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Abstract
Heterogeneous multicores like GPGPUs are now commonplace in modern com-
puting systems. Although heterogeneous multicores offer the potential for high 
performance, programmers are struggling to program such systems. This paper 
presents OAO, a compiler-based approach to automatically translate shared-mem-
ory OpenMP data-parallel programs to run on heterogeneous multicores through 
OpenMP offloading directives. Given the large user base of shared memory OpenMP 
programs, our approach allows programmers to continue using a single-source-
based programming language that they are familiar with while benefiting from the 
heterogeneous performance. OAO introduces a novel runtime optimization scheme 
to automatically eliminate unnecessary host–device communication to minimize the 
communication overhead between the host and the accelerator device. We evalu-
ate OAO by applying it to 23 benchmarks from the PolyBench and Rodinia suites 
on two distinct GPU platforms. Experimental results show that OAO achieves up 
to 32× speedup over the original OpenMP version, and can reduce the host–device 
communication overhead by up to 99% over the hand-translated version.
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1 Introduction

Heterogeneous multicores, as represented by the GPUs, are now pervasive in 
computing systems because of their energy-efficient high performance. Such a 
potential can only be unlocked if the running software has been suitably parallel-
ized to match the underlying hardware. Unfortunately, developers struggle to pro-
gram heterogeneous multicores due to the complexity in offloading computation 
and communication management between the host and the accelerator device.

Numerous programming models have been proposed to address the program-
ming issue of heterogeneous systems, including Compute Unified Device Archi-
tecture (CUDA), Open Computing Language (OpenCL), Open Accelerators 
(OpenACC), and more recently—Open Multi-Processing Offloading (OpenMP 
Offloading)  [21–23]. These approaches enable newly developed codes to run on 
heterogeneous devices. However, they offer little help in addressing the problem 
of porting legacy programs to heterogeneous devices because programmers still 
need to painstakingly modify the existing code to use a heterogeneous program-
ming model.

Compiler-based source-to-source translators offer a viable solution and road-
map for porting legacy parallel code to run on heterogeneous computing devices. 
Some existing work targets CUDA code generation [2, 11, 18, 30]. However, this 
kind of existing work has a serious performance portability issue as an applica-
tion implemented in CUDA, by definition, is not portable to non-NVIDIA sys-
tems. Other existing work [19, 26, 33, 34] generates OpenCL code that can run 
on a wide range of parallel hardware including GPUs, CPUs, and FPGAs. Given 
that OpenCL remains as a low-level programming language that exposes many 
hardware details, maintaining the generated code is often too difficult for non-
expert programmers.

The emerging OpenMP Offloading standard  [21–23] offers a promising 
approach to port legacy OpenMP programs to heterogeneous devices using sim-
ple language pragmas with little modification to existing code while preserving 
the advantage of low maintenance costs given by the simplicity of OpenMP [20]. 
Compared with CUDA or OpenCL, this standard allows programmers to work on 
a language that they are familiar with using a few intuitive pragmas to annotate 
their code. Compared with OpenACC, this standard is supported by more com-
monly used compilers. Thus, OpenMP Offloading provides existing OpenMP pro-
grams with a simple upgrade path to heterogeneous parallelism using pragmas. 
Although promising, OpenMP Offloading still requires manual optimization of 
the data transmission to achieve good performance.

The DawnCC compiler  [15, 17] is among the first attempts to leverage 
OpenMP Offloading for heterogeneous computing. This compiler translates 
sequential C into OpenACC or OpenMP Offloading. However, DawnCC does not 
address the communication optimization problem between the host CPU and the 
heterogeneous accelerator well, because of the lack of inter-procedural data trans-
mission optimization, which is often responsible for the performance bottleneck. 
Moreover, DawnCC often does not choose the right offloading directives, leading 
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to suboptimal performance. As a result, the code generated by DawnCC often 
delivers worse performance than the original OpenMP running on a shared-mem-
ory parallel machine. This drawback discourages the adoption of the technique on 
a broader scale.

This work aims to provide a better approach for leveraging OpenMP Offloading 
for heterogeneous computing. We present OpenMP Automatic Offloading (OAO), 
a source-to-source framework that automatically translates OpenMP parallel loops 
to use OpenMP Offloading pragmas. Instead of performing simple code translation, 
we go further by developing a runtime system to optimize the data communication 
between the host CPU and the accelerator automatically. By precisely modeling the 
consistency state and its transition of a data buffer, our runtime eliminates redundant 
data transmissions, on-the-fly, for not just simple loops but also complex data struc-
tures and nested function calls. We show that OAO is highly effective in generating 
efficient OpenMP Offloading code to run on heterogeneous GPUs. We demonstrate 
the benefit of OAO by it to 23 OpenMP benchmarks from the PolyBench and Rod-
inia suites. We compare OAO with DawnCC and manually-translated codes on two 
distinct GPU platforms with a K40 or a 2080Ti GPU. Experimental results show 
that OAO achieves up to 32× speedup over the original OpenMP version. Moreover, 
it can reduce the host–device communication time by up to 99% compared with the 
manually-translated version. We show that OAO can also handle benchmarks that 
DawnCC fails on, with significantly better performance improvement.

This paper makes the following technical contributions:

• We propose the first source-to-source tool that directly translates legacy OpenMP 
programs into OpenMP Offloading programs without manual intervention.

• We present a novel algorithm to optimize the host–device communication by lev-
ering the consistency states of the program. Unlike prior work, our approach can 
work on complex data structures and nested function calls.

The OAO source-to-source translator framework is publicly available at https ://githu 
b.com/ruixu eqing yang/OAO-Trans lator .

The remainder of this work is organized as follows: Sect. 2 introduces the motiva-
tion and overview of the OAO system. Section 3 describes the OAO runtime library 
(OAORT) and the minimum transmission algorithm. Section 4 proposes the OAO 
translator with algorithms to insert OAORT APIs. Section 5 describes the experi-
mental setup. Section  6 presents and analyzes the experimental results. Section  7 
provides the related work. Finally, Sect. 8 concludes the paper and discusses future 
work.

https://github.com/ruixueqingyang/OAO-Translator
https://github.com/ruixueqingyang/OAO-Translator
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2  Background and overview

2.1  OpenMP offloading

Since version 4.0, OpenMP standard introduced new offloading constructs for het-
erogeneous computing. These offloading constructs allow the program to specify 
which regions of code and data to be mapped to run on an accelerator.

Figure 1b gives a simple use case of OpenMP Offloading constructs. Here, the 
user program starts execution on a host (e.g., CPU) device, where offloading to 
an accelerator is performed when entering a target region specified by the tar-
get pragma. A target region maps variables allocated on the host memory to the 
device memory, e.g., the GPU global memory. The implementation of target regions 

1 #pragma omp parallel for
2 for(int i = 0; i < N; i++){
3 v3[i] += v2[i] + v1[i];
4 }
5 #pragma omp parallel for
6 for(int i = 0; i < N; i++){
7 v5[i] += v4[i] + v3[i];
8 }

(a) OpenMP CPU code snippet

1 #pragma omp target data map(tofrom: v1[:N], v2[:N], v3[:N])
2 {
3 #pragma omp target teams distribute parallel for
4 for(int i = 0; i < N; i++){
5 v3[i] += v2[i] + v1[i];
6 }
7 }
8 #pragma omp target data map(tofrom: v3[:N], v4[:N], v5[:N])
9 {

10 #pragma omp target teams distribute parallel for
11 for(int i = 0; i < N; i++){
12 v5[i] += v4[i] + v3[i];
13 }
14 }

(b) OpenMP Offloading code snippet

1 #pragma omp target enter data map(to: v1[:N], v2[:N], v3[:N])
2 #pragma omp target teams distribute parallel for
3 for(int i = 0; i < N; i++){
4 v3[i] += v2[i] + v1[i];
5 }
6 #pragma omp target enter data map(to: v4[:N], v5[:N])
7 #pragma omp target teams distribute parallel for
8 for(int i = 0; i < N; i++){
9 v5[i] += v4[i] + v3[i];

10 }
11 #pragma omp target exit data map(from: v3[:N], v5[:N]) map(delete:

v1[:N], v2[:N], v4[:N])

(c) Optimal OpenMP Offloading code snippet

Fig. 1  Example for OpenMP CPU to OpenMP Offloading translation and optimization
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may include transmitting data between host and device and launching a GPU ker-
nel to execute the target code region. The teams directive can be used to spawn a 
league of teams, each consists of multiple OpenMP threads. It is to note that any two 
threads from different teams cannot communicate in any native way, e.g., no barrier 
can be placed between threads from different teams. This feature ensures the accel-
erator implementation can map individual teams to run on independent execution 
units.

The distribute pragma can be used to partition the loop iterations into 
chunks to be allocated to teams. Note that function calls and global variable refer-
ences are allowed in target regions, but they increase the difficulties for performance 
host–device communication optimization. The target data map directive 
specifies the variable mapping and unmapping operations at the beginning and end 
of the brace region following the directive. The target enter data map and 
target exit data map directives define the variable mapping and unmap-
ping operations at the beginning and end of the region between these two direc-
tives, respectively. The to pragma indicates data transmission from the host to the 
device when the variables are mapped to the device memory. The from pragma 
means copying data from the device to the host when the variables are unmapped 
form the device memory. The tofrom pragma integrates the functions of to and 
from pragmas. The delete pragma means unmapping variables form the device 
memory without data copy.

2.2  Motivation

As a motivation example, consider translating the example code given in Fig.  1a. 
Translating the two OpenMP data-parallel loops to use OpenMP Offloading for het-
erogeneous computing is straightforward. A naive solution and an optimal solution 
are given in Fig. 1b, c, respectively.

Compared to the naive solution, inserting the appropriate data transmission direc-
tives to achieve good performance is non-trivial. For example, the translation given 
in Fig.  1b contains redundant transmissions, such as all “from” transmissions at 
line 1, “to” transmission for v3 at line 8 and “from” transmission for v4 at line 8. 
These redundant host–device communications results in 1.6× slowdown compared 
to the version given in Fig. 1c. Developers can eliminate these redundant data trans-
missions only if they understand the following knowledge: (1) read and write opera-
tions of variables within and between these two loops, (2) the consistency states of 
variables before and after these two loops, and (3) the consistency states of variables 
required by these two loops. This is complex and tedious for developers. OAO is 
designed to remove redundant host–device communications by executing the right 
data transmission directives at the right place automatically.

2.3  Overview of our approach

As depicted by Fig. 2, OAO consists of two components: a source-to-source code 
translator and a runtime library. The code translator translates OpenMP (or OMP in 
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short) symmetric multiprocessing (SMP) constructs to OMP Offloading code when 
it is possible to do so. The translated code is compiled and linked with the runtime 
library. During execution, the runtime automatically determines and executes essen-
tial data transmissions without redundant data transmissions through the minimum 
transmission algorithm (Algorithm 2).

As shown in Table 1, compared with existing source-to-source translators, only 
our OAO can translate OpenMP code to OpenMP Offloading code, whose intra-pro-
cedural and inter-procedural data transmission are both optimized. Another differ-
ence is that only our work and Grewe et al. [19] use both the runtime and static code 
translator, while other existing work only uses the static code translator. Grewe et al. 
use the runtime to determine where to run the program (CPU or GPU). We use our 
runtime to optimize data transmissions.

A key innovation of our approach is using the consistency state, state transition 
function, and consistency state constraint to perform host–device communication 
optimization in our runtime. We model the data transmission directive and the vari-
able reference, which may change the consistency state, as the state transition func-
tion. Our key insight is that the consistency of shared data in the host and device 
memory is guaranteed as long as the consistency state satisfies the consistency state 
constraint. We propose a novel algorithm to derive the essential state transition func-
tion, which transits the consistency state to solve the consistency state constraint. 
With the algorithm in place, our runtime can execute the right data transmission 
directive corresponding to the essential state transition function and avoid redun-
dant data transmissions. When the variable is referenced, our runtime uses the cor-
responding state transition function to update the consistency state maintained in 
runtime. We implement the algorithm and update operation as data transmission and 
consistency state update semantics, which should be inserted to OMP Offloading 
programs properly. Our runtime library is detailed in Sect. 3.

Fig. 2  Overview of OAO

Code Translator
(Section 4)

OMP SMP Code

Translation

Execution

Input

OMP
Offloading

kernel

 CPU accelerator

Runtime Library (Section 3)

Application

OMP Offloading Code
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To generate code to use OpenMP Offloading constructs, we first construct the 
extended control-flow graph for each function in OMP SMP programs. From the 
control-flow graph, we collect and analyze variable reference information through 
compile-time static analysis techniques. The analysis is used to insert the right runt-
ime API functions in the right places. We describe our code translator in Sect. 4.

3  Runtime library

Algorithm  1 explains the workflow of the OAO Runtime Library (OAORT) that 
aims to minimize host-accelerator data transmission while guaranteeing data con-
sistency. The OAORT initializes and maintains the consistency states of variables 
(line 1). Then, the OAORT determines and executes the minimum data transmission 
operations according to the consistency state constraints required by the following 
code snippet (line 2). After the code snippet, the OAORT updates the consistency 
states changed by the code snippet (line 4). As a final step, the OAORT deletes the 
maintained consistency states (line 5). The initialization and deletion are introduced 
in Sect. 3.1. The data transmission and consistency state update are introduced in 
Sects. 3.2 and 3.3 separately.

3.1  Tracking consistency states

Guaranteeing data consistency is the fundamental objective of the OAORT. We 
define the State to represent the consistency states of variables. The consistency 
State is the foundation of the OAORT and minimum transmission algorithm.

3.1.1  Consistency states

The CPU and the accelerator have two independent memory spaces. Variables 
may reside in either or both of these two memory spaces. So, for a variable, 
there are three situations: residing in CPU memory (HOST_ONLY), residing in 
accelerator memory (DEVICE_ONLY), and residing in both memory. DEVICE_
ONLY is ignored because these accelerator local variables do not need to be 
transmitted between the CPU and accelerator. For the third situation, there are 
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three cases: The CPU copy is valid (HOST_NEW), the accelerator copy is valid 
(DEVICE_NEW), and both copies are valid (SYNC). We define the consistency 
State to abstract these four cases, as shown in Table 2 (Definition 1).

Definition 1 State is a 3-bit binary number. Bit0 suggests whether the allocation unit 
has an accelerator copy (Bit0 = 1) or not (Bit0 = 0). Bit1 indicates whether the CPU 
copy is valid (Bit1 = 1) or invalid (Bit1 = 0). Bit2 indicates whether the accelerator 
copy is valid (Bit2 = 1) or invalid (Bit2 = 0).

When the current State and the later program’s requirement of State are known, 
we can derive the minimum data transmission directive without redundant trans-
missions through Algorithm 2, which is designed in Sect. 3.2.3. This is our core 
insight.

3.1.2  Using allocation units as granularity

The OAORT tracks consistency at the granularity of allocation units [8] and main-
tains a consistency State for each allocation unit. In C and C++, an allocation unit is 
a contiguous region of memory allocated as a single unit. Memory blocks returned 
from malloc(), local variables, and global variables are all examples of alloca-
tion units [8]. Our work solely focuses on data parallel programs. For this kind of 
program, usually, all elements of an allocation unit are accessed if the allocation 
unit is referenced by a parallel region. Thus, using the allocation units as granularity 
transmits little redundant data and introduces little overhead. In turn, this helps to 
handle pointer aliasing and to prevent complex fine-grained symbolic range analysis 
adopted by DawnCC [15].

To maintain the information of allocation units, we define MemBlock and 
MemEnv in Definition 2 and 3, respectively.

Definition 2 MemBlk refers to a set of characteristics representing an allocation unit 
(Eq. 1). Begin is the starting memory address. Length is the length of the allocation 
unit. ElemSize is the element size. State has been defined above.

Definition 3 MemEnv refers to the set of all MemBlks (Eq. 2).

(1)MemBlk = {Begin, Length,ElemSize, State}

Table 2  All possible 
consistency states of a variable

State Bit2: accelerator 
copy valid

Bit1: CPU 
copy valid

Bit0: has 
accelerator 
copy

HOST_ONLY 0 1 0
HOST_NEW 0 1 1
DEVICE_NEW 1 0 1
SYNC 1 1 1
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When a pointer (ptr) accesses an allocation unit, OAORT searches in the 
MemEnv and find the accessed allocation unit MemBlk, which satisfies Eq. 3.

The OAORT provides several API functions to track the State of allocation units 
(Table  3). We insert OAOSaveArrayInfo function in the source code to track 
global and stack memory. The OAOMalloc and OAONewInfo functions replace 
malloc() and new, respectively, to allocate and track heap memory. These three 
functions build new MemBlks in the MemEnv. We insert OAODeleteArrayInfo 
at the end of the variable scope. The OAOFree and OAODeleteInfo functions 
replace free() and delete, respectively. These three functions remove corre-
sponding MemBlks from the MemEnv.

For NVIDIA GPU, we optimize the memory allocation specifically to fully 
exploit bandwidth between CPU and GPU. Pageable memory shows high band-
width when memory size is relatively small, whereas pinned memory shows 
high bandwidth when memory size is large. According to experimental results, 
the threshold is set to 128 KB. When memory block is not larger than 128 KB, 
malloc() is used inside OAOMalloc to allocate pageable memory. Other-
wise cudaMallocHost() is used to allocate pinned memory. In OAOFree, 
free() and cudaFreeHost() functions are used to release corresponding 
memory.

3.2  Data transmission semantics

We define the consistency state constraint (Constr) to represent the requirement of 
State. The data transmission semantic (OAODataTrans function) automatically 

(2)MemEnv =
{
MemBlk1,… ,MemBlkp

}

(3)Begin ≤ ptr ≤ Begin + Length − 1

Table 3  OAO Runtime API functions

Function Description

void OAOSaveArrayInfo(void* ptr, size_t 
length, size_t ElementSize)

Saving the static array information

void OAODeleteArrayInfo(void* ptr) Removing the static array information
void* OAOMalloc(size_t length) Saving the dynamic array information
void OAOFree(void* ptr) Removing the dynamic array information
void* OAONewInfo(void* ptr, size_t Ele-
mentSize, size_t ElementNum)

Saving the dynamic array information

void OAODeleteInfo(void *ptr) Removing the dynamic array information
void OAODataTrans(void* ptr, STATE_CONSTR 
Constr)

Determining and performing the mini-
mum data transmission

void OAOStTrans(void *ptr, STATE_CONSTR 
StTrans)

Transiting the consistency state
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derives and executes the essential and minimum data transmission directive to 
guarantee consistency, according to the current State maintained in runtime and 
the Constr.

3.2.1  Consistency state constraints

We represent the requirement of State with the Constr (Definition  4). Table  4 
explains each bit of Constr. If any bit of State is required to be set to 1, we set the 
corresponding bit of ConVld to 1. If any bit of State is required to be set to 0, we set 
the corresponding bit of ConInVld to 0.

Definition 4 Constr refers to a pair of 3-bit binary numbers (Eq.  4). Table  4 
explains the different requirements represented by various bit values of ConVld and 
ConInVld.

To guarantee consistency, different Constrs should be satisfied before different 
READ, WRITE, and memory-free operations. We list specific Constrs for these 
operations in Table 5.

(4)Constr = {ConInVld,ConVld}

Table 4  Description of ConVld and ConInVld 

Bit Requirement

ConVld Bit0 Require the variable to have been mapped to accelerator memory, namely State 
Bit0 = 1, (ConVld Bit0 = 1) or not require (ConVld Bit0 = 0)

ConVld Bit1 Require the CPU copy to be valid, namely State Bit1 = 1, (ConVld Bit1 = 1) or not 
require (ConVld Bit1 = 0)

ConVld Bit2 Require the accelerator copy to be valid, namely State Bit2 = 1, (ConVld Bit2 = 1) or 
not require (ConVld Bit2 = 0)

ConInVld Bit0 Require the variable to have been unmapped from accelerator memory, namely State 
Bit0 = 0, (ConInVld Bit0 = 0) or not require (ConInVld Bit0 = 1)

ConInVld Bit1 Require the CPU copy to be invalid, namely State Bit1 = 0, (ConInVld Bit1 = 0) or not 
require (ConInVld Bit1 = 1)

ConInVld Bit2 Require the accelerator copy to be invalid, namely State Bit2 = 0, (ConInVld Bit2 = 0) 
or not require (ConInVld Bit2 = 1)

Table 5  Operations and required 
Constrs

Operation Constr

Variable unused ConNo = {111, 000}

CPU READ ConSEQR = {111, 010}

Accelerator READ ConOMPR = {111, 101}

CPU WRITE ConSEQW = {111, 000}

Accelerator WRITE ConOMPW = {111, 001}

CPU free ConFREE = {010, 010}
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3.2.2  Consistency states transition functions

We define the consistency state transition function (TransFunc) to formalize the 
State transitions caused by different data transmission directives and READ/
WRITE operations (Definition  5). The formalization helps derive the essential 
and minimum data transmission directive.

Definition 5 The form of TransFunc is defined by Eq. 5. TransFunc transits inState 
to outState. InVld and Vld are a pair of 3-bit binary numbers. The operators in Eq. 5 
are Boolean multiplication and Boolean addition. The form of TransFunc is abbre-
viated as Eq. 6.

If any bit of the outState requires to be set to 0, then the corresponding bit of 
InVld is set to 0. If any bit of the outState requires to be set to 1, then the corre-
sponding bit of Vld is set to 1. For the bits without requirements, the correspond-
ing bits of InVld and Vld are set to 1 and 0, respectively. Thus, the form of Trans-
Func can transit any 3-bit binary number to any 3-bit binary number and express 
any transition between States.

Each kind of data transmission directive or operation corresponds to a Trans-
Func (Table 6). The transition relationships between States are shown in Fig. 3. If 
we can derive the essential and minimum TransFunc, we can know the essential 
and minimum data transmission directive, which should be executed to guarantee 
consistency. We design the derivation algorithm in Sect. 3.2.3.

3.2.3  Minimum transmission algorithm

Based on States, Constrs, and TransFuncs, we design the algorithm to derive the essen-
tial and minimum TransFunc. The minimum TransFunc only change the bits, which 

(5)
outState = TransFunc(inState)

= inState ⋅ InVld + Vld

(6)TransFunc = {InVld,Vld}

Table 6  State transition operations and corresponding TransFuncs

Operation TransFunc

no data transmission required TrNo = {111, 000}

#pragma omp target enter data map(alloc: ...) TrAlloc = {111, 001}

#pragma omp target enter data map(to: ...) TrEnTo = {111, 101}

#pragma omp target update to(...) TrUpTo = {111, 100}

#pragma omp target update from(...) TrFrom = {111, 010}

#pragma omp target exit data map(delete: ...) TrDelete = {010, 010}

CPU WRITE TrSEQW = {011, 010}

Accelerator WRITE TrOMPW = {101, 100}

CPU or accelerator READ TrRead = {111, 000}
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must be changed, to satisfy the Constr. This feature prevents redundant data trans-
missions. In more detail, we define the MinTrFunc to represent minimum TransFunc 
(Definition 6).

Definition 6 For the State and Constr, the MinTrFunc refers to the TransFunc that 
meets the following features. The Vld of the MinTrFunc only sets the bits, which 
are 0 in State but 1 in ConVld, to 1. The InVld of the MinTrFunc only sets the bits, 
which are 1 in State but 0 in ConInVld, to 0.

For example, we assume the State = HOST_NEW = {011} and the 
Constr = ConOMPR = {111, 101} and derive the MinTrFunc. The ConInVld = 111 
indicates none bits of InVld in MinTrFunc should be set to 0. Thus, we get InVld = 111 . 
The Bit0 and Bit2 of ConVld are 1 and we compare these two bits with Bit0 and Bit2 
of State. The Bit2 of State is not equal to the Bit2 of ConVld. Thus, we only set Bit2 of 
Vld to 1 and get InVld = 100 . In summary, we get MinTrFunc = {111, 100} . The 
MinTrFunc = {111, 100} = TrUpTo corresponds to #pragma omp target 
update to directive, according to Table 6. We get the MinTrFunc and the minimum data 
transmission directive.

TrEnToTrDelete
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te

TrA
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TrSEQW

TrUpTo

TrF
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TrO
MPW

HOST_ONLY

DEVICE_NEW

TrSEQW / TrRead
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TrSEQW / TrRead TrRead

TrDelete

HOST_NEW SYNC

Fig. 3  Consistency state transition relationships
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According to Definition 6, we propose Algorithm 2 to derive the MinTrFunc and 
minimum data transmission directive. In Algorithm 2, the ‘ ⊕ ’ operation takes out 
bits, which vary in State and ConVld. The ‘ ⋅ ’ operation takes out bits, which are 
1 in ConVld. Thus, the Vld satisfies Definition 6. Similarly, InVld satisfies Defini-
tion 6. In summary, MinTrFunc satisfies Definition 6. The minimum data transmis-
sion directive can be determined by looking up Table 6 when MinTrFunc is derived.

When the data transmission semantic is called, the minimum data transmission 
directive is determined through Algorithm  2 and executed automatically. Namely, 
the essential data transmission, corresponding to the minimum data transmission 
directive, is determined and executed automatically. With the implementation of 
Algorithm 2, the OAO Runtime can only execute the essential data transmissions 
and eliminate redundant transmissions. This is summarized as Question  3 in the 
experimental part and will be verified by experiments.

3.3  Consistency state update semantics

The WRITE operations in code fragments may change consistency States. Thus, 
consistency state update semantics (OAOStTrans functions) are used to update 
States maintained in MemEnv. The READ operations are not considered because 
they do not change States. According to the type of WRITE operations, different 
TransFuncs are used to update States (Table 6 [lines 6 and 7]).

4  Code translator

The OAO Translator models each function as an extended control flow graph (CFG) 
called SPGraph. With the SPGraph, we analyze the Constrs and R/W operations 
and insert data transmission semantics and consistency state update semantics. We 
also translates parallel primitives. Using Algorithm 3 5 and Table 7 proposed below, 
the OAO Translator can translate OMP SMP code into OMP Offloading code. 
This is summarized as Question 1 in the experimental part and will be verified by 
experiments.

4.1  SPGraph for code translation

To offload data parallel code regions to the accelerator, these code regions should 
be marked. To handle data transmission and guarantee data consistency between the 
CPU and the accelerator, the information of variable references on the CPU and the 
accelerator should be saved separately. For these motivations, we extend the CFG 
to encode the information required for code translation. We split each data parallel 
code region as a new node in the CFG. Then, we mark all nodes in the CFG as two 
types: parallel nodes for nodes of data parallel code regions, and sequential nodes 
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for other nodes. As a final step, we attach variable reference information to the cor-
responding nodes.

The SPGraph, which extends from the CFG, is formally defined by Defini-
tions  7–9. It is important to note that developers should ensure that there is no 
dependency among the parallel region defined in Definition  8. Each function in 
the source code is modeled as a SPGraph. All the information needed to establish 
the SPGraph can be collected through compile-time static analysis techniques. We 
choose the sequential and parallel regions as basic units of analysis for two reasons. 
First, as long as appropriate data transmissions are inserted before a sequential and 
parallel region, the consistency within the region can be guaranteed. Second, the 
update of States in MemEnv can be delayed until just after the current sequential or 
parallel region, because the updated States is useful to successive regions rather than 
the current region.

Definition 7 A sequential region is a code fragment that is executed sequentially 
without branch and outside #pragma omp parallel scopes. A sequential region cor-
responds to a sequential node, denoted by SEQ , in SPGraph.

Definition 8 A parallel region is a code fragment within a #pragma omp par-
allel scope. A parallel region corresponds to a parallel node, denoted by OMP , in 
SPGraph.

Definition 9 A SPGraph is a special control flow graph of a function (Eq.  7 and 
Fig. 4). NodeGrp , the set of all nodes, consists of SEQGrp and OMPGrp. SEQGrp 
is the set of all SEQs. OMPGrp is the set of all OMPs. CtlEdge is the set of all edges 
among different nodes.

(7)

SPGraph = (NodeGrp,CtlEdge)

NodeGrp = SEQGrp ∪ OMPGrp

CtlEdge = {⟨x, y⟩�x, y ∈ NodeGrp}

SEQGrp =

�
SEQ1,… , SEQn

�

OMPGrp =

�
OMP1,… ,OMPm

�

NodeVarRef

RefList0

……

RefListn

Ref0 Ref0
Ref1 Ref1

…………
Refn Refn

OMP0SEQ0

OMP0

OMP2
SEQ4

SEQ1

SEQ5

SEQ2OMP1 SEQ3

Fig. 4  SPGraph
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The variable reference information (NodeVarRef), which is collected within a 
sequential or parallel region, is attached to the corresponding SEQ or OMP (Defini-
tions 10–12 and Fig. 4).

Definition 10 NodeVarRef  refers to the set of variable reference sequences (RefList) 
in a node.

Definition 11 RefList refers to a sequence of variable references (Ref) of a variable 
in a node.

Definition 12 Ref  is the type of a reference to a variable. R represents the READ 
operation. W represents the WRITE operation.

Based on the SPGraph, we propose Algorithm 3 to insert data transmission and 
consistency state update semantics. First, we preprocess the function calls. Each 
function call in SEQs is split as a new independent special SEQ node (line 1). Each 
function call in OMPs is treated as references to the arguments of the function call 
(line 2). If an argument is not the pointer type or reference type, then R is inserted to 
the proper position of the corresponding RefList. For each argument of pointer type 
or reference type, if any WRITE operation to the corresponding parameter exists 
in the called function, RW is inserted to the proper position of the corresponding 
RefList, otherwise, R is inserted. When function calls are treated as SEQs or variable 
references, the intra-procedural and inter-procedural data transmission optimizations 
can be done by inserting data transmission and consistency state update semantics 
through Algorithms 4 and 5 in Sects.  4.2 and  4.3, respectively. On the contrary, 

NodeVarRef =
{
RefList1,… ,RefListn

}

RefList =
{
Ref1,… ,Refm

}

Ref =

{
R; READ operation

W; WRITE operation
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DawnCC does not consider function calls, so it cannot optimize inter-procedural 
data transmissions.

We apply Algorithm 3 to nearly all functions except OMP-called functions, which 
are called by any OMP at least once. The OMP-called functions may run on accel-
erators, whereas OAORT API functions can only run on CPUs. Thus, OAORT API 
functions cannot be inserted into OMP-called functions. The variable consistency of 
OMP-called functions will be guaranteed by OAORT semantics inserted before and 
after OMP-called function calls.

4.2  Handling data transmissions

We proposed Algorithm  4 to determine Constrs and to insert data transmission 
semantics, before the Nodes. Theoretically, if every element in an allocation unit is 
written before any READ operation, we can set Constr to ConSEQW or ConOMPW 
and save data transmission. However, it is hard to determine these cases exactly 
through static analysis. Thus, we set Constrs to ConSEQRs or ConOMPRs to avoid 
complex static analysis and guarantee the correctness of the programs, regardless 
of READ and WRITE operations. For an OMP and SEQ, which is not a function 
call, we set Constr to ConOMPR (line 3) and ConSEQR (line 13), respectively. For 
the SEQ, which is an OMP-called function call (line 6), we set the Constr to Con-
SEQR. For the SEQ, which is another function call (line 9), we also set the Con-
str to ConSEQR, when the corresponding argument is not the pointer or reference 
type. The reason for this is that the copy of the argument should be guaranteed to be 
valid before such is passed to the callee function. Then, we insert the data transmis-
sion semantic (OAODataTrans function), with ptr and determined Constr as argu-
ments, before the Node.
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4.3  Updating consistency states

We design Algorithm  5 to determine TransFuncs and to insert consistency state 
update semantics after the Nodes. When any element of an allocation unit is writ-
ten in a Node, we set the TransFunc to TrSEQW or TrOMPW. READ operations do 
not change the consistency State of Var. Thus, all of them are ignored. For an OMP 
and SEQ, which is not a function call, we set the TransFunc to TrOMPW (line 4) 
and TrSEQW (line 14) respectively, if the RefList corresponding to Var contains any 
WRITE operation. For the SEQ, which is an OMP-called function call, we set the 
TransFunc to TrSEQW (line 9) if the RefList contains any WRITE operation. For the 
SEQ, which is another function call, the essential consistency state update semantics 
are inserted inside the callee function. Thus, the insertion of state update semantics 
after the SEQ is not needed. Then, we insert the consistency state update semantic 
(OAOStTrans function), with ptr and determined TransFunc as arguments, after 
the Node.

4.4  Parallel primitive translation

Concerning task identification and task mapping, OMP SMP and OMP Offload-
ing both support the work-sharing model well. OMP SMP also supports the task 
model completely, whereas OMP Offloading only has very limited support for the 
task model. Thus, this work focuses on the works-haring model.

The corresponding relationships between parallel primitives of OMP SMP 
and OMP Offloading are listed in Table 7. To exploit GPU, work-sharing loops 
are distributed across all GPU teams with teams distribute primitive. We 
translate the OMP SMP parallel primitives into the corresponding OMP Offload-
ing parallel primitives according to Table 7. Then, parallel code regions can run 
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on the accelerator. The accelerator usually has much more physical cores and 
threads than CPU. So OAO-translated programs may gain performance improve-
ments. This is summarized as Question  2 in the experimental part and will be 
verified by experiments.

5  Experimental setup

5.1  Evaluation goals

Our experiments are designed to answer the following questions:

Question 1 Can OAO translate OMP SMP programs into OMP Offloading pro-
grams without manual intervention?

Question 2 Can OAO-translated programs gain performance improvements?

Question 3 Can OAO optimize data transmission and eliminate redundant 
transmissions?

5.2  Benchmarks

The PolyBench  [25] and Rodinia  [4, 31] are commonly used benchmark suites 
in the field of high performance computing (HPC). The PolyBench  [25] col-
lects many common algorithms in fields such as linear algebra, algebra solvers, 
data mining, stencils, and image processing. The Rodinia  [4, 31] includes some 
practical applications or kernels such as breadth-first search, computational fluid 
dynamics, n-body problem, LU decomposition, DNA sequencing, particle filter, 
and image processing. These fields or applications require the energy-efficient 
high performance of accelerators. Different types of workloads of the PolyBench 
and Rodinia can comprehensively evaluate OAO-translated programs. Some 
related work [18, 30] used the PolyBench or Rodinia in experiments. The OMP 
SMP version of the PolyBench and Rodinia is suitable as the input of our OAO. 
So we also use the PolyBench and Rodinia for evaluation.

Table 7  OMP parallel primitives and corresponding OMP Offloading parallel primitives

OpenMP parallel primitives OpenMP offloading parallel primitives

#pragma omp parallel for #pragma omp target teams distribute par-
allel for

#pragma omp parallel loop #pragma omp target teams distribute par-
allel loop

#pragma omp parallel simd #pragma omp target teams distribute par-
allel simd
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We evaluate OAO by applying it to 23 benchmarks from the PolyBench  [16] 
and Rodinia  [31] benchmark suites, as listed in Table  8. Moreover, we add a 
new benchmark called FDTD-2D-FUNC to evaluate data transmission optimi-
zations when programs contain inter-procedural function calls. This benchmark 
is derived from FDTD-2D with each kernel replaced by a call to the subfunc-
tion which encapsulates the kernel. The data required by the kernel are passed 
as function parameters. We configured all benchmarks in the PolyBench to use 
single precision for all experiments.

We consider the following five versions of benchmark implementations:
OMP This version refers to the OMP SMP parallel programs from PolyBench 

and Rodinia. We insert OMP SMP primitives to PolyBench manually, to generate 
an OMP version PolyBench. Rodinia contains the OMP version natively. OMP 
version is input and baseline.

OAO This version refers to OMP Offloading programs translated by OAO.
Manual This version refers to OMP Offloading programs translated by hand. 

The Manual version uses simple copy-in and copy-out data transmission strategy 

Table 8  Benchmarks used in experiments

Suite Benchmark Description

PolyBench 2DCONV 2-D Convolution
2MM 2 Matrix Multiplications
3DCONV 3-D Convolution
3MM 3 Matrix Multiplications
ATAX Matrix Transpose and Vector Multiplication
BICG BiCG Sub Kernel of BiCGStab Linear Solver
CORR Correlation Computation
COVAR Covariance Computation
FDTD-2D 2-D Finite Different Time Domain Kernel
FDTD-2D-FUNC FDTD-2D implemented with subfunctions
GEMM Matrix-multiply
GESUMMV Scalar, Vector and Matrix Multiplication
MVT Matrix Vector Product and Transpose
SYR2K Symmetric rank-2k operations
SYRK Symmetric rank-k operations

Rodinia bfs Breadth-First Search (BFS) algorithm
cfd_euler CFD solver with redundant flux computation
cfd_pre_euler CFD solver with pre-computed fluxes
lavaMD N-Body problem within a large 3D space
lud LU Decomposition
nw Needleman-Wunsch method for DNA sequencing
particlefilter Particle Filter (PF)
srad_v2 Speckle Reducing Anisotropic Diffusion
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for each offloading kernel. We use #pragma omp target teams dis-
tribute parallel for directive to offload kernels. We use cudaMallo-
cHost() to replace malloc(), when the memory block is larger than 128 KB.

DawnCC-native This version refers to origin OMP Offloading programs trans-
lated by DawnCC. DawnCC  [15] is the state-of-the-art translator that generates 
OMP Offloading programs. Thus, we use DawnCC for comparison. DawnCC uses 
#pragma omp target parallel for directive to offload kernels.

DawnCC-opt This version refers to DawnCC-native version with our additional 
optimizations. We introduce two optimizations, which are used in Manual and OAO 
versions, into DawnCC-opt. We replace #pragma omp target parallel 
for directive with #pragma omp target teams distribute paral-
lel for directive. We replace malloc() with cudaMallocHost() when the 
memory block is larger than 128 KB. In the comparison of the OAO and DawnCC-
opt version, data transmission optimizations of OAO and DawnCC can be evaluated.

5.3  Hardware and software platforms

Table 9 lists the two CPU-GPU systems used in experiments. We use GCC version 
8.3 to compile the OMP SMP programs. We use Clang version 9.0 to compile the 
OMP Offloading programs. CUDA is needed during the compilation and running 
of the OMP Offloading programs. All compilation processes use optimization level 
three (-O3).

6  Experimental results

6.1  Performance evaluation

We run each benchmark twenty times and use averages to build the following fig-
ures and tables. Figures 5 and 6 show the speedups of different versions over OMP 
on two CPU-GPU systems. OAO and DawnCC can translate all fifteen benchmarks 
in PolyBench, whereas only OAO can translate the eight benchmarks in Rodinia. 
Benchmarks, which DawnCC cannot handle, are marked with ‘X’ in figures.

Table 9  Hardware and Software Platforms

K40 system 2080Ti system

CPU 2*Intel Xeon E5-2620V3 (6cores/12threads) 2*Intel Xeon E5-2697v4 (18cores/18threads)
CPU Mem 8*16GB DDR3 8*32GB DDR4
GPU 1*K40m 1*RTX 2080Ti
GPU Mem 11GB 11GB
OS Ubuntu 16.04 (Linux 4.15) Manjaro 18.1 (Linux 4.19)
Compiler CUDA-10.1, Clang/LLVM-9.0.0, GCC-8.3.0 CUDA-10.1, Clang/LLVM-9.0.0, GCC-8.3.0
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6.1.1  Performance of OAO version

The OAO version gains performance improvements (1.86× to 32× ) over OMP ver-
sion in more benchmarks than the three other versions, eleven and fifteen bench-
marks on K40 and 2080Ti platforms. Besides, the overheads of OAORT are less 
than 0.07% of the total execution time in all twenty-three benchmarks. The OAO 
version achieves high speedups in four benchmarks: GEMM, 2MM, 3MM, and bfs. 
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Speedups of 2MM and 3MM are over 30x. These four benchmarks are compute-
intensive applications and suitable for offloading.

The OAO version has poor speedups in eight benchmarks. For 3DCONV, 
GESUMMV, 2DCONV, nw, and lud, the time of essential data transmissions makes 
up a large proportion (over 50% to over 90%) of the total execution time of the 
OAO version. So there is no big chance for data transmissions optimization in these 
benchmarks. For 3DCONV, SYR2K, GESUMMV, SYRK, and srad_v2, the pure 
execution time (excluding transmission time and OAORT overhead) of the OAO 
version is longer than the OMP version. It seems that these applications are not suit-
able for heterogeneous platforms. To solve this problem, a promising approach is to 
make the translator can predict application performances on different platforms [6, 
32, 35, 36], and automatically decide whether to offload or not.

The OAO version shows different performance on various platforms in FDTD-
2D, FDTD-2D-FUNC, lavaMD, and particlefilter. Performance improvements are 
gained on the 2080Ti platform, whereas poor speedups appear on the K40 platform. 
The reason is that the more advanced RTX2080Ti GPU can support these bench-
marks better.

The performances on two platforms are generally similar. Thus, later discussions 
and analyses only use data on the 2080Ti system for simplicity.

6.1.2  Comparison with other versions

The OAO version gains performance improvements over three other versions in all 
benchmarks (Fig.  7). Compared with the Manual version, OAO version achieves 
large improvements (over 40%) in thirteen benchmarks, and huge improvements 
(over 500%) in seven benchmarks, especially nw (455,271%). These performance 
improvements thanks to the data transmission optimization in OAO, which will be 
analyzed later.
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DawnCC cannot translate the eight benchmarks in Rodinia correctly because 
some syntax, such as structure and class, cannot be handled. The OAO version out-
performs the DawnCC-native version (over 159%) in all fifteen benchmarks, which 
DawnCC can handle. Improvements are huge (over 500%) in thirteen of them. Com-
pared with the DawnCC-opt version, the OAO version achieves slight improve-
ments (less than 5%) in thirteen benchmarks. Significant (3339%) and large (92%) 
improvements are observed in FDTD-2D-FUNC and BICG.

Generally, the OAO version is far better than the DawnCC-native version. 
However, the OAO version is similar to the DawnCC-opt version in most Poly-
Bench benchmarks. This phenomenon demonstrates that OAO improvements over 
DawnCC-native are mainly caused by two extra optimizations. The OAO improve-
ments over DawnCC-opt are due to different transmission optimizations in OAO 
and DawnCC. The time of redundant data transmissions makes up a slight propor-
tion (less than 5%) of the total execution time of the DawnCC-opt version in most 
PolyBench benchmarks. Thus, most improvements are insignificant. For FDTD-2D-
FUNC and BICG, the time of redundant data transmissions makes up large propor-
tions (82% and 45%) and improvements are significant.

In summary, OAO can gain performance improvements over OMP and outper-
forms DawnCC, which is the state-of-the-art translator.

6.2  Analysis of data transmission optimization

We analyze the number, size, and time of data transmissions to evaluate the data 
transmission optimization in OAO.

6.2.1  Number of transmissions

Our OAO runtime is designed to eliminate redundant data transmissions to reduce 
the data communication overhead. Hence, we report the number of data transmis-
sions and use it to quantify how well OAO is in reducing host-accelerator commu-
nication overhead. Table 10 shows the number of transmissions in different versions 
of benchmarks. The DawnCC-native and DawnCC-opt versions have the equal num-
ber of transmissions in each corresponding benchmark, so they are expressed as 
DawnCC in Table 10. Benchmarks, which DawnCC cannot handle, are marked with 
‘–’ in Table 10. Comparing The Manual column and OAO column, the reduction 
of data transmission frequency occurred in all benchmarks. Particularly, the num-
ber is reduced by one to five orders of magnitude, in eight benchmarks (italic cells 
in Table 10): FDTD-2D, FDTD-2D-FUNC, srad_v2, nw, cfd_pre_euler, cfd_euler, 
particlefilter, and bfs.

Compared with DawnCC column, OAO reduces the number of transmissions in 
eight benchmarks (bold italic and italic cells). For seven benchmarks (bold italic) 
except FDTD-2D-FUNC, OAO can eliminate more redundant inter-procedural data 
transmissions than DawnCC. The FDTD-2D-FUNC benchmark introduces inter-pro-
cedural function calls based on the FDTD-2D benchmark. For the FDTD-2D-FUNC 
benchmark, OAO can eliminate 19,495 more redundant data transmissions than 
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DawnCC. DawnCC can eliminate most redundant transmissions in FDTD-2D but can-
not optimize FDTD-2D-FUNC well, which contains massive inter-procedural function 
calls, whereas OAO can optimize FDTD-2D and FDTD-2D-FUNC to the same min-
imum number of transmissions (5 times). These phenomena demonstrate that OAO 
can optimize inter-procedural and intra-procedural data transmissions and outperform 
DawnCC, which can only optimize intra-procedural data transmissions incompletely.

6.2.2  Data size and time of transmission

Figures  8 and 9 show the percentage of data transmission size and time saved of 
OAO compared with other versions. The DawnCC-native and DawnCC-opt ver-
sions have the equal transmission size in each corresponding benchmark, so they are 
expressed as DawnCC in Fig. 8.

Table 10  Number of 
transmissions in different 
versions of benchmarks

Bold represents the number of transmissions that can be reduced 
(in the same order of magnitude). Italics represents the number of 
transmissions that can be significantly reduced (one to five orders of 
magnitude). Bold italics represents the suboptimal number of trans-
missions by DawnCC. Underline represents the optimal number of 
transmissions by OAO

Name # of transmissions

Manual DawnCC OAO

3DCONV 4 3 3
GESUMMV 10 7 6
2DCONV 4 3 3
SYRK 8 3 3
SYR2K 6 4 4
MVT 12 7 7
ATAX 12 6 5
FDTD-2D-FUNC 27,000 19,500 5
FDTD-2D 27,000 7 5
BICG 12 8 7
CORR 8 6 6
COVAR 12 6 4
GEMM 6 4 4
2MM 12 7 6
3MM 18 10 8
srad_v2 38,912 – 1033
nw 16,380 – 3
lud 4092 – 2046
cfd_pre_euler 224,002 – 12
cfd_euler 128,004 – 9
lavaMD 10 – 6
particlefilter 3534 – 262
bfs 216 – 7
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Compared with the Manual version, OAO gains over 25% transmission size sav-
ings and over 23% transmission time savings in all benchmarks. For the eighteen 
benchmarks, these savings are around or more than 50%. For eight benchmarks, 
these savings are over 95%. Significant performance improvements over Manual 
version owe to these transmission time savings

The time savings of OAO over Manual are slightly smaller than the corresponding 
size savings of OAO over Manual. The reason is that OAO eliminates more trans-
missions from the accelerator to the CPU (D2H) than transmissions from the CPU 
to the accelerator (H2D). The D2H transmissions usually have higher bandwidth 
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(around 12.25 GB/s) than the H2D transmissions (around 10.55 GB/s). For a block 
of memory, its D2H time is usually shorter than its H2D time. In a frequent case, its 
H2D is essential and remained, whereas its D2H is redundant and eliminated. As a 
consequence, the percentage of data size saved is 50%, whereas the percentage of 
time saved is less than 50%.

Compared with DawnCC, OAO reduces data transmission size in eight bench-
marks. This occurrence matches the transmission number reductions shown in 
Table  10. The transmission size saving of the six benchmarks is apparent, espe-
cially FDTD-2D-FUNC (over 99%), whereas the reduction is negligible in two other 
benchmarks: GESUMMV and ATAX.

DawnCC-native and DawnCC-opt show different results in terms of transmis-
sion time. OAO gains significant reductions (over 41%) on transmission time over 
DawnCC-native in all benchmarks. For most benchmarks, except FDTD-2D-FUNC, 
reductions are mainly caused by the pinned memory, which is allocated by cuda-
MallocHost() function and is beneficial to make full use of the bandwidth between 
the CPU and the accelerator. For FDTD-2D-FUNC, the main reason is that optimi-
zation in OAO can eliminate nearly all intra-procedural and inter-procedural trans-
missions. These significant reductions contribute to huge performance improve-
ments (over 159%), as shown in Fig. 7.

Compared with DawnCC-opt, OAO gains obvious reductions on transmission 
time in the six benchmarks: FDTD-2D-FUNC, FDTD-2D, BICG, COVAR, 2MM, 
and 3MM. Combining Figs. 8 and 9, the percentage of time saved and the percent-
age of the corresponding size saved can match each other in these six benchmarks. 
Combining Figs.  7 and  9, the six reductions have different contributions to per-
formance improvement, because of diverse proportions of redundant transmission 
time, as we analyzed before. For FDTD-2D-FUNC and BICG, huge performance 
improvements (3339% and 92%) thanks to transmission time reductions. For the 
four other benchmarks, small performance improvements are gained by transmission 
time reductions.

The above experimental results prove that OAO can optimize data transmission 
and eliminate redundant transmissions, whether they are intra-procedural or inter-
procedural transmissions. OAO can eliminate more redundant transmissions than 
DawnCC in eight benchmarks, especially inter-procedural transmissions, which can-
not be eliminated by DawnCC.

6.3  Implementation and feasibility

We implement the OAO system based on the Clang compiler  [13] of the LLVM 
compiler infrastructure [10, 14] within 14,000 lines of code. The OAO Translator is 
derived mainly from the RecursiveASTVisitor class of Clang. We override 
about 40 functions of RecursiveASTVisitor to carry out compile-time static 
analysis and translate source code. The OAO Runtime, about 700 lines of code, 
mainly maintains a vector of variable information and performs Algorithm 2 to exe-
cute essential data transmissions. Thus, the implementation complexity of OAO is 
acceptable.
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OAO system can translate the OpenMP code into the OpenMP Offloading code 
fully automatically. It should be noted that OAO depends on a specific version of the 
Clang compiler. Developers can follow the detailed instructions on the GitHub to 
compile and use OAO (https ://githu b.com/ruixu eqing yang/OAO-Trans lator ). Thus, 
OAO is highly feasible to use for developers.

7  Related work

Much work has been exerted to make heterogeneous computing accessible to devel-
opers and researchers. Among them, the source-to-source translator is an ideal tool. 
Moreover, automatic communication management is a main challenge in translation 
and has been studied widely and exclusively.

7.1  Source‑to‑source translation for heterogeneous computing

Many translators, such as C-to-CUDA  [2], PPCG  [30], BONES  [18], and 
OpenMPC  [11], generate CUDA programs for heterogeneous computing. Based 
on the polyhedral model, C-to-CUDA, and PPCG can only parallelize affine 
code regions in sequential C programs. BONES can parallelize sequential C pro-
grams, which are fitted by algorithmic species and skeletons prepared in advance. 
OpenMPC builds an abstraction of CUDA based on OpenMP and generates CUDA 
programs automatically. Other translators generate other kinds of heterogeneous 
parallel programs. Grewe et al. [19] translate OMP SMP into OpenCL. HTrOP [26] 
generates OpenCL applications from the LLVM bitcode. CU2CL  [28] and Kim 
et al. [9] translate CUDA into OpenCL to achieve portability. Wu et al. [33] propose 
NoT, a high-level programming method for heterogeneous systems. Then, the NoT 
application is translated into OpenCL. OpenABLext  [34] generates OpenCL from 
OpenABL, a domain-specific language. DawnCC  [15, 17], which is based on the 
polyhedral model, translates C into OMP Offloading.

Among these translators, DawnCC and our OAO generate OMP Offloading 
programs, but DawnCC faces serious performance issues. The performance of the 
DawnCC version is much lower than the OpenMP SMP version in all PolyBench 
benchmarks because of inefficient data transmission optimization and parallel direc-
tives. In FDTD-2D-FUNC, DawnCC and OAO versions display a huge difference in 
the number of transmissions (19,500 vs. 5). Moreover, DawnCC cannot handle com-
mon syntax, such as structure and class.

7.2  Automatic communication management for heterogeneous computing

Many studies concentrate on automatic communication management between the 
CPU and the accelerator. Semi-automatic techniques  [1] can manage data trans-
missions through Runtime system, but require developers to insert API functions 
manually.

https://github.com/ruixueqingyang/OAO-Translator
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Fully automatic methods  [7, 8, 24] exploit compile-time static analysis tech-
niques to insert Runtime API functions automatically. Our work follows this 
idea. CGCM  [8] is the first fully automatic system for managing and optimizing 
CPU–GPU communication. DyManD [7], based on CGCM, supports complex data 
structures, through page protection mechanism and mmap function, which may fail. 
CGCM and DyManD suffer from redundant transmissions. AMM  [24] eliminates 
redundant transmissions, but is bound with X10CUDA [27]. Sousa et al. [29] per-
form data coherence analysis on OpenCL code and then insert appropriate OpenCL 
function calls to minimize the number of data coherence operations. Our work also 
eliminates redundant transmissions, but cannot support multilevel pointers for the 
safety concern of mmap() function.

For seamless data sharing between CPU and GPU, CUDA 6.0 and later versions 
support unified virtual memory (UVM) [5], where a unified memory address space 
is shared across the CPUs and GPUs. Li et al.  [12] improved OpenMP GPU data 
management under UVM. These studies are beneficial supplements to this work to 
support the complex data structure safely and to improve performance further, if the 
accelerator is specified as NVIDIA hardware. Besides UVM, Castro et al. [3] pro-
pose Heterogeneous Transactional Memory (HeTM). HeTM provides programmers 
with the logical single memory region, shared among the CPUs and GPUs, with 
support for atomic transactions.

8  Conclusion and future work

This work describes a novel automatic source-to-source translator system, called 
OAO, to translate OpenMP SMP programs into OpenMP Offloading programs. 
The OAO consists of the OAO Runtime Library and the OAO Translator. For the 
OAO Runtime Library, we define the consistency State, state transition function, and 
consistency state constraint to model data transmission operations and variable ref-
erences. Based on these, we propose the minimum data transmission algorithm to 
manage and optimize data transmissions automatically and efficiently. For the OAO 
Translator, we define the SPGraph to encode variable reference information. Based 
on the SPGraph, we design some algorithms to insert runtime semantics and trans-
late parallel primitives automatically. We implement the OAO Translator through 
the compile-time static analysis technology.

Experiments on PolyBench and Rodinia demonstrate that OAO system gains 
performance improvements over hand-translated (up to 455,271%) and DawnCC-
translated (up to 31,403%) OpenMP Offloading programs. The speedup of the OAO 
version is up to 32.28× over the OpenMP SMP version. The OAO version can save 
data transmission time (up to over 99%) compared with manual and DawnCC ver-
sion. Moreover, OAO can handle eight benchmarks in the Rodinia suite, in which 
DawnCC cannot handle any benchmark. The OAO version gains performance 
improvement over the OpenMP SMP version in five out of these eight Rodinia 
benchmarks (up to 12.53x).

The OAO cannot translate some benchmarks of Rodinia correctly, such as the 
b+tree and heartwall. The main reason is that these benchmarks contain multilevel 
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pointers, which OAO cannot track. Another reason is that some benchmarks con-
tain special OpenMP directives, such as #pragma omp master. Besides, track-
ing consistency at finer granularity may further improve performance. Future work 
includes extending the OAO system to support more situations and finer-grained 
optimization.
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