
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:5289–5318
https://doi.org/10.1007/s11227-020-03487-5

1 3

An architecture for scheduling with the capability
of minimum share to heterogeneous Hadoop systems

Abdol Karim Javanmardi1 · S. Hadi Yaghoubyan1,3 · Karamollah BagheriFard1,3 ·
Samad Nejatian2,3 · Hamid Parvin4,5,6

Accepted: 22 October 2020 / Published online: 5 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Job scheduling in Hadoop has been thus far investigated in several studies. How-
ever, some challenges including minimum share (min-share), heterogeneous clus-
ter, execution time estimation, and scheduling program size facing Hadoop clusters
have received less attention. Accordingly, one of the most important algorithms with
regard to min-share is that presented by Facebook Inc., i.e., FAIR scheduler, based
on its own needs, in which an equal min-share has been considered for users. In this
article, an attempt has been made to make the proposed method superior to existing
methods through automation and configuration, performance optimization, fairness
and data locality. A high-level architectural model is designed. Then a scheduler is
defined on this architectural model. The provided scheduler contains four compo-
nents. Three components schedule jobs and one component distributes the data for
each job among the nodes. The given scheduler will be capable of being executed
on heterogeneous Hadoop clusters and running jobs in parallel, in which disparate
min-shares can be assigned to each job or user. Moreover, an approach is presented
for each problem associated with min-share, cluster heterogeneity, execution time
estimation, and scheduler program size. These approaches can be also utilized on its
own to improve the performance of other scheduling algorithms. The scheduler pre-
sented in this paper showed acceptable performance compared with First-In, First-
Out (FIFO), and FAIR schedulers.

Keywords  Scheduling · Hadoop · High-level architecture · Minimum share ·
Heterogeneous clusters

 *	 S. Hadi Yaghoubyan
	 yaghoobian.h@gmail.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03487-5&domain=pdf

5290	 A. K. Javanmardi et al.

1 3

1  Introduction

Big data is a field of computer science, addressing information analysis and meta-
data extraction methods from data sets. A number of software have been so far
developed for processing data, which can be structured, semi-structured, or unstruc-
tured [1]. In big data, the data is accompanied by the concepts of velocity, variety,
volume, and veracity. Data processing also includes some rows of the records that
can show a high statistical power, while data with high complexity can merely lead
to an increase in false discovery rate [2]. Data capturing, data storage, data analysis,
search, sharing, transfer, visualization, querying, updating, information privacy, data
source, scheduling methods, etc., are correspondingly among challenges to big data.

Various schedulers have been similarly designed for big data processing software
including Hadoop, developed by Doug Cutting as a set of open-resource projects.
Different algorithms have been additionally presented for scheduling Hadoop sys-
tems. However, these algorithms are facing several challenges, as described briefly
below:

1.	 Energy efficiency: Constant growth of information and high volume of generated
information have resulted in high-energy consumption in data processing centers.
More energy consumption has also led to higher processing costs.

2.	 Load balancing: Balancing load among information processing nodes can yield
decreased cost and job execution time.

3.	 Mapping scheme: Creating an efficient scheme and optimizing communication
costs between mapping (Map) and reduction (Reduce) steps are rarely seen in
the presented algorithms. A suitable scheme can thus increase the efficiency of a
scheduler.

4.	 Automation and configuration: Hardware configuration and use of algorithms
working better with this configuration can boost the efficiency of a scheduler.

5.	 Optimized data shuffling: Cutting the input and output of a disk at this step and
ultimately reducing execution time leads to higher efficiency.

6.	 Performance optimization: Lack of support for overlapping and pipelining at the
Map and Reduce steps has given rise to poor performance in Hadoop systems.
Therefore, re-using previous results can eliminate this problem to some extent.

7.	 Fairness: Assigning resources to jobs during Map and Reduce steps can provide
a good response time for light jobs in a fair manner. In most presented algorithms,
Reduce step does not start until Map step is finished.

8.	 Data locality: Smaller distance between nodes, performing processing, and ones,
wherein data are stored, will lead to higher efficiency and lower job execution
times.

9.	 Synchronization: As Reduce step is subsequent to Map step, performance of
Hadoop cluster decreases in environments wherein nodes are heterogeneous due
to the presence of a node with low efficiency.

If the timing of each task is determined before execution, a scheduling policy
can be designed that can have high performance in most of the above-mentioned

5291

1 3

An architecture for scheduling with the capability of minimum…

cases. To this end, numerous efforts have been thus far made to estimate execution
times (see Sect. 2). Some of these attempts have made use of probabilistic methods
to estimate execution times. Estimation errors, complex calculations, and high com-
putational overhead have been also among problems facing probabilistic methods.
Some other efforts have further estimated execution times by saving the history of
previous schedules. Replacing old histories with new ones, use of memory to keep
a history of scheduling, as well as high overhead has been some problems with this
method. On the other hand, minimum share (min-share) is required in some appli-
cations. In Hadoop systems, FAIR scheduler has been designed to create minimal
sharing between users, given that, in some recent needs, a min-share is required for
the jobs. This article tries to solve the above problems. An architectural model is
designed to improve existing challenges. The proposed model uses the full capac-
ity of the clusters and creates a load balance based on the power of each node. It
considers fairness in the scheduling. It introduces a new scheduling configuration
with a three-layer architecture. Finally, the proposed architectural model achieves
the main goals of scheduling and increases performance and locality. A scheduler is
also designed. The scheduler ensures a minimum of sharing between users and jobs.
The innovations of this article are as follows:

1.	 An architectural model is defined and developed for scheduling. This model per-
forms scheduling at three levels: user system, scheduler server, and data nodes
running tasks.

2.	 A basic unit is defined and this basic unit is used in scheduling development. The
base unit is a measure of the performance of systems in the scheduling process.

3.	 A scheduler is defined and developed. This scheduler estimates the job execution
time in the heterogeneous Hadoop clusters with low overhead and high accuracy.

4.	 The designed scheduler has the ability to share resources between users or jobs
in the heterogeneous Hadoop clusters. This scheduler is able to ensure minimal
sharing of resources between users or jobs.

5.	 Three algorithms have been designed for scheduling in the user’s system, sched-
uling server and data nodes executing tasks. An algorithm is also designed to
distribute data among data nodes based on performance.

6.	 The designed scheduler is evaluated with standard Hadoop algorithms (FIFO and
FAIR) in real and simulated Hadoop environment.

This article is organized as follows: Sect. 2 presents the related work. Section 3
describes the Hadoop clusters and its parameters. Section 4 explains the importance
of the base unit used in scheduling and the reason for its use. In Sect. 5, the designed
scheduling system is defined and explained. This scheduler is designed on the heter-
ogeneous Hadoop clusters, and its design uses the base unit described in Sect. 4. In
Section 6, the designed scheduler is evaluated by standard Hadoop algorithms. Sec-
tion 7 is the summary and finding. Finally, Sect. 8 is the conclusion and future work.

5292	 A. K. Javanmardi et al.

1 3

2 � Related work

There have been quite a few efforts in the field of scheduling a set of jobs for
execution on several systems. In the following, some recent ones are presented.

Genetic algorithm based on random key encryption had been used in [3] for
assigning heterogeneous jobs to unrelated parallel batch processing machines. In
[4], jobs had been divided into some families and then scheduled for execution on
a single batching machine. An enhanced container scheduler (ECSched) had been
also proposed in [5] for scheduling simultaneous container requests on hetero-
geneous clusters with resource constraints. For scheduling, capacities had been
accordingly formulated as a minimum cost flow problem (MCFP) and the con-
tainer requirements had been presented using a diagram-specific data structure
(i.e., flow network). In [6], a scheduler had been introduced for executing jobs
with deadlines and the data had been released on parallel machines with limited
working capacity, employing the branch-and-price solution approach. A fault-tol-
erant job scheduling had been similarly presented in [7], and the given model had
been utilized for multi-hybrid job scheduling.

In the following, different scheduling methods in Hadoop systems are
reviewed. For this purpose, first, the most famous scheduling algorithms in
Hadoop systems and their features are briefly presented. Then, some efforts made
in the field of scheduling in this system are illustrated.

•	 FIFO Scheduler: The default scheduler of Hadoop is FIFO, in which jobs can
be chosen for execution according to their arrival time. In this type of schedul-
ing, jobs are usually mapped to a node in the same rack [8–16].

	  Advantages: In the simplest type of this scheduler, jobs are executed in the
same order as they arrive.

	  Disadvantages: This scheduler is not effective in heterogeneous environ-
ments. It also damages locality because tasks of different jobs cannot be
assigned until the first job schedules all its mappings. Response time and
locality of small and big jobs are also different. Moreover, it does not pay
much attention to resource assignment balancing between small and big jobs.

•	 FAIR Scheduler: Presented by Facebook Inc., this scheduler assigns an equal
share of resources to each job. This is fulfilled by creating a pool consisting of
a group of jobs based on user identifiers (IDs). If a pool user sends many jobs,
it will be limited by the scheduler [8–14, 16].

	  Advantages: Fairness and re-assignment of dynamic resources, quick
response to small jobs, as well as ability to fix the number of running jobs for
each user and pool can be mentioned as the main positive points concerning
this scheduler.

	  Disadvantages: Complex settings, not considering weight of each job in
each pool, unbalanced performance in each pool, and limited number of run-
ning jobs in each pool are some weaknesses cited for this scheduler.

•	 Capacity Scheduler: This scheduler was presented by Yahoo Co. whose goal
is to maximize resource utilization and efficiency. In this scheduler, a queue

5293

1 3

An architecture for scheduling with the capability of minimum…

is used instead of a pool. Each queue is also assigned to an organization.
Resources are then assigned to queues. Each organization can only access its
own queue. Minimum capacity is further guaranteed for each queue. After
running jobs are terminated, resources are assigned to a new job. An organiza-
tion can correspondingly access any extra capacity, not being used by others.
This affordably provides resilience for organizations [8, 11, 12, 16].

	  Advantages: Among the benefits of this scheduler are increased resource effi-
ciency and throughput, capacity not used in jobs reused in queues, as well as
supporting hierarchical, resilient, and operational queues.

	  Disadvantages: High and extreme complexity, difficulty in choosing suitable
queues, as well as uncertainty about stability and fairness for queues are among
drawbacks facing this scheduler.

•	 Late Scheduler: The main objective of this scheduler is optimizing performance
and decreasing job response times. Small jobs are also answered quickly, but
big ones are executed in a slow manner, leading to increased background jobs,
higher processor workload, unavailable resources, etc. This scheduler also sup-
ports homogeneous clusters by default [8, 11, 12, 14, 16].

	  Advantages: Performance and response time optimization as much as possible
is one of the major advantages of this scheduler.

	  Disadvantages: It does not guarantee reliability and suffers from lack of fair-
ness in assigning resources to jobs.

•	 Delay Scheduler: This scheduler is similar to FAIR scheduler; however, a time
delay is considered in it in order to boost locality. If job mapping is not to a local
node, it also waits for one D and executes a local job. In the case of unavail-
ability of a local job, it waits as long as a D. If a local job is not still available,
non-local job mapping is carried out. Enhancing the value of D also raises the
probability of hunger and a small value for D yields decreased locality [12, 15].

	  Advantages: Use of simple and low overload in complex computations for
solving locality problem is a positive point regarding this scheduler.

	  Disadvantages: This scheduler lacks efficiency, is not suited for long jobs,
needs manual setting of waiting time, and does not consider locality at Reduce
step.

•	 Deadline Scheduler: This scheduler has been designed based on a deadline and
increased system use. The deadline is also set by the user. Moreover, it is deter-
mined using the execution cost model of the job. Input data dimension, data dis-
tribution, and processing section (i.e., Map/Reduce) execution time parameters
are utilized for calculating the deadline.

	  Advantages: Increased efficiency and much focus on optimizing Hadoop are
among the advantages of this scheduler [8, 11, 12].

	  Disadvantages: In this scheduler, nodes must be homogeneous and there is no
support for limitations specified by users for each job.

•	 Resource-Aware Scheduler: This scheduler has been presented to improve
resource utilization. It also works unlike FAIR, Capacity, and FIFO schedulers
wherein managers first assign jobs to a queue and then resources are assigned
to the jobs in the queue. In this scheduling, various resources like network, stor-
age, central processing unit (CPU), input/output (I/O), and disks are shared in an

5294	 A. K. Javanmardi et al.

1 3

effective manner. Scheduling is correspondingly completed through two master
and slave nodes. Besides, job tracker operation is carried out in the master node,
while the task tracker operation is fulfilled in the slave one. The job tracker also
keeps the tasks assigned to each task tracker, state of the tasks, and the queue
where the running jobs are stored. The task tracker is responsible for executing
jobs with maximum number of available slots. Likewise, the scheduler calculates
the total number of slots dynamically [12].

	  Advantages: Increased performance, improved job management, and high effi-
ciency have been mentioned as the positive points of this scheduler.

	  Disadvantages: Pre-emptive action or priority is not supported at the Reduce
step in this scheduler, and it needs extra capabilities for managing bottlenecks.

•	 Matchmaking Scheduler: The objective of this scheduler is to enhance locality
for job mapping. Each node also executes local jobs. Nodes that do not have a
local job send the heartbeat signal to the main node and then wait for one heart-
beat. After waiting for a heartbeat and being exposed to lack of a local job, they
execute a non-local job [12, 15].

	  Advantages: One of the main benefits of this scheduler is increased locality
and efficiency.

	  Disadvantages: This scheduler does not consider rack locality, and it needs
configuration parameter that leads to algorithm complexity.

In [17], a history of work carried out on Facebook Inc. and Yahoo Co. had been
reviewed and categorized into some classes based on their execution time param-
eters and system states at the moment of job execution. These classes had been used
for estimating execution time of new jobs and assigning jobs to resources. In [14],
racks had been used for grouping nodes with regard to CPU power and I/O of each
system for assigning any CPU bound or I/O bound job. Burst buffer had been also
employed in [18] for managing and scheduling I/O bound jobs. In [11], scheduling
had been optimized by considering the number of data replications as a variable
for each job. Besides, there had been attempts to augment locality in [15]. To this
end, clustering had been used for putting existing nodes into clusters. For cluster-
ing, the mean execution time and the free and used memory parameters had been
applied. In [19], existing nodes had been classified based on their history using the
genetic clustering method. In [20], scheduling service quality had been improved
in distributed systems via presenting the Quality-Driven Scheduling for Distributed
Machine Learning. The Bayesian algorithm had been also employed in [13] for exe-
cution time estimation in order to improve scheduling in Hadoop systems. By imple-
menting famous scheduling methods in Hadoop systems in [21], batch programs had
been further tested. In [22], a high-performance architecture had been correspond-
ingly presented for scheduling heterogeneous Hadoop clusters to decrease energy
consumption. In [8], a scheduling algorithm with time limits had been introduced
for stable calculations in the Hadoop environment. In [10], quick failure recovery
had been achieved in Hadoop clusters using failure-aware scheduling. Moreover, a
cost-efficient scheduling had been utilized in Hadoop clusters in [23] and an algo-
rithm with the ability to predict job execution times had been presented in [16] for
scheduling in Hadoop.

5295

1 3

An architecture for scheduling with the capability of minimum…

As mentioned above, the proposed scheduling methods have problems and
weaknesses. These include the following:

–	 Some methods execute one task at a time, and they are not able to perform
parallel tasks. Due to the large volume of data processing, tasks must be per-
formed in parallel.

–	 Some methods can only schedule jobs on homogeneous clusters with the same
systems. The efficiency of these schedulers on heterogeneous systems is very
low.

–	 Estimating execution time is one of the most important challenges of schedul-
ing. Estimating execution time on heterogeneous systems with different per-
formance is very complex. Some methods are not able to estimate execution
time. These methods assume that execution time estimates are available for
each job. Another group of schedulers use probabilistic methods to estimate
execution time. These methods require high calculations or they are not very
accurate. Another category of schedulers using job histories. These methods
maintain a large volume of records.

–	 Some methods have a high workload on scheduling servers. Increasing sched-
uling performance increases the workload on scheduling servers.

–	 For some applications, a minimum share for each job or user must be guar-
anteed. Many schedulers do not guarantee a minimum share. Some existing
methods guarantee a minimum share. But these methods give the minimum
share to the job or the user, not to both.

–	 Some methods do not consider fairness. Observing fairness among jobs or
users increases efficiency.

–	 Many methods only deal with jobs and do not pay attention to the distribution
of job data between Hadoop clusters. Good data distribution increases effi-
ciency and locality.

To solve the above, an architectural model is presented in this article. This
model is designed to:

–	 This model executes jobs in parallel.
–	 It can be run on homogeneous and heterogeneous clusters. This model uses a

base unit and considers heterogeneous clusters as a homogeneous cluster. This
reduces the complexity of runtime estimation and scheduling.

–	 It defines a basic system. This system is used to estimate the execution time
of jobs. Each computational system is given a performance factor. To do
this, a category containing one or more specific jobs is selected. Each system
must run a batch before being added to the Hadoop cluster. The coefficient of
each system is calculated based on the average execution time obtained. Only
execution time is maintained based on the base system to store job histories.
Therefore, there is no need to maintain the number of jobs in the system and
the status of systems within the cluster for job histories. This greatly reduces
the space required to store job histories.

5296	 A. K. Javanmardi et al.

1 3

–	 It reduces the workload of scheduling servers by performing part of the schedul-
ing on the user’s system.

–	 It can guarantee a minimum share for each job or user based on system require-
ments.

–	 It considers fairness in scheduling.
–	 Job scheduling is consistent with the distribution of data jobs across data nodes.

The main purpose of designing this architectural model is to increase perfor-
mance and locality. The architectural model is designed in such a way that any
scheduling policy can be implemented with a slight change. The designed architec-
tural model is expressed in Sect. 5.

3 � Preliminaries and Hadoop system definition

The main objective of designing Hadoop is to quickly store and process a large
amount of information. For this purpose, a storage section called Hadoop Distrib-
uted File System (HDFS) and a processing section (namely, Map/Reduce) have been
developed. For quick information storage and processing, Hadoop additionally uses
a cluster comprised of n computational nodes. In Hadoop, computational nodes are
also called data nodes. A cluster with n data nodes is thus displayed as follows:

In most Hadoop systems, each CPU core in each data node is recognized as a
slot. Therefore, each data node has one storage unit and a set of slots:

In case s is the number of slots inside data node DNj, the set of slots pertaining to
data node DNj are represented as follows:

Besides, each slot has an execution rate (ER) and the ERs of the slots in a data
node are equal.

memj refers to the memory unit of data node DNj and has two capacity and data
retrieval rate (RR) properties. Data RR of a data node is the speed at which the
data is read from the storage unit of that data node. If f is the number of files in the
Hadoop system, its set of files is represented as follows:

Hadoop also breaks files down into big blocks (called slices) and consequently
distributes them among the data nodes of the cluster. Each file is then divided into
equally sized slices.

Cluster =
{

DN1,… , DNn

}

DNj =

(

sltsj, memj

)

sltsj =
{

slt
j

1
,… , sltj

s

}

Files =
{

F1,… ,Ff

}

5297

1 3

An architecture for scheduling with the capability of minimum…

In a Hadoop system, the size of data blocks is fixed and pre-defined. Therefore,
the size of each slice is equal to that of the data blocks in the Hadoop system (Slc.
size = Bsize). The number of slices (value l) for each file is correspondingly obtained
as follows:

Fsizei is the size of file Fi and Bsize denotes the size of data blocks in the Hadoop
system.

Likewise, the set of users who use a Hadoop system is represented as follows:

where N represents the number of users. The set of jobs of user i is also called Jobsi,

wherein m is the number of jobs of user i and jdi shows the dth job of user i.
Datad

i also represents a set of files known as the required data for the execution of
dth job of user i. Average ER of job jd on data node DNj is further obtained from the
reverse of its mean execution time.

Schedulers in Hadoop systems to schedule jobs use parameters like priority, min-
share, locality, etc. In this respect, priority is an integer number given to a job by
the user or the scheduler and shows the importance ratio of that job. Moreover, the
number of slots assigned to each job at any point in time is determined by the sched-
uler and based on its policy. The minimum number of slots that must be assigned by
the system to user i for job d at any given point in time is called the min-share and is
represented as minshrd

i. Typically, the set of user’s jobs in Hadoop systems, which
are currently in use, is dynamic. This means that the set of jobs belonging to user i
at time t1 is different from time t2. For data processing, the Map/Reduce section of
the Hadoop system is also utilized. This section performs processing in parallel. In
Map/Reduce, each job is also executed during two Map and Reduce steps. There-
fore, each job includes sets of Map tasks and Reduce tasks.

If the Map tasks set of job d of user i has x tasks, it is represented as follows:

Fi =

{

slci
1
,… , slci

l

}

(1)l =
Fsizei

Bsize

Usrs =
{

U1,… ,UN

}

Jobsi =
{

ji
1
,… , ji

m

}

(2)MER
(

jd on DNj

)

=
1

ME
(

jd on DNj

)

ji
d
= ji

d
⋅Maps ∪ ji

d
⋅ Reduces

ji
d
⋅Maps =

{

ji
d
⋅ mt1,… , ji

d
⋅ mtx

}

5298	 A. K. Javanmardi et al.

1 3

in addition, if the Reduce tasks set of job d of user i includes y tasks, it is character-
ized as follows:

each Reduce task of job jd is also executed after Map tasks of job jd and it uses some
of their results.

4 � Importance and base unit definition

One of the challenges facing distributed computing systems is heterogeneity of
computing systems in clusters, which has caught a lot of attention in scheduling
Hadoop systems. Since jobs are executed in parallel and on several systems with
different performances in Hadoop systems, calculating execution time of a job
becomes a difficult task. In case the scheduling policy permits the execution of
various jobs in parallel, the situation becomes much more complicated because
the execution time of a job changes as the system status and the number of free
slots vary at the time of its execution, such that a different execution time is
obtained at each execution of a job. In case of a good estimation for the execution
time of the jobs, scheduling jobs becomes more efficient. For this reason, in many
scheduling algorithms presented in this line, there have been efforts to estimate
the execution time of the jobs. Most proposed methods have been thus unique
to their investigated system. To solve this problem, a method is presented in this
paper so that the estimation of job execution times becomes independent of the
heterogeneity of the systems and their free capacity when the jobs are executed.

Here, a base unit is defined for execution time and the execution time of each
job is calculated accordingly. For this reason, the execution power of a system in
a time unit is considered as the base unit for execution time. Since slots are the
smallest processing units in Hadoop systems, one slot is considered as the base.
Now, any slot with a different performance can be measured relative to it. For
instance, in case a user’s job takes two-time units on the base slot and one-time
unit on another slot, it can be stated that the new slot is equivalent to two base
slots.

Having access to the number of slots used for a job, performance coefficient of
the slots relative to the base slot, as well as execution time of the job on each slot,
the execution time of the job can be now calculated relative to the base slot (as the
base unit). This execution time based on the base slot will not change by varying the
members of the utilized set of slots or their performance coefficient (it is assumed
that only the time when each slot is busy is considered). Contrary to this method,
converting the execution time of a job based on the base slot into the time it takes for
that job to be executed on an arbitrary set of slots is possible by having the perfor-
mance coefficient of those slots. In the following, the execution time of a job accord-
ing to the base slot as the base unit is considered and the execution time of a job is
estimated accordingly. This base unit is used in the presented scheduling.

ji
d
⋅ Reduces =

{

ji
d
⋅ rt1,… , ji

d
⋅ rty

}

5299

1 3

An architecture for scheduling with the capability of minimum…

5 � Proposed Hadoop scheduling system

The high-level architecture of the proposed scheduling system is illustrated in
Fig. 1. First, the workflow in the high-level architecture of the proposed system is
described, and later, the four components in this architecture are explained.

5.1 � Workflow in high‑level architecture of proposed system

First, the job scheduler unit on the user’s system obtains the estimated execution
time of the new job from the user process component. Then, it sends the new job
request to the job tracker, which subsequently declares the desire to receive the new
job by sending an identification code for the new job. After receiving the identifi-
cation code, the job scheduler unit on user’s system sends the new job along with
its estimated time to the job tracker. The job tracker also puts the new job in the
job queue and sends the acknowledgment message of the new job to the user. After
the acknowledgment message is received by the user’s system, a copy of the data
needed for executing the new job is sent from the user’s system to the HDFS. Next,
the HDFS executes the data partitioning process component. Moreover, the HDFS
distributes the received files between the nodes based on the results of the data par-
titioning process component. Task trackers also periodically report the state of the
slots to the job tracker. Therefore, the job tracker knows the number of free and busy
slots in the nodes (i.e., Map and Reduce slots). With the arrival of each new job or
the termination of a job, the job tracker executes the job scheduling process com-
ponent. By executing this component, each share of each job in the queue from all
the slots (namely, Map and Reduce slots) is determined. Once the quota of the jobs
in the queue is specified, the job scheduling process component assigns a new slot
quota to the jobs in the queue by calling the task scheduling process component. In
case the data required for the execution of a task is not available to the slot execut-
ing that task, data request is sent to the HDFS and it sends the required data to the
slot. Once job execution is done, the job tracker sends the job termination message
to the user’s system. This message contains the job execution time according to the

Create a job Estimate execution time of
the job by user process

User side:

Name node:
Job tracker launch the job

scheduling process
Job are received by name

node

Job data is sent to the component
data partitioning process in

HDFS.

Task scheduling process
sent tasks to data nodes

Data node: Tasks are received by task
trackers in data nodes.

Scheduling tasks according
to dependency, priority

Task Tracker data is updated and
data node status (data used, slots)

is sent to Job Tracker.

Fig. 1   Workflow in high-level architecture of proposed system

5300	 A. K. Javanmardi et al.

1 3

base slot. Completed job information is ultimately saved as a new record in the user
process component.

5.2 � User process

On user’s system, the estimated execution time of the job is also calculated before
being sent to the job tracker. As well, the job execution time estimate is obtained
using the algorithm for finding the nearest neighbors admissible. Algorithm 1 pre-
sents the algorithm for finding the nearest neighbors admissible. This algorithm is
located in the user process component, estimating the execution time of each job
through a data set consisting of the execution time of the finished jobs. To simplify
the algorithm, the number of different types of jobs is considered to be fixed and
predefined. This algorithm also creates a table for each different type of job and puts
the data pertaining to each type in its specific table. Moreover, each table contains
two columns with respect to the base slot: file size and execution time. For estimat-
ing the execution time of a new job, this algorithm firstly finds a table with the job
of the same type as the new job. Then, it selects k samples from the table, which is a
fixed number and is specified by the user by default. To increase the accuracy of the
execution time estimation, the algorithm does not consider the values with differ-
ences higher than the threshold value, as a positive number. A sample can only par-
ticipate in the job execution time estimation if its maximum size difference with the
new job is not more than the difference threshold value. Therefore, k samples with
the closest size to that of the new job and the size difference of each one with that of
the new job, not more than the difference threshold value, are chosen from the table.
In case the number of the selected samples is zero (k = 0), the algorithm chooses a
sample with the closest size to that of the new job (without considering the differ-
ence threshold value) and obtains the estimated time value using Eq. 3.

Datai is the size of sample i such that sample i is of the same type as the new
job and has the closest size to that of the new job among available samples and ETi
refers to the execution time of sample i. Otherwise, the number of the selected sam-
ples is more than zero (k > 0). Therefore, the average execution time of the selected
samples is employed for execution time estimation. Equation 4 presents how execu-
tion time estimation of the new job is carried out using k samples.

After the execution of each job, the job tracker sends the execution time of that
job with respect to the base slot to the users. Users also save the size of the file uti-
lized by the job and its execution time with regard to the base slot in their tables with
maximum size values. In case the table is filled, user’s system chooses two records
with the least size difference and removes them from the table before a new record

(3)EETnew =

Datanew

Datai
∗ ETi

(4)EETnew job =

∑k

i=0

Datanew job

Datai
∗ ETi

k

5301

1 3

An architecture for scheduling with the capability of minimum…

is added. Then, it calculates their average execution time using Eq. 4. It should be
noted that puts the calculated value as the execution time of the new record and their
average size as the size of the new record in the table.

Algorithm 1 Algorithm for finding admissible nearest neighbors

TD: The Threshold of Difference.
K: Number of selected samples with the least difference.
JT: Number of job types.
Tables[JT]: An array of tables where each table contains samples of one type of job.
When a new job (say jnew) arrives do:
Find a table from the Tables[JT] (say Tj) for jnew so that the type of samples in the table and the
jnew are the same.
Select K samples from Tj that has the nearest volume to jnew and consider as a set A.
Select a sample from Tj that has the nearest volume to jnew and consider as min.
k=K.
For each sample within the set A do

If |jnew.size-sample.size|>TD then
Remove it from A.
k=k-1.

End if
End for
If k=0 then

Estimate the execution time of the new job using Formula 3 and min.
Else

Estimate the execution time of the new job using Formula 4 and set A.
End if

5.3 � Data partitioning process

This component distributes the data required by the jobs between the data nodes.
Each user’s data is also distributed according to its execution rate on each data node
and its min-share. As an example, if a data node has a higher ER for job d, more of
the data of job d will be assigned to it. In case the data node memory is full, prior-
ity is with the job that has a higher min-share. To this end, if job d wants to store its
data in a data node and the memory of that data node is full, the data selects a job
with the lowest min-share and removes it from the data node. Then, the data of job
d is stored in the data node. Data node also gives the data pertaining to the removed
job to the HDFS, so that it can be re-distributed among the data nodes.

Algorithm 2 depicts data partitioning process. This algorithm firstly calculates
the execution time of each job on each one of the data nodes using Eq. 5.

where DNi is the data node i and EETb
d shows the execution time, estimate of job

jd calculated by user Ub. Csltsi and Nsltsi are also the coefficients and the number of

(5)ET
(

jb
d
on DNi

)

=

EETb
d

Csltsi ∗ Nsltsi

5302	 A. K. Javanmardi et al.

1 3

slots of data node i, respectively. Then, the affinity value of each data node is calcu-
lated using Eq. 6.

wherein wt is the time weight and ws represents the min-share weight. If it is
assumed that ws = 0 and wt = 1, affinity becomes the execution rate. minshrd

b is also
the min-share of job d of user b.

In case there are n data nodes, the total affinity of the data nodes for jdb is obtained
from Eq. 7.

The amount of data for each data node is further calculated as the ratio of the affinity
value of that data node relative to other data nodes.

wherein Datad
b refers to the amount of data required for executing job d of user b.

Besides, DNi·Data(jdb) specifies the amount of data from job d that must be stored
on data node i. Note that the min-share of a user on data nodes is identical. There-
fore, if the memory of data nodes does not get full, the affinity used in Eq. 8 dis-
tributes the data of a job among data nodes only according to the execution rate. If
the memory of data nodes gets full, the affinity of the jobs is compared with other
ones and the min-share affects selecting the priority of the jobs in that case (refer to
Algorithm 2).

Algorithm 2 Data partitioning process

jd
b: jd of the user b.

When data from the jd
b arrives do:

Calculate the execution time of the jd
b on all data nodes using Formula 5.

Calculate the affinity value of the jd
b on all data nodes using Formula 6.

Calculates the sum of affinities of the jd
b on all data nodes using Formula 7.

For each data node do
Calculate The amount of data that jd

b must store in the data node using Formula 8. (say dnew)
If the data node has free space to store dnew then

Save the dnew in the data node.
Else

Find the data in the data node whose job has the lowest affinity. (say dselected)
Send dselected to HDFS for distribution between data nodes.
Replace dnew with the dselected.

End if
End for

(6)Aff
(

jb
d
on DNi

)

= wt ∗
1

ET
(

jb
d
on DNi

) + ws ∗ minshrb
d

(7)TAff
(

jb
d

)

=

n
∑

i=1

Aff
(

jb
d
on DNi

)

(8)DNi ⋅ Data
(

jb
d

)

= Datab
d
∗

Aff
(

jb
d
on DNi

)

TAff
(

jb
d

)

5303

1 3

An architecture for scheduling with the capability of minimum…

5.4 � Job scheduling process

The job tracker uses the execution and waiting queues for scheduling jobs. The exe-
cution queue contains executing jobs, and the waiting queue is comprised of the jobs
waiting to be executed. The maximum size of the execution queue is also equal to
the total number of available slots in the system. Considering each job is received
by the job tracker and the execution queue is full or the sum of the min-share of the
jobs in the execution queue with the min-share of the new job is more than the sys-
tem’s total number of slots with respect to the base slot, the job is placed in the wait-
ing queue. Otherwise, the job is added to the end of the execution queue. Each job
is also removed from the execution queue after being executed. The slots are subse-
quently assigned to all the jobs in the execution queue. Upon assigning the slots to
each job at the Map and Reduce steps, the job’s min-share parameter and the ratio of
the execution rate of the job relative to the ER of other jobs in the execution queue
at that time are used. To simplify scheduling, Map and Reduce slots are simultane-
ously assigned to the jobs in the execution queue. Therefore, for each job, Eqs. 14
and 16 are run for Map and Reduce slots. In the following, the required calculations
are explained and the queue here means the execution queue.

Algorithm 3 presents the job-scheduling process. With the arrival of each new
job or its termination, this algorithm is executed. The job also enters the waiting
state if a new job is received and the number of jobs in the queue is more than the
total number of slots. Waiting state might further occur if sum of the min-share of
the jobs in the execution queue with the mini-share of the new job is more than the
total number of the slots in the system with respect to the base slot. The total num-
ber of the slots with regard to the base slot is calculated using Eq. 9.

n is the number of data nodes, Csltsi refers to the coefficient of the slots of data
node i, and Nsltsi represents the number of slots of data node i. Otherwise, the job
is added to the end of the execution queue. Then, the ER of the jobs in the queue is
calculated using Eq. 10.

EETd refers to the estimated execution time of job d calculated on user’s system
employing the user process components. If there are p jobs in the queue at moment
t, the total ER of the jobs in the queue at moment t is calculated using Eq. 11.

For each job in the queue, the job tracker calculates the number of slots that must
be assigned to that job. To do this, it firstly calculates the sum of the min-shares of
the jobs in the queue using Eq. 12.

(9)TNslts =

n
∑

i=1

Csltsi ∗ Nsltsi

(10)ERd =
1

EETd

(11)TERt
=

p
∑

i=1

1

EETi

5304	 A. K. Javanmardi et al.

1 3

min_shri shows the min-share of job i, and Tminshrt is the sum of the min-
share of the jobs in the queue at moment t. Then, it subtracts the sum of the min-
share of the jobs from the total number of the slots with respect to the base slot,
so that the number of the remaining slots from all the slots is determined (Eq. 13).

The number of the slots of each job is calculated using Eq. 14.

ANsltsd
t is the number of slots that must be assigned to job d at moment t.

Upon the termination of one job and its removal from the queue of jobs, the
job tracker divides the released slots between the jobs present in the queue if
there are no other jobs in the queue. The number of the free slots of the data
nodes at time t is calculated using Eq. 15.

FNsltsi
t represents the number of free slots in system i at time t. Then, the

share of each job in the queue from the free slots is determined and added to the
number of the allocated slots of each job.

ANsltsd
t+1 is the number of slots that must be assigned to job d at time t + 1.

TFNsltst refers to the total number of the free slots of the data nodes at time t.
ERd shows the ER of job d.

(12)Tminshrt =

p
∑

i=1

minshri

(13)RNslts = TNslts − Tminshrt

(14)ANsltst
d
= RNslts ∗

ERd

TERt
+minshrd

(15)TFNsltst =

n
∑

i=1

Csltsi ∗ FNsltst
i

(16)ANsltst+1
d

= TFNsltst ∗
ERd

TERt
+ ANsltst

d

5305

1 3

An architecture for scheduling with the capability of minimum…

Algorithm 3 Job scheduling process

p: Number of jobs in the execution queue.
TNS: Total number of slots in the system.
TNslts: Total number of slots in terms of the base slot in the system.
minshri: Minimum share of job i.
When a new job arrives or finish executing a job do:
If a new job (say jnew) arrives then

If p+1> TNS OR Tminshrt+minshrnew> TNslts then
Add jnew to waiting queue.
Return.

Else
Add jnew to execution queue.
p=p+1.
Calculate the execution rate of the jobs in the execution queue using Formula 10.
Calculate the total execution rate of the jobs in the execution queue using Formula 11.
Calculate the sum of the minimum shares of the jobs in the execution queue using Formula 12.
Calculate the number of remaining slots after assigning the minimum number of slots
required in the execution queue using Formula 13.
For each job in the execution queue do

Calculate the number of slots that must be assigned to the job using Formula 14.
End for
Call Task scheduling process algorithm to assigns slots to the jobs in the execution queue.

End if
Else

// finish a job (say jcompleted) in the execution queue.
Remove jcompleted from the execution queue.
p=p-1.
If waiting queue isn’t NULL then

Remove a job from the waiting queue and set it as jnew.
Call job scheduling process algorithm.
Return.

Else
Calculate The number of free slots of data nodes using Formula 15.
For each job in the execution queue do

Calculate the number of slots that must be assigned to the job using Formula 16.
End for
Call Task scheduling process algorithm to assigns slots to the jobs in the execution queue.

End if
End if

5306	 A. K. Javanmardi et al.

1 3

Algorithm 4 Task scheduling process

newsltsi: The number of new slots to be assigned to job i.
lastsltsi: The number of last slots assigned to job i.
Fslt: set of free slots. It is computed by Algorithm 3.
Asltsi: set of slots allocated to the job i.
When this algorithm is called do:
Select the jobs in the execution queue with a minimum share greater than zero and set as g.
Select the jobs in the execution queue with a minimum share equal to zero and set as e.
For each job in the g and then for each job in the e do

dif = newsltsi – lastsltsi.
Remove unexecuted tasks from the queue of slots in the set Asltsi and set as B.
If dif > 0 then

Select a number of free slots that have the closest coefficient to dif and add them to the set
of previously assigned slots (Asltsi).
Assign unexecuted tasks from set B to slots in the set Asltsi.

Else
Select a number of slots in set Asltsi that have the closest coefficient to dif and remove

them
from this set.
Assign unexecuted tasks from set B to slots in the set Asltsi.

End if
End for

5.5 � Task scheduling process

After specifying the number of the slots that must be assigned to each job in the
queue, the job tracker calls the task-scheduling process component, which assigns
the slots to the jobs in the queue according to the values calculated by the job
tracker. Algorithm 4 presents the task scheduling process.

First, the ID of the slots that must be assigned to each job is determined. This
component gives the slots to the jobs with the least min-share. Then, the remaining
slots are divided between the jobs without any min-share. This guarantees the min-
share being assigned to the jobs. To select the slots of the job among the available
slots, the slot with the minimum difference with the job’s share is mainly selected.
Afterward, the remaining slots are divided between the jobs without any min-share.
This guarantees the min-share being assigned to the jobs. For selecting the slots of a
job among available slots, the slot with the minimum difference with the job’s share
is selected first. Next, the ID of the slot is saved for the job and the slot is removed
from the set of available ones. The slot coefficient value is then subtracted from the
job’s share value. This action continues until the job’s share becomes zero, meaning
that if job i needs three base slots, it selects the slots from the available ones whose
coefficients add up to three or the sum of their coefficients is the closest number big-
ger than 3. After specifying the IDs of the slots of each job, the tasks are assigned
to the jobs. For the new job, its tasks are sent to the queue of the slots specified for
it. The tasks of each job are also divided into its slots according to the coefficient of
each slot relative to others, i.e., the faster the slot, the more the tasks assigned to it.

5307

1 3

An architecture for scheduling with the capability of minimum…

For each job being executed, the tasks in the queues of new and previous slots are
accordingly edited. For instance, imagine at time t1, job scheduling gives slots 1, 2
and 3 to job x. At time t2, job y enters the queue and job scheduling is re-executed
and specifies the share of each job. Upon the execution of job scheduling, slot 2 must
be taken from job x and then given to job y. Therefore, task scheduling removes the
unexecuted tasks of job x from the queue of slot 2 and divides them between slots 1
and 3 in accordance with their coefficients and puts the tasks of job y in the queue
of slot 2. When the number of the slots of a job is increased by the job tracker, task
scheduling can gather the unexecuted tasks from the queues of previous slots and
distribute them between the old and new slots after reprocessing.

6 � Experimental results

In this section, the results of implementing the proposed method and its compari-
son with conventional methods in simulated and real Hadoop environments are
presented. First, the properties of the simulation environment and its results are
expressed. Then, the results and the evaluation circumstances of the scheduling sys-
tem in the real environment are delineated. FIFO and FAIR scheduler have been
used to evaluate the proposed method. FIFO and FAIR are standard schedulers
in the Hadoop. FIFO is default scheduler in the Hadoop. This scheduler has been
implemented in the Hadoop. It is used in some applications. It is a standard to evalu-
ating proposed schedulers in the Hadoop [8, 10, 14, 17]. The FAIR Scheduler was
developed by Facebook as they needed to share the clusters between multiple users.
Facebook uses this scheduler. Due to the similarity of our proposed method with the
FAIR Scheduler, this Scheduler has been used for better evaluation.

6.1 � Simulation environment

For evaluation, the Map/Reduce Simulator MRSIM [24] has been thus far used to
simulate a Hadoop cluster, which is based on discrete-event simulation and mod-
els the Hadoop environment very well. In this paper, this simulator was extended
for measuring the proposed method. One component for users, one component for
scheduling based on the method and one component for sending jobs to the sched-
uler were also added to the MRSIM architecture. The JobTracker component in the
MRSIM was also altered.

For the simulation environment, a cluster including five heterogeneous data nodes
is defined. The properties of the data nodes are presented in Table 1. The bandwidth
between network components is 1Gbps. For generating workload, the Hadoop Map/
Reduce trace created in [21] is used. Table 2 outlines the results of this trace over six
months from May to October 2009. The number of users has been considered five
such that each job is sequentially assigned to a user, i.e., job 1 is labeled for user 1,
job 2 is labeled for user 2, etc. Accordingly, 100 jobs are sent to the system and the
types of jobs are the ones in Table 2. The count of jobs from each type based on its
ratio to all other jobs is calculated in Table 2. As well, Table 3 shows the min-share

5308	 A. K. Javanmardi et al.

1 3

of each job in Table 2. For all scheduling algorithms (FIFO, FAIR and the proposed
algorithm), the size of data blocks in Hadoop systems is set to 128 megabytes, which
is its default value in Hadoop 1.2.1. For the number of data replications, the default
system value of 3 is used. For the user process component, the size of the table on

Table 1   Experimental data nodes

Data nodes Slots number Slots Exec rate Mem capacity Mem retrieve rate

DN1 2 400 4 TB 9 Gbps
DN2 2 5 400 KB 40 Kbps
DN3 2 400 4 TB 9 Gbps
DN4 4 400 4 TB 9 Gbps
DN5 2 5 400 KB 40 Kbps

Table 2   Job categories in Facebook trace. Map time and Reduce time are in task seconds, e.g., 2 tasks of
10 s each are 20 task seconds [21]

Job categories Duration (s) Job Input Shuffle Output Map time Reduce time

Facebook trace
Small jobs 32 126 21 KB 0 871 KB 20 0
Fast data load 1260 25 381 kB 0 1.9 GB 6079 0
Slow data load 6600 3 10 kB 0 4.2 GB 26321 0
Large data load 4200 10 405 kB 0 447 GB 66657 0
Huge data load 18300 3 446 kB 0 1.1 TB 125662 0
Fast aggregate 900 10 230 GB 8.8 GB 491 MB 104338 66760
Aggregate and expand 1800 6 1.9 TB 502 MB 2.6 GB 348942 76736
Expand and aggregate 5100 2 418 GB 2.5 TB 45 GB 1076089 974395
Data transform 2100 14 255 GB 788 GB 1.6 GB 384562 338050
Data summary 3300 1 7.6 TB 51 GB 104 kB 4843452 853911

Table 3   Minimum share of job
types

Job types min_share
(num slots)

J1 1
J2 0
J3 0
J4 2
J5 2
J6 0
J7 1
J8 1
J9 0
J10 2

5309

1 3

An architecture for scheduling with the capability of minimum…

user’s system is set to 10 jobs and the difference threshold is 500 MB and k = 4. For
wt and ws, as the time weight and the min-share weight, values of 0.3 and 0.7, are
set, respectively.

6.2 � Simulation results

The results used in the charts are calculated from the average of ten outputs resulting
from simulations. At each run, the proposed method is compared with the FIFO and
FAIR algorithms (the version introduced in [9]). Figure 2 presents the average job
execution times for the algorithms based on the number of the completed jobs. The
results show that the proposed method has better average execution time compared
with other algorithms. This superiority is because the proposed method, unlike the
other two algorithms, can select the slots with higher performance from available
slots for the execution of the jobs. Another reason is how the data are stored. The
proposed method can distribute the data among data nodes based on their perfor-
mance and lead to a decrease in the time the data required by a job are not available
in the data node. Therefore, the execution time of the job reduces. As presented in
Fig. 2, the proposed algorithm and the FAIR algorithm can perform better than the
FIFO algorithm because of the parallel execution of the jobs. While there are small
jobs in the system, the difference between the average execution time of the FAIR
algorithm and the FIFO algorithm is high. With the arrival of big jobs and waiting
for small jobs due to the long-term allocation of the slots by big jobs, the execu-
tion time of short times increases. Thus, the average execution time of the FAIR
algorithm rises and approaches the FIFO one. However, due to parallel executions,
it can perform better. Because of assigning the slots to the jobs based on their ER,
the proposed method can solve the problem of the FAIR algorithm. For this reason,
small jobs are answered quickly and this can significantly affect the average execu-
tion time.

Figure 3 presents the average execution time of the schedulers. Considering
that the FIFO algorithm considers a simple method in scheduling jobs, it produces
a lower execution time. The time difference between the proposed method and the

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100

AV
ER

AG
E

JO
B

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

JOBS COMPLETED

FIFO FAIR Proposed

Fig. 2   Average job execution time for FIFO, FAIR n proposed method

5310	 A. K. Javanmardi et al.

1 3

FAIR algorithm is not very significant, and the FAIR algorithm presents a lower
time. The proposed method calculates the execution time of each job and sends the
job to the name node. In the name node, jobs are scheduled and slots are assigned
to them. The time shown in Fig. 3 includes all of these times. Given that one part
of the scheduling operation in the proposed method takes place on user’s system
and here the time of that operation is calculated, it can be stated that the proposed
method presents a lower time for the job tracker compared with the FAIR algorithm.
In Fig. 4, only the schedule performed in the name node is calculated. Due to the
fact that FAIR and FIFO algorithms do all the scheduling in the name node, their
time has not changed, but the proposed method has been reduced due to doing part
of the scheduling in the name node. Figure 5 shows the locality of the algorithms.
The locality of the proposed method can improve the FIFO algorithm by 3.3% on
average. As the proposed method divides the data among data nodes based on their
performance and uses this policy to assign jobs to data nodes, it presents a higher
locality.

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100AV
ER

AG
E

SC
HE

DU
LI

N
G

TI
M

E
(S

EC
)

JOBS COMPLETED

FIFO FAIR Proposed

Fig. 3   Average scheduling time for FIFO, FAIR n proposed method

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100

AV
ER

AG
E

SC
HE

DU
LI

N
G

TI
M

E
O

N
 N

AM
E

N
O

DE
 (S

EC
)

JOBS COMPLETED

FIFO FAIR Proposed

Fig. 4   Average scheduling time on name node for FIFO, FAIR n proposed method

5311

1 3

An architecture for scheduling with the capability of minimum…

6.3 � Real Hadoop system environment

In this section, the performance of the proposed method is evaluated via some
experiments on a Hadoop cluster and use of a real workload. Considering that there
are various limitations for evaluating a real Hadoop cluster, the results of this sec-
tion must be considered as a basis for verifying the practicality of the solution in real
systems. For evaluation, a small local Hadoop cluster with six nodes has been thus
far used. This cluster can be converted into a medium-sized one; however, six nodes
are used in this paper due to some limitations. The local cluster includes a master
node and five slave ones. The components are also connected to each other through
1 Gbps Ethernet. The information regarding the systems in the cluster is presented
in Table 4. The Micro-Benchmark workload has been so far used in the Hadoop sys-
tem, comprised of WordCount, Sort and TeraSort. These workloads are also widely
applied in Hadoop research, and they are compatible with the Map/Reduce system.
The data of the Micro-Benchmark workload has been similarly generated using the

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

PE
RC

EN
T

DA
TA

 L
O

CA
LI

TY

JOBS COMPLETED

FIFO FAIR Proposed

Fig. 5   Percent data locality for FIFO, FAIR n proposed method

Table 4   Hadoop evaluation environment

Node type Hardware configuration Hadoop configuration

Master node Intel core i7-6700HQ CPU @ 2.60 GHz * 8, 16 GB RAM,
1000 GB Disk space

8 map slots and
4 reduce slots

Slave node 1 Intel core i5-2430 M CPU @ 2.40 GHz * 4, 4 GB RAM, 500 GB
Disk space

4map slots and
2 reduce slots

Slave node 2 Intel core i3-4160 CPU @ 3.60 GHz * 4, 8 GB RAM, 1000 GB
Disk space

4 map slots and
2 reduce slots

Slave node 3 Intel core i7-6700HQ CPU @ 2.60 GHz * 8, 16 GB RAM,
1000 GB Disk space

8 map slots and
4 reduce slots

Slave node 4 Intel core i5-2430 M CPU @ 2.40 GHz * 4, 4 GB RAM, 500 GB
Disk space

4 map slots and
2 reduce slots

Slave node 5 Intel core i3-4160 CPU @ 3.60 GHz * 4, 8 GB RAM, 1000 GB
Disk space

4 map slots and
2 reduce slots

5312	 A. K. Javanmardi et al.

1 3

RandomTextWriter in the Hadoop system version 1.2.1. The size of the generated
files varies from 10 k to 4G. For the size of data blocks and the number of data
replications, default Hadoop values, i.e., 128 MB and 3, have been also utilized. For
evaluation, the Java Development Kit (JDK) version 8 has been used. The output of
the diagrams is the average of ten experiments. In scheduling systems presented in
Hadoop, min-share is given to either the job or the user. In this section, min-share is
given to the users (unlike the previous section). Assigning min-share to the user or
the job is also based on the policy of the organization or the company providing the
system (e.g., Facebook Inc. gives the equal min-share to users). Table 5 presents the
min-share for the users. For the parameters defined in Sect. 5.2 (that is, user process
component), the size of the tables on user’s systems is set to 10 jobs and the differ-
ence threshold to 500 MB and k = 4. In the beginning, a sample job is selected from
all three types of jobs. Then, the selected jobs are run on the system, considered as
the base one. It is better to reflect on the weakest system as the base unit, so that
fraction coefficients are not less than one. In the systems in Table 4, the weakest
system in terms of performance (namely, slave node 1) is taken into account as the
base. To find the weakest system, a sample job can be executed on them and their
execution times can be compared. This will determine the slot coefficient of each
system and the weakest one. The execution time of the jobs with respect to the base
slot is calculated using Eq. 17.

wherein ET is the execution time with respect to the base slot and Nsltsi shows the
number of slots available in system i. As well, ETi is the execution time of the job on
system i. Csltsi also represents the coefficient of the slots of system i with respect to
the base slot (since system i is the base and coefficient of its slots is one). The size
of these files and their calculated execution time is placed in user’s tables as the first
record. Values wt = 0.3 and ws = 0.7 are also set.

6.4 � Real environment results

Figure 6 illustrates the average job execution time for the algorithms in a real Hadoop
system based on the job types. According to Fig. 6, the proposed method has on aver-
age executed WordCount, Sort and TeraSort jobs by 45.58%, 45.39% and 41.33% faster
than the FIFO algorithm and the FAIR algorithm has been equal to 5.22%, 7.64%
and 6.16% faster than the FIFO algorithm, respectively. Figure 7 shows the average

(17)ET = ETi ∗ Nsltsi ∗ Csltsi

Table 5   Minimum share of
users

Users Min-share

User 1 1
User 2 0
User 3 2
User 4 1
User 5 1

5313

1 3

An architecture for scheduling with the capability of minimum…

execution time of the schedulers. The complexity of the proposed method and the FAIR
algorithm has similarly led to a rise in their scheduling execution time compared with
the FIFO algorithm. Figure 7 shows the execution time of the proposed method in the
user’s system and the name node. Figure 8 shows it in the name node.

Figure 9 depicts the locality of the algorithms. The proposed method has improved
the locality of WordCount, Sort and TeraSort jobs by 10%, 10% and 13.5% on average
compared with the FAIR algorithm and 19%, 21% and 24% compared with the FIFO
algorithm, respectively. Taking the performance of the data nodes into consideration
while assigning the jobs and distributing the data of the jobs based on the performance
of the nodes in the proposed method can also lead to a difference in its results com-
pared with those of the FIFO and FAIR algorithms.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

WordCount Sort TeraSortAV
ER

AG
E

JO
B

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
) FIFO FAIR Proposed

Fig. 6   Average job execution time for Micro-Benchmarks

0

5

10

15

20

25

30

35

40

45

WordCount Sort TeraSort

AV
ER

AG
E

SC
HE

DU
LI

N
G

TI
M

E
(S

EC
)

FIFO FAIR Proposed

Fig. 7   Average scheduling time for Micro-Benchmarks

5314	 A. K. Javanmardi et al.

1 3

7 � Summary and findings

In this article, first, the most famous scheduling algorithms in Hadoop sys-
tems and their features are briefly described. Then, a scheduler was proposed to
improve FAIR scheduler. The proposed scheduler was compared with the FIFO
and FAIR scheduler in real and simulated environments. The results show that the
proposed scheduler works well. Table 6 shows a comparison of various Hadoop
schedulers and proposed scheduler. To prepare this table, the results obtained
in [12, 25, 26] and [27] and the results obtained in this article have been used.
According to the table, the proposed scheduler allocates resources dynamically
and considers job priority. Due to the use of the base unit, it shows high perfor-
mance in heterogeneous environments. There is a fair distribution of resources
between the user or jobs. Due to part of the schedule in the user system, the name
node overload has been reduced.

0

5

10

15

20

25

30

35

40

WordCount Sort TeraSort

AV
ER

AG
E

SC
HE

DU
LI

N
G

TI
M

E
O

N

N
AM

E
N

O
DE

 (S
EC

)

FIFO Fair Proposed

Fig. 8   Average scheduling time on name node for Micro-Benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

WordCount Sort TeraSort

PE
RC

EN
T

DA
TA

 L
O

CA
LI

TY

FIFO FAIR Proposed

Fig. 9   Percent data locality for Micro-Benchmarks

5315

1 3

An architecture for scheduling with the capability of minimum…

Ta
bl

e 
6  

C
om

pa
ris

on
 o

f v
ar

io
us

 H
ad

oo
p

sc
he

du
le

rs
 a

nd
 p

ro
po

se
d

sc
he

du
le

r i
n

bi
g

da
ta

Sc
he

du
le

r
FI

FO
Fa

ir
C

ap
ac

ity
LA

TE
D

el
ay

M
at

ch
m

ak
in

g
D

ea
dl

in
e

co
n-

str
ai

nt
s

Re
so

ur
ce

aw

ar
e

Pr
op

os
ed

A
llo

ca
tio

n
St

at
ic

St
at

ic
St

at
ic

St
at

ic
St

at
ic

St
at

ic
D

yn
am

ic
D

yn
am

ic
D

yn
am

ic
Re

so
ur

ce
s

sh
ar

in
g

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Pr
io

rit
y

in
 jo

b
qu

eu
e

N
o

Ye
s

B
y

de
fa

ul
t n

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

En
vi

ro
nm

en
t

ho
m

og
en

e-
ou

s/
he

te
ro

ge
-

ne
ou

s

H
om

o
H

om
o

H
om

o
B

ot
h

H
om

o
H

om
o

B
ot

h
B

ot
h

B
ot

h

Fa
irn

es
s/

fa
ir

sh
ar

in
g

N
o

Ye
s,

fo
r u

se
rs

Ye
s,

fo
r j

ob
s

Ye
s

Le
ss

 fa
irn

es
s

th
an

 fa
ir

sc
he

du
le

r

N
o

Ye
s

Ye
s

Ye
s,

fo
r u

se
rs

an

d
jo

bs

N
am

e
no

de

ov
er

lo
ad

Lo
w

H
ig

h
H

ig
h

H
ig

h
H

ig
h

M
ed

iu
m

H
ig

h
H

ig
h

M
ed

iu
m

Pe
rfo

rm
an

ce
Lo

w
M

ed
iu

m
H

ig
h

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

H
ig

h
M

ed
iu

m
H

ig
h

Lo
ca

lit
y

Ye
s

Ye
s,

fo
r s

m
al

l
jo

bs
Ye

s
Ye

s
Im

pr
ov

ed
 c

om
-

pa
re

d
to

 fa
ir

sc
he

du
le

r

Ye
s

Ye
s,

fo
r s

m
al

l
jo

bs
Im

pr
ov

ed
 c

om
-

pa
re

d
to

 fa
ir

sc
he

du
le

r

Ye
s

M
od

e
N

on
-p

re
em

p-
tiv

e
Pr

ee
m

pt
iv

e
N

on
-p

re
em

p-
tiv

e
Pr

ee
m

pt
iv

e
Pr

ee
m

pt
iv

e
N

on
-p

re
em

p-
tiv

e
Pr

ee
m

pt
iv

e
Pr

ee
m

pt
iv

e
Pr

ee
m

pt
iv

e

Ta
xo

no
m

y
N

on
-a

da
pt

iv
e

A
da

pt
iv

e
A

da
pt

iv
e

A
da

pt
iv

e
A

da
pt

iv
e

A
da

pt
iv

e
A

da
pt

iv
e

A
da

pt
iv

e
A

da
pt

iv
e

5316	 A. K. Javanmardi et al.

1 3

8 � Conclusion

A major challenge in scheduling algorithms in Hadoop systems is heterogeneous
clusters. This challenge is also observed in all systems with distributed comput-
ing. To deal with this challenge, various methods have been thus far presented.
Another challenge of scheduling algorithm is the estimation of the execution
time of the jobs. Here, by considering the base unit, the complexity of estimat-
ing the execution time for heterogeneous clusters can be decreased. Using this
method, existing scheduling algorithms can be further extended. Reflecting on
the base slot for the scheduling algorithm is thus better than the memory size or
CPU power, since the base unit shows the performance of the systems instead
of their apparent specifications. Here, considering the needs of Map/Reduce, the
base unit is only defined for system hardware. This unit can be developed to cover
software.

In the method presented here, a portion of the scheduling operation is done on
user’s system. Running some scheduling components on user’s system can accord-
ingly reduce the workload of name nodes. Developing scheduling algorithms that
move some calculations to user’s system can be also studied in the future.

As the costs of scheduling algorithms in Hadoop systems have received little
attention from researchers, many companies nowadays do many of their computa-
tional processing over the Internet and on user’s systems (in exchange for paying
money), so there is a need for cost-based scheduling algorithms.

As a part of this research work in the future, it is suggested to do a comprehensive
survey on scheduling algorithms in different distributed systems and compare them
with the scheduling algorithms presented for Hadoop systems. Moreover, there will
be attempts to use the findings in this paper.

Acknowledgements  This paper has been extracted from a PhD thesis entitled “Improvement of schedul-
ing in Hadoop clusters” with the supervision of Dr Yaghoubyan, Dr BagheriFard, Dr Nejatian, Dr Parvin.

References

	 1.	 Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19(2):171–209
	 2.	 Breur T (2016) Statistical power analysis and the contemporary “crisis” in social sciences. J Mark

Anal 4(2–3):61–65
	 3.	 Zhou S, Xie J, Du N, Pang Y (2018) A random-keys genetic algorithm for scheduling unrelated par-

allel batch processing machines with different capacities and arbitrary job sizes. Appl Math Comput
334:254–268

	 4.	 Cheng B, Cai J, Yang S, Hu X (2014) Algorithms for scheduling incompatible job families on single
batching machine with limited capacity. Comput Ind Eng 75:116–120

	 5.	 Hu Y, Zhou H, de Laat C, Zhao Z (2020) Concurrent container scheduling on heterogeneous clus-
ters with multi-resource constraints. Future Gener Comput Syst 102:562–573

	 6.	 Osorio-Valenzuela L, Pereira J, Quezada F, Vásquez ÓC (2019) Minimizing the number of machines
with limited workload capacity for scheduling jobs with interval constraints. Appl Math Model
74:512–527

	 7.	 Moon Y-H, Youn C-H (2015) Multihybrid job scheduling for fault-tolerant distributed computing in
policy-constrained resource networks. Comput Netw 82:81–95

5317

1 3

An architecture for scheduling with the capability of minimum…

	 8.	 Varga M, Petrescu-Nita A, Pop F (2018) Deadline scheduling algorithm for sustainable computing
in Hadoop environment. Comput Secur 76:354–366

	 9.	 Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, Stoica I (2009) Job scheduling for
multi-user mapreduce clusters. In: EECS Department, University of California, Berkeley

	10.	 Yildiz O, Ibrahim S, Antoniu G (2017) Enabling fast failure recovery in shared Hadoop clusters:
towards failure-aware scheduling. Future Gener Comput Syst 74:208–219

	11.	 Suresh S, Gopalan NP (2014) An optimal task selection scheme for Hadoop scheduling. IERI Pro-
ced 10:70–75

	12.	 Usama M, Liu M, Chen M (2017) Job schedulers for Big data processing in Hadoop environment:
testing real-life schedulers using benchmark programs. Digit Commun Netw 3(4):260–273

	13.	 Guoa Y, Wu L, Yuc W, Wud B, Wange X (2015) The improved job scheduling algorithm of Hadoop
platform.pdf. arXiv e-prints

	14.	 Gupta S, Fritz C, Price B, Hoover R, Dekleer J, Witteveen C (2013) Throughputscheduler: learning
to schedule on heterogeneous Hadoop clusters. In: Proceedings of the 10th International Conference
on Autonomic Computing (ICAC’13), pp 159–165.

	15.	 Naik NS, Negi A, BR TB, Anitha R, (2019) A data locality based scheduler to enhance MapReduce
performance in heterogeneous environments. Future Gener Comput Syst 90:423–434

	16.	 Xie J, Meng F, Wang H, Pan H, Cheng J, Qin X (2013) Research on scheduling scheme for Hadoop
clusters. Proced Comput Sci 18:2468–2471

	17.	 Rasooli A, Down DG (2014) COSHH: a classification and optimization based scheduler for hetero-
geneous Hadoop systems. Future Gener Comput Syst 36:1–15

	18.	 Liang W, Chen Y, Liu J, An H (2019) CARS: a contention-aware scheduler for efficient resource
management of HPC storage systems. Parallel Comput 87:25–34

	19.	 Brahmwar M, Kumar M, Sikka G (2016) Tolhit: a scheduling algorithm for Hadoop cluster. Proced
Comput Sci 89:203–208

	20.	 Zhang H, Stafman L, Or A, Freedman MJ (2018) SLAQ: quality-driven scheduling for distributed
machine learning. arXiv e-prints. arXiv:1802.04819

	21.	 Chen Y, Ganapathi A, Griffith R, Katz R (2011) The case for evaluating mapreduce performance
using workload suites. In: Proceedings of the 2011 IEEE 19th Annual International Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommunication Systems

	22.	 Malik M, Neshatpour K, Rafatirad S, Joshi RV, Mohsenin T, Ghasemzadeh H, Homayoun H (2019)
Big vs little core for energy-efficient Hadoop computing. J Parallel Distrib Comput 129:110–124

	23.	 Islam MT, Srirama SN, Karunasekera S, Buyya R (2020) Cost-efficient dynamic scheduling of big
data applications in apache spark on cloud. J Syst Softw 162:110515

	24.	 Hammoud S, Li M, Liu Y, Alham NK, Liu Z (2010) MRSim: a discrete event based mapreduce
simulator. In: Proceedings of the Seventh International Conference on Fuzzy Systems and Knowl-
edge Discovery. IEEE. pp 2993–2997.

	25.	 Hv A, Sebastian S (2017) Comparative study of job schedulers in Hadoop environment. Int J Adv
Res Comput Sci 8(3).

	26.	 Bahel E, Trudeau C (2019) Stability and fairness in the job scheduling problem. Games Econ Behav
117:1–14

	27.	 Hamad F (2018) An overview of Hadoop scheduler algorithms. Mod Appl Sci 12:69

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Abdol Karim Javanmardi1 · S. Hadi Yaghoubyan1,3 · Karamollah BagheriFard1,3 ·
Samad Nejatian2,3 · Hamid Parvin4,5,6

	 Abdol Karim Javanmardi
	 ab_karim_j@yahoo.com

5318	 A. K. Javanmardi et al.

1 3

	 Karamollah BagheriFard
	 k.bagheri@iauyasooj.ac.ir

	 Samad Nejatian
	 samad.nej.2007@gmail.com

	 Hamid Parvin
	 parvin@iust.ac.ir

1	 Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
2	 Department of Electrical Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
3	 Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
4	 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
5	 Faculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam
6	 Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University,

Nourabad Mamasani, Iran

	An architecture for scheduling with the capability of minimum share to heterogeneous Hadoop systems
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries and Hadoop system definition
	4 Importance and base unit definition
	5 Proposed Hadoop scheduling system
	5.1 Workflow in high-level architecture of proposed system
	5.2 User process
	5.3 Data partitioning process
	5.4 Job scheduling process
	5.5 Task scheduling process

	6 Experimental results
	6.1 Simulation environment
	6.2 Simulation results
	6.3 Real Hadoop system environment
	6.4 Real environment results

	7 Summary and findings
	8 Conclusion
	Acknowledgements
	References

