
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:4698–4717
https://doi.org/10.1007/s11227-020-03451-3

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing 
for a longwave radiative transfer model on multiple GPUs

Yuzhu Wang1   · Mingxin Guo1 · Yuan Zhao1 · Jinrong Jiang2

Accepted: 11 October 2020 / Published online: 23 October 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Atmospheric radiation physical process plays an important role in climate simu-
lations. As a radiative transfer scheme, the rapid radiative transfer model for gen-
eral circulation models (RRTMG) is widely used in weather forecasting and cli-
mate simulation systems. However, its expensive computational overhead poses a 
severe challenge to system performance. Therefore, improving the radiative transfer 
model’s computational performance has significant scientific research and practi-
cal value. Numerous radiative transfer models have benefited from a widely used 
and powerful GPU. Nevertheless, few of them have exploited CPU/GPU cluster 
resources within heterogeneous high-performance computing platforms. In this 
paper, we endeavor to demonstrate an approach that runs a large-scale, computation-
ally intensive, longwave radiative transfer model on a GPU cluster. First, a CUDA-
based acceleration algorithm of the RRTMG longwave radiation scheme (RRTMG_
LW) on multiple GPUs is proposed. Then, a heterogeneous, hybrid programming 
paradigm (MPI+CUDA) is presented and utilized with the RRTMG_LW on a GPU 
cluster. After implementing the algorithm in CUDA Fortran, a multi-GPU version 
of the RRTMG_LW, namely GPUs-RRTMG_LW, was developed. The experimen-
tal results demonstrate that the multi-GPU acceleration algorithm is valid, scalable, 
and highly efficient when compared to a single GPU or CPU. Running the GPUs-
RRTMG_LW on a K20 cluster achieved a 77.78× speedup when compared to a sin-
gle Intel Xeon E5-2680 CPU core.

Keywords  High-performance computing · Graphics processing unit · Compute 
Unified Device Architecture · Radiative transfer

 *	 Yuzhu Wang 
	 wangyz@cugb.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0449-2973
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03451-3&domain=pdf


4699

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

1  Introduction

Due to the massive number of calculations involved, climate models or earth sys-
tem models need support from high-performance computing (HPC) [1, 2]. Radiative 
transfer models, which are employed to calculate atmospheric radiative fluxes and 
heating rates [3], also demand the HPC. Some of the most well-known radiative 
transfer models are the line-by-line radiative transfer model (LBLRTM) [4, 5], rapid 
radiative transfer model (RRTM) [6], and rapid radiative transfer model for general 
circulation models (RRTMG). As an accelerated version of RRTM, the RRTMG 
can perform computations more efficiently [7, 8]. However, it still demands enor-
mous computing resources for long-term climatic simulation [9–11]. The Chinese 
Academy of Sciences-Earth System Model (CAS-ESM) [12–14] uses the Institute 
of Atmospheric Physics (IAP) of CAS Atmospheric General Circulation Model Ver-
sion 4.0 (IAP AGCM4.0) [15, 16] as its atmospheric component model. Here, the 
IAP AGCM4.0 uses the RRTMG as its radiative parameterization scheme.

Large-scale numerical simulations are typically performed on CPU clusters. 
However, because of the low power consumption, high memory bandwidth, highly 
parallel processing, and many-core processor capabilities of graphics processing 
units (GPUs), the HPC has undergone a paradigm shift from CPU-based computing 
to GPU-based computing [17–21]. It has become increasingly more common to run 
climate models on GPUs to perform highly efficient computations with low energy 
consumption [22, 23]. For instance, the RRTM longwave radiation scheme (RRTM_
LW) in the Weather Research and Forecasting (WRF) model was accelerated with 
CUDA (NVIDIA’s Compute Unified Device Architecture) Fortran on C1060 GPUs 
and attained a 10× performance improvement [24]. A nearly 10× speedup for a com-
putationally intensive portion of the WRF was obtained on an NVIDIA 8800 GTX 
[25]. In our previous study, the RRTMG longwave radiation scheme (RRTMG_LW) 
was accelerated on only one K20 GPU [26, 27].

In the aforementioned studies, radiation transfer models were accelerated on a 
single GPU. Currently, supercomputers or CPU/GPU heterogeneous HPC systems 
usually have thousands of CPU and GPU nodes. Radiation transfer models should 
be run on dozens of GPUs, at a minimum, to make full use of these GPU nodes. 
Moreover, running the current RRTMG on one GPU is still time-consuming when 
used for long-term simulations, so its acceleration algorithm should be studied to 
achieve more efficient computing on multiple GPUs. Thus, the present paper focuses 
on accelerating the RRTMG_LW on multiple GPUs. A CUDA-based acceleration 
algorithm of the RRTMG_LW on multiple GPUs is proposed. The proposed algo-
rithm enables massively parallel calculations of the RRTMG_LW on multiple GPUs 
of a supercomputer. Then, a multi-GPU acceleration version of the RRTMG_LW, 
namely GPUs-RRTMG_LW, is built. The experimental results demonstrate that run-
ning the GPUs-RRTMG_LW on 16 K20 GPUs obtained a 77.78× speedup.

The main contributions of this study are as follows: 

(1)	 To further accelerate the RRTMG_LW, a multi-GPU accelerating algorithm 
based on CUDA Fortran is proposed. The proposed algorithm adapts well to 



4700	 Y. Wang et al.

1 3

multiple GPUs and nodes. Moreover, it can also be generalized to accelerate the 
RRTMG shortwave radiation scheme (RRTMG_SW).

(2)	 The GPUs-RRTMG_LW can run on a GPU cluster and shows excellent compu-
tational capability. To some extent, the more efficient computation of the GPUs-
RRTMG_LW supports large-scale and real-time computing of the CAS-ESM. In 
addition, after implementing the GPUs-RRTMG_LW on multiple GPU nodes, 
the highly efficient parallel processing allows the CAS-ESM to run on a CPU/
GPU heterogeneous supercomputer with thousands of nodes.

The remainder of this paper is organized as follows. Section 2 presents representa-
tive approaches that aim to accelerate physical parameterization schemes on mul-
tiple GPUs. Section 3 introduces the RRTMG_LW model and GPU environment. 
Section 4  describes the CUDA-based 3D acceleration algorithm for the RRTMG_
LW on a single GPU. Section 5 details the MPI+CUDA acceleration algorithm for 
the RRTMG_LW on multiple GPUs. Section  6 evaluates the performance of the 
GPUs-RRTMG_LW in terms of runtime efficiency and speedup and discusses some 
of the problems arising during the experiments. The last section concludes the paper 
with a summary and proposal for future work.

2 � Related work

In recent years, a fair amount of work has been devoted to accelerate physical 
parameterization schemes and climatic system models by using GPUs. Many GPU-
based acceleration techniques have been proposed, and they can be divided into sev-
eral categories: single GPU-based acceleration, multi-GPUs-based acceleration, and 
CPU/multi-GPU clusters-based acceleration. We are committed to speeding up the 
process on CPU/multi-GPU clusters. Here, we provide a brief summary of related 
categories about prior work.

Mielikainen et al. refactored the RRTMG_LW code. Without I/O transfer, their 
GPU version achieved a speedup of 127× on a single Tesla K40 GPU compared to 
its CPU version on an Intel Xeon E5-2603 [28]. The RRTMG_SW was written in 
CUDA C [29] instead of the previous Fortran code. Compared to its single-threaded 
Fortran counterpart running on an Intel Xeon E5-2603, the RRTMG_SW based on 
CUDA C had a 202× speedup on a single Tesla K40 GPU [30].

Running the RRTM_LW on a GTX480 obtained a 27.6× speedup compared with 
the baseline wall-clock time [3]. The WRF Single Moment 5-class (WSM5) micro-
physics achieved a 9.4× performance increase even without systematically optimiz-
ing the GPU code [31]. The WRF Single Moment 6-class (WSM6) microphysics 
scheme was accelerated with CUDA C. Here, the CUDA programming model is 
used to convert the original WSM6 module into GPU programs. Its GPU version 
obtained a greater than 216× speedup when compared to its CPU serial version [32]. 
The GRAPES’ WSM6 scheme, using the NVIDIA CUDA programming model, 
exploited its fine-grained data parallelism. The implementation achieved a greater 
than 140× performance improvement over a single CPU version [33].



4701

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

The WRF Goddard shortwave radiance scheme was accelerated on two NVIDIA 
GTX 590s. Without taking I/O transfer times into account, the GPU implementation 
achieved a 141× speedup [34]. The RRTM_LW in the GRAPES_Meso model was 
rewritten in CUDA Fortran, and a 14.3× speedup was obtained. The experiments 
were carried out on a multi-GPU platform and could be extended to GPU clusters 
[9]. The double-precision version of the ODAS (a transmittance algorithm, which is 
available in the community radiative transfer model) obtained a 201× speedup on two 
NVIDIA GTX 590s compared to its single-threaded Fortran code [35]. The WRF 
Kessler cloud microphysics scheme obtained a 132× speedup on 4 GPUs compared 
to its single-threaded CPU version [36]. The WRF WSM5 microphysics scheme was 
accelerated by 357× on four GPUs [37]. The horizontal diffusion method in the WRF 
was accelerated approximately 3.5 times using two Tesla K40m GPUs compared with 
the single-GPU version [38]. Lu et al. utilized the MPI+OpenMP/CUDA program-
ming pattern to simulate radiation physics on a large GPU cluster and investigated 
the computational efficiency of the RRTM_LW CPU/GPU implementation [39, 40].

Despite the excellent results of the aforementioned studies, few of them have 
exploited both the CPU and GPU computational resources within large GPU clus-
ters. In this paper, a parallel programming model, MPI+CUDA, is presented when 
simulating the RRTMG_LW in a CPU/multi-GPU computing environment.

3 � Model description and GPU overview

3.1 � RRTMG_LW model

With an objective of higher efficiency while less loss of accuracy, the RRTM model 
was modified to create the RRTMG [41, 42], which is a correlated k-distribution 
band model for the calculation of longwave and shortwave atmospheric radiative 
fluxes and heating rates [43]. The correlated k-distribution method and g points 
in the RRTMG are described in [26, 44].  The radiation flux and heating/cooling 
rate for calculating radiative transfer through a planetary atmosphere is described 
detailedly in [28].

3.2 � RRTMG_LW code structure

According to the code test, the subroutine rrtmg_lw in the RRTMG_LW module 
accounts for most of the time proportion consumed by each subroutine and is likely 
to become the bottleneck of system performance [26, 27]. The rrtmg_lw calls the 
following five subroutines. 

(a)	 The subroutine inatm is used to read the atmospheric profile from the GCM for 
use in the RRTMG_LW and define other input parameters;

(b)	 The subroutine cldprmc is used to set cloud optical depth for the Monte Carlo-
independent column approximation (McICA) based on the input cloud properties;



4702	 Y. Wang et al.

1 3

(c)	 The subroutine setcoef is used to calculate information needed by the radiative 
transfer routine which is specific to this atmosphere, especially some of the 
coefficients and indices needed to compute optical depths, by interpolating data 
from stored reference atmospheres;

(d)	 The subroutine taumol is used to calculate gaseous optical depths and Planck 
fractions for each of the 16 spectral bands;

(e)	 The subroutine rtrnmc (for both clear and cloudy profiles) is used to perform the 
radiative transfer calculation using the McICA to represent sub-grid-scale cloud 
variability.

Algorithm 1 shows the computing procedure of rrtmg_lw. The rrtmg_lw took most 
computing time of the RRTMG_LW, so the study target was to use GPUs to acceler-
ate the inatm, cldprmc, setcoef, taumol, and rtrnmc subroutines.

Algorithm 1 Computing procedure of rrtmg lw
subroutine rrtmg lw(parameters)

//iplon is the column loop index
//ncol is the number of horizontal columns

1. do iplon=1, ncol
2. call inatm(parameters)
3. call cldprmc(parameters)
4. call setcoef (parameters)
5. call taumol(parameters)
6. if aerosol is active then

//combine gaseous and aerosol optical depths
//k is the layer loop index and ig is the g-point loop index
//taug is the gaseous optical depths and taua is the aerosol optical depth
//taut is the gaseous + aerosol optical depths
//ngb is the band index for each new g-interval

7. taut(k, ig) = taug(k, ig) + taua(k, ngb(ig))
8. else
9. taut(k, ig) = taug(k, ig)
10. end if
11. call rtrnmc(parameters)
12. Transfer fluxes and heating rate to output arrays
13.end do
end subroutine

3.3 � Overview of GPU and CUDA

Figure  1 illustrates the hardware architecture of a GPU. It is organized into an 
array of highly threaded streaming multiprocessors (SMs). Each SM has a num-
ber of streaming processors (SPs) that share control logic and instruction cache. 
As a general purpose parallel computing architecture, CUDA facilitates creating 
a software environment that fully utilizes the cores of many GPUs in a massively 
parallel fashion. CUDA defines functions or subroutines as ‘kernels’ executed on 
the GPU (the ‘device’). Normally, the CPU (the ‘host’) invokes the kernels of an 
application. Each kernel is executed by CUDA threads, which are organized into 
a three-level hierarchy [45], as shown in Fig. 2. The top level is a grid consisting 
of thread blocks. Each thread block has a group of threads that share data effi-
ciently through a fast shared memory. 



4703

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

4 � CUDA‑based 3D acceleration of RRTMG_LW on a single GPU

The RRTMG_LW uses a collection of 3D cells to represent the atmosphere. Its 1D 
acceleration algorithm performs domain decompositions in the horizontal direction. 
Its 2D acceleration algorithm performs domain decompositions in the horizontal 
and vertical directions. In the RRTMG_LW, the total number of g points is 140. 

Fig. 1   Hardware architecture of a modern GPU

Fig. 2   Hierarchy of threads and memory in CUDA



4704	 Y. Wang et al.

1 3

Therefore, there are iterative computations for each g point in inatm, taumol, and 
rtrnmc. For example, the computation of 140 g points is executed by a do-loop in 
the GPU-based acceleration implementation of 1D rtrnmc_d. To achieve more fine-
grained parallelism, 140 CUDA threads can be assigned to run the kernels inatm_d, 
taumol_d, and rtrnmc_d. Thus, on the basis of the 2D algorithm, the 3D parallel 
strategy is further accelerating inatm_d, taumol_d, and rtrnmc_d in the g-point 
dimension. Figure 3 illustrates the domain decomposition in the g-point dimension 
for the RRTMG_LW accelerated on a GPU. The 3D acceleration algorithm is illus-
trated in Algorithm 2 and described as follows: 

(1)	 In the 3D acceleration algorithm, inatm consists of five kernels (inatm_d1, 
inatm_d2, inatm_d3, inatm_d4, and inatm_d5). Due to data dependency, a piece 
of code in inatm can be parallel only in the horizontal or vertical direction, so the 
kernel inatm_d4 uses 1D decomposition. The kernels inatm_d1, inatm_d2, and 
inatm_d5 use 2D decomposition, while the kernel inatm_d3 uses 3D decompo-
sition. Due to the requirement of data synchronization, inatm_d1 and inatm_d2 
cannot be merged into one kernel.

(2)	 The kernel cldprmc_d still uses 1D decomposition.
(3)	 Similarly, the kernel setcoef_d1 uses 2D decomposition, and the kernel set-

coef_d2 uses 1D decomposition.
(4)	 The kernel taumol_d uses 3D decomposition. In taumol_d, 16 subroutines with 

the device attribute are invoked.
(5)	 Similarly, rtrnmc consists of 11 kernels (rtrnmc_d1–rtrnmc_d11). Here, rtrnmc_

d1, rtrnmc_d4, rtrnmc_d8, rtrnmc_d10, and rtrnmc_d11 use 1D decomposition. 
Furthermore, rtrnmc_d2 and rtrnmc_d9 use 2D decomposition in the horizontal 
and vertical directions. In addition, rtrnmc_d5 and rtrnmc_d6 use 2D decom-
position in the horizontal direction and g-point dimension. Finally, rtrnmc_d3 
and rtrnmc_d7 use 3D decomposition.

In Algorithm 2, for 1D acceleration, n is the number of threads in each thread 
block, while m = ⌈(����)ncol∕n⌉ is the number of blocks utilized in each kernel 
grid. For 2D and 3D acceleration, the tBlock defines the number of threads utilized 

Fig. 3   Schematic diagram of the 
decomposition in the g-point 
dimension for the RRTMG_LW 
in the GPU acceleration



4705

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

in each thread block of the x, y, and z dimensions by the derived type dim3. Further-
more, the grid defines the number of blocks in the x, y, and z dimensions by dim3.

The 1D, 2D, and 3D acceleration algorithms of the RRTMG_LW on one GPU 
were proposed in our previous study [26, 27]. After implementing the algorithms in 
CUDA Fortran, the GPU-RRTMG_LW has been developed and can run on a GPU. 
In the CAS-ESM, the IAP AGCM4.0 has a 1.4◦ × 1.4

◦ horizontal resolution and 51 
levels in the vertical direction, so the RRTMG_LW has 128 × 256 horizontal grid 
points. If one GPU is applied, in theory, 128 × 256 × 51 × 140 CUDA threads will 
be required for each 3D kernel.

Algorithm 2 3D GPU-RRTMG LW
subroutine rrtmg lw d3 (parameters)
1. Copy input data to GPU device

//Call inatm d1 with 2D decomposition
2. call inatm d1≪ grid1, tBblock1 ≫(parameters)

//Call inatm d2 with 2D decomposition
3. call inatm d2≪ grid1, tBblock1 ≫(parameters)

//Call inatm d3 with 3D decomposition
4. call inatm d3≪ grid2, tBblock2 ≫(parameters)

//Call inatm d4 with 1D decomposition
5. call inatm d4≪ m,n ≫(parameters)

//Call inatm d5 with 2D decomposition
6. call inatm d5≪ grid1, tBblock1 ≫(parameters)

//Call cldprmc d with 1D decomposition
7. call cldprmc d≪ m,n ≫(parameters)

//Call setcoef d1 with 2D decomposition
8. call setcoef d1≪ grid, tBblock ≫(parameters)

//Call setcoef d2 with 1D decomposition
9. call setcoef d2≪ m,n ≫(parameters)

//Call taumol d with 3D decomposition
10.call taumol d≪ grid2, tBblock2 ≫(parameters)

//Call rtrnmc d1 with 1D decomposition
11.call rtrnmc d1≪ m,n ≫(parameters)

//Call rtrnmc d2 with 2D decomposition
12.call rtrnmc d2≪ grid1, tBblock1 ≫(parameters)

//Call rtrnmc d3 with 3D decomposition
13.call rtrnmc d3≪ grid2, tBblock2 ≫(parameters)

//Call rtrnmc d4 with 1D decomposition
14.call rtrnmc d4≪ m,n ≫(parameters)

//Call rtrnmc d5 with 2D decomposition in horizonal and g-point dimensions
15.call rtrnmc d5≪ grid3, tBblock3 ≫(parameters)

//Call rtrnmc d6 with 2D decomposition in horizonal and g-point dimensions
16.call rtrnmc d6≪ grid3, tBblock3 ≫(parameters)

//Call rtrnmc d7 with 3D decomposition
17.call rtrnmc d7≪ grid2, tBblock2 ≫(parameters)

//Call rtrnmc d8 with 1D decomposition
18.call rtrnmc d8≪ m,n ≫(parameters)

//Call rtrnmc d9 with 2D decomposition
19.call rtrnmc d9≪ grid1, tBblock1 ≫(parameters)

//Call rtrnmc d10 with 1D decomposition
20.call rtrnmc d10≪ m,n ≫(parameters)

//Call rtrnmc d11 with 1D decomposition
21.call rtrnmc d11≪ m,n ≫(parameters)
22.Copy result to host

//Judge whether atmospheric horizontal profile data is completed//
23.if it is not completed goto 1
end subroutine



4706	 Y. Wang et al.

1 3

5 � MPI+CUDA acceleration algorithm of RRTMG_LW on multiple GPUs

5.1 � Parallel architecture

The current CAS-ESM, which is implemented by adopting MPI technology, typi-
cally runs on dozens of compute nodes. Once the GPU-RRTMG_LW is integrated 
into the CAS-ESM, it also has to run on multiple compute nodes and GPUs. Gen-
erally, supercomputers or large-scale clusters have hundreds of compute nodes, 
each having two or more GPUs. To make full use of multi-core and multi-GPU 
supercomputers and further improve the computational performance of the GPU-
RRTMG_LW, this study adopted a parallel architecture with an MPI+CUDA 
hybrid paradigm, as shown in Fig. 4. Hence, the GPU-RRTMG_LW can run on 
multiple GPUs,   whereas the other  code of the CAS-ESM can run on multiple 
CPUs.

5.2 � GPUs‑RRTMG_LW algorithm

In the IAP AGCM4.0 of the CAS-ESM system, the computation of its physical 
parameterizations features the characteristics of a vertical single-column model. 
Therefore, when running the CAS-ESM on multiple CPU cores, the computation 
task of physical parameterizations is decomposed in the horizontal direction. As one 
of these physical parameterizations, the 3D global domain of the GPU-RRTMG_
LW is decomposed by latitude and longitude. More specifically, the decomposi-
tion of the 3D atmospherical global grid is implemented by using MPI technology. 
Then, each MPI rank will finish the computation task on its own sub-grid points. For 
example, if the CAS-ESM is run on 4 CPU cores, the number of each sub-grid point 
in the horizontal direction is 128 × 256∕4 = 8192 . Each CPU core drives a GPU, so 
4 GPUs will be required here, as shown in Fig. 5. It means that each GPU will finish 
the computing of 8192 grid points in the horizontal direction at each time step. Due 
to the limitation of global memory on a GPU, a K20 GPU can only compute 2048 
horizontal grid points. Thus, the 8192 points will be divided into 4 chunks, each 
having 2048 points. In other words, a K20 GPU will perform the computation of 
8192 points in 4 iterations at each time step.

After decomposing the 3D atmospherical global grid, this study uses MPI to 
implement collaboration and communication among multiple GPUs. Figure 6 illus-
trates the flow of the GPUs-RRTMG_LW acceleration algorithm on multiple GPUs 
and nodes. The detailed acceleration algorithm is as follows. 

(1)	 The CAS-ESM runs concurrently on multiple CPU cores using MPI. The 3D 
atmospherical global grid is decomposed into sub-grids. Each CPU core is 
responsible for the computing task on its own sub-grid points. Then, each CPU 
core starts a GPU and sends the input data of the GPUs-RRTMG_LW to its 
corresponding GPU.

(2)	 Each GPU initializes the run environment and allocates space for its variables or 
arrays. After receiving the input data from its corresponding CPU core, the ncol 



4707

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

CUDA threads in each GPU will execute the computation of radiative transfer 
concurrently for each grid point on its own chunk. Then, each GPU will send 
the computing results to its corresponding CPU.

(3)	 Each CPU core will receive the computing results. If all of the computing tasks 
are not finished at a time step, the algorithm will continue to run from the first 
step.

5.3 � GPUs‑RRTMG_LW implementation

The implementation of the RRTMG_LW acceleration algorithm on multiple GPUs 
is illustrated in Table 1 and described as follows. 

(1)	 If each GPU node invokes two or more GPUs, arrays with device attribution for 
input or output data must be allocated memory dynamically. Thus, the dynamic 
allocation memory is adopted in the algorithm implementation.

(2)	 The NVIDIA CUDA library cudaSetDevice sets which device (GPU) to be used 
for GPU code executions. Calling the library is to realize multi-GPU computa-
tion on each GPU node.

(3)	 The NVIDIA CUDA library cudaDeviceSynchronize is used to wait for compute 
device to finish. Calling the library is to realize multi-GPU synchronous com-
putation.

6 � Experimental results and discussion

To evaluate the performance of the proposed algorithm, experimental studies were 
conducted. The results are described below.

Fig. 4   Parallel architecture of the GPU-RRTMG_LW on multiple GPUs



4708	 Y. Wang et al.

1 3

6.1 � Experimental setup

This paper conducted an ideal global climate simulation for one model day to fully 
investigate the proposed algorithm. In this experiment, the time step of the GPUs-
RRTMG_LW was one hour. The experiment ran on a K20 cluster in the Computer 
Network Information Center of CAS, which has 30 GPU nodes. Each GPU node has 
two Intel Xeon E5-2680 v2 processors and two NVIDIA Tesla K20 GPUs. Twenty 
CPU cores in each GPU node share 64 GB DDR3 system memory through Quick-
Path Interconnect. The basic compiler is the PGI Fortran compiler Version 14.10 
that supports CUDA Fortran. Table  2 lists its detailed configurations. The serial 
RRTMG_LW was executed on an Intel Xeon E5-2680 v2 processor of the K20 
cluster.

Fig. 5   Decomposition of the 
global grid in the horizontal 
direction when running the 
GPUs-RRTMG_LW on four 
CPU cores and four GPUs



4709

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

6.2 � Performance comparison of 1D and 3D GPUs‑RRTMG_LW

Table 3 shows the runtime of the serial RRTMG_LW on one core of an Intel Xeon 
E5-2680 v2 processor. The computing time of the RRTMG_LW on the CPU or 
GPU, Trrtmg_lw , is calculated with the following formula:

where Tinatm is the computing time of the subroutine inatm or kernel inatm_d; more-
over, Tcldprmc, Tsetcoef , Ttaumol , and Trtrnmc are the corresponding computing time of the 
other kernels; TI∕O is the I/O transfer time between the CPU and GPU.

To evaluate the acceleration performance of the GPUs-RRTMG_LW on multi-
ple GPUs, the performance of the 1D GPUs-RRTMG_LW on multi-GPUs was also 
evaluated. Table 3 also portrays the runtime and speedup of the 1D GPUs-RRTMG_
LW on multiple K20 GPUs when each GPU node of the cluster invokes one K20 
GPU. Table 4 presents the runtime and speedup of the 3D GPUs-RRTMG_LW on 

Trrtmg_lw = Tinatm + Tcldprmc + Tsetcoef + Ttaumol + Trtrnmc + TI∕O,

Fig. 6   Flow of the GPUs-RRTMG_LW acceleration algorithm



4710	 Y. Wang et al.

1 3

multiple K20 GPUs when each GPU node of the cluster invokes one K20 GPU. 
Some conclusions and analysis are described as below. 

(1)	 Increasing the number of GPUs can reduce the runtime and improve speedup. 
When the 1D GPUs-RRTMG_LW ran on 16 K20 GPUs, it achieved a speedup 
of 51.28× as compared to its counterpart running on one CPU core of an Intel 
Xeon E5-2680 v2.

(2)	 With incremental increases in the number of GPUs, the 3D GPUs-RRTMG_LW 
resulted in a similar rule. When the 3D GPUs-RRTMG_LW ran on 16 K20 
GPUs, it achieved a speedup of 77.78× . The 3D GPUs-RRTMG_LW has better 

Table 1   Implementation of the GPUs-RRTMG_LW

      //myrank is the process ID or MPI rank

1. Integer ∶ ∶ myrank, dev, ierr, istat
2. Dynamically allocate memory for related 1D, 2D, and 3D arrays
3. dev = mod(myrank,2)

4. ierr = cudaSetDevice(dev)

5. Copy input data to GPU device
6. call inatm_d1⋘ grid1, tBblock1 ⋙(parameters)
7. call inatm_d2⋘ grid1, tBblock1 ⋙(parameters)
8. call inatm_d3⋘ grid2, tBblock2 ⋙(parameters)
9. call inatm_d4⋘ m, n ⋙(parameters)
10.call inatm_d5⋘ grid1, tBblock1 ⋙(parameters)
11.call cldprmc_d⋘ m, n ⋙(parameters)
12.call setcoef_d1⋘ grid, tBblock ⋙(parameters)
13.call setcoef_d2⋘ m, n ⋙(parameters)
14.call taumol_d⋘ grid2, tBblock2 ⋙(parameters)
15.call rtrnmc_d1⋘ m, n ⋙(parameters)
16.call rtrnmc_d2⋘ grid1, tBblock1 ⋙(parameters)
17.call rtrnmc_d3⋘ grid2, tBblock2 ⋙(parameters)
18.call rtrnmc_d4⋘ m, n ⋙(parameters)
19.call rtrnmc_d5⋘ grid3, tBblock3 ⋙(parameters)
20.call rtrnmc_d6⋘ grid3, tBblock3 ⋙(parameters)
21.call rtrnmc_d7⋘ grid2, tBblock2 ⋙(parameters)
22.call rtrnmc_d8⋘ m, n ⋙(parameters)
23.call rtrnmc_d9⋘ grid1, tBblock1 ⋙(parameters)
24.call rtrnmc_d10⋘ m, n ⋙(parameters)
25.call rtrnmc_d11⋘ m, n ⋙(parameters)
26.istat = cudaDeviceSynchronize()

27.Copy result to host
28.Deallocate memory for related 1D, 2D, and 3D arrays

      //Judge whether atmospheric horizontal profile data is completed
29.if it is not completed goto 2



4711

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

acceleration algorithm than the 1D GPUs-RRTMG_LW, so it can obtain a higher 
speedup.

6.3 � Performance evaluation with different GPU configurations

In the K20 cluster, each GPU node has two Intel Xeon E5-2680 v2 processors (20 
CPU cores) and two K20 GPUs. In the experiment of Sect.  6.2, each GPU node 
invokes one K20 GPU. To make full use of the cluster, each GPU node will invoke 
two K20 GPUs in the following experiment. Table  5 presents the runtime and 
speedup of the 3D GPUs-RRTMG_LW on multiple K20 GPUs when each GPU 
node invokes two K20 GPUs. Some conclusions and analysis are described as below. 

(1)	 Increasing the number of GPUs can reduce the runtime and improve speedup. 
When the 3D GPUs-RRTMG_LW ran on 16 and 32 K20 GPUs, it achieved a 
speedup of 60.88× and 76.13× , respectively.

(2)	 As shown in Tables 4 and 5, the 3D GPUs-RRTMG_LW running on the same 
number of GPUs obtains a higher speedup when each GPU node invokes one 
K20 GPU. This is because the data transfer between the CPU and GPU is slower 
and a communication overhead is produced when two GPUs are invoked in a 
GPU node.

Table 2   Configurations of the 
K20 GPU cluster

Items Specification of CPU

CPU E5-2680 v2@2.8 GHz
Operating system CentOS 6.4
Items Specification of GPU
GPU Tesla K20
CUDA Cores 2496
Standard memory 5 GB
Memory bandwidth 208 GB/s
CUDA version 6.5

Table 3   Runtime and speedup 
of the CAS-ESM 1D GPUs-
RRTMG_LW on multiple GPUs 
when each GPU node of the 
cluster invokes one K20 GPU

Here, the block size = 512 and ncol = 2048

Nodes (CPU Cores) GPUs Runtime (s) Speedup

1 (1) 0 647.12 1
4 (4) 4 44.04 14.69
8 (8) 8 23.61 27.41
16 (16) 16 12.62 51.28



4712	 Y. Wang et al.

1 3

(3)	 Although the 3D GPUs-RRTMG_LW does not show a perfect performance 
improvement when each GPU node invokes two K20 GPUs, it can utilize more 
GPUs and has a stronger scalability.

(4)	 When 16 nodes and 32 GPUs are utilized in Table 5, the maximum value of the 
ncol is 1024 ( 128 × 256∕32 ) because of the low resolution of the IAP AGCM4.0 
in the CAS-ESM. In theory, if the IAP AGCM4.0 with a higher resolution is 
developed, the value of the ncol can be 2048 and the 3D GPUs-RRTMG_LW 
will have a speedup of about 120× . Therefore, the proposed algorithm can fully 
support the CAS-ESM with a higher resolution.

6.4 � Error analysis

When accelerating the computational performance of a climate system model, it is 
of vital importance to ensure that running the model on multiple GPUs can gen-
erate the same results within a small tolerance threshold. In a simulation experi-
ment of two model days, Fig. 7 illustrates the impact on the longwave flux at the top 
of the atmosphere in a clear sky. The outgoing longwave flux achieved by running 
the CAS-ESM entirely on CPUs is shown in Fig. 7a. The longwave flux differences 
between the simulations running the CAS-ESM only on CPUs and running the 
CAS-ESM RRTMG on 16 GPUs are shown in Fig. 7b. The results show that there 

Table 4   Runtime and speedup 
of the CAS-ESM 3D GPUs-
RRTMG_LW on multiple GPUs 
when each GPU node of the 
cluster invokes one K20 GPU

Here, the block size = 512 and ncol = 2048 ; inatm and rtrnmc are 
with a 3D decomposition; cldprmc is with a 1D decomposition; set-
coef and taumol are with a 2D decomposition

Nodes (CPU Cores) GPUs Runtime (s) Speedup

1 (1) 0 647.12 1
4 (4) 4 35.41 18.28
8 (8) 8 17.24 37.54
16 (16) 16 8.32 77.78

Table 5   Runtime and speedup 
of the CAS-ESM 3D GPUs-
RRTMG_LW on multiple GPUs 
when each GPU node of the 
cluster invokes two K20 GPUs

Here, the block size = 512 and ncol = 2048 ; inatm and rtrnmc are 
with a 3D decomposition; cldprmc is with a 1D decomposition; set-
coef and taumol are with a 2D decomposition. When the 3D GPUs-
RRTMG_LW runs on 32 K20 GPUs, the ncol = 1024

Nodes (CPU Cores) GPUs Runtime (s) Speedup

1 (1) 0 647.12 1
2 (4) 4 43.47 14.89
4 (8) 8 21.48 30.13
8 (16) 16 10.63 60.88
16 (32) 32 8.50 76.13



4713

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

are minor and negligible differences. Besides the impact of running the 3D GPUs-
RRTMG_LW on GPUs, the impact of the slight physics change by running the 3D 
GPUs-RRTMG_LW code on GPUs also results in these differences.

6.5 � Discussion

(1)	 Zheng et al. proposed an acceleration algorithm for the RRTM_LW in the 
GRAPES_Meso model on multiple GPUs. Their CUDA Fortran version 
obtained a 14.3× speedup on 4×NVIDIA Tesla C1060 cards [9]. Compared to 
their algorithm, our proposed algorithm for the RRTMG_LW in the CAS-ESM 
has a better speedup. Moreover, our algorithm can run on multiple GPU nodes.

(a)

(b)

Fig. 7   Impact on the longwave flux at the top of the atmosphere in a clear sky



4714	 Y. Wang et al.

1 3

(2)	 In fact, our algorithm does not attain an ideal speedup when running on multiple 
nodes and GPUs. There are two main reasons. First, the current IAP AGCM4.0 
in the CAS-ESM is with a low resolution, so the RRTMG_LW calculation 
amount assigned on each GPU is less and the GPU hardware performance is 
inefficiently utilized. Second, the inevitable I/O transfer cost between the CPU 
and GPU reduces performance improvement. Thus, the proposed acceleration 
algorithm will be optimized further to achieve a better performance.

7 � Conclusions and future work

Large-scale numerical simulation places an ever-growing demand on the compu-
tational performance of HPC infrastructure. Consequently, it is critical to make 
full use of the computational resources of CPU/GPU clusters. In this paper, a 
multi-GPU acceleration algorithm for the RRTMG_LW is proposed, and its 
hybrid programming paradigm (MPI+CUDA) is presented. After implementing 
the algorithm, the GPUs-RRTMG_LW was developed and integrated into the 
CAS-ESM as its longwave radiation transfer module, which realized the CPU/
GPU heterogeneous parallel computing of the CAS-ESM. Moreover, we per-
formed a simulation by exploiting the computational capacities of both CPU and 
GPU clusters. The experimental results demonstrate that the multi-GPU accelera-
tion algorithm is valid and highly efficient. During a climate simulation of one 
model day, the GPUs-RRTMG_LW obtained a speedup of 77.78× on a K20 GPU 
cluster.

The future work mainly includes the following two aspects: (1) The acceleration 
algorithm will be optimized to further harness the GPU performance. For example, 
using pinned memory reduces I/O transfer between the CPU and GPU. (2) To fully 
utilize CPU cores and GPUs, we will adopt the MPI+OpenMP+CUDA hybrid para-
digm to improve the acceleration algorithm.

Acknowledgements  We would like to acknowledge the contributions of Prof. Minghua Zhang for insight-
ful suggestions on algorithm design. This work was supported in part by the National Key Research and 
Development Program of China under Grant 2016YFB0200800, in part by the National Natural Sci-
ence Foundation of China under Grant 61602477 and 41931183, and in part by the  National Key Sci-
entific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” 
(EarthLab).

References

	 1.	 Xue W, Yang C, Fu H et al (2015) Ultra-scalable CPU-MIC acceleration of mesoscale atmospheric 
modeling on tianhe-2. IEEE Trans Comput 64(8):2382–2393

	 2.	 Wang Y, Jiang J, Zhang J et  al (2018) An efficient parallel algorithm for the coupling of global 
climate models and regional climate models on a large-scale multi-core cluster. J Supercomput 
74(8):3999–4018



4715

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

	 3.	 Lu F, Cao X, Song J, et al (2011) GPU computing for longwave radiation physics: a RRTM_LW 
scheme case study. In: IEEE 9th international symposium on parallel and distributed processing 
with applications workshops (ISPAW), pp 71–76

	 4.	 Clough SA, Iacono MJ, Moncet JL (1992) Line-by-line calculations of atmospheric fluxes and cool-
ing rates: application to water vapor. J Geophys Res Atmos 97(D14):15761–15785

	 5.	 Clough SA, Iacono MJ (1995) Line-by-line calculation of atmospheric fluxes and cooling rates II: 
application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J Geophys Res 
Atmos 100(D8):16519–16535

	 6.	 Mlawer EJ, Taubman SJ, Brown PD et  al (1997) Radiative transfer for inhomogeneous atmos-
pheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 
102(D14):16663–16682

	 7.	 Iacono MJ, Mlawer EJ, Clough SA et al (2000) Impact of an improved longwave radiation model, 
RRTM, on the energy budget and thermodynamic properties of the NCAR community climate 
model, CCM3. J Geophys Res Atmos 105(D11):14873–14890

	 8.	 Iacono MJ, Delamere JS, Mlawer EJ et al (2008) Radiative forcing by long-lived greenhouse gases: 
calculations with the AER radiative transfer models. J Geophys Res Atmos 113(D13)

	 9.	 Zheng F, Xu X, Xiang D et al (2013) GPU-based parallel researches on RRTM module of GRAPES 
numerical prediction system. J Comput 8(3):550–558

	10.	 Iacono MJ (2015) Enhancing cloud radiative processes and radiation efficiency in the advanced 
research weather research and forecasting (WRF) model. Atmospheric and Environmental Research, 
Lexington

	11.	 Morcrette JJ, Mozdzynski G, Leutbecher M (2008) A reduced radiation grid for the ECMWF inte-
grated forecasting system. Mon Weather Rev 136(12):4760–4772

	12.	 Dong X, Su T, Wang J et  al (2014) Decadal variation of the Aleutian low-icelandic low seesaw 
simulated by a climate system model (CAS-ESM-C). Atmos Ocean Sci Lett 7(2):110–114

	13.	 Wang Y, Jiang J, Ye H et al (2016) A distributed load balancing algorithm for climate big data pro-
cessing over a multi-core CPU cluster. Concurr Comput Pract Exp 28(15):4144–4160

	14.	 Wang Y, Hao H, Zhang J et al (2019) Performance optimization and evaluation for parallel process-
ing of big data in earth system models. Cluster Comput 22:2371–2381

	15.	 Zhang H, Zhang M, Zeng Q (2013) Sensitivity of simulated climate to two atmospheric mod-
els: interpretation of differences between dry models and moist models. Mon Weather Rev 
141(5):1558–1576

	16.	 Wang Y, Jiang J, Zhang H et al (2017) A scalable parallel algorithm for atmospheric general circula-
tion models on a multi-core cluster. Future Gener Comput Syst 72:1–10

	17.	 Nickolls J, Dally WJ (2010) The GPU computing era. IEEE Micro 30(2):56–69
	18.	 Deng Z, Chen D, Hu Y et  al (2012) Massively parallel non-stationary EEG data processing on 

GPGPU platforms with Morlet continuous wavelet transform. J Internet Serv Appl 3(3):347–357
	19.	 Chen D, Wang L, Tian M et al (2013) Massively parallel modelling & simulation of large crowd 

with GPGPU. J Supercomput 63(3):675–690
	20.	 Chen D, Li X, Wang L et al (2015) Fast and scalable multi-way analysis of massive neural data. 

IEEE Trans Comput 64(3):707–719
	21.	 Candel F, Petit S, Sahuquillo J et  al (2018) Accurately modeling the on-chip and off-chip GPU 

memory subsystem. Future Gener Comput Syst 82:510–519
	22.	 Norman M, Larkin J, Vose A et al (2015) A case study of CUDA FORTRAN and OpenACC for an 

atmospheric climate kernel. J Comput Sci 9:1–6
	23.	 Schalkwijk J, Jonker HJ, Siebesma AP et  al (2015) Weather forecasting using GPU-based large-

eddy simulations. Bull Am Meteorol Soc 96(5):715–723
	24.	 Ruetsch G, Phillips E, Fatica M (2010) GPU acceleration of the long-wave rapid radiative transfer 

model in WRF using CUDA Fortran. In: Many–Core and reconfigurable supercomputing conference
	25.	 Michalakes J, Vachharajani M (2008) GPU acceleration of numerical weather prediction. Parallel 

Process Lett 18(04):531–548
	26.	 Wang Y, Zhao Y, Li W et al (2019) Using a GPU to accelerate a longwave radiative transfer model 

with efficient CUDA-based methods. Appl Sci 9(19):4039
	27.	 Wang Y, Zhao Y, Jiang J et al (2020) A novel GPU-based acceleration algorithm for a longwave 

radiative transfer model. Appl Sci 10(2):649
	28.	 Price E, Mielikainen J, Huang M et al (2014) GPU-accelerated longwave radiation scheme of the 

rapid radiative transfer model for general circulation models (RRTMG). IEEE J Sel Topics Appl 
Earth Obs Remote Sens 7(8):3660–3667



4716	 Y. Wang et al.

1 3

	29.	 NVIDIA, CUDA C Programming Guide v10.0, Technical Document (2018). Available:https​://docs.
nvidi​a.com/pdf/CUDA_C_Progr​ammin​g_Guide​.pdf

	30.	 Mielikainen J, Price E, Huang B et al (2016) GPU compute unified device architecture (CUDA)-
based parallelization of the RRTMG shortwave rapid radiative transfer model. IEEE J Sel Topics 
Appl Earth Obs Remote Sens 9(2):921–931

	31.	 Huang M, Huang B, Chang YL et al (2015) Efficient parallel GPU design on WRF five-layer ther-
mal diffusion scheme. IEEE J Sel Topics Appl Earth Obs Remote Sens 8(5):2249–2259

	32.	 Huang M, Huang B, Gu L et al (2015) Parallel GPU architecture framework for the WRF Single 
Moment 6-class microphysics scheme. Comput Geosci 83:17–26

	33.	 Xiao H, Sun J, Bian X et al (2013) GPU acceleration of the WSM6 cloud microphysics scheme in 
GRAPES model. Comput Geosci 59:156–162

	34.	 Mielikainen J, Huang B, Huang HLA et al (2012) GPU acceleration of the updated Goddard short-
wave radiation scheme in the weather research and forecasting (WRF) model. IEEE J Sel Topics 
Appl Earth Obs Remote Sens 5(2):555–562

	35.	 Mielikainen J, Huang B, Huang HLA et al (2015) Performance and scalability of the jcsda commu-
nity radiative transfer model (crtm) on nvidia gpus. IEEE J Sel Topics Appl Earth Obs Remote Sens 
8(4):1519–1527

	36.	 Mielikainen J, Huang B, Wang J et al (2013) Compute unified device architecture (CUDA)-based 
parallelization of WRF Kessler cloud microphysics scheme. Comput Geosci 52:292–299

	37.	 Mielikainen J, Huang B, Huang HLA et al (2012) Improved GPU/CUDA based parallel weather and 
research forecast (WRF) single moment 5-class (WSM5) cloud microphysics. IEEE J Sel Topics 
Appl Earth Obs Remote Sens 5(4):1256–1265

	38.	 Solano-Quinde L, Gualan-Saavedra R, Zuiga-Prieto M (2016) Multi-GPU implementation of the 
Horizontal diffusion method of the weather research and forecast model. In: ACM proceedings of 
the 7th international workshop on programming models and applications for multicores and Many-
cores, pp 98–103

	39.	 Lu F, Song J, Cao X et  al (2012) CPU/GPU computing for long-wave radiation physics on large 
GPU clusters. Comput Geosci 41:47–55

	40.	 Lu F, Song J, Yin F et al (2012) Performance evaluation of hybrid programming patterns for large 
CPU/GPU heterogeneous clusters. Comput Phys Commun 183(6):1172–1181

	41.	 Iacono MJ, Delamere JS, Mlawer EJ et al (2003) Evaluation of upper tropospheric water vapor in 
the NCAR Community Climate Model (CCM3) using modeled and observed HIRS radiances. J 
Geophys Res Atmos 108(D2):ACL-1

	42.	 Morcrette JJ, Barker HW, Cole JNS et al (2008) Impact of a new radiation package, McRad, in the 
ECMWF integrated forecasting system. Mon Weather Rev 136(12):4773–4798

	43.	 Clough SA, Shephard MW, Mlawer EJ et al (2005) Atmospheric radiative transfer modeling: a sum-
mary of the AER codes. J Quant Spectrosc Radiat Transf 91(2):233–244

	44.	 Mlawer EJ, Iacono MJ, Pincus R et al (2016) Contributions of the ARM program to radiative trans-
fer modeling for climate and weather applications. AMS Meteorol Monogr 57:15.1–15.19

	45.	 Chen D, Li D, Xiong M et al (2010) GPGPU-aided ensemble empirical-mode decomposition for 
EEG analysis during anesthesia. IEEE Trans Inf Technol Biomed 14(6):1417–1427

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf


4717

1 3

GPUs‑RRTMG_LW: high‑efficient and scalable computing for…

Affiliations

Yuzhu Wang1   · Mingxin Guo1 · Yuan Zhao1 · Jinrong Jiang2

	 Mingxin Guo 
	 guomx@cugb.edu.cn

	 Yuan Zhao 
	 zhaoyuan_cugb@163.com

	 Jinrong Jiang 
	 jjr@sccas.cn

1	 School of Information Engineering, China University of Geosciences, Beijing 100083, China
2	 Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

http://orcid.org/0000-0003-0449-2973

	GPUs-RRTMG_LW: high-efficient and scalable computing for a longwave radiative transfer model on multiple GPUs
	Abstract
	1 Introduction
	2 Related work
	3 Model description and GPU overview
	3.1 RRTMG_LW model
	3.2 RRTMG_LW code structure
	3.3 Overview of GPU and CUDA

	4 CUDA-based 3D acceleration of RRTMG_LW on a single GPU
	5 MPI+CUDA acceleration algorithm of RRTMG_LW on multiple GPUs
	5.1 Parallel architecture
	5.2 GPUs-RRTMG_LW algorithm
	5.3 GPUs-RRTMG_LW implementation

	6 Experimental results and discussion
	6.1 Experimental setup
	6.2 Performance comparison of 1D and 3D GPUs-RRTMG_LW
	6.3 Performance evaluation with different GPU configurations
	6.4 Error analysis
	6.5 Discussion

	7 Conclusions and future work
	Acknowledgements 
	References




