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Abstract
Along with the growing network connectivity across the world, there is a substan-
tial increase in malicious network traffic to exploit the vulnerabilities, thus hamper-
ing several organizations and end-users. Though signature-based and classification-
based machine learning approaches can detect malicious network traffic, they cannot 
reliably detect unknown attacks. Several issues are yet unsolved using the existing 
approaches such as imbalanced training data, high false alarm rate, and lack of 
detection of unknown attacks. To address these issues, in this work, we propose a 
novel multi-level classification method that can accurately classify the network traf-
fic into several classes and identify the novel attacks. The unsupervised Gaussian 
mixture modeling approach is used to learn the statistical characteristics of each traf-
fic category, and an adaptive thresholding technique based on the interquartile range 
is used to identify any outlier. The proposed work is evaluated on the benchmark 
CICIDS2017 dataset that includes modern network traffic patterns. The results show 
a significant improvement relative to the state-of-the-art techniques for detecting 
unknown attacks and classifying multiple network traffic attacks.

Keywords  Anomaly detection · Gaussian mixture model · Malicious network 
traffic · Multi-level classification

1  Introduction

The Internet’s growth has increased drastically for performing various professional 
and personal tasks such as online shopping and banking. Moreover, the growth of 
modern devices is also an essential factor in the rise of Internet usage. However, 
along with this, there is also a significant surge of malicious users, and various 
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malicious attempts are made by exploiting vulnerabilities against individuals or 
organizations for stealing personal data, valuable information, or disrupting com-
putational resources. The cyberattacks are increasing in complexity as well as the 
volume of attacks due to evolving technologies. As per the McAfee threat report [1], 
the top attack vectors in 2018–19 were malware, account hijacking, denial of ser-
vice, and the most targeted sectors were individuals, healthcare, and finance.

The traditional job of security administrator monitoring the network data is 
becoming obsolete due to the use of automated tools via machine learning in deter-
mining malicious threat patterns in terabytes of data. Signature and anomaly-based 
approaches are the two most widely used approaches for malicious network traffic 
activity detection. The signature-based approach uses file hashes and custom writ-
ten rules known as signatures to detect attacks; however, due to the sheer volume 
of intrusions or attacks, the signature-based techniques are not reasonable to detect 
various cyberattacks. Although these techniques have their merits, they require sev-
eral hand-crafted rules for each type of attack, which requires a significant amount 
of manual work and regular updates of the signature database. The anomaly-based 
techniques learn the normal traffic behavior of the network and raise an alert when-
ever an anomalous behavior is detected. These techniques are crucial for defend-
ing networks and users by identifying various network attacks (mainly unknown) as 
various attacks grow. By identifying these attacks, the system can assist the network 
security administrators to take corresponding preventive or reactive measures.

The motivation of this research work is to adopt a novel approach to detect 
unknown attacks on the network. A fundamental assumption is that the benign or 
normal traffic data share common patterns, while the anomalous data in the form of 
the attack deviate from such patterns. We propose a method that uses unsupervised 
Gaussian mixture modeling (GMM) for benign and other network traffic classes and 
detects the anomalous traffic using adaptive thresholding based on the interquartile 
range. During the training phase, GMM models are learned for all known network 
traffic categories and evaluated using the metric of F1 score. The models are then 
arranged sequentially as per the descending F1 scores. In the testing phase, the test 
data’s traffic category is obtained using a novel multi-level classification method that 
can also detect unknown attacks. The experimental results on the benchmark dataset 
show the feasibility of the proposed work relative to the state-of-the-art methods. 
The main contributions of this work are as follows: 

(a)	 An unsupervised multi-level statistical-based approach using Gaussian mixtures 
with adaptive thresholding is proposed that can detect known as well as unknown 
network attacks.

(b)	 The pre-processing steps and visualization of the benchmark CICIDS2017 data-
set are discussed in detail.

(c)	 A novel sample selection algorithm is proposed for selecting the representative 
samples of the dataset; this solves the imbalanced data problem present in the 
dataset.

(d)	 The performance of the proposed multi-level GMM approach is compared with 
existing machine learning and outlier detection methods for both binary and 
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multi-class classification. The results illustrate that the proposed approach is 
suitable for malicious activity detection from network traffic.

The rest of the paper is organized as follows: Sect. 2 discusses the previous studies 
related to this work. Section 3 details the proposed framework, along with a descrip-
tion of the CICIDS2017 dataset and the pre-processing steps. Section 4 presents the 
experimental setup and evaluation results, followed by the conclusion in Sect. 5.

2 � Related work

A wide variety of vulnerabilities on the network or web can be exploited by per-
forming various attacks such as the distributed denial of service, SQL injection, and 
cross-site scripting (XSS) [2], which can cause significant monetary loss. A botnet 
is a network of multiple machines using malware to execute malicious activities for 
corrupting and disrupting victim’s resources, such as crashing websites. The bot-
master can execute malicious activity controlling individual bot machines on the 
botnet simultaneously to complete a coordinated task to perform a massive scale 
attack.

In [3], the authors compared the performance of open-source signature-based 
systems Snort and Suricata; it was observed that since Suricata has multi-threaded 
architecture, it can process network traffic at a higher speed than Snort, but it con-
sumes excessive computational resources. A significant disadvantage of such 
rule-based systems is that they cannot take any action against unknown malicious 
network traffic. For applying machine learning, a considerable amount of data for 
benign and various network attack classes is required; it is also not feasible to use 
public real-time network traffic due to privacy issues. Several benchmark datasets 
have been created to solve this problem, and they are used for evaluating the per-
formance of the detection approaches. KDD/NSL KDD [4] is the most widely used 
dataset; however, a significant problem with this dataset is that it is now obsolete 
and does not provide an accurate representation of the current network attack sce-
narios. The UNSW-NB15 dataset [5] includes modern attacks as per the Common 
Vulnerabilities and Exposures (CVE) website [6], which publicly discloses and 
maintains the list of common vulnerabilities and exposures. The IXIA Perfectstorm 
tool, which has the ability to generate enterprise-level real-world traffic, was used to 
simulate nine categories of modern attacks in the UNSW-NB15 dataset. The follow-
ing scenarios were performed: the first simulation for 16 hours with one attack/sec 
and second simulation for 15 hours with ten attacks/sec. Using modern tools such as 
Argus and Bro-IDS, the flow, basic, content, and time level features were extracted 
from the PCAP files. In [7], a comparison of various datasets is provided with the 
CICIDS2017 dataset based on eleven criteria such as complete network traffic and 
attack diversity, which are important for any dataset, and it was found that the CIC-
IDS2017 dataset satisfies all eleven criteria. Due to this, the performance evalua-
tion of the proposed work in this paper is done using the benchmark CICIDS2017 
dataset.
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Detecting malicious attacks can be considered as a classification problem, either 
binary or multi-class. In the literature, several machine learning approaches, includ-
ing SVM [8], K-nearest neighbor (KNN) [9], artificial neural network [10], random 
forest (RF) [11], etc., have been proposed but are evaluated mostly on the KDD or 
NSL-KDD dataset. In [12], the author used three ANN architectures with the sig-
moid activation function and backpropagation algorithm to detect DDoS attacks 
on TCP, UDP, or ICMP protocols. They were able to detect known attacks, but the 
accuracy of unknown attack detection was low. In [13] and [14], a comprehensive 
survey on recent machine learning-based network intrusion detection system (IDS) 
is presented by providing future directions.

In anomaly-based approaches, the pattern that deviates from a baseline model 
is called anomalous. Various anomaly-based approaches, such as nearest neighbor, 
clustering, statistical, and information-theoretic, along with their advantages and 
disadvantages, are discussed in [15]. In the Local Outlier Factor (LOF) approach, 
an outlier score is assigned to each data point based on distances from the local 
neighborhood. However, the LOF technique has a drawback in identifying outliers 
in datasets with varying densities. In clustering-based approaches, the data points 
that do not belong to any cluster are considered outliers. Since clustering aims to 
find clusters, these techniques are not optimized to find outliers. An intrusion pre-
vention framework for mobile IoT devices was proposed in [16] by generating non-
overlapping clusters and end-to-end security based on the blockchain architecture. 
In statistical-based approaches, the idea is that normal data instances occur in high 
probability regions, while anomalous data occurs in low probability regions. In [17], 
a GMM-based approach was used to detect flights with unusual data patterns rela-
tive to the normal flights.

To extract a better representation from the data, various techniques of deep learn-
ing such as convolutional neural network (CNN) [18], recurrent neural network 
(RNN) [19], long short-term memory (LSTM) [20] are proposed in the literature. 
In [19], RNN architectures were applied for the KDD dataset, and the results were 
compared with traditional machine learning models, and a 20 % increase in accu-
racy was obtained for both binary and multi-class classification but at the cost of 
increased processing time. To detect the web attacks in [2], the features are extracted 
from the raw HTTP request using a variant of autoencoder, namely stacked denois-
ing autoencoder (SDAE). Since a single SDAE is not sufficient to recognize all 
malicious patterns, ensemble learning combines multiple SDAEs and reduces 
reconstruction errors. The Pelican intrusion detection framework was introduced in 
[21] and experimented on the UNSW-NB15 dataset, where it was observed that the 
performance of the neural network degrades by increasing the depth or layers. To 
resolve this issue, residual learning was implemented in Pelican to avoid the van-
ishing and exploding gradient problems. A combination of auto-encoders and deep 
neural network was proposed in [22] since the auto-encoders were shown to perform 
better than principal component analysis (PCA) for feature reduction; the resulting 
hybrid model led to an increase in the F1-score and a reduction in the false positive 
rate for the UNSW-NB15 dataset. A global anomaly threshold method was proposed 
in [23] for SCADA-based network data using unsupervised and ensemble models. 
Robust anomaly detection was proposed in [24] using cumulative error scoring, 
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percentile loss, and early stopping for auto-encoder modeling. The convolutional 
neural network was used in [25] for extracting the network features, and classifica-
tion was performed using SVM considering that the abnormal network traffic is far 
away from the center of the hypersphere of the benign data; however, this evaluation 
was performed on the older KDD dataset.

It is worth noting that a considerable amount of data samples and a high process-
ing time are required in these deep learning approaches. On the contrary, our pro-
posed approach selects the representative samples from each category automatically, 
thus reducing the processing complexity. In this work, we propose a novel data pre-
processing pipeline with a representative sample selection algorithm, GMM mod-
eling for each traffic class, and a novel multi-level classification strategy with evalu-
ation on the benchmark CICIDS2017 dataset.

3 � Proposed work

Figure  1 shows the proposed framework for anomaly detection of network traffic 
using the multi-level Gaussian mixture modeling approach. It consists of several 
steps for data pre-processing followed by learning the Gaussian mixture model for 
each class. A multi-level classification technique is proposed based on the learned 
GMM models for classifying the input network traffic as either benign or a specific 
attack category. The multi-level technique can also detect any novel attack catego-
ries not already learned by the system.

3.1 � Description of CICIDS2017 dataset

The proposed work is evaluated on the modern dataset CICIDS2017 [7] due to its 
realistic representation of benign traffic and diversity of attacks. This dataset is cre-
ated by the Canadian Institute for Cybersecurity through a comprehensive testbed 
by creating two networks, one for the victim and second for the attack. The victim 
network consists of servers with various operating systems that are highly secured 

Fig. 1   Proposed framework
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using firewalls and other network devices. The attack network consists of various 
devices, PCs with public IP’s and necessary operating systems for executing the 
attack scenarios. The following prominent aspects motivated us to choose this data-
set for evaluation:

–	 Representation of real-world data: The data is obtained from testbed created by 
using computers of the university having a recent and variety of operating sys-
tems (including Mac, Windows, Linux). Moreover, it also includes the HTTPS 
protocol in addition to the FTP, HTTP, and SSH protocols.

–	 Up-to-date dataset: The classes of attack in the CICIDS2017 dataset are align 
with the recent McAfee reports.

–	 Labeled dataset: The network flows are not only given the benign or attack labels 
but also the category of attack, which can be helpful to take adequate action.

–	 Data availability: Both raw data (PCAP - packet capture files) and CSV files are 
publicly available.

Table 1 summarizes the information about various attacks comprising the data-
set. There are seven classes of attack, including DoS, WebAttacks, DDoS, Infiltra-
tion, etc., which are executed on separate days to have proper labeling. Multiple spe-
cific attacks are executed under each attack category using state-of-the-art tools. A 
detailed description of these attacks is given in [7]. The extraction of features is per-
formed using CICFlowmeter, which extracts 79 statistical and time-related features 
from the PCAP files. Table 2 provides a description of the features of this dataset.

3.2 � Data pre‑processing

Performing thorough exploratory data analysis (EDA) and cleaning the dataset is 
considered to be an essential step; hence it is crucial to spend time exploring and 
cleaning data as it lays the foundation for the machine learning model. For data pre-
processing, we have proposed steps for data cleaning, log transformation, and repre-
sentative sample selection.

3.2.1 � Horizontal and vertical data reduction

Since very few researchers have focused on using the CICIDS2017 dataset, a 
detailed analysis of this dataset can significantly contribute to the research commu-
nity. For giving meaningful data to the machine learning model, we have performed 
horizontal and vertical reduction by removing unwanted features and redundant 
samples as follows:

–	 The FwdHeaderLength feature in the dataset that represents the total bytes of 
data flow in the forward direction is mentioned twice in the dataset; hence this 
error is corrected by deleting the repeated column.
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–	 The data samples having NaN values for the features FlowBytes/s and FlowPackets/s 
are removed.

–	 After analyzing the dataset, the following features having all zero values are 
dropped: (a) BwdPshFlags, (b) FwdURGFlags, (c) BwdURGFlags, (d) CWEFlag-
Count, (e) FwdAvgBytesBulk, (f) FwdAvgPacketsBulk, (g) FwdAvgBulkRate, (h) 
BwdAvgBulkRate, (i) BwdAvgPacketBulk, and (j) BwdAvgBulkrate.

–	 The packet length variance feature is removed due to the presence of packet length 
std deviation feature; thus, the redundancy is avoided.

–	 IdleMean, IdleStd, IdleMax, IdleMin features are removed as they have a very high 
standard deviation; thus, the inconsistent features across the dataset are avoided.

–	 The irrelevant data samples having negative values for the following features are 
removed: (a) FlowDuration, (b) FlowBytes, (c) FlowPackets/s, (d) FlowIATMean, 
(e) BwdIAT, (f) FwdHeaderLength and g) BwdHeaderLength. These features 
are required to have non-negative values, and thus, these irrelevant samples are 
removed.

–	 The Infiltration class of attack is not considered as the number of samples is too 
small to train the learning model.

This data cleaning process is a time-consuming but essential step for further data pro-
cessing of building a powerful predictive model.

3.2.2 � Feature transformation

Several feature values of this dataset span varying orders of magnitude, for example, 
the range of FlowDuration is from 900 to 1,600,000. All feature values are transformed 
into the log domain using Eq. (1) thus reducing their scale and aiding the learning 
model to work with smaller feature values. An illustration of feature transformation is 
shown in Table 3.

3.2.3 � Sample selection

Considering the distribution of attacks in the CICIDS2017 dataset as shown in 
Table 4, there are more benign samples relative to the malicious samples. Also, the 

(1)x ← log(x + 1)

Table 3   Log transformation of 
features

Original value Transformed value

Flow duration FlowIAT mean Flow duration FlowIAT mean

1,581,930 60,843.46 14.27 11.01
2,346,262 111,726.76 14.66 11.62
3,266,983 148,499.00 14.99 11.90
915 457.50 6.82 6.12
9,749 2,437.25 9.10 7.79
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distribution of attacks is highly imbalanced, for example, the DoS attack is almost 
half of all attacks and the Portscan attack is one-third of all attacks as they cause too 
many packets flows during the attack. 

To select the most representative samples for each category, we propose a sample 
selection algorithm given by Algorithm 1 taking input as �′ consisting of N′ data 
samples resulting from horizontal reduction with D features and a distance threshold 
� . The threshold � is a hyper-parameter that can be obtained as the median of all 
distance pairs for a particular category. The first cluster centroid �1 is chosen as the 
first instance of the dataset. Each subsequent sample of the dataset is assigned to 
� whose distance d is computed from the clusters generated so far in line 5. If the 
distance d is less than the threshold � with respect to the pth cluster, then this sample 
� is included in the pth cluster and the centroid of cluster �p is updated in a manner 
similar to the method adopted in K-means clustering. Otherwise, this sample defines 
a new cluster �Ni

 where Ni is the total number of resulting clusters. The representa-
tive samples � ∈ ℝ

Ni×D are thus the cluster centroids �1,… ,�Ni
 . This algorithm is 

Table 4   Representative samples of CICIDS 2017 dataset after sample selection

The bold row refers to the total number of data samples

Class # Original samples # Samples after horizontal and 
vertical reduction

# Representative 
samples after sample 
selection

Benign 529,918 231,187 4195
Bot 1966 1956 1956
Bruteforce 13,835 13,826 3998
DDos 128,027 128,006 4415
DoS 252,672 251,555 4,954
Portscan 158,930 158,797 3081
WebAttacks 2180 2180 2180
Total 1,087,528 787,507 24,779
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repeated for each category of data, i.e. Benign, DoS, etc., Table 4 shows the number 
of samples before sample selection as well as the number of representative samples 
after the sample selection algorithm.

3.3 � Data visualization

It is infeasible to visually explore the data since the network traffic features are of 
high-dimensional. Hence, t-SNE (t-distributed stochastic neighbor embedding) [26] 
is used for projecting the high-dimensional features to a low-dimensional subspace 
such that the Kullback–Leibler (KL) divergence between their corresponding distri-
butions is minimized in a non-linear manner. The t-SNE scatter plot of CICIDS2017 
dataset projected onto two dimensions without and with pre-processing is shown in 
Fig. 2a ,b, respectively. It can be observed that there is considerable overlap between 
various traffic classes without pre-processing, whereas the proposed pre-processing 
results in almost distinct clusters and thus discriminative features which can reduce 
the effort of learning models.

The boxplot of two features across the traffic categories is shown in Fig. 3, where 
the advantage of proposed data pre-processing steps can be observed as the feature 
representation after pre-processing is more discriminative for machine learning 
models to learn.

3.4 � GMM modeling with adaptive thresholding

For each category of data samples, Gaussian Mixture Models (GMM) are learned 
to model the probability distribution of the features using which anomalous or mali-
cious data samples of network traffic can be identified.

3.4.1 � GMM training

Since the data cannot be represented appropriately with only one Gaussian, 
K mixtures of Gaussians are considered given by Eq. (2) with model parame-
ters {�k,�k,�k}

K
k=1

 indicating the weight, mean and covariance of the kth latent 

Fig. 2   t-SNE visualization of the CICIDS 2017 dataset
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variable (or mixture), and � ∈ ℝ
D is the data sample having D features. In GMM, 

� is a K-dimensional binary random variable having a one-hot representation with 
zk ∈ {0, 1} and 

∑
k zk = 1.

The goal of GMM is to estimate the model parameters using maximum likelihood 
estimation for which the EM (Expectation Maximization) algorithm is used. The 
log-likelihood function is given by Eq. (3) assuming that the data points �n are sam-
pled independently.

(2)p(�) =
∑

�

p(�)p(�|�) =
K∑

k=1

�kN
(
�|�k,�k

)

(3)LL = ln p(�|�,�,�) =

Ni∑

n=1

ln

{
K∑

k=1

�kN
(
�n|�k,�k

)
}

Fig. 3   Boxplot visualization for the impact of pre-processing for FlowDuration (top) and FlowPackets 
(bottom) features. Here, Be: Benign, Br: Bruteforce, D: DoS, DD:DDoS, P: Portscan, Bo: Bot, W: Web-
Attacks



4630	 R. Chapaneri, S. Shah 

1 3

The training algorithm of GMM modeling is given by Algorithm  2, which 
is executed for each class of the dataset. The model parameters are initialized 
in line 1 and the E-step computes the responsibility that the component k takes 
for explaining the observation �n as given by Eq. (4), which is obtained as the 
posterior probability using Bayes’ theorem, where �k is the corresponding prior 
probability. The M-step is computed in line 3, where using the current respon-
sibilities, the parameters are updated as given by Eq. (5) obtained by setting the 
derivatives of the log-likelihood function to zero with respect to each parameter. 
Here, Nk denotes the number of data samples in the kth cluster. The log-likelihood 
is recomputed in line 4 using the updated parameters and the E and M steps are 
repeated till convergence of the log-likelihood.

After the EM algorithm converges, the log likelihood value is computed for each 
training sample and stored in scores from which the first ( Q1 ) and third ( Q3 ) quar-
tiles are computed. These statistics are used during the testing phase for adaptive 
thresholding. An illustration of one-dimensional Gaussian distribution is shown in 
Fig. 4 showing the two quartiles Q1 and Q3 as well as the unfilled region of inter-
quartile range IQR = Q3 − Q1 . Any value lower than Q1 − 1.5 × IQR or more than 
Q3 + 1.5 × IQR will have a very less probability hence can be considered to be 
anomalous with respect to the given distribution.

(4)�nk =
�kN

�
�n��k,�k

�

∑K

j=1
�jN

�
�n��j,� j

�

(5)

�new
k

=
1

Nk

N∑

n=1

𝛾nk�n,

�new
k

=
1

Nk

N∑

n=1

𝛾nk(�n − �new
k

)(�n − �new
k

)⊤,

𝜋new
k

=
Nk

N
, Nk =

N∑

n=1

𝛾nk
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3.4.2 � Model selection

Since the choice of K in GMM is a hyper-parameter, the optimal value of K is cho-
sen using model selection with BIC (Bayesian Information Criterion) measure given 
by Eq. (6), where for any model Mi , LL(Mi) represents the log-likelihood of data 
with respect to Mi , N is the number of data samples and t(Mi) is the number of 
model parameters.

For each class, various values of K = { 2, 4, 8, 16, 32, 64, 128, 256, 512} is used 
for training the GMM model, and the model resulting in the lowest BIC value is 
retained as the optimal model since the BIC measure penalizes models with a high 
number of clusters. An illustration of the model selection using BIC is shown in 
Fig. 5 for the benign category.

3.4.3 � Testing phase

In the testing phase as shown in Algorithm 3, data samples of all classes are com-
bined together resulting in �t ∈ ℝ

N×D and the ground truth for each test sample is 
set as follows: ytrue = 1 if the sample belongs to the desired category, else ytrue = 0 . 

(6)BIC(Mi) = −2 × LL(Mi) + log(N) × t(Mi)

Fig. 4   Illustration of IQR for 1D Gaussian distribution

Fig. 5   BIC plot for Benign class
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The IQR thresholding technique is used to determine whether the data sample 
belongs to a particular class or not. 

For each test sample, the log-likelihood score is computed and compared with the 
IQR, calculated as IQR = Q3 − Q1 . The IQR criterion is useful since extreme val-
ues has less influence on it as it limits the range to middle 50% of the score values. 
The values for Q1 − 1.5 × IQR and Q3 + 1.5 × IQR are the thresholds that are used 
to determine the outlier values. The decision is taken in lines 4–8 using the IQR 
threshold to assign Benign or Anomaly label; to the specific data sample, assum-
ing that the GMM profile of the Benign class profile is given as the input, but this 
applies in general to any class.

3.5 � Multi‑level classification

Most existing research focuses on either binary classification of network traffic 
(Benign or Anomalous) or multi-class classification (Benign, DoS, Backdoor, 
etc.). To detect the specific class of network traffic data samples as well as to 
detect novel attacks (zero-day attack), a multi-level classification approach based 
on GMM is proposed as shown in Fig. 6. Based on the trained GMM models for 
each class of network traffic, these models are evaluated against the validation set 
samples to determine their individual F1-scores given by Eq. (7). Here, TP, TN, 

Fig. 6   Proposed multi-level classification framework
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FP and FN denote the number of true positives, true negatives, false positives, 
and false negatives, respectively. A higher F1-score implies lower false positives 
as well as false negatives and hence is a better evaluation metric compared to the 
accuracy.

The representative samples’ dataset obtained for each class after sam-
ple selection is split into 60%, 20%, 20% train, validation, and test set [28]. 
Table  5 shows the performance of individual GMM models trained for 
each class of the attacks of the CICIDS2017 dataset. The precision, recall, 
and F1-score values are obtained on the validation sample set. It can be 
observed that each trained GMM model can identify the specific class sam-
ples with higher F1-scores. These F1-scores are sorted in the descend-
ing order to determine the multi-level ordering of classes as follows: 
DDoS →  Benign →  Bruteforce → Bot → DoS →  WebAttacks →  Portscan.

For the simplicity of discussion, consider three classes, namely Bruteforce, 
DoS, and WebAttacks. Their trained GMM models are arranged in this order of 
decreasing F1-scores. For each test data sample, first, the Bruteforce GMM model 
will apply the IQR threshold criteria to determine if the log-likelihood score is 
within its IQR range; if yes, then this sample is labeled as Bruteforce, otherwise, 
the procedure is repeated for DoS, and WebAttacks GMM trained models. Sup-
pose the log-likelihood score of the test sample does not satisfy the IQR criteria 
of all three GMM models. In that case, this test sample is denoted as a novel 
attack or a zero-day attack sample. The proposed multi-level approach can thus 
determine any novel attacks. This strategy can help security administrators take 
appropriate action based on the type of attack or novel attacks and take further 
preventive steps.

(7)

Accuracy =
TP + TN

TP + FP + TN + FN
,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1score =
2 × Precision × Recall

Precision + Recall

Table 5   GMM model evaluation 
per class

Class K Precision Recall F1-score

Benign 64 0.98 0.98 0.98
Bot 32 1.00 0.91 0.95
BruteForce 64 1.00 0.93 0.96
DDoS 64 1.00 0.98 0.99
DoS 128 1.00 0.88 0.93
Portscan 64 0.61 0.93 0.73
WebAttacks 64 1.00 0.83 0.90
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4 � Experimental results

The proposed work’s objective is to effectively classify the network traffic data as 
either Benign or Anomalous and the type of the attack, including novel attacks. Var-
ious experiments are conducted to validate the working of the proposed work with 
respect to binary and multi-class classification and compared with several state-of-
the-art existing works detailed as follows. In [27], principal component analysis 
(PCA) and auto-encoding techniques are applied to reduce the feature dimensional-
ity of traffic data and four methods, namely, local outlier factor (LOF), one-class 
support vector machine (OCSVM), isolation forest (IF), and robust covariance (RC), 
are evaluated for network anomaly detection. In [28], deep belief network (DBN) 
along with an ensemble SVM is applied in a distributed framework using Apache 
Spark for large-scale network intrusion detection. In [29], Portscan attempts are 
detected for the CICIDS2017 dataset using the SVM classifier. An in-depth analysis 
of the CICIDS2017 dataset is conducted in [30] where the following models are 
evaluated for multi-class classification: Adaboost, Multi-layer Perceptron (MLP), 
Naive Bayes (NB), and Quadratic Discriminant Analysis (QDA). It is observed in 
[30] that DoS and DDoS attack patterns being similar to benign traffic are difficult 
to distinguish using the traditional machine learning models. Synthetic minority 
oversampling technique (SMOTE) was used in [31] to address the dataset imbal-
ance issue, and the Adaboost classifier was used for network intrusion detection. All 
experiments in this work are implemented on a Windows machine with Intel Core 
i5-7200U 2.5GHz processor having 8GB RAM Nvidia Geforce 940MX GPU.

4.1 � Binary classification

For binary classification, the samples of the dataset are classified as either belong-
ing to the Benign class or the Anomalous class that comprises of all attacks. The 
proposed work is compared against traditional classifiers and various well-known 
anomaly detection algorithms (LOF, OCSVM, DBN, etc.) from [27–29]. Table 6 
shows the results of binary classification, where it can be observed that the 

Table 6   Evaluation result of 
binary classification

Bold highlights the results obtained with the proposed work

Approach Precision Recall F1score

LOF [27] 0.76 0.89 0.82
OCSVM [27] 0.70 0.80 0.75
IF [27] 0.87 0.75 0.81
RC [27] 0.87 0.72 0.79
DBN [28] 0.90 0.50 0.65
Ensemble [28] 0.89 0.92 0.91
MLP [28] 0.90 0.94 0.92
SVM [29] 0.80 0.70 0.75
Proposed Work 0.97 0.95 0.96
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proposed work outperforms the existing techniques for classifying the samples as 
either Benign or Anomalous.

4.2 � Multi‑class classification

For the multi-class classification of the test data samples, the proposed multi-level 
approach is compared with the existing techniques. Table 7a shows the results of 
individual GMM models for the test dataset considering all known network traf-
fic classes, where it can be observed that test samples can be classified effectively 
with the average F1-score of 0.95.

To determine the performance of the proposed system to detect unknown 
attacks, the following classes were used in the multi-level classification system: 
Benign, Bot, BruteForce, DDoS, and DoS. Portscan and WebAttacks are consid-
ered to be unknown attacks, i.e., these classes are not considered during multi-
level classification. Thus, only five GMM models are used in the testing phase, 
and for each test data sample, it is assigned the appropriate label if it belongs to 
the probability distribution of the specific GMM, else it is assigned an Unknown 
label if it is an outlier to any of the existing GMM models. Table 7b illustrates 
the performance of this scenario where we observe that the proposed multi-level 
system can identify the unknown attacks with a high F1-score.

Further, the proposed work is compared with existing multi-class classifiers in 
the literature and the results are shown in Table 8. The binary as well as multi-
class classification results are pictorially illustrated in Fig.  7. The results show 
that the proposed approach achieves the highest F1-score compared to existing 
approaches.

Table 7   Evaluation results 
of multi-class classification 
(Pr: Precision, Rc: Recall, F1: 
F1-score)

Class Pr Rc F1

(a) Known attacks classification
Benign 0.98 0.98 0.98
Bot 1.00 0.87 0.93
BruteForce 1.00 0.94 0.97
DDoS 1.00 0.98 0.99
DoS 1.00 0.92 0.96
Portscan 0.96 0.92 0.94
WebAttacks 1.00 0.80 0.89
(b) Unknown attacks classification
Benign 0.95 0.98 0.96
Bot 0.96 0.85 0.90
BruteForce 0.95 0.94 0.94
DDoS 0.94 0.97 0.95
DoS 0.92 0.92 0.92
Unknown 0.83 0.92 0.87



4636	 R. Chapaneri, S. Shah 

1 3

5 � Conclusion and future scope

In this work, a novel multi-level classification method is proposed to accurately clas-
sify the network traffic into benign as well as malicious traffic categories such as 
DDoS, Portscan, and WebAttacks. Using the statistical Gaussian mixture modeling 
approach, the pattern of each category is learned to identify any potential outli-
ers based on the inter-quartile range. Any data sample exceeding the threshold of 
the log probability scores is treated as an outlier for a specific traffic category. The 
GMM models are cascaded serially for the multi-level classification based on the 

Table 8   Performance 
comparison with existing work

Bold highlights the results obtained with the proposed work

Approach Precision Recall F1-score

Adaboost [30] 0.77 0.84 0.81
MLP [30] 0.77 0.83 0.79
NB [30] 0.88 0.04 0.04
QDA [30] 0.97 0.88 0.92
Adaboost with 

SMOTE [31]
0.81 1.00 0.90

Proposed work 0.99 0.93 0.96

Fig. 7   Performance evaluation of proposed work
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descending F1-scores of individual models. Therefore, this approach is capable of 
identifying any unknown attack or zero-day attack if the test data does not belong 
to the profiles of any learned GMM distribution. The proposed work is evaluated on 
the benchmark CICIDS2017 dataset and is shown to outperform the existing work 
in the literature. One limitation of this work is that the GMM profile for Benign 
and various attack classes need to be updated frequently due to changing network 
attack patterns. Recently, deep neural networks have been found to be effective in 
many applications, including malicious activity detection; however, the training of 
deep neural networks requires a significant amount of data. Generative adversarial 
networks (GAN) are also found to be effective in generating new data samples as per 
the probability distribution of existing data. Due to privacy and security concerns 
for network traffic data collection, we intend to explore the use of GAN for generat-
ing more data samples for specific rare attack classes for further work.
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