models with the same
index and merges them to a single mining model’s element:

Function union is implemented depending on the structure of the elements.

5.2 Parallelizing SOM algorithm for different data distributions

Assuming that data sources are distributed, function fd2 from (12) can be computed
on the source nodes by transforming the sequential form of the SOM algorithm into
a parallel form for a particular distribution of data.

There are two variants [23] of transforming (13):

1. using synchronization for every input vector by inserting function paralleled into
outer loop loopr for function fd2 (Fig. 5a):

2. using synchronization for the whole epoch when the paralleled function is applied
to the outer loop loopr (Fig. 5b):

Figure 5a shows the variant using synchronization for every input vector. Since there
are interactions between the data sources and the compute node for each input vector

(13)
paralleled ∶ [(M → M)] → M → M

paralleled [fr,… , fs] m = join m (forkd [fr,… , fs] m),

(14)
forkd ∶ [(M → M)] → M → [M]

forkd [fr,… , fs] m = [fr copy m,… , fs copy m],

(15)
copy ∶ M → M

copy m = [m[0],m[1],… ,m[v]].

(16)

join ∶ M → [M] → M

copym[mr,… ,ms] = [m�[0],… ,m�[g],… ,m�[v]],

where m�[g] =

{
m[g] if mi[g] = m[g] for all i = r..s

union m[g] [mr[g],… ,ms[g]] otherwise

(17)union ∶ E → [E] → E.

(18)sompar1 = (loopr 1 z(f9 ◦ f7 ◦ f6 ◦ ����������[fd2]) d) ◦ f0

(19)sompar2 = (����������[loopr 1 z(f9 ◦ f7 ◦ f6 ◦ fd2)] d) ◦ f0

6208 I. Kholod et al.

1 3

(sending intermediate results to the computing node and sending back the general-
ized model), this approach is slow and generates high network traffic. This variant
corresponds to the online version of the SOM algorithm.

Figure 5b depicts the variant using synchronization for each epoch. In this case,
the network traffic is minimal (because interaction happens only once for an epoch
after finishing the epoch analysis on the data source). Combining weights is per-
formed after the analysis of the epochs on all data sources is finished. This vari-
ant corresponds to the batch version of the SOM algorithm: it updates the neuron
weights of SOM for the whole epoch, rather than for each input vector.

For the horizontal distribution of data and synchronization for every input vector,
function join cannot combine models created by FMB fd2 at different data sources.
The FMB fd2 calculates the Euclidean distances (elements e1,… , eu in model m)
between the current input vector at data source and each neuron. Function join
receives these distances from different data sources and has no criteria to select cor-
rect distances for finding the winner neuron by FMB f6 . Hence, synchronization for
every input vector cannot be implemented with horizontally distributed data.

Fig. 5 Distributed execution of the SOM algorithm for distributed data: a with synchronization for each
input vector; b with synchronization for whole epoch

6209

1 3

Parallelization of the self-organized maps algorithm for…

If synchronization is performed for the whole epoch, we invoke function union
(17) after processing all input vectors at data sources. It calculates the weights of the
neurons with the same indices from different data sources:

where mr , r = 1..s is a SOM built at rth data source; function � calculates the total
weight, which, for example, is computed by averaging:

The variant with synchronization for each epoch corresponds to the batch version
of the SOM algorithm, as function union updates the neuron weights after process-
ing all input vectors on the data sources. Therefore, the result of the batch version
of SOM may differ from the online SOM version in which the update of weights is
performed after processing each vector. However, this difference does not mean a
decrease in accuracy, because even in the online SOM version different results may
be obtained for different arrival orders of the input vectors. It is rather important that
the obtained clusters are similar, which is demonstrated in our previous work [23],
as well as by other authors [11–16].

If data are distributed vertically and synchronization is done for each input
vector, then function fd4 returns the Euclidean distance between input vector x(tj)
and neurons ni, i = 1..u in parts of the subset dh, p = 1..s:

The total distance can be calculated by function union by summarizing:

Though for Euclidean distance, the sum of the parts is not equal to the total distance:

however, the inequality relation is still preserved for this function union:

Therefore, we can select the winner neuron correctly. This results in the parallel
implementation of the SOM algorithm for vertically distributed data with synchroni-
zation for each input vector. Another possibility is to perform synchronization for a
whole epoch. SOM contains neurons which have weights that are partially calculated

unionm[u + 1] = �(m1[u + 1].�,… ,ms[u + 1].�1),

�(m1[i].�,… ,ms[i].�1) = (m1[i].� +…+ ms[i].�1)∕s

m1[i] =

√√√√ g∑
k=1

(m[u + i].�k − xk(tj))
2;… ;

ms[i] =

√√√√ p∑
k=r+1

(m[u + i].�k − xk(tj))
2

union m[i] = m1[i] +… + ms[i].

m1[i] +… + ms[i] ≠

√√√√ p∑
k=1

(m[i].�k − xk(tj))
2

if m[i] < m[i + 1] then (m1[i] +… + ms[i]) < (m1[i + 1] +… + ms[i + 1]).

6210 I. Kholod et al.

1 3

at each data source for the corresponding attributes. For example, for neuron ni the
following weights are calculated at different data sources:

Therefore, function union for each neuron must combine weights as follows:

Thus, we obtain a parallel implementation of the SOM algorithm with synchroniza-
tion for whole epoch on vertically distributed data.

The results of comparing different variants of synchronization for SOM are sum-
marized in Table 1.

In summary, by applying our general approach to the SOM algorithm, we develop
two versions of federated learning on data sources—the online and batch version.
Each version has their advantages and disadvantages [12], so we analyzed them both
for the two practical data distributions—horizontal and vertical.

Our analysis shows that, for the horizontal data distribution, only the batch SOM
algorithm can be used, because for the online version we cannot choose a common
winner neuron for input vectors on different data sources. For the vertical data distri-
bution, both methods are applicable. However, formal analysis shows and our exper-
iments in the next section confirm that the online version implies a higher network
traffic and, therefore, longer execution time.

6 Experimental evaluation

In this section, we describe the distributed implementation of the SOM algorithm
[24] using the Java-based library XelopesFL [25]. We use this implementation for
the experimental evaluation described in the following. All experiments described in
this section can be reproduced using our library version in [24, 25].

In our experiments, the data source nodes are as follows: CPU Intel Xeon (4
physical cores), 2.90 GHz, 4 Gb. The compute node contains: CPU Intel Xeon (12
physical cores), 2.90 GHz, 4 Gb. The data sources are connected to the computa-
tional node by a local network with bandwidth 1 Gbps.

m1[u + i].�1 ≠ 0,… ,m1[u + i].�g ≠ 0,m1[u + i].�g+1 = 0,… ,m1[u + i],�p = 0,

…

ms[u + i].�1 = 0,… ,ms[u + i].�r ≠ 0,ms[u + i].�r+1 ≠ 0,… ,ms[u + i],�p ≠ 0.

union m[u + i] = [m1[u + i].�1,… ,m1[u + i].�g,… ,ms[u + i].�r+1,… ,ms[u + i].�p].

Table 1 Using different ways of synchronization for different types of distribution

Data distribution Version of SOM algorithm Applicable Run time Traffic

Horizontal Online (sompar1
H

) No – –
Vertical Online (sompar1

V
) Yes Slow High

Horizontal Batch (sompar2
H

) Yes Fast Low
Vertical Batch (sompar2

V
) Yes Fast Low

6211

1 3

Parallelization of the self-organized maps algorithm for…

We use the data set generated on the basis of a Gaussian distribution with pre-
determined centers of the clusters. Each value in our data set can be viewed as
independent according to one-dimensional distribution, so the input vectors are
independent.

In our experiments, we evaluate SOM with 15 neurons (width = 3, height = 5).
While this allows for a relatively low amount of computations, this amount still
suffices to identify three clusters on data. For parameter “neighborhood of the
learning” we assign the constant value � = 1 , which corresponds to the “Winner
Takes All” (WTA) configuration of SOM, and it also accelerates computations.

As shown in Table 2, data set is divided into two and four parts by input vec-
tors (to simulate horizontal distribution) and by attributes (to simulate vertical
distribution).

In Fig. 6a, we report the execution time for horizontal and vertical distributions
of data. The comparison is shown for the parallel SOM algorithm adapted to hori-
zontally (sompar2H) and vertically (sompar1V and sompar2V) distributed data.
We observe that the execution time of sompar2H , sompar1V and sompar2V for
distributed clustering at data sources is lower than for clustering at a single data
warehouse. The measurements also show that the execution time of sompar1V
(with synchronization for every input vector) is longer than the run time of other
variants. The reason is the large number of interactions between data sources and

Table 2 Distributed data sets

Type of distribution Number of
distributed data
sources

Number of input
vectors in each data
source

Number of attributes
in each data source

Size of each
data set (Gb)

Horizontal 4 4 ∗ 106 100 1
Vertical 4 16 ∗ 106 25 1
Horizontal 2 8 ∗ 106 100 2
Vertical 2 16 ∗ 106 50 2
Single data warehouse 1 16 ∗ 106 100 4

Fig. 6 Experiments with parallel SOM algorithm: a execution time; b network traffic

6212 I. Kholod et al.

1 3

computing node (many invocations of paralleled function) that increase the over-
head of the distributed execution.

The differences among the variants are increasing with larger source nodes. We
explain this by the higher number of invocations of copy and join functions for the
distributed algorithm on a higher number of data sources.

Figure 6b shows a comparison of the network traffic for both types of data dis-
tribution and variants of parallel SOM algorithm. The traffic is higher for variant
sompar1V with synchronization for every input vector. As with the execution time,
network traffic is also higher when gathering data in a single data warehouse. This
is because the volume of SOM that is transferred in our parallel implementation
is much smaller than the volume of all data that are transferred in the traditional
implementation.

In Fig. 6, we observe that, with an increasing amount of data, there will be a
larger difference in the execution time (Fig. 6a) and network traffic (Fig. 6b) between
parallelized federated learning and the version with a single data warehouse. The
difference grows because of the increasing volumes of data transferred from data
sources toward a single data warehouse, while the size of SOM communicated in
federated learning does not depend on the data size. Differences in execution time
(Fig. 6a) and network traffic (Fig. 6b) between the versions with synchronization
for every input vector (variant sompar1v) and with synchronization for every epoch
(variants sompar2h and sompar2v) also grow with the increasing amount of data,
because of the growing number of interactions between the data sources and the
computing node in the version with synchronization for every input vector (due to
the higher number of input vectors).

7 Conclusion

This paper proposes a novel approach for optimizing the parallel implementation of the
SOM clustering algorithm. Our approach formally transforms a high-level representa-
tion of a SOM algorithm into a parallel implementation that performs major calcula-
tions at the data source nodes, rather than transferring data for processing to a central
computing node. We show that our approach is well suited for the technology of feder-
ated learning that is currently widely used for multilayer artificial neural networks.

We analyze the two possibilities of distributed federated learning—online and
batch SOM algorithms. Each of the versions has advantages and weaknesses; there-
fore, we have considered their implementation for different kinds of data distributions
between the data sources: horizontal and vertical. Our analysis confirmed by experi-
ments shows that, for the horizontal data distribution, we can use only the batch SOM
algorithm. For the vertical data distribution, our analysis shows and experiments con-
firm that the online version has a higher network traffic and longer execution time.

Acknowledgements We are grateful to the anonymous reviewers whose very helpful comments allowed
us to significantly improve. This work was supported by the German Ministry of Education and Research
(BMBF) in the framework of project HPC2SE at the University of Muenster.

6213

1 3

Parallelization of the self-organized maps algorithm for…

References

 1. Dehghani Z (2019) How to move beyond a monolithic data lake to a distributed data mesh. https ://
marti nfowl er.com/artic les/data-monol ith-to-mesh.html

 2. Voigt P, Von dem Bussche A (2017) The EU general data protection regulation (GDPR). In: A prac-
tical guide, 1st ed. Springer International Publishing, Cham

 3. California Consumer Privacy Act Home Page. https ://www.capri vacy.org/
 4. Konecný J, Brendan McMahan H, Ramage D, Richtárik P (2016) Federated optimization: distrib-

uted machine learning for on-device intelligence. arXiv :CoRRa bs/1610.02527 (2016)
 5. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications.

ACM Trans Intell Syst Technol 10(2):12
 6. Kohonen T (2001) Self-organizing maps (Third Extended Edition), New York
 7. Kholod I, Shorov A, Efimova M, Gorlatch S (2019) Parallelization of algorithms for mining data

from distributed sources. PaCT-2019. Springer. LNCS, pp 289–303 https ://doi.org/10.1007/978-3-
030-25636 -4_23

 8. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, infer-
ence, and prediction. Springer

 9. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In Proceed-
ings of Operating Systems Design and Implementation. San Francisco, CA

 10. Gorlatch S, Cole M (2011) Parallel Skeletons. In: Padua D (ed.) Encyclopedia of parallel comput-
ing. Springer

 11. Lawrence RD, Almasi GS, Rushmeier HE (1999) A scalable parallel algorithm for selfor-ganizing
maps with applications to sparse data mining problems. Data Min Knowl Disc 3(2):171–195

 12. Fort J, Letrémy P, Cottrell M (2002) Advantages and drawbacks of the Batch Kohonen algo-rithm.
ESANN

 13. Weichel Ch (2010) Adapting self-organizing maps to the mapreduce programming paradigm. STeP,
pp 119–131. https ://doi.org/10.1524/97834 86853 162.119

 14. Sarazin T, Azzag H, Lebbah M (2014) SOM Clustering using spark-mapreduce. In: 2014 IEEE 28th
International Parallel & Distributed Processing Symposium Workshops, pp 1727–1734 https ://doi.
org/10.1109/IPDPS W.2014.192

 15. Dafonte C, Garabato D, Álvarez MA, Manteiga M (2018) Distributed fast self-organized maps for
massive spectrophotometric data analysis. Sensors (Basel) 18(5):1419. Published 2018 May 3. https
://doi.org/10.3390/s1805 1419

 16. Flavius LG, Jose Alfredo FC (2008) Parallel self-organizing maps with application in clustering dis-
tributed data. Neural Networks. IJCNN 2008. IEEE International Joint Conference on IEEE World
Congress on Computational Intelligence

 17. Li Q, et al (2020) Federated learning systems: vision, hype and reality for data privacy and protec-
tion. arXiv :abs/1907.09693

 18. Ingerman A, Ostrowski K (2019) Introducing TensorFlow Federated https ://blog.tenso rflow
.org/2019/03/intro ducin g-tenso rflow -feder ated.html

 19. Ryffel Th, Trask A, Dahl M, Wagner B, Mancuso J, Rueckert D, Passerat-Palmbach J (2018) A
generic framework for privacy preserving deep learning. preprint arXiv :1811.04017

 20. An Industrial Grade Federated Learning Framework https ://fate.fedai .org/
 21. Paddle Federated Learning https ://githu b.com/Paddl ePadd le/Paddl eFL
 22. Kholod I, Kuprianov M, Titkov E, Shorov A, Postnikova E, Mironenko I, Sokolov S (2019)

Training normal Bayes classifier on distributed data. Proc Comput Sci 150:389–396. https ://doi.
org/10.1016/j.procs .2019.02.068

 23. Kholod I, Rukavitsyn A, Reva N, Shorov A (2019) Distributed data clustering by neural network
algorithms. In: Proceedings of the 2019 IEEE Russia Section Young Researchers in Electri-
cal and Electronic Engineering Conference—IEEE. pp 249–253. https ://doi.org/10.1109/EICon
Rus.2019.86571 75

 24. https ://githu b.com/Aweth on/SOM-FuncB lock
 25. https ://githu b.com/iihol od/Xelop esFL

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://www.caprivacy.org/
http://arxiv.org/abs/CoRRabs/1610.02527(2016
https://doi.org/10.1007/978-3-030-25636-4_23
https://doi.org/10.1007/978-3-030-25636-4_23
https://doi.org/10.1524/9783486853162.119
https://doi.org/10.1109/IPDPSW.2014.192
https://doi.org/10.1109/IPDPSW.2014.192
https://doi.org/10.3390/s18051419
https://doi.org/10.3390/s18051419
http://arxiv.org/abs/abs/1907.09693
https://blog.tensorflow.org/2019/03/introducing-tensorflow-federated.html
https://blog.tensorflow.org/2019/03/introducing-tensorflow-federated.html
http://arxiv.org/abs/1811.04017
https://fate.fedai.org/
https://github.com/PaddlePaddle/PaddleFL
https://doi.org/10.1016/j.procs.2019.02.068
https://doi.org/10.1016/j.procs.2019.02.068
https://doi.org/10.1109/EIConRus.2019.8657175
https://doi.org/10.1109/EIConRus.2019.8657175
https://github.com/Awethon/SOM-FuncBlock
https://github.com/iiholod/XelopesFL

	Parallelization of the self-organized maps algorithm for federated learning on distributed sources
	Abstract
	1 Introduction
	2 The SOM algorithm
	3 Related work
	4 Decomposition of SOM Algorithm
	5 SOM algorithm for distributed data
	5.1 Parallelization for distributed data
	5.2 Parallelizing SOM algorithm for different data distributions

	6 Experimental evaluation
	7 Conclusion
	Acknowledgements
	References

