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Abstract
Orthogonal moments and their invariants to geometric transformations for gray-
scale images are widely used in many pattern recognition and image processing 
applications. In this paper, we propose a new set of orthogonal polynomials called 
adapted Gegenbauer–Chebyshev polynomials (AGC). This new set is used as a 
basic function to define the orthogonal adapted Gegenbauer–Chebyshev moments 
(AGCMs). The rotation, scaling, and translation invariant property of (AGCMs) is 
derived and analyzed. We provide a novel series of feature vectors of images based 
on the adapted Gegenbauer–Chebyshev orthogonal moments invariants (AGCMIs). 
We practice a novel image classification system using the proposed feature vectors 
and the fuzzy k-means classifier. A series of experiments is performed to validate 
this new set of orthogonal moments and compare its performance with the exist-
ing orthogonal moments as Legendre invariants moments, the Gegenbauer and Tch-
ebichef invariant moments using three different image databases: the MPEG7-CE 
Shape database, the Columbia Object Image Library (COIL-20) database and the 
ORL-faces database. The obtained results ensure the superiority of the proposed 
AGCMs over all existing moments in representation and recognition of the images.
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1  Introduction

Description of images invariant to geometric transformations such as rotation, 
scaling and translation is useful in image analysis, object recognition and clas-
sification [1, 2]. Moments, as a popular class of the global invariant features, have 
been widely used in different applications of pattern recognition, image analysis 
and computer vision applications, such as object recognition [3], optical character 
recognition [2], pattern classification [4], image watermarking [5], content-based 
image retrieval [6], image reconstruction [7], image compression [8, 9], edge 
detection [10] and template matching [11].

The moments can be divided into two groups: orthogonal moments and non-
orthogonal moments. Non-orthogonal moments such as geometric moments, 
complex moments and rotational moments have a certain degree of informa-
tion redundancy and high sensitivity to noise, and the reconstruction of image 
from these moments is also quite difficult [12, 13]. On the contrary, orthogonal 
moments defined in terms of a set of orthogonal polynomials have received more 
attentions recently owing to their ability in representing images with minimal 
information redundancy and high noise robustness and image intensity functions 
could be reconstructed by using a finite number of orthogonal moments [14].

Depending on the kernel polynomials orthogonal on a rectangle or on a 
disk, orthogonal moments can be further divided into orthogonal moments 
defined in polar coordinate or Cartesian coordinate. The orthogonal moments 
defined in polar coordinate mainly include Zernike moments [15, 16], pseudo-
Zernike moments [17], Bessel–Fourier moments [18], orthogonal Fourier–Mel-
lin moments [19] and the remarkable advantage of these moments is easily to 
achieve rotation invariance. The orthogonal moments defined in the Cartesian 
coordinate mainly include Legendre [15], Tchebichef [20], Krawtchouk [21] and 
Hahn moments [22].

Gegenbauer–Chebyshev moments [23–25] as classical orthogonal moments 
defined in the Cartesian coordinates have been widely used in the field of image 
analysis. It is known that the rotation, scaling and translation invariant property 
of image moments has a high significance in image recognition. Unfortunately, 
to the best of our knowledge, both rotation, scaling and translation invariant of 
the Gegenbauer–Chebyshev moments have not been studied until now. Indeed, 
in Sect.  6 of the paper cited in [25], Zhu was able to construct moment invari-
ants from Tchebichef–Krawtchouk moment, Tchebichef–Hahn moment and 
Krawtchouk–Hahn moment, but he could not extract the invariants from Gegen-
bauer–Chebyshev moment.

The extraction of invariant features of an image from the orthogonal moments 
defined in the Cartesian coordinate is a very difficult task. In this context, many 
authors have used the technique of expressing the orthogonal invariant moments 
as a linear combination of geometric invariant moments with the later are invari-
ants under translation, scaling and rotation of the image they describe. It is used 
by Hosny [23, 24] to extract the invariants of orthogonal Gegenbauer Moment, 
by Papakostas et  al. [26] to derive of invariants of the Krawtchouk orthogonal 
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moments, by Zhu [25] to obtain the invariants of Tchebichef moments (TMI), 
Krawtchouk moments (KMI), Hahn moments (HMI), Tchebichef–Krawtchouk 
moments (TKMI), Tchebichef–Hahn moments (THMIs), Krawtchouk–Hahn 
moments (KHMI), it is used also by Hmimid et  al. [27] to build the invariants 
of Meixner–Tchebichef moments (MTMIs), Meixner Krawtchouk moments 
(MKMIs) and Meixner–Hahn moments (MHMIs) etc.

In this paper, we use this technique to construct a new set of invariants of adapted 
Gegenbauer–Chebyshev moments (AGCMIs). This technique is based on the 
explicit formulation 

∑n

i=0
�ix

i of the used orthogonal polynomials. On the other 
hand, the explicit formulations of the Gegenbauer and the Chebyshev polynomials, 
which are defined in Eqs. (10) and (12), are written in the form 

∑n

i=0
ai

�
x−1

2

�i

 . This 
obstructs the extraction of invariants from the orthogonal moments (AGCMs). For 
this reason, we introduce in this paper a new series of orthogonal polynomials, 
based on Gegenbauer and Chebyshev polynomials. We call them “the orthogonal 
adapted Gegenbauer–Chebyshev polynomials (OAGCP)”. This set of orthogonal 
polynomials is used to define a new type of orthogonal moments called adapted 
orthogonal Gegenbauer–Chebyshev moments (AGCMs). This helps to create a set 
of orthogonal moments (AGCMIs) invariant to translation, rotation and scale. These 
moment invariants (AGCMIs) are written in terms of geometric moment invariants 
presented by Hu [2]. We also apply a new 2D image classification technique using 
the invariant features extracted from the proposed invariant moments (AGCMIs and 
fuzzy K-means (FKM) [28, 29]. The performance of these new orthogonal moment 
invariants is compared with the existing orthogonal moments in terms of quantita-
tive and qualitative measures. The comparison clearly shows the superiority of the 
proposed AGCMIs over the existing orthogonal moment invariants.

The other sections of the paper are organized as follows. The basic equations of 
the Gegenbauer–Chebyshev polynomials are briefly described in Sect. 2. All aspects 
of the proposed orthogonal moments for images are presented in Sect. 3. The com-
putation of orthogonal adapted Gegenbauer–Chebyshev moment invariants is pre-
sented in Sect.  4. Experiments and the discussion of the obtained results are pre-
sented in Sect. 5. Conclusion is presented in Sect. 5.

2 � The adapted Gegenbauer–Chebyshev polynomials

In this work, the image features are extracted using Gegenbauer–Chebyshev orthogo-
nal moments for image representation and recognition. These orthogonal moments 
are based on the composition of two sets of orthogonal polynomials: Gegenbauer and 
Chebyshev polynomials. The theoretical aspect of these polynomials will be presented 
in the following subsections. In the first subsection, the equations governing orthogo-
nal Jacobi polynomials are presented. The Gegenbauer polynomials are defined in the 
second subsection. In the third subsection the Chebyshev polynomials are presented. 
Finally, based on the last two sets of polynomials a new series of separable polynomi-
als �n,m(x, y) with two variable x and y are proposed in the fourth subsection. These 
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polynomials are defined and orthogonal over the rectangle [0,N] × [0,M], where 
N ×M is the size of the described image.

2.1 � Orthogonal Jacobi polynomials

The nth order Jacobi polynomial P�,�
n

(x) with parameters �, � is defined by the hyper-
geometric function as follows [25]:

where (� + 1)n is a Pochhammer symbol defined as:

The hypergeometric function 
2
F1(a, b;c;x) is defined for |x| < 1 by the power series

More explicitly, Jacobi polynomial of the nth order is defined as follows:

where � (z) is the Gamma function.
For 𝛼 > −1 and 𝛽 > −1, the set of Jacobi polynomials satisfy the orthogonality 

condition:

where �nm is the Kronecker delta and w�,�(x) is the weight function defined by

And

Figures 1 and 2 show the graphs of the first six Jacobi polynomials with � = 3, � = 3 
and with � = 1, � = 2 , respectively.

(1)P�,�
n

(x) =
(� + 1)n

n! 2F1

(
−n, 1 + � + � + n;� + 1;

1

2
(1 − x)

)

(2)(m)n = m(m + 1)… (m + n − 1)

(3)2
F1(a, b;c;x) =

∞∑
n=0

(a)n(b)n

(c)n

xn

n!
.

(4)P�,�
n

(x) =
� (� + n + 1)

n!� (� + � + n + 1)

n∑
i=0

(
n

i

)
� (� + � + n + i + 1)

� (� + i + 1)

(
x − 1

2

)i

(5)

1

∫
−1

P�,�
n

(x)P�,�
m

(x)w�,�(x)dx = �(n, �, �)�nm

(6)w�,�(x) = (1 − x)�(1 + x)�

(7)�(n, �, �) =
2n+�+1

2n + � + � + 1

� (n + � + 1)

� (n + � + � + 1)n!
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2.2 � Orthogonal Gegenbauer polynomials

The Gegenbauer polynomials [30] G(�)
n
(x) are given in terms of the Jacobi polyno-

mial P�,�
n

(x) with 𝛼 = 𝛽 = 𝜆 −
1

2
(𝜆 > −

1

2
, 𝜆 ≠ 0) by

Fig. 1   The graphs of the first six Jacobi polynomials of degree n = 1,2,..,6 with � = 3, � = 3

Fig. 2   The graphs of the first six Jacobi polynomials of degree n = 1, 2,… , 6 with � = 1, � = 2
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We define ck(�) as follows 

The polynomial G(�)
n
(x) can be written as

2.3 � Orthogonal Chebyshev polynomials

The Chebyshev polynomials of the first kind are a special case of the Jacobi polyno-
mials P(�,�)

n
(x) with � = � = −1∕2

Therefore, the Chebyshev polynomial Tn(x) can be written as follows 

Where dk is defined as

2.4 � Orthogonal adapted Gegenbauer–Chebyshev polynomials

For N,M ≥ 1. According to Sects. 2.2 and 2.3, we can define the adapted Gegen-
bauer polynomials Ḡ(𝜆)

n
(t) of size N as

(8)

G(�)
n
(x) =

(2�)n(
� +

1

2

)
n

P
�−

1

2
,�−

1

2

n (x)

=

(
n + 2� − 1

n

) n∑
k=0

(
n

k

)
(n + 2�)k

(
� +

1

2

)
k

(
x − 1

2

)k

(9)ck(�) =

(
n + 2� − 1

n

)
(
n

k

)
(n + 2�)k

(
� +

1

2

)
k

(10)G(�)
n
(x) =

n∑
k=0

ck(�)
(
x − 1

2

)k

(11)Tn(x) =
P
−1∕2,−1∕2
n (x)

P
−1∕2,−1∕2
n (1)

=
22n(n!)2

(2n)!
P−1∕2,−1∕2
n

(x)

(12)Tn(x) =

n∑
k=0

dk

(
x − 1

2

)k

(13)dk =
22n(n!)2

(2n)!

(
n

k

)�

(
n +

1

2

)
� (n + k)

n!� (n)�
(
k +

1

2

)
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And the adapted Chebyshev polynomials T̄n(t) of size M as

According to Eq. (10), the adapted Gegenbauer polynomial Ḡ(𝜆)
n
(t) of size N can 

be written as:

Where c�
k
(�) = ck(�)

(
−1

N

)k

.
And the adapted Chebyshev polynomial T̄n(t) of size M can be written as

Where d�
k
= dk

(
−1

N

)k

.

Definition 1  The adapted Gegenbauer–Chebyshev polynomials of size (N,M) are 
defined as follows

We use Eqs. (16) and (17); the polynomial �n,m(x, y) is written as

Where c�
k
(�) = ck(�)

(
−1

N

)k

 and d�
k
= dk

(
−1

N

)k

Theorem  1  The adapted Gegenbauer–Chebyshev polynomials of size (N,M) are 
orthogonal over on the rectangle [0,N] × [0,M] with the weighting function

and

Where C(n,m, �) is the normalization constant defined as:

(14)Ḡ(𝜆)
n
(t) = G(𝜆)

n

(
N − 2t

N

)
, 0 ≤ t ≤ N

(15)T̄n(t) = Tn

(
M − 2t

M

)
, 0 ≤ t ≤ M

(16)Ḡ(𝜆)
n
(t) = G(𝜆)

n

(
N − 2t

N

)
=

n∑
k=0

ck(𝜆)
(
−t

N

)k

=

n∑
k=0

c�
k
(𝜆)tk

(17)T̄n(t) = Tn

(
M − 2t

M

)
=

n∑
k=0

dk

(
−t

M

)k

=

n∑
k=0

d�
k
tk

(18)𝜓n,m(x, y) = Ḡ(𝜆)
n
(x)T̄m(y),∀(x, y) ∈ [0,N] × [0,M]

(19)�n,m(x, y) =

n∑
i=0

m∑
j=0

c�
i
(�)d�

j
xiyj

(20)v(x, y) = x
�−

1

2 (N − x)�−
1

2 y
−

1

2 (M − y)−
1

2

(21)

N

∫
0

M

∫
0

�n,m(x, y)�pq(x, y)v(x, y)dxdy = C(n,m, �)�np�mq
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Proof of Theorem 1  By substituting

And

And with the help of Eq.  (5) and with the change of variables x� = N−2x

N
 and 

y� =
M−2y

M
, we have

(22)

C(n,m, �) =
�
N

2

�2�
⎡⎢⎢⎢⎣

(2�)n�
� +

1

2

�
n

22m(m!)2

(2m)!

⎤⎥⎥⎥⎦

2

�

�
n, � −

1

2
, � −

1

2

�
�

�
m,−

1

2
,−

1

2

�

𝜓n,m(x, y) = Ḡ(𝜆)
n
(x)T̄m(y) = G(𝜆)

n

(
N − 2x

N

)
Tm

(
M − 2y

M

)

𝜓p,q(x, y) = Ḡ
(𝜆)

P
(x)T̄q(y) = G(𝜆)

p

(
N − 2x

N

)
Tq

(
M − 2y

M

)

v(x, y) = x
�−

1

2 (N − x)�−
1

2 y
−

1

2 (M − y)−
1

2

N

∫
0

M

∫
0

𝜓n,m(x, y)𝜓pq(x, y)v(x, y)dxdy

=

N

∫
0

M

∫
0

Ḡ(𝜆)
n
(x)T̄m(y)Ḡ

(𝜆)
p
(x)T̄q(y)x

𝜆−
1

2 (N − x)𝜆−
1

2 y
−

1

2 (M − y)−
1

2 dxdy

=

N

∫
0

Ḡ(𝜆)
n
(x)Ḡ(𝜆)

p
(x)x𝜆−

1

2 (N − x)𝜆−
1

2 dx ×

M

∫
0

T̄m(y)T̄q(y)y
−

1

2 (M − y)−
1

2 dy

=

N

∫
0

G(𝜆)
n

(
N − 2x

N

)
G(𝜆)

p

(
N − 2x

N

)
x
𝜆−

1

2 (N − x)𝜆−
1

2 dx

×

M

∫
0

Tm

(
M − 2y

M

)
Tq

(
M − 2y

M

)
y
−

1

2 (M − y)−
1

2 dy

=
(
N

2

)2𝜆
1

∫
−1

G(𝜆)
n

(
x�
)
G(𝜆)

p

(
x�
)(
1 − x�

)𝜆− 1

2
(
1 + x�

)𝜆− 1

2 dx�

×

1

∫
−1

Tm
(
y�
)
Tq
(
y�
)
y
−

1

2

(
1 − y�

)− 1

2
(
1 + y�

)− 1

2 dy�
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Using Eqs. (8), (11) and (5), we get

3 � Orthogonal adapted Gegenbauer–Chebyshev moments

The orthogonal Gegenbauer–Chebyshev moments (AGCMs) of a gray-level image 
f (x, y) are defined as follows:

Equation (24) can be approximated by:

(22)

N

∫
0

M

∫
0

�n,m(x, y)�pq(x, y)v(x, y)dxdy

=
�
N

2

�2� (2�)n�
� +

1

2

�
n

(2�)p�
� +

1

2

�
p

22m(m!)2

(2m)!

22q(q!)2

(2q)!

×

1

∫
−1

P
�−

1

2
,�−

1

2

n

�
x�
�
P
�−

1

2
,�−

1

2

p

�
x�
��
1 − x�

��− 1

2
�
1 + x�

��− 1

2 dx�

×

1

∫
−1

P
−

1

2
,−

1

2

m

�
y�
�
P
−

1

2
,−

1

2

q (y�)
�
1 − y�

�− 1

2
�
1 + y�

�− 1

2 dy�

=
�
N

2

�2�
⎡
⎢⎢⎢⎣

(2�)n�
� +

1

2

�
n

22m(m!)2

(2m)!

⎤
⎥⎥⎥⎦

2

�

�
n, � −

1

2
, � −

1

2

�
�

�
m,−

1

2
,−

1

2

�
�np�mq

= C(n,m, �)�np�mq

(23)
AGCnm =

1

C(n,m, �)

N

∫
0

M

∫
0

�n,m(x, y)f (x, y)v(x, y)dxdy

=
1

C(n,m, �)

(24)×

N

∫
0

M

∫
0

Ḡ(𝜆)
n
(x)T̄m(y)f (x, y)x

𝜆−
1

2 (N − x)𝜆−
1

2 y
−

1

2 (M − y)−
1

2 dxdy
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The relation (25) makes it possible to construct a descriptor vector of an image 
f (x, y) of size N ×M in the form of a matrix V(f ) =

(
AGCij

)
 for a given size 

(p + 1) × (q + 1) as follows:

where hij = f (j, i)i�−
1

2 (N − i)�−
1

2 j
−

1

2 (M − j)−
1

2 .

Based on the orthogonality property of the adapted Gegenbauer–Chebyshev polyno-
mials, the image function f (x, y) defined on the rectangle [0,N] × [0,M] can be written 
as:

where the orthogonal adapted Gegenbauer–Chebyshev moments, AGCnm , are calcu-
lated over the rectangle [0,N] × [0,M] . If moments are limited to an order Max , we 
can approximate f  with f̃ :

where the number of adapted Gegenbauer–Chebyshev moment AGCij used in 
Eq. (28) is computed as follows:

(25)

AGCnm =
1

C(n,m, 𝜆)

×

N−1∑
x=0

M−1∑
y=0

Ḡ(𝜆)
n
(x)T̄m(y)f (x, y)x

𝜆−
1

2 (N − x)𝜆−
1

2 y
−

1

2 (M − y)−
1

2

(26)

V(f ) =

⎛⎜⎜⎜⎝

AGC00 AGC01

AGC10 AGC11

… . AGC0q

… . AGC1q

⋮ ⋮

AGCp0 AGCp1

⋮ ⋮

… . AGCpq

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

T̄0(0) T̄0(1)

T̄1(0) T̄1(1)

… . T̄0(M − 1)

… . T̄1(M − 1)

⋮ ⋮

T̄p(0) T̄p(1)

⋮ ⋮

… . T̄p(M − 1)

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝

h00 h01
h10 h11

… . h0,N−1
… . h1,N−1

⋮ ⋮

hM−1,0 hM−1,1

⋮ ⋮

… . hM−1,N−1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

Ḡ
(𝜆)

0
(0) Ḡ

(𝜆)

1
(0)

Ḡ
(𝜆)

0
(1) Ḡ

(𝜆)

1
(1)

… Ḡ(𝜆)
q
(0)

… Ḡ(𝜆)
q
(1)

⋮ ⋮

Ḡ
(𝜆)

0
(N − 1) Ḡ

(𝜆)

1
(N − 1)

⋮ ⋮

… Ḡ(𝜆)
q
(N − 1)

⎞⎟⎟⎟⎟⎠

(27)f (x, y) =

∞∑
n=0

∞∑
m=0

AGCnmḠ
(𝜆)
n
(x)T̄m(y)

(28)f̃ (x, y) ≈

Max∑
n=0

n∑
m=0

AGCn−mḠ
(𝜆)
n−m

(x)T̄m(y)

(29)NT =
(Max + 1)(Max + 2)

2
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4 � Computation of adapted Gegenbauer–Chebyshev moment 
invariants

To use the proposed Gegenbauer–Chebyshev moments (AGCMs) in 2D image clas-
sification, we need to construct invariant features under the three geometric trans-
formations: translation, rotation and scale of the image. Therefore, to obtain the 
translation, scale and rotation invariants of adapted Gegenbauer–Chebyshev orthog-
onal moments (AGCMs), we adopt the same strategy used by Papakostas et al. for 
Krawtchouk moments [26]. So, we derive the adapted Gegenbauer–Chebyshev 
moment invariants (AGCMIs) through the geometric invariant moments.

4.1 � Geometric invariant moments

Given an image function h(x, y) defined on the rectangle [0,N] × [0,M]. The geo-
metric moment of order (n + m) is defined as:

The set of geometric moments, which are invariant under rotation, scaling and trans-
lation are defined as [25–27]:

With

And

The central geometric moment of order (n + m) is defined as

By using the binomial formula with Eq. (31), the set of geometric moments, which 
are invariant to the three geometric transformations, are defined as follows:

(30)GMnm(h) =

N

∫
0

M

∫
0

xnymh(x, y)dxdy

(31)
GMInm = GM

−𝛾

00

N

∫
0

M

∫
0

[
(x − x̄) cos 𝜃 + (y − ȳ) sin 𝜃

]n

×
[
(y − ȳ) cos 𝜃 − (x − x̄) sin 𝜃

]m
h(x, y)dxdy

(32)𝛾 =
n + m

2
+ 1; x̄ =

GM10

GM00

; ȳ =
GM01

GM00

(33)� =
1

2
tan−1

(
2�11

�20 − �02

)

(34)𝜇nm(h) =

N

∫
0

M

∫
0

(x − x̄)n(y − ȳ)mh(x, y)dxdy
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4.2 � Adapted Gegenbauer–Chebyshev moment invariants

Using Eqs. (23) and (19), we get

We consider the new image function h(x, y) defined as:

Substituting Eqs. (37) and (30) into (36) yields:

The adapted Gegenbauer–Chebyshev moment invariants (AGCMIs) can be 
expanded in terms of GMIs as follows:

Where Vij(h) are the parameters defined as

According to all the aforementioned about the theoretical framework, we have 
succeeded in constructing orthogonal invariant features of the images, which are 
invariant to the three geometric transformations defined as follows:

(35)

GMInm = GM
−�

00

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
(−1)j(sin �)i+j(cos �)n+m−i−j�n−i+j,m−j+i

(36)

AGCnm =
1

C(n,m, �)

N

∫
0

M

∫
0

�n,m(x, y)f (x, y)v(x, y)dxdy

=
1

C(n,m, �)

N

∫
0

M

∫
0

n∑
i=0

m∑
j=0

c�
i
(�)d�

j
xiyjf (x, y)v(x, y)dxdy

=
1

C(n,m, �)

n∑
i=0

m∑
j=0

c�
i
(�)d�

j

N

∫
0

M

∫
0

xjyjf (x, y)v(x, y)dxdy

(37)h(x, y) = f (x, y)v(x, y)

(38)AGCnm =
1

C(n,m, �)

n∑
i=0

m∑
j=0

c�
i
(�)d�

j
GMij(h)

(39)AGCInm =
1

C(n,m, �)

n∑
i=0

m∑
j=0

c�
i
(�)d�

j
Vij(h)

(40)Vnm(h) =

n∑
q=0

m∑
p=0

(
n

p

)(
m

q

)(
N ×M

2

) p+q

2
+1(N

2

)n−p(M
2

)m−q

GMIpq(h)

(41)V =
(
AGCIij

)
, i = 0,… , p; j = 0,… , q
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To evaluate the performance of this feature vectors, we will present an experimental 
study in the next section.

5 � Experimental results

Experiments are performed to evaluate the ability of the proposed orthogonal 
moments in representation and recognition of gray-level images and objects. The 
performance of the proposed, AGCMs, is compared with the performance of the 
existing orthogonal moments such as the orthogonal Chebyshev rational moments 
(CRMs) [31], the weighted radial shifted Legendre moment (WRSLMs) [32], the 
fractional-order Orthogonal Chebyshev moments (FrCbMs) [33], the orthogonal 
fractional discrete Tchebyshev moments (FrDTMs) [34], the Fractional-Order Polar 
Harmonic Transform moments (FrPHTMs) [35], the Legendre moments (LMs) 
[36], the Tchebichef (TMs) moments [25] and the Gegenbauer moments (GegMs) 
[23, 24].

This section is divided into five subsections. Experiments for testing the invari-
ance to geometric transformations are presented in the first subsection. Tests in the 
second subsection are performed to evaluate the ability of the proposed AGCMs 
method in reconstructing the gray-level images. The accuracy of the reconstructed 
images is an indicator that reflects the accuracy of the proposed method. An image 
retrieval system based on the proposed feature vectors is presented in the third sub-
section. In the fourth subsection, we present an evaluation on the accuracy of the 
proposed descriptor vector for the recognition of object and the classification of 
image databases. Experiments to estimate the CPU times are presented in the in the 
fifth subsection.

5.1 � Invariance to geometric transformations

Geometric transformations of digital images include rotation, scaling and translation 
(RST). These spatial transformations sometimes called similarity transformations. 
Invariance with respect to RST is required in most pattern recognition applications, 

Fig. 3   The gray-scale image of 
Lena
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because the object should be correctly recognized, regardless of its position, orienta-
tion in the scene, and the object-to-camera distance. In other words, the computed 
moment invariants must be unchanged if the original images are rotated with any 
angle, scaled with any scaling factor and translated with any translation vectors.

However, the accuracy of the orthogonal moment invariants is negatively affected 
by the accumulated errors. In this section, the accuracy of the proposed moment 
invariants is evaluated and compared with the moment invariants of the existing 
methods [31–35]. Three experiments are performed using the gray-scale image of 
Lena of size 128 × 128 pixels as displayed in Fig. 3.

To measure the degree of the invariability of adapted Gegenbauer–Chebyshev 
invariant moments (AGCMIs) to remain unchanged under different image transfor-
mations, we use the relative error between the two sets of invariant moments corre-
sponding to the original image f(x, y) and the transformed image ft(x, y) as

where p is the number of transformed images, ||.|| is the Euclidean norm, AGCI(f) 
is the adapted Gegenbauer–Chebyshev orthogonal invariant moments for the origi-
nal image and AGCI

(
ft
)
 is the adapted Gegenbauer–Chebyshev orthogonal invariant 

moment for the transformed image.
The first experiment is performed to test the rotation invariance of the proposed 

orthogonal moments. The image Lena (Fig. 3) is rotated with different angles rang-
ing from 0o to 180o with fixed increment 30o where the original and rotated images 
are displayed in Fig. 4.

The proposed AGCMIs, the existing orthogonal moments [31–35] are computed 
for original and rotated images with moment order 20. The MSE values for of these 
moments are presented in Table 1. It is observed that the values of the MSE measure 

(42)MSE
(
f, ft

)
=

AGCI(f) − AGCI
(
ft
)

AGCI(f)
,

0o 30o                                                                  60o

90° 120o                                                              180o

Fig. 4   Original and rotated images of Lena
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for the proposed method are much smaller than their corresponding values for the 
existing orthogonal methods [31–35] that ensures the accuracy of the proposed 
method.

The second experiment is performed to test the scaling invariance of the proposed 
orthogonal moments (AGCMIs). The image “Baboon” presented in Fig.  5 is uni-
formly scaled with 7 different scaling factors � = 0, 5, 0.75, 1, 1.25, 1.5, 1.75, 2.

Table 1   MSE for the rotated images of “image Lena” using the proposed method, AGCMIs, and the 
existing orthogonal moments [31–35]

Rotation angle AGCMIs CRMs [31] WRSLMs [32] FrCbMs [33] FrDTMs [34] FrPHTMs [35]

0° 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30° 3.13e−05 2.02e−02 4.14e−02 6.05e−02 2.05e−02 4.03e−02

60° 7.24e−05 2.43e−02 4.51e−02 7.68e−02 2.43e−02 4.51e−02

90° 6.04e−06 5.64e−03 8.07e−03 5.45e−03 5.64e−03 8.07e−03

120° 7.18e−05 2.44e−02 4.54e−02 7.61e−02 2.44e−02 4.54e−02

150° 3.29e−05 1.16e−02 4.12e−02 6.05e−02 2.05e−02 4.12e−02

180° 4.12e−09 3.23e−04 6.10e−04 7.19e−04 3.23e−04 7.00e−04

Fig. 5   The gray-level image 
“Baboon”

Fig. 6   Scaled images of the image “Baboon”
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Table 2   MSE for the scaled images of image Baboon using the proposed method, AGCMIs, and the 
existing orthogonal moments [31–35]

Scale factor AGCMIs FrCbMs [33] FrDTMs [34] FrPHTMs [35] CRMs [31] WRSLMs [32]

0.50 6.65e−04 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 1.05e−04 5.27e−02 1.22e−02 3.17e−02 2.21e−02 4.16e−02

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.25 4.99e−05 4.78e−03 4.97e−03 7.29e−03 5.96e−03 6.28e−03

1.50 8.77e−05 6.83e−02 1.66e−02 3.76e−02 2.65e−02 4.75e−02

1.75 9.32e−05 5.27e−02 1.27e−02 3.34e−02 2.26e−02 4.33e−02

2.00 9.34e−06 7.30e−04 3.34e−04 6.21e−04 4.33e−04 7.20e−04

Fig. 7   The gray-level image 
“Barbara”

Fig. 8   Translated images of the image “Barbara”
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The original image and the scaled ones are displayed in Fig.  6. The proposed 
AGCMIs and the existing orthogonal moments [31–35] are computed for original 
image, Mpq(f) , and the scaled images, Mpq

(
fscaled

)
, with moment order. The MSE 

values of these moments are presented in Table  2. It is clear that the proposed 
method is outperformed all other methods.

The third experiment is performed to evaluate the translation invariance of the 
proposed moments. The image Barbara, illustrated in Fig. 7, is translated with the 
five different vectors (− 3, − 3), (− 1, − 1), (1, 1), (3, 3), (5, 5) and (8, 8). The origi-
nal image and the translated images of image “Barbara” are displayed in Fig. 8.

The proposed AGCMIs and the existing orthogonal are computed for original 
image, Mp,q(f), and the translated images, Mp,q

(
ftrans

)
, with moment order 20. The 

MSE values of the translation invariants are presented in Table 3. It is observed that 
the trend of the results obtained from the three performed experiments is the same 
and ensures the superiority of the proposed method over all other exiting methods.

5.2 � Image reconstruction

In this section, we will discuss the ability of the adapted Gegenbauer–Chebyshev for 
the reconstruction of 2D images using Eq. (28). The accuracy of the reconstructed 
images usually evaluated using quantitative and qualitative measures. The quantita-
tive measure is the normalized image reconstruction error (NIRE) [37]:

The value of is zero when the reconstructed image,f̂(x, y) , is identical to the original 
image, f(x, y) which is impossible in practice. The value of the NIRE decreased as 
the accuracy of the computational method increased. The proposed method is highly 
accurate when the value of the quantitative measure NIRE approaches zero. The 
quality of the reconstructed image is evaluated quantitatively using the human eye 

(43)NIRE =

∑N−1

x=0

∑M−1

y=0

�
f (x, y) − f̂ (x, y)

�2
∑N−1

x=0

∑M−1

y=0

�
f (x, y)

�2

Table 3   MSE for the translated images of image Barbara using the proposed method, AGCMIs, and the 
existing orthogonal moments [31–35]

Vector AGCMIs CRMs [31] WRSLMs [32] FrCbMs [33] FrDTMs [34] FrPHTMs [35]

(− 3, − 3) 8.81e−08 0.0000 0.0000 0.0000 0.0000 0.0000
(− 1, − 1) 1.03e−08 2.14e−02 4.09e−02 4.19e−02 2.14e−02 4.10e−02

(1, 1) 1.02e−08 2.57e−02 4.65e−02 7.82e−02 2.57e−02 4.65e−02

(3, 3) 1.03e−08 5.89e−03 6.21e−03 5.70e−03 5.89e−03 8.23e−03

(5, 5) 1.04e−08 2.58e−02 4.68e−02 7.83e−02 2.57e−02 4.71e−02

(− 3, − 3) 8.79e−08 2.19e−02 4.27e−02 6.19e−02 2.19e−02 4.35e−02

(8, 8) 8.81e−08 4.23e−04 7.13e−04 8.22e−04 4.28e−04 7.17e−04

(− 5, − 5) 1.07e−08 2.48e−02 4.65e−02 7.79e−02 2.59e−02 4.73e−02
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Fig. 9   Test images: a Dog, b House, c Girl, d Barbara, e Baboon and f Cameramen

Table 4   Reconstruction error 
MSE of adapted Gegenbauer–
Chebyshev moments (AGCMs), 
Legendre moments (LMs), 
Tchebichef moments (TMs) 
and Gegenbauer orthogonal 
moments (GegMs) for image 
“House”

Max order AGCMs LMs TMs GegMs

40 0.31e−02 0.36e−02 0.66e−01 0.76e−01

60 3.15e−04 0.12e−02 0.55e−02 1.12e−02

80 7.23e−05 1.53e−03 1.61e−03 3.78e−03

100 6.03e−06 4.85e−04 7.17e−04 1.66e−03

140 2.19e−06 1.56e−04 3.64e−04 0.71e−03

160 3.28e−07 1.15e−04 3.22e−04 5.15e−04

200 4.11e−09 0.21e−04 1.08e−04 7.18e−04

Table 5   Reconstruction error 
MSE of adapted Gegenbauer–
Chebyshev moments (AGCMs), 
Legendre moments (LMs), 
Tchebichef moments (TMs) 
and Gegenbauer orthogonal 
moments (GegMs) for image 
“Dog”

Max order AGCMs LMs TMs GegMs

40 0.25 e−02 0.66 e−02 0. 85e−01 0.83e−01

60 2.18e−04 0.22e−02 0.57e−02 2.11e−02

80 6.14e−05 2.89e−03 1.64e−03 4.08e−03

100 5.84e−06 5.15e−04 6.77e−04 2.28e−03

140 2.25e−06 1.42e−04 3.86e−04 0.78e−03

160 3.45e−07 1.03e−04 3.28e−04 5.15e−04

200 5.18e−09 1.00e−04 2.15e−04 7.02e−04
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observation, where the normal human eye could easily measure the degree of simi-
larity between the original and the reconstructed images.

The six images displayed in Fig. 9 are used as the test images in this study. This 
section presents three experiments. In the first experiment, we perform experimen-
tal tests in the two gray-scale images “Dog” and “House” presented in Fig. 9a, b of 
sizes 200 ×200 pixels. Knowing that the maximum order of the orthogonal ranging 
is 40, 60, 80, 100, 140, 160 and 200. The MSE‟s values of the proposed (AGCMs) 
are compared with their corresponding values of the Legendre moments (LMs) [36], 
the Tchebichef (TMs) moments [25] and the Gegenbauer moments (GegMs) [23, 
24], where these values are presented in Tables 4 and 5.

It is clear that the MSE values decrease and approach zero as the order of the 
moment increases. The proposed adapted Gegenbauer–Chebyshev orthogonal 
moment is highly accurate and stable for all moment orders compared with the other 
tested orthogonal moments.

Order  
Method 50                                  100                                  150

Our 
moments
AGCMs

TMs

LMs

Fig. 10   Reconstructed images of image “Barbara” using our orthogonal moments (AGCMs), Legendre 
moments (LMs) and Tchebichef moments (TMs)
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In the second experiment, we perform visual tests for the reconstruction of two 
images “Girl” and “Barbara” presented in Fig. 9c, d using three types of orthogo-
nal moments. The reconstructions of images based on the proposed orthogonal 
moments (AGCMs), Legendre orthogonal moment (LMs), Tchebichef orthogonal 
moments (TMs) and Gegenbauer orthogonal moments (GegMs) of order 50, 100, 
150 are illustrated in Figs. 10 and 11. The first analysis of the results illustrated 
in these figures shows the quality of the reconstruction of (AGCMs) and indicates 
that the reconstructed image is closer to the original when the order of the maxi-
mum moment reaches a certain value. We observe that the reconstruction results 
based on the proposed orthogonal moments (AGCMs) are better than the other 
orthogonal moments tested.

In the third experiment, we test the capacity of noisy image reconstruc-
tion using the proposed orthogonal moments (AGCMs). In this context, we 
use two images “Baboon” and “Cameramen” (Fig.  9e, f). We add two types of 
noise: Gaussian noise (mean: 0, variance: 0.01) and salt-and-pepper noise (3%). 
The reconstructions of the images are performed by three types of orthogonal 
moments: (AGCMs), (LMs) and (TMs) with the maximal order 200. We rep-
resent the results of this experiment in Fig.  12. Other times, the results of this 

Order  
Metho

d
50                                  100                                  150

Our 
moments 
AGCMs

TMs

LMs

Fig. 11   Reconstructed images of image “Girl” using our orthogonal moments (AGCMs), Legendre 
moments (LMs) and Tchebichef moments (TMs)
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experiment show the superiority of our orthogonal moments (AGCMs) in the 
reconstruction of noisy images.

5.3 � Proposed image retrieval system

This section presents a new image retrieval system based on the features extracted by 
the proposed AGCMIs and the similarity measure. In the proposed retrieval scheme, 
the distances between the query image and the images present in the database are cal-
culated using the Euclidean distance

(44)d(X, Y) =

√
(X − Y)T (X − Y)

Gaussian noisy images (mean: 0, variance: 0.01)         Salt-and-pepper noisy images (3%)

Reconstructed images using our AGCMs

Reconstructed images using LMs

Reconstructed images using TMs

(a) (b)    

Fig. 12   a Are reconstructed images using Gaussian noise-contaminated images and b are reconstructed 
images using salt-and-pepper noise-contaminated images. The maximum order used is 200 for each algo-
rithm
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where X =
(
AGCIij(Q)

)
, i = 0,… , p and j = 0,… , q is a descriptor vector of query 

image Q and Y =
(
AGCIij(I)

)
, i = 0,… , p and j = 0,… , q the descriptor vector of 

image I in the database. To measure the performance of our image retrieval system, 
we use the recall and precision criteria defined by

To show the effectiveness of our image retrieval approach, we have performed 
tests on COLL-100 image database. Our system proceeds in two phases: The 
first is the indexing phase, in this step the descriptor vectors of the images are 
automatically extracted; using the orthogonal adapted Gegenbauer–Chebyshev 
moment invariants AGCMIS and stored in a database of vectors. These fea-
tures are recovered quickly and efficiently. The second is the research phase; it 
consists of extracting the feature vector of the query image using our AGCMIs 
and comparing it with the feature vectors of the images of the database using 
the Euclidean distance. The system returns the result of the search in a list of 
ordered images according to the distance between their descriptors vectors and 
the descriptor vector of the query image. The distances are arranged in ascend-
ing order and the first images are retrieved. The results to retrieve the query 
image “object13_0” (Fig. 13) from COIL-100 database are compared with those 
obtained using very recent invariant moments such as CRMs [31], WRSLMs 
[32], FrCbMs [33], FrDTMs [34] and FrPHTMs [35].

The performance is tested with the measures precision and recall, which are 
defined in Eqs. (45) and (46). Knowing that, the conditions of these experiences 
are satisfied; the precision and recall are calculated and the results obtained are 
presented in the form of recall–precision graphs in Fig.  14. The comparison 

(45)Recal =
Number of retrieved relevant images

Total number of relevant images in the collection

(46)Precision =
Number of retrieved relevant images

Retrieved images

Fig. 13   image of “object13_0”
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results show the superiority of our orthogonal invariant moments. Finally, the 
proposed AGCMIs are robust to image transformations.

5.4 � Image classification

2D Image classification is a system in  computer vision,  which can  classify  a 2D 
image according to its content. This system can be divided into two main phases: 
The first is the feature extraction step, which consists in calculating the descriptor 
vectors of the images and storing them in a database. The second phase consists of 
applying a classification algorithm.

The extraction of descriptor vectors of the image is an operation that makes it 
possible to convert an image into a vector of real or complex values that can serve as 
a signature for an image. That is to say, for an accurate system of classification, the 
used descriptor vector must be invariant to the three image transformations (trans-
lation, rotation and scale), which means that, the descriptor vectors of the image 
and the transformed image by translation, rotation or scale must be equal. In the 
proposed classification system, we use the proposed orthogonal adapted Gegen-
bauer–Chebyshev invariant moments (AGCMIs) presented in Eq. (39) to extract the 
descriptor vectors of the images as follows:

(47)V(f ) =
(
AGCIij

)
, i = 0,… , p and j = 0,… , q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recal

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re
ci
si
on

AGCMIs

FrDTMs

FrPHTMs

WRSLMs

FrCbMs

CRMs

Fig. 14   Precision and recall obtained with the proposed invariant moments AGCMI the moment invari-
ants CRMs [31], WRSLMs [32], FrCbMs [33], FrDTMs [34] and FrPHTMs [35] for COIL-100 image 
database
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For the second phase, we use the fuzzy K-means (FKM) algorithm [29, 38] to 
classify image databases such the number of its classes is predefined in advance. 
This technique is based on the notion of measure of similarity or distance between 
two descriptor vectors. In this approach, we use the Euclidean distance. Note 
X =

{
Xj

(
fj
)
, j = 1,… ,N

}
 is the set of the descriptor vectors of the considered 

images, where Xj

(
fj
)
=
(
x1j, x2j,… , xdj

)t is the descriptor vector of an image fj of 
the database and C =

{
Ci;i = 1,… , c

}
 is a set of vector unknown prototypes, where 

Ci =
(
ci1, xi2,… , xid

)t characterizes the class. In this method an element of X is 
assigned to a class and only one of the proposed C . In this case, the functional to be 
minimized is:

where m is any real number greater than 1, Xi is the ith of p-dimensional meas-
ured data, Cj is the p-dimension center of the cluster and the fuzzy partition matrix 
U =

(
uij
)
c×N

 satisfies the following conditions.

The optimal points of the objective function (48) can be found by adjoining the 
constraint (50) to J by means of Lagrange multipliers:

Where � =
(
�j
)
, j = 1,… ,N are the Lagrange multipliers for the N constraints in 

Eq.  (50). By differentiating J(C,U,X, �) to all its inputs arguments, the necessary 
conditions for J to reach its minimum are

This iteration will stop when

(48)J(C,U,X) =

c∑
i=1

N∑
j=1

(
uij
)m

d2
(
Xj,Ci

)
.

(49)uik ∈ [0, 1]; 1 ≤ i ≤ c;1 ≤ k ≤ N

(50)
c∑

i=1

uik = 1; k = 1,… ,N

(51)0 <

N∑
k=1

uik < N, 1 ≤ i ≤ c

(52)J(C,U,X, �) =

c∑
i=1

N∑
j=1

(
uij
)m

d2
A

(
Xj,Ci

)
+

N∑
j=1

�j

(
c∑

i=1

uij − 1

)
.

(53)
uij =

1

∑c

k=1

�
dij

dkj

� 2

m−1

(54)Ci =

∑N

j=1

�
uij
�m

Xj

∑N

j=1

�
uij
�m
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where � is a termination criterion between 0 and 1, whereas k are the iteration steps. 
This procedure converges to a local minimum or a saddle point of J(C,U,X).

Our objective is to focus on using the invariant moments to classify an image 
into one of many classes based on shape.

According to algorithm 1, the degree of membership of each image to the clus-
ters is given randomly in the initial step (iteration l = 0 ) such as U(0) =

(
U0

ij

)
 sat-

isfies the conditions (49), (50) and (51) and in each iteration l(l = 1, 2…), we cal-
culate, simultaneously, the cluster centers C(l)

i
 and the degrees of membership u(l)

ij
 

as follows

1	

2	
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The algorithm stops when the condition U(l) − U(l−1) = maxi,j
|||u

(l)

ij
− u

(l−1)

ij

||| < 𝜀 is 
satisfied.

If the value of k equals the number of classes in the database, the application 
of the FKM algorithm presents the results as k homogeneous classes (each class 
contains the same object). Therefore, in this case, the FKM behaves brilliantly as a 
method of classification.

To test our image classification system presented in Fig. 15, which is based on the 
proposed orthogonal invariant moments and fuzzy K-means algorithm (FKM), we 
use the three image databases: The first database is “MPEG7-CE Shape” [39]. This 
database contains images of the objects geometrically deformed. In this experiment, 
we have considered ten classes of objects and each class contains 20 images. The 
second is the Columbia “Object Image Library (COIL-20) database” [40], which 
consists of 1440 images of size 128 × 128 distributed as 72 images for each object. 
The third image database is the “ORL-faces database” [41]. This database contains 
ten different images for the face of each person. The total number of images is equal 
to 400. All images of this database have the size 92 × 112.

We tested the performance of the adapted Gegenbauer–Chebyshev orthogo-
nal moment invariants (AGCMIs) and we performed a comparative study with the 

1
Set of descriptor vectors

1

Classes

1
2D image database: is the 

number
of images

in the database

is the number
of obtained classes

Extrac�on of descriptor vectors of the 
images using the Adapted Gegenbauer-

Chebyshev orthogonal invariant moments

Applica�on of the algorithm FKM

Fig. 15   Algorithm-Flowchart of our classification system
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performance of the existing orthogonal moments such as the Chebyshev rational 
moments (CRMs) [31], the weighted radial shifted Legendre moment (WRSLMs) 
[32], the fractional-order Chebyshev moments (FrCbMs) [33], the fractional discrete 
Tchebyshev moments (FrDTMs) [34] and the Fractional-Order Polar Harmonic 
Transform moments (FrPHTMs) [35]. This study was done on the three previous 
databases by adding different densities of salt-and-pepper noise densities 1%, 2%, 
3%, and 4%. We use the precision defined in Eq. (56) to measure the performance of 
each image classification system.

Tables  6, 7 and 8 present the results of image classification for the three data-
bases. From these results, we can see our classification system based on orthogonal 

(56)� =
Number of correcty classified images

Number of images used in the test
× 100%

Table 6   Classification results of the “MPEG7-CE shape database” with the salt-and-pepper noise

Invariant moments Noise free (%) 1% 2% 3% 4%

CRMs [31] 98.04 93.10% 87.68% 77.62% 77.17%
WRSLMs [32] 98.92 93.40% 91.07% 79.33% 75.45%
FrCbMs [33] 99.74 94.18% 90.88% 81.19% 76.44%
FrDTMs [34] 99.86 94.48% 91.90% 83.17% 78.47%
FrPHTMs [35] 99.52 94.03% 91.51% 82.93% 78.02%
Our AGCMIs 100 96.84% 94.73% 91.54% 89.11%

Table 7   Classification results of the “COIL-20 database” with the salt-and-pepper noise

Invariant moments Noise free (%) 1% 2% 3% 4%

CRMs [31] 95.43 90.27% 84.69% 74.51% 71.53%
WRSLMs [32] 96.49 91.07% 87.91% 77.14% 70.82%
FrCbMs [33] 97.41 91.74% 88.54% 80.10% 74.08%
FrDTMs [34] 97.21 92.07% 89.23% 80.88% 76.02%
FrPHTMs [35] 97.38 92.43% 89.58% 80.95% 76.74%
Our AGCMIs 99.65 98.67% 94.62% 91.43% 89.02%

Table 8   Classification results of the “ORL-faces database” with the salt-and-pepper noise

Invariant moments Noise free (%) 1% 2% 3% 4%

CRMs [31] 94.56 89.47% 82.59% 72.72% 71.00%
WRSLMs [32] 95.74 92.22% 89.18% 78.23% 71.58%
FrCbMs [33] 96.64 92.05% 87.70% 81.52% 76.21%
FrDTMs [34] 96.19 93.32% 90.13% 78.29% 71.57%
FrPHTMs [35] 96.24 93.39% 90.28% 78.68% 71.78%
Our AGCMIs 99.71 98.72% 95.03% 90.98% 89.44%
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invariant moments (AGCMIs) and the fuzzy k-means algorithm (FKM) better than 
the systems based on the other invariant moments. See that, the accuracy of the rec-
ognition is decreasing according to the density of noise.

In addition, our proposed orthogonal invariant moments (AGCMIs) are robust for 
the three geometric transformations, despite the noisy conditions and the accuracy 
of the recognition compared with the other tested descriptors.

5.5 � CPU time

CPU times are a quantitative measure used to evaluate the rapidity of any algorithm. 
In this subsection, we performed two experiments with both datasets of images. All 
our numerical experiments are performed in MATLAB 2018 on a PC HP, Intel(R) 
Core(TM) I5-5200U CPU @ 2.20 GHz, 4 GB of RAM, Operating system windows 
7. The first experiment is performed with the COIL-20 database. In this experi-
ment, the proposed orthogonal moment invariants AGCMIs, the orthogonal Cheby-
shev rational moments (CRMs) [31], the weighted radial shifted Legendre moment 
(WRSLMs) [32], the fractional-order orthogonal Chebyshev moments (FrCbMs) 
[33], the orthogonal fractional discrete Tchebyshev moments (FrDTMs) [34] and 
the fractional-order polar harmonic transform moments (FrPHTMs) [35] are used 
to compute the moments of the images of the COIL-20 dataset for moment orders 
ranging from 0 to 40 with fixed increment 10. We present the results as the aver-
age time needed for a single image, by dividing the overall time by the number of 
images in the dataset. The average CPU times for these methods are presented in 
Table 9. In the second experiment, we used the test set of the MPEG7-CE Shape 
database. We follow the same steps of the first experiment to estimate the processing 
times of each of this set. The average CPU times for this experiment are presented in 
Table 10. It is clear that the proposed moment invariants AGCMIs are very fast than 
the other tested methods.

6 � Conclusion

A new set of orthogonal adapted Gegenbauer–Chebyshev moments for image rep-
resentation and recognition is presented. The performed experiments clearly show 
that the proposed image descriptors have many useful characteristics. First, the new 

Table 9   CPU times in seconds for each image in the test set of COIL-20

Moment 
order

Our AGC-
MIs

FrDTMs 
[34]

FrCbMs [33] WRSLMs 
[32]

CRMs [31] FrPHTMs [35]

0 17.2e−8 29.8e−8 15.52e−7 21.27e−7 19.32e−7 23.5e−8

10 39.2e−5 42.3e−5 44.17e−5 48.19e−5 55.11e−5 41.03e−5

20 95.6e−5 12.1e−4 13.7e−4 16.18e−4 18.23e−4 11.4e−4

30 14.8e−4 38.4e−4 43.2e−4 32.2e−4 45.17e−4 31.2e−4

40 11.9e−4 64.7e−4 63.9e−4 60.8e−4 62.88e−4 50.3e−4
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adapted Gegenbauer–Chebyshev polynomials are invariant under the three geo-
metric transformations and orthogonal over the rectangular domain [0,N] × [0,M] 
of the image, which significantly increase the recognition capabilities of the pro-
posed image descriptors. Second, these descriptors are computed using a highly 
accurate and numerically stable method. Third, the proposed image descriptors are 
robust against the different kinds of noise. Fourth, fast computation of the proposed 
image descriptors is suitable for real-time applications. Based on these characteris-
tics, the recognition performance of the proposed image descriptors is outperformed 
the existing moments-based image descriptors. Also, the proposed descriptors are 
almost unchanged with rotation, scaling and translation transformations which 
ensure the usefulness of these descriptors in pattern recognition applications.

The proposed orthogonal Gegenbauer–Chebyshev moments show a significant 
improvement in image reconstruction capabilities and stabilities for either lower or 
higher moment orders. This is very attractive property for image processing applica-
tions. Based on their characteristics, the proposed orthogonal moments AGCMs and 
their image descriptors constitute promising tools for many pattern recognition and 
images processing applications.
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