
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:4957–4987
https://doi.org/10.1007/s11227-020-03452-2

1 3

Automatic translation of data parallel programs
for heterogeneous parallelism through OpenMP offloading

Farui Wang1 · Weizhe Zhang1 · Haonan Guo1 · Meng Hao1 · Gangzhao Lu1 ·
Zheng Wang2

Accepted: 11 October 2020 / Published online: 29 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Heterogeneous multicores like GPGPUs are now commonplace in modern com-
puting systems. Although heterogeneous multicores offer the potential for high
performance, programmers are struggling to program such systems. This paper
presents OAO, a compiler-based approach to automatically translate shared-mem-
ory OpenMP data-parallel programs to run on heterogeneous multicores through
OpenMP offloading directives. Given the large user base of shared memory OpenMP
programs, our approach allows programmers to continue using a single-source-
based programming language that they are familiar with while benefiting from the
heterogeneous performance. OAO introduces a novel runtime optimization scheme
to automatically eliminate unnecessary host–device communication to minimize the
communication overhead between the host and the accelerator device. We evalu-
ate OAO by applying it to 23 benchmarks from the PolyBench and Rodinia suites
on two distinct GPU platforms. Experimental results show that OAO achieves up
to 32× speedup over the original OpenMP version, and can reduce the host–device
communication overhead by up to 99% over the hand-translated version.

Keywords Heterogeneous computing · Source-to-source translation · OpenMP
offloading · Compilation optimization · GPUs

 * Weizhe Zhang
 wzzhang@hit.edu.cn

 Farui Wang
 wangfarui@hit.edu.cn

 Zheng Wang
 z.wang5@leeds.ac.uk

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HL,
China

2 School of Computing, University of Leeds, Leeds, UK

http://orcid.org/0000-0003-4783-876X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03452-2&domain=pdf

4958 F. Wang et al.

1 3

1 Introduction

Heterogeneous multicores, as represented by the GPUs, are now pervasive in
computing systems because of their energy-efficient high performance. Such a
potential can only be unlocked if the running software has been suitably parallel-
ized to match the underlying hardware. Unfortunately, developers struggle to pro-
gram heterogeneous multicores due to the complexity in offloading computation
and communication management between the host and the accelerator device.

Numerous programming models have been proposed to address the program-
ming issue of heterogeneous systems, including Compute Unified Device Archi-
tecture (CUDA), Open Computing Language (OpenCL), Open Accelerators
(OpenACC), and more recently—Open Multi-Processing Offloading (OpenMP
Offloading) [21–23]. These approaches enable newly developed codes to run on
heterogeneous devices. However, they offer little help in addressing the problem
of porting legacy programs to heterogeneous devices because programmers still
need to painstakingly modify the existing code to use a heterogeneous program-
ming model.

Compiler-based source-to-source translators offer a viable solution and road-
map for porting legacy parallel code to run on heterogeneous computing devices.
Some existing work targets CUDA code generation [2, 11, 18, 30]. However, this
kind of existing work has a serious performance portability issue as an applica-
tion implemented in CUDA, by definition, is not portable to non-NVIDIA sys-
tems. Other existing work [19, 26, 33, 34] generates OpenCL code that can run
on a wide range of parallel hardware including GPUs, CPUs, and FPGAs. Given
that OpenCL remains as a low-level programming language that exposes many
hardware details, maintaining the generated code is often too difficult for non-
expert programmers.

The emerging OpenMP Offloading standard [21–23] offers a promising
approach to port legacy OpenMP programs to heterogeneous devices using sim-
ple language pragmas with little modification to existing code while preserving
the advantage of low maintenance costs given by the simplicity of OpenMP [20].
Compared with CUDA or OpenCL, this standard allows programmers to work on
a language that they are familiar with using a few intuitive pragmas to annotate
their code. Compared with OpenACC, this standard is supported by more com-
monly used compilers. Thus, OpenMP Offloading provides existing OpenMP pro-
grams with a simple upgrade path to heterogeneous parallelism using pragmas.
Although promising, OpenMP Offloading still requires manual optimization of
the data transmission to achieve good performance.

The DawnCC compiler [15, 17] is among the first attempts to leverage
OpenMP Offloading for heterogeneous computing. This compiler translates
sequential C into OpenACC or OpenMP Offloading. However, DawnCC does not
address the communication optimization problem between the host CPU and the
heterogeneous accelerator well, because of the lack of inter-procedural data trans-
mission optimization, which is often responsible for the performance bottleneck.
Moreover, DawnCC often does not choose the right offloading directives, leading

4959

1 3

Automatic translation of data parallel programs for…

to suboptimal performance. As a result, the code generated by DawnCC often
delivers worse performance than the original OpenMP running on a shared-mem-
ory parallel machine. This drawback discourages the adoption of the technique on
a broader scale.

This work aims to provide a better approach for leveraging OpenMP Offloading
for heterogeneous computing. We present OpenMP Automatic Offloading (OAO),
a source-to-source framework that automatically translates OpenMP parallel loops
to use OpenMP Offloading pragmas. Instead of performing simple code translation,
we go further by developing a runtime system to optimize the data communication
between the host CPU and the accelerator automatically. By precisely modeling the
consistency state and its transition of a data buffer, our runtime eliminates redundant
data transmissions, on-the-fly, for not just simple loops but also complex data struc-
tures and nested function calls. We show that OAO is highly effective in generating
efficient OpenMP Offloading code to run on heterogeneous GPUs. We demonstrate
the benefit of OAO by it to 23 OpenMP benchmarks from the PolyBench and Rod-
inia suites. We compare OAO with DawnCC and manually-translated codes on two
distinct GPU platforms with a K40 or a 2080Ti GPU. Experimental results show
that OAO achieves up to 32× speedup over the original OpenMP version. Moreover,
it can reduce the host–device communication time by up to 99% compared with the
manually-translated version. We show that OAO can also handle benchmarks that
DawnCC fails on, with significantly better performance improvement.

This paper makes the following technical contributions:

• We propose the first source-to-source tool that directly translates legacy OpenMP
programs into OpenMP Offloading programs without manual intervention.

• We present a novel algorithm to optimize the host–device communication by lev-
ering the consistency states of the program. Unlike prior work, our approach can
work on complex data structures and nested function calls.

The OAO source-to-source translator framework is publicly available at https ://githu
b.com/ruixu eqing yang/OAO-Trans lator .

The remainder of this work is organized as follows: Sect. 2 introduces the motiva-
tion and overview of the OAO system. Section 3 describes the OAO runtime library
(OAORT) and the minimum transmission algorithm. Section 4 proposes the OAO
translator with algorithms to insert OAORT APIs. Section 5 describes the experi-
mental setup. Section 6 presents and analyzes the experimental results. Section 7
provides the related work. Finally, Sect. 8 concludes the paper and discusses future
work.

https://github.com/ruixueqingyang/OAO-Translator
https://github.com/ruixueqingyang/OAO-Translator

4960 F. Wang et al.

1 3

2 Background and overview

2.1 OpenMP offloading

Since version 4.0, OpenMP standard introduced new offloading constructs for het-
erogeneous computing. These offloading constructs allow the program to specify
which regions of code and data to be mapped to run on an accelerator.

Figure 1b gives a simple use case of OpenMP Offloading constructs. Here, the
user program starts execution on a host (e.g., CPU) device, where offloading to
an accelerator is performed when entering a target region specified by the tar-
get pragma. A target region maps variables allocated on the host memory to the
device memory, e.g., the GPU global memory. The implementation of target regions

1 #pragma omp parallel for
2 for(int i = 0; i < N; i++){
3 v3[i] += v2[i] + v1[i];
4 }
5 #pragma omp parallel for
6 for(int i = 0; i < N; i++){
7 v5[i] += v4[i] + v3[i];
8 }

(a) OpenMP CPU code snippet

1 #pragma omp target data map(tofrom: v1[:N], v2[:N], v3[:N])
2 {
3 #pragma omp target teams distribute parallel for
4 for(int i = 0; i < N; i++){
5 v3[i] += v2[i] + v1[i];
6 }
7 }
8 #pragma omp target data map(tofrom: v3[:N], v4[:N], v5[:N])
9 {

10 #pragma omp target teams distribute parallel for
11 for(int i = 0; i < N; i++){
12 v5[i] += v4[i] + v3[i];
13 }
14 }

(b) OpenMP Offloading code snippet

1 #pragma omp target enter data map(to: v1[:N], v2[:N], v3[:N])
2 #pragma omp target teams distribute parallel for
3 for(int i = 0; i < N; i++){
4 v3[i] += v2[i] + v1[i];
5 }
6 #pragma omp target enter data map(to: v4[:N], v5[:N])
7 #pragma omp target teams distribute parallel for
8 for(int i = 0; i < N; i++){
9 v5[i] += v4[i] + v3[i];

10 }
11 #pragma omp target exit data map(from: v3[:N], v5[:N]) map(delete:

v1[:N], v2[:N], v4[:N])

(c) Optimal OpenMP Offloading code snippet

Fig. 1 Example for OpenMP CPU to OpenMP Offloading translation and optimization

4961

1 3

Automatic translation of data parallel programs for…

may include transmitting data between host and device and launching a GPU ker-
nel to execute the target code region. The teams directive can be used to spawn a
league of teams, each consists of multiple OpenMP threads. It is to note that any two
threads from different teams cannot communicate in any native way, e.g., no barrier
can be placed between threads from different teams. This feature ensures the accel-
erator implementation can map individual teams to run on independent execution
units.

The distribute pragma can be used to partition the loop iterations into
chunks to be allocated to teams. Note that function calls and global variable refer-
ences are allowed in target regions, but they increase the difficulties for performance
host–device communication optimization. The target data map directive
specifies the variable mapping and unmapping operations at the beginning and end
of the brace region following the directive. The target enter data map and
target exit data map directives define the variable mapping and unmap-
ping operations at the beginning and end of the region between these two direc-
tives, respectively. The to pragma indicates data transmission from the host to the
device when the variables are mapped to the device memory. The from pragma
means copying data from the device to the host when the variables are unmapped
form the device memory. The tofrom pragma integrates the functions of to and
from pragmas. The delete pragma means unmapping variables form the device
memory without data copy.

2.2 Motivation

As a motivation example, consider translating the example code given in Fig. 1a.
Translating the two OpenMP data-parallel loops to use OpenMP Offloading for het-
erogeneous computing is straightforward. A naive solution and an optimal solution
are given in Fig. 1b, c, respectively.

Compared to the naive solution, inserting the appropriate data transmission direc-
tives to achieve good performance is non-trivial. For example, the translation given
in Fig. 1b contains redundant transmissions, such as all “from” transmissions at
line 1, “to” transmission for v3 at line 8 and “from” transmission for v4 at line 8.
These redundant host–device communications results in 1.6× slowdown compared
to the version given in Fig. 1c. Developers can eliminate these redundant data trans-
missions only if they understand the following knowledge: (1) read and write opera-
tions of variables within and between these two loops, (2) the consistency states of
variables before and after these two loops, and (3) the consistency states of variables
required by these two loops. This is complex and tedious for developers. OAO is
designed to remove redundant host–device communications by executing the right
data transmission directives at the right place automatically.

2.3 Overview of our approach

As depicted by Fig. 2, OAO consists of two components: a source-to-source code
translator and a runtime library. The code translator translates OpenMP (or OMP in

4962 F. Wang et al.

1 3

short) symmetric multiprocessing (SMP) constructs to OMP Offloading code when
it is possible to do so. The translated code is compiled and linked with the runtime
library. During execution, the runtime automatically determines and executes essen-
tial data transmissions without redundant data transmissions through the minimum
transmission algorithm (Algorithm 2).

As shown in Table 1, compared with existing source-to-source translators, only
our OAO can translate OpenMP code to OpenMP Offloading code, whose intra-pro-
cedural and inter-procedural data transmission are both optimized. Another differ-
ence is that only our work and Grewe et al. [19] use both the runtime and static code
translator, while other existing work only uses the static code translator. Grewe et al.
use the runtime to determine where to run the program (CPU or GPU). We use our
runtime to optimize data transmissions.

A key innovation of our approach is using the consistency state, state transition
function, and consistency state constraint to perform host–device communication
optimization in our runtime. We model the data transmission directive and the vari-
able reference, which may change the consistency state, as the state transition func-
tion. Our key insight is that the consistency of shared data in the host and device
memory is guaranteed as long as the consistency state satisfies the consistency state
constraint. We propose a novel algorithm to derive the essential state transition func-
tion, which transits the consistency state to solve the consistency state constraint.
With the algorithm in place, our runtime can execute the right data transmission
directive corresponding to the essential state transition function and avoid redun-
dant data transmissions. When the variable is referenced, our runtime uses the cor-
responding state transition function to update the consistency state maintained in
runtime. We implement the algorithm and update operation as data transmission and
consistency state update semantics, which should be inserted to OMP Offloading
programs properly. Our runtime library is detailed in Sect. 3.

Fig. 2 Overview of OAO

Code Translator
(Section 4)

OMP SMP Code

Translation

Execution

Input

OMP
Offloading

kernel

 CPU accelerator

Runtime Library (Section 3)

Application

OMP Offloading Code

Runtime Sematices

4963

1 3

Automatic translation of data parallel programs for…

Ta
bl

e
1

 C
om

pa
ris

on
 w

ith
 e

xi
sti

ng
 so

ur
ce

-to
-s

ou
rc

e
tra

ns
la

to
rs

 fo
r a

cc
el

er
at

or
s

Tr
an

sl
at

or
In

pu
t

O
ut

pu
t

M
et

ho
d

D
at

a
tra

ns
m

is
si

on
 o

pt
im

iz
at

io
n

ty
pe

C
-to

-C
U

D
A

 [2
]

C
C

U
D

A
St

at
ic

 c
od

e
tra

ns
la

to
r

N
on

e
PP

C
G

 [3
0]

C
C

U
D

A
St

at
ic

 c
od

e
tra

ns
la

to
r

In
tra

-p
ro

ce
du

ra
l

BO
N

ES
 [1

8]
C

C
U

D
A

 O
pe

nC
L

St
at

ic
 c

od
e

tra
ns

la
to

r
In

tra
-p

ro
ce

du
ra

l
O

pe
nM

PC
 [1

1]
O

pe
nM

P
C

U
D

A
St

at
ic

 c
od

e
tra

ns
la

to
r

N
on

e
G

re
w

e
et

 a
l.

[1
9]

O
pe

nM
P

O
pe

nC
L

St
at

ic
 c

od
e

tra
ns

la
to

r r
un

tim
e

N
on

e
D

aw
nC

C
 [1

5,
 1

7]
C

O
pe

nM
P

O
ffl

oa
di

ng
, O

pe
nA

C
C

St

at
ic

 c
od

e
tra

ns
la

to
r

In
tra

-p
ro

ce
du

ra
l

O
A

O
 (o

ur
 w

or
k)

O
pe

nM
P

O
pe

nM
P

O
ffl

oa
di

ng
St

at
ic

 c
od

e
tra

ns
la

to
r r

un
tim

e
In

tra
-p

ro
ce

du
ra

l i
nt

er
-p

ro
ce

du
ra

l

4964 F. Wang et al.

1 3

To generate code to use OpenMP Offloading constructs, we first construct the
extended control-flow graph for each function in OMP SMP programs. From the
control-flow graph, we collect and analyze variable reference information through
compile-time static analysis techniques. The analysis is used to insert the right runt-
ime API functions in the right places. We describe our code translator in Sect. 4.

3 Runtime library

Algorithm 1 explains the workflow of the OAO Runtime Library (OAORT) that
aims to minimize host-accelerator data transmission while guaranteeing data con-
sistency. The OAORT initializes and maintains the consistency states of variables
(line 1). Then, the OAORT determines and executes the minimum data transmission
operations according to the consistency state constraints required by the following
code snippet (line 2). After the code snippet, the OAORT updates the consistency
states changed by the code snippet (line 4). As a final step, the OAORT deletes the
maintained consistency states (line 5). The initialization and deletion are introduced
in Sect. 3.1. The data transmission and consistency state update are introduced in
Sects. 3.2 and 3.3 separately.

3.1 Tracking consistency states

Guaranteeing data consistency is the fundamental objective of the OAORT. We
define the State to represent the consistency states of variables. The consistency
State is the foundation of the OAORT and minimum transmission algorithm.

3.1.1 Consistency states

The CPU and the accelerator have two independent memory spaces. Variables
may reside in either or both of these two memory spaces. So, for a variable,
there are three situations: residing in CPU memory (HOST_ONLY), residing in
accelerator memory (DEVICE_ONLY), and residing in both memory. DEVICE_
ONLY is ignored because these accelerator local variables do not need to be
transmitted between the CPU and accelerator. For the third situation, there are

4965

1 3

Automatic translation of data parallel programs for…

three cases: The CPU copy is valid (HOST_NEW), the accelerator copy is valid
(DEVICE_NEW), and both copies are valid (SYNC). We define the consistency
State to abstract these four cases, as shown in Table 2 (Definition 1).

Definition 1 State is a 3-bit binary number. Bit0 suggests whether the allocation unit
has an accelerator copy (Bit0 = 1) or not (Bit0 = 0). Bit1 indicates whether the CPU
copy is valid (Bit1 = 1) or invalid (Bit1 = 0). Bit2 indicates whether the accelerator
copy is valid (Bit2 = 1) or invalid (Bit2 = 0).

When the current State and the later program’s requirement of State are known,
we can derive the minimum data transmission directive without redundant trans-
missions through Algorithm 2, which is designed in Sect. 3.2.3. This is our core
insight.

3.1.2 Using allocation units as granularity

The OAORT tracks consistency at the granularity of allocation units [8] and main-
tains a consistency State for each allocation unit. In C and C++, an allocation unit is
a contiguous region of memory allocated as a single unit. Memory blocks returned
from malloc(), local variables, and global variables are all examples of alloca-
tion units [8]. Our work solely focuses on data parallel programs. For this kind of
program, usually, all elements of an allocation unit are accessed if the allocation
unit is referenced by a parallel region. Thus, using the allocation units as granularity
transmits little redundant data and introduces little overhead. In turn, this helps to
handle pointer aliasing and to prevent complex fine-grained symbolic range analysis
adopted by DawnCC [15].

To maintain the information of allocation units, we define MemBlock and
MemEnv in Definition 2 and 3, respectively.

Definition 2 MemBlk refers to a set of characteristics representing an allocation unit
(Eq. 1). Begin is the starting memory address. Length is the length of the allocation
unit. ElemSize is the element size. State has been defined above.

Definition 3 MemEnv refers to the set of all MemBlks (Eq. 2).

(1)MemBlk = {Begin, Length,ElemSize, State}

Table 2 All possible
consistency states of a variable

State Bit2: accelerator
copy valid

Bit1: CPU
copy valid

Bit0: has
accelerator
copy

HOST_ONLY 0 1 0
HOST_NEW 0 1 1
DEVICE_NEW 1 0 1
SYNC 1 1 1

4966 F. Wang et al.

1 3

When a pointer (ptr) accesses an allocation unit, OAORT searches in the
MemEnv and find the accessed allocation unit MemBlk, which satisfies Eq. 3.

The OAORT provides several API functions to track the State of allocation units
(Table 3). We insert OAOSaveArrayInfo function in the source code to track
global and stack memory. The OAOMalloc and OAONewInfo functions replace
malloc() and new, respectively, to allocate and track heap memory. These three
functions build new MemBlks in the MemEnv. We insert OAODeleteArrayInfo
at the end of the variable scope. The OAOFree and OAODeleteInfo functions
replace free() and delete, respectively. These three functions remove corre-
sponding MemBlks from the MemEnv.

For NVIDIA GPU, we optimize the memory allocation specifically to fully
exploit bandwidth between CPU and GPU. Pageable memory shows high band-
width when memory size is relatively small, whereas pinned memory shows
high bandwidth when memory size is large. According to experimental results,
the threshold is set to 128 KB. When memory block is not larger than 128 KB,
malloc() is used inside OAOMalloc to allocate pageable memory. Other-
wise cudaMallocHost() is used to allocate pinned memory. In OAOFree,
free() and cudaFreeHost() functions are used to release corresponding
memory.

3.2 Data transmission semantics

We define the consistency state constraint (Constr) to represent the requirement of
State. The data transmission semantic (OAODataTrans function) automatically

(2)MemEnv =
{
MemBlk1,… ,MemBlkp

}

(3)Begin ≤ ptr ≤ Begin + Length − 1

Table 3 OAO Runtime API functions

Function Description

void OAOSaveArrayInfo(void* ptr, size_t
length, size_t ElementSize)

Saving the static array information

void OAODeleteArrayInfo(void* ptr) Removing the static array information
void* OAOMalloc(size_t length) Saving the dynamic array information
void OAOFree(void* ptr) Removing the dynamic array information
void* OAONewInfo(void* ptr, size_t Ele-
mentSize, size_t ElementNum)

Saving the dynamic array information

void OAODeleteInfo(void *ptr) Removing the dynamic array information
void OAODataTrans(void* ptr, STATE_CONSTR
Constr)

Determining and performing the mini-
mum data transmission

void OAOStTrans(void *ptr, STATE_CONSTR
StTrans)

Transiting the consistency state

4967

1 3

Automatic translation of data parallel programs for…

derives and executes the essential and minimum data transmission directive to
guarantee consistency, according to the current State maintained in runtime and
the Constr.

3.2.1 Consistency state constraints

We represent the requirement of State with the Constr (Definition 4). Table 4
explains each bit of Constr. If any bit of State is required to be set to 1, we set the
corresponding bit of ConVld to 1. If any bit of State is required to be set to 0, we set
the corresponding bit of ConInVld to 0.

Definition 4 Constr refers to a pair of 3-bit binary numbers (Eq. 4). Table 4
explains the different requirements represented by various bit values of ConVld and
ConInVld.

To guarantee consistency, different Constrs should be satisfied before different
READ, WRITE, and memory-free operations. We list specific Constrs for these
operations in Table 5.

(4)Constr = {ConInVld,ConVld}

Table 4 Description of ConVld and ConInVld

Bit Requirement

ConVld Bit0 Require the variable to have been mapped to accelerator memory, namely State
Bit0 = 1, (ConVld Bit0 = 1) or not require (ConVld Bit0 = 0)

ConVld Bit1 Require the CPU copy to be valid, namely State Bit1 = 1, (ConVld Bit1 = 1) or not
require (ConVld Bit1 = 0)

ConVld Bit2 Require the accelerator copy to be valid, namely State Bit2 = 1, (ConVld Bit2 = 1) or
not require (ConVld Bit2 = 0)

ConInVld Bit0 Require the variable to have been unmapped from accelerator memory, namely State
Bit0 = 0, (ConInVld Bit0 = 0) or not require (ConInVld Bit0 = 1)

ConInVld Bit1 Require the CPU copy to be invalid, namely State Bit1 = 0, (ConInVld Bit1 = 0) or not
require (ConInVld Bit1 = 1)

ConInVld Bit2 Require the accelerator copy to be invalid, namely State Bit2 = 0, (ConInVld Bit2 = 0)
or not require (ConInVld Bit2 = 1)

Table 5 Operations and required
Constrs

Operation Constr

Variable unused ConNo = {111, 000}

CPU READ ConSEQR = {111, 010}

Accelerator READ ConOMPR = {111, 101}

CPU WRITE ConSEQW = {111, 000}

Accelerator WRITE ConOMPW = {111, 001}

CPU free ConFREE = {010, 010}

4968 F. Wang et al.

1 3

3.2.2 Consistency states transition functions

We define the consistency state transition function (TransFunc) to formalize the
State transitions caused by different data transmission directives and READ/
WRITE operations (Definition 5). The formalization helps derive the essential
and minimum data transmission directive.

Definition 5 The form of TransFunc is defined by Eq. 5. TransFunc transits inState
to outState. InVld and Vld are a pair of 3-bit binary numbers. The operators in Eq. 5
are Boolean multiplication and Boolean addition. The form of TransFunc is abbre-
viated as Eq. 6.

If any bit of the outState requires to be set to 0, then the corresponding bit of
InVld is set to 0. If any bit of the outState requires to be set to 1, then the corre-
sponding bit of Vld is set to 1. For the bits without requirements, the correspond-
ing bits of InVld and Vld are set to 1 and 0, respectively. Thus, the form of Trans-
Func can transit any 3-bit binary number to any 3-bit binary number and express
any transition between States.

Each kind of data transmission directive or operation corresponds to a Trans-
Func (Table 6). The transition relationships between States are shown in Fig. 3. If
we can derive the essential and minimum TransFunc, we can know the essential
and minimum data transmission directive, which should be executed to guarantee
consistency. We design the derivation algorithm in Sect. 3.2.3.

3.2.3 Minimum transmission algorithm

Based on States, Constrs, and TransFuncs, we design the algorithm to derive the essen-
tial and minimum TransFunc. The minimum TransFunc only change the bits, which

(5)
outState = TransFunc(inState)

= inState ⋅ InVld + Vld

(6)TransFunc = {InVld,Vld}

Table 6 State transition operations and corresponding TransFuncs

Operation TransFunc

no data transmission required TrNo = {111, 000}

#pragma omp target enter data map(alloc: ...) TrAlloc = {111, 001}

#pragma omp target enter data map(to: ...) TrEnTo = {111, 101}

#pragma omp target update to(...) TrUpTo = {111, 100}

#pragma omp target update from(...) TrFrom = {111, 010}

#pragma omp target exit data map(delete: ...) TrDelete = {010, 010}

CPU WRITE TrSEQW = {011, 010}

Accelerator WRITE TrOMPW = {101, 100}

CPU or accelerator READ TrRead = {111, 000}

4969

1 3

Automatic translation of data parallel programs for…

must be changed, to satisfy the Constr. This feature prevents redundant data trans-
missions. In more detail, we define the MinTrFunc to represent minimum TransFunc
(Definition 6).

Definition 6 For the State and Constr, the MinTrFunc refers to the TransFunc that
meets the following features. The Vld of the MinTrFunc only sets the bits, which
are 0 in State but 1 in ConVld, to 1. The InVld of the MinTrFunc only sets the bits,
which are 1 in State but 0 in ConInVld, to 0.

For example, we assume the State = HOST_NEW = {011} and the
Constr = ConOMPR = {111, 101} and derive the MinTrFunc. The ConInVld = 111
indicates none bits of InVld in MinTrFunc should be set to 0. Thus, we get InVld = 111 .
The Bit0 and Bit2 of ConVld are 1 and we compare these two bits with Bit0 and Bit2
of State. The Bit2 of State is not equal to the Bit2 of ConVld. Thus, we only set Bit2 of
Vld to 1 and get InVld = 100 . In summary, we get MinTrFunc = {111, 100} . The
MinTrFunc = {111, 100} = TrUpTo corresponds to #pragma omp target
update to directive, according to Table 6. We get the MinTrFunc and the minimum data
transmission directive.

TrEnToTrDelete
TrD

ele
te

TrA
llo

c

TrSEQW

TrUpTo

TrF
rom

TrO
MPW

HOST_ONLY

DEVICE_NEW

TrSEQW / TrRead

TrOMPW / TrRead

TrSEQW / TrRead TrRead

TrDelete

HOST_NEW SYNC

Fig. 3 Consistency state transition relationships

4970 F. Wang et al.

1 3

According to Definition 6, we propose Algorithm 2 to derive the MinTrFunc and
minimum data transmission directive. In Algorithm 2, the ‘ ⊕ ’ operation takes out
bits, which vary in State and ConVld. The ‘ ⋅ ’ operation takes out bits, which are
1 in ConVld. Thus, the Vld satisfies Definition 6. Similarly, InVld satisfies Defini-
tion 6. In summary, MinTrFunc satisfies Definition 6. The minimum data transmis-
sion directive can be determined by looking up Table 6 when MinTrFunc is derived.

When the data transmission semantic is called, the minimum data transmission
directive is determined through Algorithm 2 and executed automatically. Namely,
the essential data transmission, corresponding to the minimum data transmission
directive, is determined and executed automatically. With the implementation of
Algorithm 2, the OAO Runtime can only execute the essential data transmissions
and eliminate redundant transmissions. This is summarized as Question 3 in the
experimental part and will be verified by experiments.

3.3 Consistency state update semantics

The WRITE operations in code fragments may change consistency States. Thus,
consistency state update semantics (OAOStTrans functions) are used to update
States maintained in MemEnv. The READ operations are not considered because
they do not change States. According to the type of WRITE operations, different
TransFuncs are used to update States (Table 6 [lines 6 and 7]).

4 Code translator

The OAO Translator models each function as an extended control flow graph (CFG)
called SPGraph. With the SPGraph, we analyze the Constrs and R/W operations
and insert data transmission semantics and consistency state update semantics. We
also translates parallel primitives. Using Algorithm 3 5 and Table 7 proposed below,
the OAO Translator can translate OMP SMP code into OMP Offloading code.
This is summarized as Question 1 in the experimental part and will be verified by
experiments.

4.1 SPGraph for code translation

To offload data parallel code regions to the accelerator, these code regions should
be marked. To handle data transmission and guarantee data consistency between the
CPU and the accelerator, the information of variable references on the CPU and the
accelerator should be saved separately. For these motivations, we extend the CFG
to encode the information required for code translation. We split each data parallel
code region as a new node in the CFG. Then, we mark all nodes in the CFG as two
types: parallel nodes for nodes of data parallel code regions, and sequential nodes

4971

1 3

Automatic translation of data parallel programs for…

for other nodes. As a final step, we attach variable reference information to the cor-
responding nodes.

The SPGraph, which extends from the CFG, is formally defined by Defini-
tions 7–9. It is important to note that developers should ensure that there is no
dependency among the parallel region defined in Definition 8. Each function in
the source code is modeled as a SPGraph. All the information needed to establish
the SPGraph can be collected through compile-time static analysis techniques. We
choose the sequential and parallel regions as basic units of analysis for two reasons.
First, as long as appropriate data transmissions are inserted before a sequential and
parallel region, the consistency within the region can be guaranteed. Second, the
update of States in MemEnv can be delayed until just after the current sequential or
parallel region, because the updated States is useful to successive regions rather than
the current region.

Definition 7 A sequential region is a code fragment that is executed sequentially
without branch and outside #pragma omp parallel scopes. A sequential region cor-
responds to a sequential node, denoted by SEQ , in SPGraph.

Definition 8 A parallel region is a code fragment within a #pragma omp par-
allel scope. A parallel region corresponds to a parallel node, denoted by OMP , in
SPGraph.

Definition 9 A SPGraph is a special control flow graph of a function (Eq. 7 and
Fig. 4). NodeGrp , the set of all nodes, consists of SEQGrp and OMPGrp. SEQGrp
is the set of all SEQs. OMPGrp is the set of all OMPs. CtlEdge is the set of all edges
among different nodes.

(7)

SPGraph = (NodeGrp,CtlEdge)

NodeGrp = SEQGrp ∪ OMPGrp

CtlEdge = {⟨x, y⟩�x, y ∈ NodeGrp}

SEQGrp =

�
SEQ1,… , SEQn

�

OMPGrp =

�
OMP1,… ,OMPm

�

NodeVarRef

RefList0

……

RefListn

Ref0 Ref0
Ref1 Ref1

…………
Refn Refn

OMP0SEQ0

OMP0

OMP2
SEQ4

SEQ1

SEQ5

SEQ2OMP1 SEQ3

Fig. 4 SPGraph

4972 F. Wang et al.

1 3

The variable reference information (NodeVarRef), which is collected within a
sequential or parallel region, is attached to the corresponding SEQ or OMP (Defini-
tions 10–12 and Fig. 4).

Definition 10 NodeVarRef refers to the set of variable reference sequences (RefList)
in a node.

Definition 11 RefList refers to a sequence of variable references (Ref) of a variable
in a node.

Definition 12 Ref is the type of a reference to a variable. R represents the READ
operation. W represents the WRITE operation.

Based on the SPGraph, we propose Algorithm 3 to insert data transmission and
consistency state update semantics. First, we preprocess the function calls. Each
function call in SEQs is split as a new independent special SEQ node (line 1). Each
function call in OMPs is treated as references to the arguments of the function call
(line 2). If an argument is not the pointer type or reference type, then R is inserted to
the proper position of the corresponding RefList. For each argument of pointer type
or reference type, if any WRITE operation to the corresponding parameter exists
in the called function, RW is inserted to the proper position of the corresponding
RefList, otherwise, R is inserted. When function calls are treated as SEQs or variable
references, the intra-procedural and inter-procedural data transmission optimizations
can be done by inserting data transmission and consistency state update semantics
through Algorithms 4 and 5 in Sects. 4.2 and 4.3, respectively. On the contrary,

NodeVarRef =
{
RefList1,… ,RefListn

}

RefList =
{
Ref1,… ,Refm

}

Ref =

{
R; READ operation

W; WRITE operation

4973

1 3

Automatic translation of data parallel programs for…

DawnCC does not consider function calls, so it cannot optimize inter-procedural
data transmissions.

We apply Algorithm 3 to nearly all functions except OMP-called functions, which
are called by any OMP at least once. The OMP-called functions may run on accel-
erators, whereas OAORT API functions can only run on CPUs. Thus, OAORT API
functions cannot be inserted into OMP-called functions. The variable consistency of
OMP-called functions will be guaranteed by OAORT semantics inserted before and
after OMP-called function calls.

4.2 Handling data transmissions

We proposed Algorithm 4 to determine Constrs and to insert data transmission
semantics, before the Nodes. Theoretically, if every element in an allocation unit is
written before any READ operation, we can set Constr to ConSEQW or ConOMPW
and save data transmission. However, it is hard to determine these cases exactly
through static analysis. Thus, we set Constrs to ConSEQRs or ConOMPRs to avoid
complex static analysis and guarantee the correctness of the programs, regardless
of READ and WRITE operations. For an OMP and SEQ, which is not a function
call, we set Constr to ConOMPR (line 3) and ConSEQR (line 13), respectively. For
the SEQ, which is an OMP-called function call (line 6), we set the Constr to Con-
SEQR. For the SEQ, which is another function call (line 9), we also set the Con-
str to ConSEQR, when the corresponding argument is not the pointer or reference
type. The reason for this is that the copy of the argument should be guaranteed to be
valid before such is passed to the callee function. Then, we insert the data transmis-
sion semantic (OAODataTrans function), with ptr and determined Constr as argu-
ments, before the Node.

4974 F. Wang et al.

1 3

4.3 Updating consistency states

We design Algorithm 5 to determine TransFuncs and to insert consistency state
update semantics after the Nodes. When any element of an allocation unit is writ-
ten in a Node, we set the TransFunc to TrSEQW or TrOMPW. READ operations do
not change the consistency State of Var. Thus, all of them are ignored. For an OMP
and SEQ, which is not a function call, we set the TransFunc to TrOMPW (line 4)
and TrSEQW (line 14) respectively, if the RefList corresponding to Var contains any
WRITE operation. For the SEQ, which is an OMP-called function call, we set the
TransFunc to TrSEQW (line 9) if the RefList contains any WRITE operation. For the
SEQ, which is another function call, the essential consistency state update semantics
are inserted inside the callee function. Thus, the insertion of state update semantics
after the SEQ is not needed. Then, we insert the consistency state update semantic
(OAOStTrans function), with ptr and determined TransFunc as arguments, after
the Node.

4.4 Parallel primitive translation

Concerning task identification and task mapping, OMP SMP and OMP Offload-
ing both support the work-sharing model well. OMP SMP also supports the task
model completely, whereas OMP Offloading only has very limited support for the
task model. Thus, this work focuses on the works-haring model.

The corresponding relationships between parallel primitives of OMP SMP
and OMP Offloading are listed in Table 7. To exploit GPU, work-sharing loops
are distributed across all GPU teams with teams distribute primitive. We
translate the OMP SMP parallel primitives into the corresponding OMP Offload-
ing parallel primitives according to Table 7. Then, parallel code regions can run

4975

1 3

Automatic translation of data parallel programs for…

on the accelerator. The accelerator usually has much more physical cores and
threads than CPU. So OAO-translated programs may gain performance improve-
ments. This is summarized as Question 2 in the experimental part and will be
verified by experiments.

5 Experimental setup

5.1 Evaluation goals

Our experiments are designed to answer the following questions:

Question 1 Can OAO translate OMP SMP programs into OMP Offloading pro-
grams without manual intervention?

Question 2 Can OAO-translated programs gain performance improvements?

Question 3 Can OAO optimize data transmission and eliminate redundant
transmissions?

5.2 Benchmarks

The PolyBench [25] and Rodinia [4, 31] are commonly used benchmark suites
in the field of high performance computing (HPC). The PolyBench [25] col-
lects many common algorithms in fields such as linear algebra, algebra solvers,
data mining, stencils, and image processing. The Rodinia [4, 31] includes some
practical applications or kernels such as breadth-first search, computational fluid
dynamics, n-body problem, LU decomposition, DNA sequencing, particle filter,
and image processing. These fields or applications require the energy-efficient
high performance of accelerators. Different types of workloads of the PolyBench
and Rodinia can comprehensively evaluate OAO-translated programs. Some
related work [18, 30] used the PolyBench or Rodinia in experiments. The OMP
SMP version of the PolyBench and Rodinia is suitable as the input of our OAO.
So we also use the PolyBench and Rodinia for evaluation.

Table 7 OMP parallel primitives and corresponding OMP Offloading parallel primitives

OpenMP parallel primitives OpenMP offloading parallel primitives

#pragma omp parallel for #pragma omp target teams distribute par-
allel for

#pragma omp parallel loop #pragma omp target teams distribute par-
allel loop

#pragma omp parallel simd #pragma omp target teams distribute par-
allel simd

4976 F. Wang et al.

1 3

We evaluate OAO by applying it to 23 benchmarks from the PolyBench [16]
and Rodinia [31] benchmark suites, as listed in Table 8. Moreover, we add a
new benchmark called FDTD-2D-FUNC to evaluate data transmission optimi-
zations when programs contain inter-procedural function calls. This benchmark
is derived from FDTD-2D with each kernel replaced by a call to the subfunc-
tion which encapsulates the kernel. The data required by the kernel are passed
as function parameters. We configured all benchmarks in the PolyBench to use
single precision for all experiments.

We consider the following five versions of benchmark implementations:
OMP This version refers to the OMP SMP parallel programs from PolyBench

and Rodinia. We insert OMP SMP primitives to PolyBench manually, to generate
an OMP version PolyBench. Rodinia contains the OMP version natively. OMP
version is input and baseline.

OAO This version refers to OMP Offloading programs translated by OAO.
Manual This version refers to OMP Offloading programs translated by hand.

The Manual version uses simple copy-in and copy-out data transmission strategy

Table 8 Benchmarks used in experiments

Suite Benchmark Description

PolyBench 2DCONV 2-D Convolution
2MM 2 Matrix Multiplications
3DCONV 3-D Convolution
3MM 3 Matrix Multiplications
ATAX Matrix Transpose and Vector Multiplication
BICG BiCG Sub Kernel of BiCGStab Linear Solver
CORR Correlation Computation
COVAR Covariance Computation
FDTD-2D 2-D Finite Different Time Domain Kernel
FDTD-2D-FUNC FDTD-2D implemented with subfunctions
GEMM Matrix-multiply
GESUMMV Scalar, Vector and Matrix Multiplication
MVT Matrix Vector Product and Transpose
SYR2K Symmetric rank-2k operations
SYRK Symmetric rank-k operations

Rodinia bfs Breadth-First Search (BFS) algorithm
cfd_euler CFD solver with redundant flux computation
cfd_pre_euler CFD solver with pre-computed fluxes
lavaMD N-Body problem within a large 3D space
lud LU Decomposition
nw Needleman-Wunsch method for DNA sequencing
particlefilter Particle Filter (PF)
srad_v2 Speckle Reducing Anisotropic Diffusion

4977

1 3

Automatic translation of data parallel programs for…

for each offloading kernel. We use #pragma omp target teams dis-
tribute parallel for directive to offload kernels. We use cudaMallo-
cHost() to replace malloc(), when the memory block is larger than 128 KB.

DawnCC-native This version refers to origin OMP Offloading programs trans-
lated by DawnCC. DawnCC [15] is the state-of-the-art translator that generates
OMP Offloading programs. Thus, we use DawnCC for comparison. DawnCC uses
#pragma omp target parallel for directive to offload kernels.

DawnCC-opt This version refers to DawnCC-native version with our additional
optimizations. We introduce two optimizations, which are used in Manual and OAO
versions, into DawnCC-opt. We replace #pragma omp target parallel
for directive with #pragma omp target teams distribute paral-
lel for directive. We replace malloc() with cudaMallocHost() when the
memory block is larger than 128 KB. In the comparison of the OAO and DawnCC-
opt version, data transmission optimizations of OAO and DawnCC can be evaluated.

5.3 Hardware and software platforms

Table 9 lists the two CPU-GPU systems used in experiments. We use GCC version
8.3 to compile the OMP SMP programs. We use Clang version 9.0 to compile the
OMP Offloading programs. CUDA is needed during the compilation and running
of the OMP Offloading programs. All compilation processes use optimization level
three (-O3).

6 Experimental results

6.1 Performance evaluation

We run each benchmark twenty times and use averages to build the following fig-
ures and tables. Figures 5 and 6 show the speedups of different versions over OMP
on two CPU-GPU systems. OAO and DawnCC can translate all fifteen benchmarks
in PolyBench, whereas only OAO can translate the eight benchmarks in Rodinia.
Benchmarks, which DawnCC cannot handle, are marked with ‘X’ in figures.

Table 9 Hardware and Software Platforms

K40 system 2080Ti system

CPU 2*Intel Xeon E5-2620V3 (6cores/12threads) 2*Intel Xeon E5-2697v4 (18cores/18threads)
CPU Mem 8*16GB DDR3 8*32GB DDR4
GPU 1*K40m 1*RTX 2080Ti
GPU Mem 11GB 11GB
OS Ubuntu 16.04 (Linux 4.15) Manjaro 18.1 (Linux 4.19)
Compiler CUDA-10.1, Clang/LLVM-9.0.0, GCC-8.3.0 CUDA-10.1, Clang/LLVM-9.0.0, GCC-8.3.0

4978 F. Wang et al.

1 3

6.1.1 Performance of OAO version

The OAO version gains performance improvements (1.86× to 32×) over OMP ver-
sion in more benchmarks than the three other versions, eleven and fifteen bench-
marks on K40 and 2080Ti platforms. Besides, the overheads of OAORT are less
than 0.07% of the total execution time in all twenty-three benchmarks. The OAO
version achieves high speedups in four benchmarks: GEMM, 2MM, 3MM, and bfs.

0.
03 0.

05 0.
12 0.
16 0.
17

0.
04

0.
04

0.
74

0.
70

0.
74

3.
94

3.
95

0.
03

0.
03

0.
01

0.
01 0.

06

0.
03 0.
04 0.

39

0.
29 0.
35

0.
28

0.
27

0.
03 0.

07 0.
12 0.
16 0.
22

0.
01

0.
77

2.
13

1.
33 2.

31

3.
95

3.
97

0.
03

0.
08 0.

12 0.
16 0.
24

0.
77

0.
78

2.
18

2.
27

2.
34

3.
95

3.
98

3DCONV

GESUMMV
SYRK

SYR2K

2DCONV

FDTD-2D-FUNC

FDTD-2D
MVT

BICG
ATAX

CORR
COVAR

1/32x
1/16x

1/8x
1/4x
1/2x

1x
2x
4x
8x

16x
32x

Manual over OMP
DawnCC-native over OMP
DawnCC-opt over OMP
OAO over OMP

20
.2

9

29
.6

2

30
.5

7

0.
06

0.
33

2.
03

E-
04

0.
45 0.

24

0.
07 0.
09 0.
61

0.
26

0.
28

0.
28

X X X X X X X X

19
.8

6

30
.6

8

31
.7

8

X X X X X X X X

20
.8

4

31
.0

8

32
.2

8

0.
33

0.
35 0.
38 0.
49 0.

74

1.
24 1.
67

6.
02

GEMM
2MM

3MM
srad_v2

lavaMD nw

partic
lefilte

r lud

cfd_pre_euler

cfd_euler bfs
1/32x
1/16x
1/8x
1/4x
1/2x

1x
2x
4x
8x

16x
32x

Fig. 5 Speedups over OMP on the K40 system

0.
17

0.
14 0.

22

0.
40 0.

58 0.
79

0.
06

0.
06

0.
90 0.
96

3.
94

3.
98

0.
07 0.
08

0.
05

0.
02

0.
02

0.
34

0.
02

0.
03

0.
33

0.
31

0.
26

0.
26

0.
19 0.
21 0.
28

0.
40 0.

56

2.
34

0.
08

2.
82

2.
85

1.
60

3.
95

4.
00

0.
19 0.
21 0.
29

0.
40 0.

59

2.
36 2.
83

2.
84

2.
89

3.
08 3.
95

4.
00

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BICG
CORR

COVAR
1/16x
1/8x
1/4x
1/2x

1x
2x
4x
8x

16x Manual over OMP
DawnCC-native over OMP
DawnCC-opt over OMP
OAO over OMP

8.
94 15

.9
4

16
.9

5

0.
06

9.
31

E-
05 0.

31

0.
06 0.
08

2.
45

0.
71 0.
84

0.
06

0.
06

0.
06

X X X X X X X X

8.
93 16

.5
6

17
.6

5

X X X X X X X X

8.
99 16

.7
7

18
.0

1

0.
39 0.
42 0.

83

1.
86 2.
04

2.
92

3.
28

12
.5

3

GEMM
2MM

3MM
srad_v2 nw lud

cfd_pre_euler

cfd_euler
lavaMD

partic
lefilte

r bfs
1/16x

1/8x
1/4x
1/2x

1x
2x
4x
8x

16x

Fig. 6 Speedups over OMP on the RTX system

4979

1 3

Automatic translation of data parallel programs for…

Speedups of 2MM and 3MM are over 30x. These four benchmarks are compute-
intensive applications and suitable for offloading.

The OAO version has poor speedups in eight benchmarks. For 3DCONV,
GESUMMV, 2DCONV, nw, and lud, the time of essential data transmissions makes
up a large proportion (over 50% to over 90%) of the total execution time of the
OAO version. So there is no big chance for data transmissions optimization in these
benchmarks. For 3DCONV, SYR2K, GESUMMV, SYRK, and srad_v2, the pure
execution time (excluding transmission time and OAORT overhead) of the OAO
version is longer than the OMP version. It seems that these applications are not suit-
able for heterogeneous platforms. To solve this problem, a promising approach is to
make the translator can predict application performances on different platforms [6,
32, 35, 36], and automatically decide whether to offload or not.

The OAO version shows different performance on various platforms in FDTD-
2D, FDTD-2D-FUNC, lavaMD, and particlefilter. Performance improvements are
gained on the 2080Ti platform, whereas poor speedups appear on the K40 platform.
The reason is that the more advanced RTX2080Ti GPU can support these bench-
marks better.

The performances on two platforms are generally similar. Thus, later discussions
and analyses only use data on the 2080Ti system for simplicity.

6.1.2 Comparison with other versions

The OAO version gains performance improvements over three other versions in all
benchmarks (Fig. 7). Compared with the Manual version, OAO version achieves
large improvements (over 40%) in thirteen benchmarks, and huge improvements
(over 500%) in seven benchmarks, especially nw (455,271%). These performance
improvements thanks to the data transmission optimization in OAO, which will be
analyzed later.

16
.6

3%

44
.9

2%

27
.9

9% 0.
62

%

0.
86

% 19
7.

98
%

46
43

.0
7%

45
89

.6
7%

22
1.

87
%

22
2.

15
%

0.
19

%

0.
61

%

16
8.

91
%

15
9.

90
%

51
6.

01
%

18
77

.5
2%

24
61

.9
3%

59
4.

52
%

11
31

6.
94

%

82
13

.9
7%

76
4.

45
%

87
7.

60
%

14
07

.7
1%

14
41

.2
4%

0.
71

%

0.
70

%

1.
85

%

0.
03

%

4.
93

%

0.
74

%

33
38

.8
9%

0.
64

%

1.
22

% 92
.2

1%

0.
09

%

0.
12

%

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BICG
CORR

COVAR
0.01%
0.1%

1%
10%

100%
1000%

10000%
100000% OAO over Manual

OAO over DawnCC-native
OAO over DawnCC-opt

0.
48

%

5.
20

%

6.
27

% 59
2.

41
% 45

52
70

.8
6%

16
8.

45
%

28
93

.7
2%

25
02

.3
4%

19
.1

5% 36
2.

56
%

13
89

.3
3%

16
19

1.
58

%

29
19

5.
46

%

31
40

3.
10

%

X X X X X X X X0.
63

%

1.
28

%

2.
06

%

X X X X X X X X

GEMM
2MM

3MM
srad_v2 nw lud

cfd_pre_euler

cfd_euler
lavaMD

partic
lefilte

r bfs
0.01%

0.1%
1%

10%
100%

1000%
10000%

100000%

Fig. 7 OAO performance improvements over other versions on the RTX system

4980 F. Wang et al.

1 3

DawnCC cannot translate the eight benchmarks in Rodinia correctly because
some syntax, such as structure and class, cannot be handled. The OAO version out-
performs the DawnCC-native version (over 159%) in all fifteen benchmarks, which
DawnCC can handle. Improvements are huge (over 500%) in thirteen of them. Com-
pared with the DawnCC-opt version, the OAO version achieves slight improve-
ments (less than 5%) in thirteen benchmarks. Significant (3339%) and large (92%)
improvements are observed in FDTD-2D-FUNC and BICG.

Generally, the OAO version is far better than the DawnCC-native version.
However, the OAO version is similar to the DawnCC-opt version in most Poly-
Bench benchmarks. This phenomenon demonstrates that OAO improvements over
DawnCC-native are mainly caused by two extra optimizations. The OAO improve-
ments over DawnCC-opt are due to different transmission optimizations in OAO
and DawnCC. The time of redundant data transmissions makes up a slight propor-
tion (less than 5%) of the total execution time of the DawnCC-opt version in most
PolyBench benchmarks. Thus, most improvements are insignificant. For FDTD-2D-
FUNC and BICG, the time of redundant data transmissions makes up large propor-
tions (82% and 45%) and improvements are significant.

In summary, OAO can gain performance improvements over OMP and outper-
forms DawnCC, which is the state-of-the-art translator.

6.2 Analysis of data transmission optimization

We analyze the number, size, and time of data transmissions to evaluate the data
transmission optimization in OAO.

6.2.1 Number of transmissions

Our OAO runtime is designed to eliminate redundant data transmissions to reduce
the data communication overhead. Hence, we report the number of data transmis-
sions and use it to quantify how well OAO is in reducing host-accelerator commu-
nication overhead. Table 10 shows the number of transmissions in different versions
of benchmarks. The DawnCC-native and DawnCC-opt versions have the equal num-
ber of transmissions in each corresponding benchmark, so they are expressed as
DawnCC in Table 10. Benchmarks, which DawnCC cannot handle, are marked with
‘–’ in Table 10. Comparing The Manual column and OAO column, the reduction
of data transmission frequency occurred in all benchmarks. Particularly, the num-
ber is reduced by one to five orders of magnitude, in eight benchmarks (italic cells
in Table 10): FDTD-2D, FDTD-2D-FUNC, srad_v2, nw, cfd_pre_euler, cfd_euler,
particlefilter, and bfs.

Compared with DawnCC column, OAO reduces the number of transmissions in
eight benchmarks (bold italic and italic cells). For seven benchmarks (bold italic)
except FDTD-2D-FUNC, OAO can eliminate more redundant inter-procedural data
transmissions than DawnCC. The FDTD-2D-FUNC benchmark introduces inter-pro-
cedural function calls based on the FDTD-2D benchmark. For the FDTD-2D-FUNC
benchmark, OAO can eliminate 19,495 more redundant data transmissions than

4981

1 3

Automatic translation of data parallel programs for…

DawnCC. DawnCC can eliminate most redundant transmissions in FDTD-2D but can-
not optimize FDTD-2D-FUNC well, which contains massive inter-procedural function
calls, whereas OAO can optimize FDTD-2D and FDTD-2D-FUNC to the same min-
imum number of transmissions (5 times). These phenomena demonstrate that OAO
can optimize inter-procedural and intra-procedural data transmissions and outperform
DawnCC, which can only optimize intra-procedural data transmissions incompletely.

6.2.2 Data size and time of transmission

Figures 8 and 9 show the percentage of data transmission size and time saved of
OAO compared with other versions. The DawnCC-native and DawnCC-opt ver-
sions have the equal transmission size in each corresponding benchmark, so they are
expressed as DawnCC in Fig. 8.

Table 10 Number of
transmissions in different
versions of benchmarks

Bold represents the number of transmissions that can be reduced
(in the same order of magnitude). Italics represents the number of
transmissions that can be significantly reduced (one to five orders of
magnitude). Bold italics represents the suboptimal number of trans-
missions by DawnCC. Underline represents the optimal number of
transmissions by OAO

Name # of transmissions

Manual DawnCC OAO

3DCONV 4 3 3
GESUMMV 10 7 6
2DCONV 4 3 3
SYRK 8 3 3
SYR2K 6 4 4
MVT 12 7 7
ATAX 12 6 5
FDTD-2D-FUNC 27,000 19,500 5
FDTD-2D 27,000 7 5
BICG 12 8 7
CORR 8 6 6
COVAR 12 6 4
GEMM 6 4 4
2MM 12 7 6
3MM 18 10 8
srad_v2 38,912 – 1033
nw 16,380 – 3
lud 4092 – 2046
cfd_pre_euler 224,002 – 12
cfd_euler 128,004 – 9
lavaMD 10 – 6
particlefilter 3534 – 262
bfs 216 – 7

4982 F. Wang et al.

1 3

Compared with the Manual version, OAO gains over 25% transmission size sav-
ings and over 23% transmission time savings in all benchmarks. For the eighteen
benchmarks, these savings are around or more than 50%. For eight benchmarks,
these savings are over 95%. Significant performance improvements over Manual
version owe to these transmission time savings

The time savings of OAO over Manual are slightly smaller than the corresponding
size savings of OAO over Manual. The reason is that OAO eliminates more trans-
missions from the accelerator to the CPU (D2H) than transmissions from the CPU
to the accelerator (H2D). The D2H transmissions usually have higher bandwidth

25
.0

0%

50
.0

0%

25
.0

0%

62
.5

0%

33
.3

3%

75
.0

0% 99
.9

8%

99
.9

8%

75
.0

0%

75
.0

0%

33
.3

3%

62
.5

0%

0.
00

%

0.
00

2%

0.
00

%

0.
00

%

0.
00

%

0.
00

%

99
.9

7%

33
.3

3%

0.
00

3%

50
.0

0%

0.
00

% 25
.0

0%

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BICG
CORR

COVAR
0%

20%

40%

60%

80%

100% OAO over Manual
OAO over DawnCC

33
.3

3%

50
.0

0%

55
.5

6%

96
.1

4%

99
.9

8%

50
.0

0%

99
.9

9%

99
.9

9%

50
.0

0%

97
.6

0%

95
.7

3%

0.
00

% 14
.2

9%

20
.0

0%

X X X X X X X X

GEMM
2MM

3MM
srad_v2 nw lud

cfd_pre_euler

cfd_euler
lavaMD

partic
lefilte

r bfs
0%

20%

40%

60%

80%

100%

Fig. 8 Percentage of data transmission size saved by OAO compared with other versions

23
.3

0%

46
.7

0% 23
.4

2%

61
.7

2% 31
.5

4%

74
.6

6% 99
.9

8%

99
.9

8%

74
.6

7%

74
.6

5%

31
.3

0%

61
.6

4%77
.3

6%

65
.1

2%

76
.8

4%

46
.6

8%

37
.6

5%

68
.9

2% 99
.9

8%

72
.5

4%

70
.9

2%

79
.8

2%

77
.2

3%

83
.4

1%

-0
.1

1%

-0
.0

3%

0.
01

%

-0
.0

2%

37
.2

9%

-0
.2

1%

99
.9

8%

31
.3

2%

0.
02

%

54
.3

8%

0.
21

% 23
.3

2%

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BICG
CORR

COVAR
0%

20%
40%
60%
80%

100%
120% OAO over Manual

OAO over DawnCC-native
OAO over DawnCC-opt

31
.3

4%

48
.1

3%

53
.4

8%

95
.0

1%

99
.4

7%

48
.5

6%

99
.9

9%

99
.9

8%

48
.7

2%

96
.4

2%

95
.5

6%

41
.4

2%

73
.5

3%

82
.6

8%

X X X X X X X X-0
.0

2%

13
.1

1%

18
.1

4%

X X X X X X X X

GEMM
2MM

3MM
srad_v2 nw lud

cfd_pre_euler

cfd_euler
lavaMD

partic
lefilte

r bfs
0%

20%
40%
60%
80%

100%
120%

Fig. 9 Percentage of data transmission time saved by OAO compared with other versions on the 2080Ti
system

4983

1 3

Automatic translation of data parallel programs for…

(around 12.25 GB/s) than the H2D transmissions (around 10.55 GB/s). For a block
of memory, its D2H time is usually shorter than its H2D time. In a frequent case, its
H2D is essential and remained, whereas its D2H is redundant and eliminated. As a
consequence, the percentage of data size saved is 50%, whereas the percentage of
time saved is less than 50%.

Compared with DawnCC, OAO reduces data transmission size in eight bench-
marks. This occurrence matches the transmission number reductions shown in
Table 10. The transmission size saving of the six benchmarks is apparent, espe-
cially FDTD-2D-FUNC (over 99%), whereas the reduction is negligible in two other
benchmarks: GESUMMV and ATAX.

DawnCC-native and DawnCC-opt show different results in terms of transmis-
sion time. OAO gains significant reductions (over 41%) on transmission time over
DawnCC-native in all benchmarks. For most benchmarks, except FDTD-2D-FUNC,
reductions are mainly caused by the pinned memory, which is allocated by cuda-
MallocHost() function and is beneficial to make full use of the bandwidth between
the CPU and the accelerator. For FDTD-2D-FUNC, the main reason is that optimi-
zation in OAO can eliminate nearly all intra-procedural and inter-procedural trans-
missions. These significant reductions contribute to huge performance improve-
ments (over 159%), as shown in Fig. 7.

Compared with DawnCC-opt, OAO gains obvious reductions on transmission
time in the six benchmarks: FDTD-2D-FUNC, FDTD-2D, BICG, COVAR, 2MM,
and 3MM. Combining Figs. 8 and 9, the percentage of time saved and the percent-
age of the corresponding size saved can match each other in these six benchmarks.
Combining Figs. 7 and 9, the six reductions have different contributions to per-
formance improvement, because of diverse proportions of redundant transmission
time, as we analyzed before. For FDTD-2D-FUNC and BICG, huge performance
improvements (3339% and 92%) thanks to transmission time reductions. For the
four other benchmarks, small performance improvements are gained by transmission
time reductions.

The above experimental results prove that OAO can optimize data transmission
and eliminate redundant transmissions, whether they are intra-procedural or inter-
procedural transmissions. OAO can eliminate more redundant transmissions than
DawnCC in eight benchmarks, especially inter-procedural transmissions, which can-
not be eliminated by DawnCC.

6.3 Implementation and feasibility

We implement the OAO system based on the Clang compiler [13] of the LLVM
compiler infrastructure [10, 14] within 14,000 lines of code. The OAO Translator is
derived mainly from the RecursiveASTVisitor class of Clang. We override
about 40 functions of RecursiveASTVisitor to carry out compile-time static
analysis and translate source code. The OAO Runtime, about 700 lines of code,
mainly maintains a vector of variable information and performs Algorithm 2 to exe-
cute essential data transmissions. Thus, the implementation complexity of OAO is
acceptable.

4984 F. Wang et al.

1 3

OAO system can translate the OpenMP code into the OpenMP Offloading code
fully automatically. It should be noted that OAO depends on a specific version of the
Clang compiler. Developers can follow the detailed instructions on the GitHub to
compile and use OAO (https ://githu b.com/ruixu eqing yang/OAO-Trans lator). Thus,
OAO is highly feasible to use for developers.

7 Related work

Much work has been exerted to make heterogeneous computing accessible to devel-
opers and researchers. Among them, the source-to-source translator is an ideal tool.
Moreover, automatic communication management is a main challenge in translation
and has been studied widely and exclusively.

7.1 Source‑to‑source translation for heterogeneous computing

Many translators, such as C-to-CUDA [2], PPCG [30], BONES [18], and
OpenMPC [11], generate CUDA programs for heterogeneous computing. Based
on the polyhedral model, C-to-CUDA, and PPCG can only parallelize affine
code regions in sequential C programs. BONES can parallelize sequential C pro-
grams, which are fitted by algorithmic species and skeletons prepared in advance.
OpenMPC builds an abstraction of CUDA based on OpenMP and generates CUDA
programs automatically. Other translators generate other kinds of heterogeneous
parallel programs. Grewe et al. [19] translate OMP SMP into OpenCL. HTrOP [26]
generates OpenCL applications from the LLVM bitcode. CU2CL [28] and Kim
et al. [9] translate CUDA into OpenCL to achieve portability. Wu et al. [33] propose
NoT, a high-level programming method for heterogeneous systems. Then, the NoT
application is translated into OpenCL. OpenABLext [34] generates OpenCL from
OpenABL, a domain-specific language. DawnCC [15, 17], which is based on the
polyhedral model, translates C into OMP Offloading.

Among these translators, DawnCC and our OAO generate OMP Offloading
programs, but DawnCC faces serious performance issues. The performance of the
DawnCC version is much lower than the OpenMP SMP version in all PolyBench
benchmarks because of inefficient data transmission optimization and parallel direc-
tives. In FDTD-2D-FUNC, DawnCC and OAO versions display a huge difference in
the number of transmissions (19,500 vs. 5). Moreover, DawnCC cannot handle com-
mon syntax, such as structure and class.

7.2 Automatic communication management for heterogeneous computing

Many studies concentrate on automatic communication management between the
CPU and the accelerator. Semi-automatic techniques [1] can manage data trans-
missions through Runtime system, but require developers to insert API functions
manually.

https://github.com/ruixueqingyang/OAO-Translator

4985

1 3

Automatic translation of data parallel programs for…

Fully automatic methods [7, 8, 24] exploit compile-time static analysis tech-
niques to insert Runtime API functions automatically. Our work follows this
idea. CGCM [8] is the first fully automatic system for managing and optimizing
CPU–GPU communication. DyManD [7], based on CGCM, supports complex data
structures, through page protection mechanism and mmap function, which may fail.
CGCM and DyManD suffer from redundant transmissions. AMM [24] eliminates
redundant transmissions, but is bound with X10CUDA [27]. Sousa et al. [29] per-
form data coherence analysis on OpenCL code and then insert appropriate OpenCL
function calls to minimize the number of data coherence operations. Our work also
eliminates redundant transmissions, but cannot support multilevel pointers for the
safety concern of mmap() function.

For seamless data sharing between CPU and GPU, CUDA 6.0 and later versions
support unified virtual memory (UVM) [5], where a unified memory address space
is shared across the CPUs and GPUs. Li et al. [12] improved OpenMP GPU data
management under UVM. These studies are beneficial supplements to this work to
support the complex data structure safely and to improve performance further, if the
accelerator is specified as NVIDIA hardware. Besides UVM, Castro et al. [3] pro-
pose Heterogeneous Transactional Memory (HeTM). HeTM provides programmers
with the logical single memory region, shared among the CPUs and GPUs, with
support for atomic transactions.

8 Conclusion and future work

This work describes a novel automatic source-to-source translator system, called
OAO, to translate OpenMP SMP programs into OpenMP Offloading programs.
The OAO consists of the OAO Runtime Library and the OAO Translator. For the
OAO Runtime Library, we define the consistency State, state transition function, and
consistency state constraint to model data transmission operations and variable ref-
erences. Based on these, we propose the minimum data transmission algorithm to
manage and optimize data transmissions automatically and efficiently. For the OAO
Translator, we define the SPGraph to encode variable reference information. Based
on the SPGraph, we design some algorithms to insert runtime semantics and trans-
late parallel primitives automatically. We implement the OAO Translator through
the compile-time static analysis technology.

Experiments on PolyBench and Rodinia demonstrate that OAO system gains
performance improvements over hand-translated (up to 455,271%) and DawnCC-
translated (up to 31,403%) OpenMP Offloading programs. The speedup of the OAO
version is up to 32.28× over the OpenMP SMP version. The OAO version can save
data transmission time (up to over 99%) compared with manual and DawnCC ver-
sion. Moreover, OAO can handle eight benchmarks in the Rodinia suite, in which
DawnCC cannot handle any benchmark. The OAO version gains performance
improvement over the OpenMP SMP version in five out of these eight Rodinia
benchmarks (up to 12.53x).

The OAO cannot translate some benchmarks of Rodinia correctly, such as the
b+tree and heartwall. The main reason is that these benchmarks contain multilevel

4986 F. Wang et al.

1 3

pointers, which OAO cannot track. Another reason is that some benchmarks con-
tain special OpenMP directives, such as #pragma omp master. Besides, track-
ing consistency at finer granularity may further improve performance. Future work
includes extending the OAO system to support more situations and finer-grained
optimization.

Acknowledgements This work was supported in part by the National Key Research and Develop-
ment Program of China (No. 2017YFB0202901), the Key-Area Research and Development Pro-
gram of Guangdong Province (No. 2019B010136001), the National Natural Science Foundation of
China (NSFC) (No. 61672186), and the Shenzhen Technology Research and Development Fund (No.
JCYJ20190806143418198). Professor Zhang is the corresponding author.

References

 1. Al-Saber N, Kulkarni M (2015) Semcache++: semantics-aware caching for efficient multi-gpu off-
loading. In: Proceedings of the 29th ACM on International Conference on Supercomputing. ACM,
pp 79–88

 2. Baskaran MM, Ramanujam J, Sadayappan P (2010) Automatic c-to-cuda code generation for affine
programs. In: International Conference on Compiler Construction. Springer, pp 244–263

 3. Castro D, Romano P, Ilic A, Khan AM (2019) Hetm: transactional memory for heterogeneous sys-
tems. In: 2019 28th International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, pp 232–244

 4. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K (2009) Rodinia: a benchmark
suite for heterogeneous computing. In: 2009 IEEE International Symposium on Workload Charac-
terization (IISWC). IEEE, pp 44–54

 5. Corporation N (2019) Cuda toolkit documentation v10.2.89. https ://docs.nvidi a.com/cuda. Accessed
10 Dec 2019

 6. Huang Y, Li D (2017) Performance modeling for optimal data placement on GPU with heterogene-
ous memory systems. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, pp 166–177

 7. Jablin TB, Jablin JA, Prabhu P, Liu F, August DI (2012) Dynamically managed data for CPU–GPU
architectures. In: Proceedings of the Tenth International Symposium on Code Generation and Opti-
mization. ACM, pp 165–174

 8. Jablin TB, Prabhu P, Jablin JA, Johnson NP, Beard SR, August DI (2011) Automatic CPU–GPU
communication management and optimization. In: Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. ACM, pp 142–151

 9. Kim Y, Kim H (2019) Translating cuda to opencl for hardware generation using neural machine
translation. In: 2019 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, pp 285–286

 10. Lattner C, Adve V (2004) Llvm: a compilation framework for lifelong program analysis and trans-
formation. In: International Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, pp 75–86

 11. Lee S, Eigenmann R (2010) Openmpc: extended openmp programming and tuning for gpus. In:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, pp 1–11

 12. Li L, Chapman B (2019) Compiler assisted hybrid implicit and explicit gpu memory management
under unified address space. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, p 51

 13. LLVM AT (2020) Clang: a C language family frontend for llvm. http://clang .llvm.org. Accessed 14
Sep 2020

 14. LLVM AT (2020) The LLVM compiler infrastructure. http://llvm.org. Accessed 14 Sep 2020

https://docs.nvidia.com/cuda
http://clang.llvm.org
http://llvm.org

4987

1 3

Automatic translation of data parallel programs for…

 15. Mendonça G, Guimarães B, Alves P, Pereira M, Araújo G, Pereira FMQ (2017) DAWNCC: auto-
matic annotation for data parallelism and offloading. ACM Trans Archit Code Optim (TACO)
14(2):13

 16. Mendonça G, Guimarães B, Pereira FMQ (2018) Benchmarks used to evaluate DAWNCC. http://
cuda.dcc.ufmg.br/dawn/bench marks .zip. Accessed 21 Dec 2018

 17. Mendonça GSD, Guimaraes BCF, Alves PRO, Pereira FMQ, Pereira MM, Araújo G (2016) Auto-
matic insertion of copy annotation in data-parallel programs. In: 2016 28th International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE, pp 34–41

 18. Nugteren C, Corporaal H (2015) Bones: an automatic skeleton-based c-to-cuda compiler for gpus.
ACM Trans Arch Code Optim (TACO) 11(4):35

 19. O’Boyle MF, Wang Z, Grewe D (2013) Portable mapping of data parallel programs to opencl for
heterogeneous systems. In: Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE Computer Society, pp 1–10

 20. OpenMP ARB (2019) Openmp application program interface version 3.1. https ://www.openm p.org/
wp-conte nt/uploa ds/OpenM P3.1.pdf. Accessed 07 Nov 2019

 21. OpenMP ARB (2019) Openmp application program interface version 4.0. https ://www.openm p.org/
wp-conte nt/uploa ds/OpenM P4.0.0.pdf. Accessed 07 Nov 2019

 22. OpenMP ARB (2019) Openmp application program interface version 4.5. https ://www.openm p.org/
wp-conte nt/uploa ds/openm p-4.5.pdf. Accessed 07 Nov 2019

 23. OpenMP ARB (2019) Openmp application program interface version 5.0. https ://www.openm p.org/
wp-conte nt/uploa ds/OpenM P-API-Speci ficat ion-5.0.pdf. Accessed 07 Nov 2019

 24. Pai S, Govindarajan R, Thazhuthaveetil MJ (2012) Fast and efficient automatic memory manage-
ment for gpus using compiler-assisted runtime coherence scheme. In: Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Techniques. ACM, pp 33–42

 25. Pouchet LN et al (2018) Polybench/c the polyhedral benchmark suite. https ://web.cse.ohio-state
.edu/~pouch et.2/softw are/polyb ench. Accessed 21 Dec 2018

 26. Riebler H, Vaz G, Kenter T, Plessl C (2019) Transparent acceleration for heterogeneous platforms
with compilation to opencl. ACM Trans Arch Code Optim (TACO) 16(2):1–26

 27. Saraswat V, Bloom B, Peshansky I, Tardieu O, Grove D (2019) The x10 parallel programming lan-
guage. http://x10-lang.org. Accessed 10 Dec 2019

 28. Sathre P, Gardner M, Feng WC (2019) On the portability of CPU-accelerated applications via auto-
mated source-to-source translation. In: Proceedings of the International Conference on High Perfor-
mance Computing in Asia-Pacific Region, pp 1–8

 29. Sousa R, Pereira M, Pereira FMQ, Araujo G (2019) Data-flow analysis and optimization for data
coherence in heterogeneous architectures. J Parallel Distrib Comput 130:126–139

 30. Verdoolaege S, Carlos Juega J, Cohen A, Ignacio Gomez J, Tenllado C, Catthoor F (2013) Polyhe-
dral parallel code generation for cuda. ACM Trans Arch Code Optim (TACO) 9(4):54

 31. Wang K, Che S, Skadron K (2019) Rodinia: a benchmark suit for heterogeneous computing. http://
lava.cs.virgi nia.edu/Rodin ia/downl oad_links .htm. Accessed 23 June 2019

 32. Wang X, Huang K, Knoll A, Qian X (2019) A hybrid framework for fast and accurate gpu perfor-
mance estimation through source-level analysis and trace-based simulation. In: 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). IEEE, pp 506–518

 33. Wu S, Dong X, Zhang X, Zhu Z (2019) Not: a high-level no-threading parallel programming
method for heterogeneous systems. J Supercomput 75(7):3810–3841

 34. Xiao J, Andelfinger P, Cai W, Richmond P, Knoll A, Eckhoff D (2020) Openablext: an automatic
code generation framework for agent-based simulations on CPU–GPU–FPGA heterogeneous plat-
forms. Concurrency and Computation: Practice and Experience p. e5807

 35. Zhang W, Cheng AM, Subhlok J (2015) Dwarfcode: a performance prediction tool for parallel
applications. IEEE Trans Comput 65(2):495–507

 36. Zhang W, Hao M, Snir M (2017) Predicting hpc parallel program performance based on llvm com-
piler. Cluster Comput 20(2):1179–1192

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://cuda.dcc.ufmg.br/dawn/benchmarks.zip
http://cuda.dcc.ufmg.br/dawn/benchmarks.zip
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://web.cse.ohio-state.edu/%7epouchet.2/software/polybench
https://web.cse.ohio-state.edu/%7epouchet.2/software/polybench
http://x10-lang.org
http://lava.cs.virginia.edu/Rodinia/download_links.htm
http://lava.cs.virginia.edu/Rodinia/download_links.htm

	Automatic translation of data parallel programs for heterogeneous parallelism through OpenMP offloading
	Abstract
	1 Introduction
	2 Background and overview
	2.1 OpenMP offloading
	2.2 Motivation
	2.3 Overview of our approach

	3 Runtime library
	3.1 Tracking consistency states
	3.1.1 Consistency states
	3.1.2 Using allocation units as granularity

	3.2 Data transmission semantics
	3.2.1 Consistency state constraints
	3.2.2 Consistency states transition functions
	3.2.3 Minimum transmission algorithm

	3.3 Consistency state update semantics

	4 Code translator
	4.1 SPGraph for code translation
	4.2 Handling data transmissions
	4.3 Updating consistency states
	4.4 Parallel primitive translation

	5 Experimental setup
	5.1 Evaluation goals
	5.2 Benchmarks
	5.3 Hardware and software platforms

	6 Experimental results
	6.1 Performance evaluation
	6.1.1 Performance of OAO version
	6.1.2 Comparison with other versions

	6.2 Analysis of data transmission optimization
	6.2.1 Number of transmissions
	6.2.2 Data size and time of transmission

	6.3 Implementation and feasibility

	7 Related work
	7.1 Source-to-source translation for heterogeneous computing
	7.2 Automatic communication management for heterogeneous computing

	8 Conclusion and future work
	Acknowledgements
	References

