
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:4582–4617
https://doi.org/10.1007/s11227-020-03445-1

1 3

Analysis of parallel application checkpoint storage
for system configuration

Betzabeth León1 · Daniel Franco1 · Dolores Rexachs1 · Emilio Luque1

Accepted: 30 September 2020 / Published online: 16 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The use of fault tolerance strategies such as checkpoints is essential to maintain the
availability of systems and their applications in high-performance computing envi-
ronments. However, checkpoint storage can impact the performance and scalability
of parallel applications that use message passing. In the present work, a study is car-
ried out on the elements that can impact the storage of the checkpoint and how these
can influence the scalability of an application with fault tolerance. A methodology
has been designed based on predicting the size of the checkpoint when the number
of processes, the application workload or the mapping varies, using a reduced num-
ber of resources. By following this methodology, the system administrator will be
able to make decisions about what should be done with the number of processes
used and the number of appropriate nodes, adjusting the process mapping in appli-
cations that use checkpoints.

Keywords Fault tolerance · Checkpoint · Scalability · HPC systems · MPI
application

 * Betzabeth León
 betzabeth.leon@uab.es

 Daniel Franco
 daniel.franco@uab.es

 Dolores Rexachs
 dolores.rexachs@uab.es

 Emilio Luque
 emilio.luque@uab.es

1 Computer Architecture and Operating Systems Department, Universitat Autònoma de
Barcelona, 08193 Bellaterra, Barcelona, Spain

http://orcid.org/0000-0003-1778-0237
https://orcid.org/0000-0003-0002-7046
https://orcid.org/0000-0001-5500-850X
https://orcid.org/0000-0002-2884-3232
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03445-1&domain=pdf

4583

1 3

Analysis of parallel application checkpoint storage for system…

1 Introduction

In systems with long execution times, it is necessary that they have fault toler-
ance. Checkpointing is a widely used technique to obtain fault tolerance in such
environments. In a large-scale system that needs a long execution, there is more
probability that it has failures, so accordingly, it must be checkpointed frequently.
Parallel message passing applications are used in these distributed memory sys-
tems. In HPC systems, checkpoints must periodically write large volumes of data
to capture the current state of the applications, which they compute and control in
stages at regular intervals. The checkpointing operation is an I/O-intensive write
operation, which can be executed on a large number of computing nodes (from
now on, we will refer to them as nodes), which would generate thousands of files.
This requires continuous interaction with the storage system and consequently
occupies a large amount of space in terabytes of data. Therefore, the checkpoint
can easily collapse the I/O system. For these types of strategies, such as check-
points, to be useful on a large scale, the normal execution of the application
should be affected as little as possible. Using strategies to reduce this costly stor-
age in these high-performance systems is one way to reduce the overhead caused
by these fault tolerance schemes.

With respect to the applications and their ability to scale, it is necessary that
when increasing the number of resources, the execution time is reduced. In HPC
systems, it is essential that the systems can be scaled, but they also need to have
some level of protection that can periodically save the work and, in case of any
failure, not lose the work already executed or the information already processed.
In this way, using the checkpoint as one of the rollback-recovery strategies, we
ask ourselves how checkpointing storage affects the scalability of the system.

As the overhead generated by these techniques is previously known or limited
(maximum overhead) and how it affects the scalability of the application can be
analyzed, everything that is involved in the snapshot that is stored must be consid-
ered. We analyze the behavior of the checkpoint in order to know what dependen-
cies it has, the size of each file and in what way the generated checkpoint files can
be managed. There are some elements that are involved in the execution of the
application with the checkpoint, such as the following:

– The use of the Message Passing Interface (MPI) implementation. There are
MPI implementations that, in order to improve the message passing time
between processes on the same node, increase the size of shared memory as
the number of processes increase on the same node. Other implementations
have a practically fixed size of shared memory between processes, independ-
ent of the number of processes.

– The number of processes we use and their distribution across multiple nodes
(mapping), because this directly affects the size of the checkpoint files. As
well as the congestion of the processes, it affects the storage time of the check-
point. Therefore, it is important to consider whether we are using a node or
multiple nodes.

4584 B. León et al.

1 3

– The possibility of compressing files. This reduces the size of the checkpoint, but
it has a greater use of computing resources.

All these elements are important aspects to bear in mind for proper checkpoint con-
figuration. In this way, it is relevant to have an in-depth knowledge of the check-
point structure in order to know what elements it consists of and whether they can
be reduced in size, in order to reduce the storage space required by the checkpoint,
as well as reducing the storage time. Depending on the way in which these elements
are managed, we can have protection against failures that help maintain the avail-
ability of our applications and which affect their behavior to a lesser degree.

In previous papers [1], we characterized the I/O behavior of the coordinated
checkpoint and we proposed a methodology that allowed us to analyze these I/O
patterns. In this way, a spatial study of the number of bursts of generated writes and
their sizes was carried out.

Now, in this work, we make the following contributions:

– We provide a detailed analysis of various relevant aspects that influence the size
of the checkpoint.

– We propose a methodology to predict the behavior of the checkpoint size, in
order to be able to estimate with limited resources, the amount of storage space
that we will need on a larger scale.

– We design a model to estimate the size of the checkpoint, taking into account the
mapping.

The rest of this document is organized as follows: Sect. 2 deals with the background
and related work. The description of the method is shown in Sect. 3. A methodol-
ogy for estimating the size of the checkpoint is described in Sect. 4. In Sect. 5, the
experimental results are shown with their respective analysis. In the final sections,
we discuss the findings and future work.

2 Background and related work

The solution of large real scientific problems may need the use of large computa-
tional resources, both in terms of central processing unit (CPU) effort and memory
requirements. Thus, many scientific applications are developed to be run on a large
number of processors. The rollback-recovery technique is responsible for periodi-
cally recording the status of the parallel application, which is integrated by the status
of each process and each communication channel. In the event of a failure, the sys-
tem goes back to a correct previous state that has been saved correctly and resumes
execution. There are different strategies to decide how to record the system status
and how the system resumes execution after a failure. Among the rollback-recovery
strategies, there are checkpoints, which constitute intermediate states of a process
that are stored in some stable memory elements. The full checkpointing of this kind
of application will lead to a great amount of stored state, the cost being so high as

4585

1 3

Analysis of parallel application checkpoint storage for system…

to become impractical. Therefore, it is important to study how to reduce the impact
caused by the checkpoint in parallel applications.

The checkpoint is a fault tolerance technique in computer systems that is respon-
sible for storing the global status of each process. According to [2], global check-
pointing is taking a snapshot of the entire system’s state regularly. When a break-
down occurs in any process, all the system rolls back to the last checkpoint image to
continue the computation. In [3], the authors categorize the checkpoint/restart into
two different levels for parallel applications: the communication handling method
during checkpointing and the mode of saving the process state. In this paper, we will
categorize the checkpoint as follows:

– Checkpoint

– The coordination method used.
– The checkpoint storage mode.
– Checkpoint in heterogeneous environments.
– Checkpoint interval.

2.1 The coordination method used

Regarding how it handles communication, it is classified into coordinated, uncoordi-
nated and semi-coordinated checkpoint.

Coordinated checkpointing is a technique that requires a process to send a noti-
fication to the other processes, so that they take a snapshot of their local states and
then form a global checkpoint. A designated component controls the checkpoint
saving procedure to ensure the consistency of messages among the processes in the
application, to avoid message loss or duplication. In coordinated checkpointing, only
one checkpoint (ckpt) per process is enough to perform a successful resumption of
the application. It does not generate domino effects, or orphaned processes, but all
processes must go back to a correct previous state in case one of them fails. The
overall state obtained from a coordinated checkpoint is consistent, allowing the sys-
tem to recover from the last completed checkpoint [4].

In [5], the authors analyze the impact of the order of approximation used in the
single-level coordinated checkpoint modelling and explore the effects of the check-
point rate on the cluster. Guidelines for the cluster sizing are also indicated. In the
present investigation, we also offer information on other parameters of characteriza-
tion of the checkpoint, which will be used for decision making in its storage.

Another approach is uncoordinated checkpointing, which does not require any
synchronization between the processes at checkpoint time [6]. Uncoordinated check-
pointing can have a domino effect, which complicates recovery, and still requires
coordination to perform output commit or garbage collection. In order to avoid
this, the log is used because it maintains multiple checkpoints and has to periodi-
cally invoke a garbage collection algorithm to reclaim the checkpoints that are no
longer useful [7]. In the uncoordinated version, the likelihood of successful resump-
tion increases with the number of checkpoints per process, since consistency is not

4586 B. León et al.

1 3

guaranteed when saving [8] because it presupposes that there may be a domino
effect.

A semi-coordinated checkpoint consists of relating the processes running in a
node because all of them are affected when node faults occur. The logging of mes-
sages among them is avoided, and they are checkpointed coordinately. The receiver-
based pessimistic log is applied for messages between processes in different nodes
[9]. In [10], the authors present a unified non-hierarchical model to combine unco-
ordinated checkpointing with coordinated system-wide checkpointing. They devel-
oped closed-form formulas for performance improvement and the optimal check-
point interval of the unified model in their analytical assessment.

2.2 The checkpoint storage mode

Depending on the level of transparency and the location of the implementation in
the software stack, the methods for saving the state of the processes are classified,
according to [3], in:

1. System level: This checkpoint is implemented at the kernel level. In consequence,
the entire memory footprint of the application is marked. The system-level check-
pointing dumps the whole memory space of a running process into a checkpoint
file [11].

2. User level: This level is implemented in the user space; it captures the state of the
process by virtualizing the system calls corresponding to the cores.

3. Application level: The user determines the data to be registered.

Another classification related to the storage of the checkpoint is shown in [12],
where the authors indicate that the checkpoint systems can be classified based on:

1. The content stored at the checkpoints: This is classified in checkpoints at the user
level, which saves the state of the program necessary to restart, and at the system-
level checkpoint, which saves the architecture records and memory data.

2. The location where the checkpoints are taken: There are two categories, appli-
cation-specific checkpoints that are placed in specific places in the program and
generic application checkpoints, which are taken periodically.

3. The number of copies of checkpoints saved: The checkpoints are classified in a
single scheme, where a single copy is saved and in a dual scheme, which keeps
two copies in case one copy is damaged.

In this paper, we will use a user-level library such as distributed multithreaded
checkpointing (DMTCP) [13], which performs checkpoints transparently. This
library saves the status of a process in a coordinated manner. DMTCP is able to
closely track the relationship between execution streams, and it is able to save shared
memory segments, making it compatible with processes running on the same node.

All these storage checkpoint classifications generate a large amount of informa-
tion that must be stored. This consists of a greater amount resource and time use;

4587

1 3

Analysis of parallel application checkpoint storage for system…

therefore, the size of the checkpoint files becomes important. Every checkpoint
consists of a shared data segment, a (local) data segment and a stack segment [14].
There is some research trying to reduce this checkpoint size. In [15], the authors
demonstrated how it can reduce the size of the checkpoint files generated by appli-
cation-level checkpointing (ALC) approaches. They analyzed different alternatives:
live variable analysis, zero-blocks elimination, incremental checkpointing and data
compression. In addition, the authors in [16] proposed a technique to reduce the size
of checkpoint files for MPI-based parallel application programs. With static data
allocations, they used information dynamically gathered during the runtime, col-
lected by the Pin-based binary instrumentation tool, in order to facilitate the detec-
tion of data similarity. Some research addresses decreasing checkpoint latency with
the method combining the reduction of the number of broadcasts and the broadcast
algorithm optimization [17]. In our paper, we analyze various elements that impact
the checkpoint size and latency. One of these is the influence of compression on the
size and latency of the checkpoint. In addition, we address the variation of the map-
ping, which can reduce the size of the checkpoint files.

With respect to checkpoint storage, in [18] the authors proposed a storage proto-
col for a grid environment, and so as to ensure the checkpoint’s storage reliability,
they introduced hierarchical replication strategies. In other work, they developed a
prototype for a checkpoint storage system that uses scavenged disk space from par-
ticipating desktops to build a low-cost storage system [19]. Shahzad et al. overlapped
the I/O for writing the checkpoint with the computation of the application. They
developed a theoretical model and presented a technique that significantly reduces
the checkpoint overhead [20]. Furthermore, in [21], the authors proposed a check-
point placement optimization model which collaboratively utilizes both the burst
buffer and the parallel file system to store the checkpoints and an adaptive algorithm
is designed which can dynamically adjust the checkpoint.

2.3 Checkpoint in heterogeneous environments

In the literature consulted, several types of research have been observed that related
to the checkpoint in heterogeneous environments. In this regard, we have observed
the following:

In [22], the authors indicate that although many supercomputers in the top 500 list
use GPUs, only a few checkpoint–restart mechanisms support GPUs. The authors
extended a checkpoint library called FTI, to support checkpoint of data stored in
GPU and CPU memory locations. In order to reduce the checkpoint overhead, they
implement a differential checkpoint methodology within FTI. This method identifies
which memory chunks have changed their value in comparison with the value stored
in the previous checkpoint file, and it only writes the changed data. In our paper, we
used the DMTCP as a checkpoint library, which nowadays is able to save the state of
standard CPUs.

In [23], the authors developed a Checkpoint–Restart for Unified Memory
(CRUM)-specific DMTCP plug-in for checkpoint–restart of NVIDIA CUDA Uni-
fied Virtual Memory (UVM) applications. This DMTCP CRUM plug-in interposes

4588 B. León et al.

1 3

on the CUDA calls made by the application. Their results with a prototype imple-
mentation show that average runtime overhead imposed is less than 6%.

In [24], they proposed a transparent and scalable checkpoint/restart mechanism
for OpenCL applications, named Two-level CheCL. The authors indicated that
CheCL faces problems when the size of the system increases. They proposed a two-
tier checkpoint/restart (CPR), in which the checkpoint writes to a local storage to
improve scalability and they also maintain a generally slower but more reliable stor-
age. The authors indicated that one of the reasons why Berkeley Lab Checkpoint/
Restart (BLCR) [25] and DMTCP fail in checkpointing is that they are designed
only to restore the CPU states, but not the GPU.

In addition, in [26], the authors propose reducing the checkpoint time through a
hybrid incremental checkpointing solution that uses both page protection and hash-
ing on GPUs to determine changes in application data with very low overhead. For
the checkpoint, they used libhashckpt, which is a hybrid incremental checkpointing
solution that uses both page protection and hashing on GPUs.

2.4 Checkpoint interval

Regarding the checkpoint interval, in one study, the authors considered the failure
probability and increased the checkpoint intervals iteratively, in order to minimize
the checkpoint overheads and to reduce the number of checkpoints during the appli-
cation execution [27]. In [28], the authors presented an execution time prediction
model which can be used to select checkpoint intervals and provide a comparison to
several optimization strategies proposed. Through the simulation of exascale HPC
systems, they proposed a model to determine optimal checkpoint intervals and to
predict the execution time of the application in environments prone to failures.

In previous work, we handled the checkpoint interval by time. In this sense, in
[29], a model was proposed to estimate the number of checkpoints that can be per-
formed during a given execution with a maximum overhead determined by the user.
In this paper, we will use the transparent checkpoint in the user layer so that all
the system information is carried. To characterize the checkpoint, we will take into
account the size and structure of the generated files and the elements that influence
the storage time of the checkpoint.

3 Method description

In this section, it will carry out an analysis of various relevant aspects that influ-
ence the size of the checkpoint. The checkpoint is composed of the following three
zones: a data zone, a library zone and a shared memory zone. [29]. Therefore, we
will describe how the size and the growth model of each zone can be obtained when
the number of processes varies, depending on the characteristics of the application
and system parameters.

4589

1 3

Analysis of parallel application checkpoint storage for system…

3.1 Characterization of checkpoint files

It is useful to know what the checkpoint snapshot is like in order to select strategies
of configuration for the most adequate storage of the checkpoint. Checkpoints must
be stored in stable storage, which must ensure that recovery data persist through
tolerated faults and their corresponding recoveries. The number of files and the stor-
age volume is relevant information so as to know how much space is required for the
storage of the checkpoint, which also influences time.

3.1.1 Checkpoint size

As we have seen, the checkpoint is composed of different zones. System checkpoint
global state is the information that the application must store, and it is composed of
application libraries, application data and shared memory used by the communica-
tions. The contents of each of the zones are explained below:

– Libraries (Lb): In this zone, the size of the libraries is kept at constant since they
manage the dependencies that the application has with the system. This zone
could affect strong scalability; when the number of processes grows, the weight
of this zone will start to be important.

– Data Application (DTAPP): In this zone, information about the application data
stored depends on the application and its input (application workload). Likewise,
it can be seen that this zone decreases as the number of processes increases.
This is because each process is responsible for processing a smaller part of the
information. To simplify, the “Heap” has been added to zone DTAPP because it
depends on the dynamic memory reserved to store data that is created in the mid-
dle of the execution by the app used.

– Shared Memory (SHMEM): This zone is related to the shared memory assigned
to the communications of the processes within a node. It depends on the architec-
ture, the mapping and the MPI implementation used. The shared memory stores
the information related to communications of every process, i.e., the messages
sent between processes within the same node.

We carried out the identification of these parts of the checkpoint image using
the script “readdmtcp.sh” located in the “util” section of the DMTCP. Through this
script, a summary can be obtained for the information contained in the checkpoint
image, the memory addresses used for this and variable and fixed information. Fig-
ure 1 shows some of the information generated by readdmtcp with a checkpoint in
the execution of a Block Tri-diagonal solve (BT).D.64.

Regarding the SHMEM zone, when we use Message Passing Interface Chame-
leon (MPICH), the number of processes used within the same node is a relevant
aspect, because by increasing the number of processes, the size of the checkpoint
files increases. This is an element that must be taken into account when setting fault
tolerance to an application. We must efficiently manage the process number mapped
in each node in order to reduce the size of the SHMEM zone, as this impacts the size
of the storage space that should be used to save the generated checkpoints. Another

4590 B. León et al.

1 3

element that can be identified is the “Stack,” which is another memory area that is
used to store variables, return values and provide results, among others. The size
stack varies little; in all the experiments carried out in this work, its approximate
size was 10 MiB, and it did not change due to the number of processes, workload or
MPI implementation used. This area, because of its nature and as it belongs to the
same memory area in this work, has been added to the SHMEM zone.

Checkpoints generate one file per process, in addition to other additional files that
serve for coordination and communication (ssh, sshd, proxy, mpiexec and restart).
The amount of these files depends on the number of nodes in which the checkpoint
is executed. In this way, the number of files generated is shown in Fig. 2.

These additional files are generated because when carrying out a checkpoint,
the application is started using hydra and it starts a proxy process on each node.
The proxy then divides the MPI processes, so the MPI processes are children of
the proxy process. Checkpoints are initiated by hydra, which is a process man-
agement system to start parallel work. Hydra natively interacts with a number of
resource managers and launchers. Resource managers provide information about the
resources allocated by the user. Launchers allow mpiexec to launch processes on the
system (e.g., ssh, rsh, fork, slurm, pbs, loadleveler, lsf, sge). Some tools act as both
resource managers and launchers, while others play just one role [30].

These additional files are smaller than the files per process generated by the
checkpoint. Table 1 shows an example of the file sizes generated by checkpoint when
executing 64 processes on one, two and four nodes, as well as showing information
on the files generated when executing a checkpoint to the application BT.D.64.

Fig. 1 Information obtained with the readdmtcp.sh

4591

1 3

Analysis of parallel application checkpoint storage for system…

As we can see, the number of checkpoint files (Ckpt BT.D.64) depends on the
number of processes used. In this case, there are 64 processes and 64 files of this
type that have been generated. Concerning the size of these files, as the number of
nodes increases, the size of the files becomes smaller. This is because the shared
memory zone inside the node is decreasing because it has fewer processes commu-
nicating inside the node. When we use one node, we have 64 processes communicat-
ing inside the node. When we use two nodes, we have 32 processes communicating

Fig. 2 Checkpoint files generated

Table 1 Checkpoint file sizes

 Files 1 node (×64p) 2 nodes (×32p) 4 nodes (×16p)

No. of files Size No. of files Size No. of files Size

CkptBT.D.64 64 982.72 MiB 64 664.32 MiB 64 553.28 MiB
Ssh file 0 0.00 MiB 1 17.24 MiB 3 17.24 MiB
Mpiexec file 1 18.69 MiB 1 18.69 MiB 1 18.69 MiB
Proxy file 1 19.18 MiB 1 18.89 MiB 1 18.89 MiB
(main node)
Restart file 1 9.95 KiB 1 13.16 KiB 1 15.39 KiB
Sshd file 0 0.00 MiB 1 2.5 MiB 3 2.5 MiB
Proxy file 0 0.00 MiB 1 2.7 MiB 3 2.7 MiB
(secondary node)

4592 B. León et al.

1 3

inside the node, and when we use four nodes, only 16 processes communicate inside
the same node. In this way, mapping is an important element that influences the size
of the checkpoint.

Regarding the smaller files generated, as shown in Fig. 2, and comparing it with
the information in Table 1, when we use one node, only the mpiexe, proxy and
restart files are generated. When we use more than one node, we can see that in the
main node ssh, mpiexe, restart and proxy files are generated and in the secondary
nodes sshd and proxy files are generated. The size of these files remains very simi-
lar, independent of the number of nodes we use.

Therefore, we can define the checkpoint size considering the scalability as
follows:

(Npt = total number of processes used)
When an application is scaled, if the number of processes increases, the number

of files related to the checkpoint increases. The size of the checkpoint (checkpoint-
size) depends on the application’s workload (input), the number of processes used
and their mapping. The size of each checkpoint file when we use a single node is:
ckpt_app_process_file_i (“i” is the file number)

Referring to the example presented in Table 1, we can observe the size of each
file. In order to know the total space that we would need to store all the necessary
files, we must multiply the size by the number of generated files. If the same number
of processes is distributed in all the nodes, the total space required (Gstored) is:

If several nodes are used and the number of processes in each node is different,
the number of processes assigned to each node must be multiplied by the size of
one of the files generated on that same node (app_process_checkpoint_file_size_i),
because the size of the files within the same node is the same. For example, if we
use 64 processes in three nodes and the distribution of the processes is carried out
as follows: node1 = 21p, node2 = 21p and node3 = 22p, the size of all the files that
are in the nodes with 21 p is the same, but the size of those found in the 22p node
is different from those in the 21p node, but the same size among themselves inside
node 22p. The size of all the files that are in the nodes with 21 p is the same. But the
size of those found in the 22p node is different from those in the 21p node, but the
same size among themselves. Therefore, to find the Gstored, the mapping used must
be taken into account. To obtain the global size of the checkpoint files (Gstored),
the size of each file generated by each process and in each node must be added. The
mapping influence aspect will be explained in detail in Sect. 5.3.3 of this paper.

As stated in the literature, as the storage system is diverse, we must character-
ize it. The storage can be done in different ways. In this case, we are working with
checkpoints that are overwritten to eliminate the previous checkpoints that are no
longer useful and thus avoid occupying a greater amount of space. In systems with
a large amount of data, they must configure the checkpoint according to the avail-
able resources. They can overwrite the checkpoint completely or use incremental

(1)checkpoint size = f (app_workload, Npt)

(2)Gstored = Npt * app_process_checkpoint_file__size_i

4593

1 3

Analysis of parallel application checkpoint storage for system…

checkpoints. Another aspect to take into account is that they must store locally and
remotely, using multilevel storage, so that locally they can store more quickly, but
they send that data to a more secure storage that is on a remote device. In addition
to this, the devices used for HDD and SSD storage must also be taken into account,
since these also influence the storage time.

3.1.2 Checkpoint time

The checkpoint impacts on the execution of the application. We can define the time
of the application with fault tolerance as follows:

The application time with fault tolerance (Tapp_ft) is shown in Eq. (3), which is
equal to the application time (Tapp) increasing with the checkpoint overhead time
(Tovckpt). This equation is intended for applications fault-free run.

The overhead of the checkpoint depends on:

The overhead time (Tovckpt) (4) it incurs is correlated with the number of check-
points (Nockpt) performed during a given execution and the checkpoint latency
(Lckpt). Checkpoint overhead is the increase in the execution time of the application
because of a checkpoint [31].

Checkpoint latency is defined as the elapsed time between the call to the check-
pointing function and the return of control to the application [15]. When an applica-
tion is scaled, if the number of processes increases, the number of files related to the
checkpoint increases (one file per process and other files per added node (Fig. 2)). In
this way, the quantity and size of these files can impact the checkpoint time.

The case of the coordinated checkpoint is shown in Eq. (5). This can be divided
into three significant stages:

The coordinated checkpoint latency (Lcckpt) depends on the coordination time (Tco-
ordckpt), and this in turn depends on the number of processes used. This is because
the delay can be caused by the congestion originated by the number of processes that
are accessing simultaneously (influence of the mapping used). The Tckp_m is the
management time, when it is not coordinating or storing. For example, in the case
of gzip checkpoint files, it would be the compression time. The size of the check-
point is also an element that significantly impacts the storage time (Tstorageckpt).
The bigger the file to be stored, the more time it will take. Another element that
influences the Tstorageckpt is the storage system used. In [7], the authors say that
the major source of overhead in checkpointing schemes is the stable storage latency.
This depends on the following:

– Different technologies: hard disk, SSD, memory.
– Different locations: local (at the node), at another node on servers.

(3)Tapp_ft = Tapp + Tovckpt

(4)Tovckpt = f (Nockpt, Lckpt)

(5)Lcckpt = Tcoordckpt + Tckpt_m + Tstorageckpt

4594 B. León et al.

1 3

– File system: local ext, NFS distributed, PVFS parallel.

In the case of an uncoordinated checkpoint, because each checkpoint is performed
independently, the overhead time (Tovckpt) must be the sum of the time for each
checkpoint performed. This refers to the global time it took to perform all the check-
points during the application’s execution time. The case of the uncoordinated check-
point is shown in Eq. (6):

The uncoordinated checkpoint does not require that the processes coordinate to exe-
cute their checkpoints, but the different ways of managing the processes can influ-
ence the uncoordinated checkpoint latency (Lucckptpi). We will call this aspect in
the equation as Tstorageckpt. For example:

– There are no processes that store simultaneously.
– All processes are stored at the same time.
– Percentage of number of process stores at the same time.

Communication overhead becomes a minor source of overhead as the latency of
network communication decreases. In this scenario, the coordinated checkpoint
becomes worthwhile since it requires less accesses to stable storage than uncoordi-
nated checkpoints. Therefore, in the present research, we will focus on the coordi-
nated checkpoint and on some elements that can influence the storage time mainly
in the size of the checkpoint, the number of processes used, the mapping and the
compression of the files.

4 Methodology for estimating the size of the checkpoint

One of the objectives of this work is to be able to carry out the scalability analysis
with a reduced set of resources. Therefore, a methodology for predicting the size of
the checkpoint is presented. For this purpose, first, an analysis of the size of each
of the zones is carried out and the necessary equations are posed for its estimation
when the number of processes varies. Based on this, a methodology is designed and
then validated with the checkpoint size prediction in a node and in several nodes
with a different number of processes.

4.1 Estimation of the values generated by zone in the checkpoint files

Establishing a way that helps us predict the size of the checkpoint can be useful
when applications scale and they can be run with a different number of processes.
We want to estimate the size of the checkpoint file per process, when an application
with a specified input size is to be executed using a different number of processes.
For this purpose, the size of each zone is estimated or predicted, which can vary
according to:

(6)Lucckptpi = Tckptm + Tstorageckpt

4595

1 3

Analysis of parallel application checkpoint storage for system…

(Npt = total number of processes used, pn = number of processes per node used)
We expect the size of the data to decrease as the number of processes increases, but

it is important to predict how much it will decrease without having to run the entire
application using all the nodes. Taking into account that a file is generated per process
and that what happens in one node is similar to what happens in the rest of the nodes,
we focused the study on what happens in a node and analyzed how the size of each of
the zones evolves. As the number of processes in a node is small, we can execute the
application by changing the number of processes in a node and observe the trend. In
[32], the authors propose a method to analyze the scalability of an application without
using a large number of processes and system resources. Based on this, in our case, we
can run the application with a reduced number of processes and then select the suitable
regression function.

For example, we want to predict the behavior of BT.E. with 512 processes, and for
this, we analyze the behavior of the BT by scaling the input, taking into account the
workload of one process, and we execute it on one node with 64 cores and varying the
number of processes. We can characterize the behavior of the data zone by running
for three different amounts of process, for a scaled input (taking into account the size
that a process has to compute), in which the number of processes in a node is varied.
When plotting the trend line of the data size with 4, 25 and 36 processes for a BT.B
app, these points were selected as initial and intermediate points, their instrumentation
and analysis are much faster and we want to estimate larger points from these. Through
a regression function, we can obtain the formula that will allow us to predict for this
same application the size of the data using a different number of processes. In this way,
we can see that it has a potential and negative tendency (Fig. 3), because the data must
be reduced in size as the number of processes increases. Therefore, for this application
we get the formula:

Varying the number of processes “Npt” in Eq. 8, we can obtain the size in which the
data will be divided according to the number of processes used. As the size of the data
changes according to the application used and is independent of the environment, this
formula must be calculated for each app.

In the case of the LB zone, it remains the same in all the cases we have studied.
In order to verify this, it is advisable to run the application once and check it. The
SHMEM zone can be characterized independently of the application. This zone
increases as the number of processes in a node increases. Therefore, in order to char-
acterize it, we can use the data obtained in the previous executions for this zone, which
does not depend on the app used but on the number of processes mapped into a node.
In Fig. 3, it can be seen that the trend line used is polynomial. In this case, the size of
SHMEM zone will increase as the number of processes increases.

Therefore, the formula obtained using a regression function is shown below:

(7)Checkpoint_size = f (app_workload, Npt, pn)

(8)DTAPP = 354.54 ∗ (Npt)(−0.85)

(9)SHMEM = 0.0617(pn)2 + 3.9983(pn) + 25.47

4596 B. León et al.

1 3

Equation 9 can be used to obtain the SHMEM zone’s size. Given that in [33] the
authors indicate that the equation is quadratic, which refers to the implementation of
the MPICH communicators, we design this method to find the equation coefficients
using three points from experimentation.

In Eq. 9, the number of processes used within the same node is “pn.” If it were
necessary to use more than one node, it would be calculated for the number of pro-
cesses to be executed in each node and not for the total. For example, if it were to be
executed with 25 processes in total, but we wanted to divide it into two nodes, with
12 processes in one node and 13 processes in the other, then we would perform this
calculation and estimate the size of this zone for the processes that are found in the
node where 12 processes were executed, pn = 12, and for the processes that were
executed in the node with 13 processes, pn = 13.

In Figs. 3 and 4, the values marked in red (4, 25 and 36) were those used to obtain
the regression equation, and the values marked in green (16, 49 and 64) are the val-
ues obtained with the equations found. This verification is shown below with some
examples in Sect. 4.3, by which the full size of the checkpoint is predicted.

4.2 Methodology

To predict the size of the checkpoint when the number of processes varies, a meth-
odology has been designed which aims to help us know the storage space required
for a fault tolerant application. This information aims to help us make decisions
regarding the allocation of resources in a more appropriate way and to reduce the
impact of the checkpoint on the scalability of applications. Figure 5 shows the steps
that must be followed to predict its size.

Fig. 3 Trend chart of the behavior of the DTAPP zone size per checkpoint file of an app BT.B

4597

1 3

Analysis of parallel application checkpoint storage for system…

When we use DMTCP, we run the application with one checkpoint with differ-
ent numbers of processes. After this, we execute the readdmtcp.sh script, in order
to save information about the contents of the checkpoint image. We must identify
the lines corresponding to the data zone and their size, which are from the first
line to the “heap” line of the file generated (addresses in hexadecimal). With this,
we obtain the size of the application data, which was saved in the checkpoint
image. In order to do this, we execute the following instruction:

DMTCP_DIR/util/readdmtcp.sh ckpt.dmtcp

Fig. 4 Trend chart of the behavior of the SHMEM zone size per checkpoint file of an app BT.B

Fig. 5 Methodology to predict the behavior of the size of the checkpoint

4598 B. León et al.

1 3

As a next step, once the values of the checkpoint files’ data sizes have been iden-
tified and with different numbers of processes, the regression equation must be
found and plotted with a potential trend. From here, we will obtain the formula that
can calculate the approximate data zone of the application, according to the number
of processes stored by the checkpoint.

The LB zone is fixed, and it is obtained from the analysis of the file generated by
readdmtcp.sh. Therefore, running the app with the ckpt once is enough to character-
ize this zone. This value was verified in all the examples shown in this paper, and
the value obtained in all cases was 2.45 MiB. This value may vary if it uses applica-
tions that use other libraries, for example as MPI-IO.

The SHMEM zone is calculated with formula 9, with “pn” being the number
of processes per node. This formula is used when the application is running with
MPICH. As the last step, we must add the value obtained in DTAPP and LB zones,
plus the size of the SHMEM zone. In this way, we can predict the behavior of the
checkpoint size, as well as considering the files per node, from Table 1.

4.3 Validation of the methodology

Applying the proposed methodology and using the example data, we obtain the
growth model of the data zone, depending on the size of data to be computed (appli-
cation workload: Application workload demand is the demand placed on a system
by an application.). For each application process, we obtain the growth model; in
this case, the behavior model has been obtained by executing with 4, 25 and 36 pro-
cesses per node. Below is the checkpoint size for a BT.B. of 16, 49 and 64 processes.

Table 2 shows the results when applying the methodology, where formulas 8
and 9 have been used.

If the application runs with 16 processes, on one node, the size of the checkpoint
file per process would be 141.28 MiB. If it were run on two nodes, when we use
eight cores per node, the data zone and the library zone would be the same size as
with a single node, but the SHMEM zone would be calculated with pn = 8, because
they are the processes used within the same node. The size of the checkpoint file per
process would be 97.44 MiB.

When 49 processes are used, the size of the checkpoint file per process would be
384.95 MiB, if it were run on two nodes. When we use 25 cores in one node and 24
in the other node, the size of the checkpoint file per process would be 179.41 MiB.

Table 2 Prediction of the size of the zones and the checkpoint

Npt 16 49 64

Nodes number 1 2 1 2 1 2
Zone DTAPP (MiB) 33.59 33.59 12.97 12.97 10.34 10.34
Zone LB (MiB) 2.45 2.45 2.45 2.45 2.45 2.45
Zone SHMEM (MiB) 105.24 61.40 369.53 163.99 534.08 216.59
Size ckpt file (MiB) 141.28 97.44 384.95 179.41 546.87 229.38

4599

1 3

Analysis of parallel application checkpoint storage for system…

The checkpoint size is for the case of those that were executed with 64 processes
in a node, where the total size of the zones is 546.87 MiB. If it were run on two
nodes, when we use 32 cores per node, the size of the checkpoint file per process
would be 229.38 MiB.

In Table 3, we can see the comparison of prediction of the size of a checkpoint
file for the BT.B application, with 16, 49 and 64 processes. It can be observed that
the values obtained in the prediction are similar to those of the measured size of the
checkpoint (per process: ps). Therefore, the equations are validated. To know the
total size (Gstored) needed for fault tolerance, we must multiply it by the number of
processes to obtain the next approximate size:

– BT .B.16ps = 141.28MiBBT .B.16Gstored = BT .B.16ps x 16 = 2.20GiB

– BT .B.49ps = 384.95MiBBT .B.49Gstored = BT .B.49ps x 49 = 18.42GiB

– BT .B.64ps = 546.87MiBBT .B.64Gstored = BT .B.64ps x 64 = 34.17GiB

It can be seen that as the number of processes increases, the size needed for fault
tolerance becomes very large so that the storage of this information could affect the
scalability of the application. This information has great relevance to resource man-
agement, in terms of the number of processes, the number of nodes used and the
storage system, among others.

4.4 Model for estimating the size of shared memory within a node.

One of the objectives of this work is to provide relevant information for decision
making regarding the configuration of the checkpoint storage. Therefore, it is impor-
tant to delve into the size of the SHMEM zone because this zone increases as the
number of processes within the same node increases, which causes the checkpoint
size to increase and therefore requires more storage space. This occurs because of
what is stated in [34]; when using an MPI implementation such as MPICH, a lot of
memory resources are required to manage the MPI communicator information and
the buffer spaces for communications.

In the previous section, we have estimated the size of the shared memory
within a node through a regression equation, calculating the SHMEM zone that is
part of the checkpoint image. In this way, taking all the processes within a node

Table 3 Comparison of
predicted and measured
checkpoint file size at a node
(AFS-1)

BT.B.16
Ckpt file size prediction (1 node) Measured ckpt file size Error %
141.28 MiB 139.60 MiB 1.20
BT.B.49
Ckpt file size prediction (1 node) Measured ckpt file size Error %
384.95 MiB 385.15 MiB 0.05
BT.B.64
Ckpt file size prediction (1 node) Measured ckpt file size Error %
546.87 MiB 548.00 MiB 0.20

4600 B. León et al.

1 3

with 64 cores, the use of shared memory would be as indicated in Fig. 6. This
information was verified using three machines with different architectures with
64, 8 and 4 cores per node.

In this section, a model has been designed to calculate the size of shared mem-
ory using from one process to 64 processes in the same node. The pseudocode
presented in Model 1 has a very close approximation of shared memory size
within a 64-core node. The error handled ranges between 0 and 3% maximum.
The variable “a” constitutes a number assigned to each set of seven processes.
“P” is the process number. The variable “b” refers to an adjustment constant. The
variable “C1” constitutes the memory size measured with one single process, and
“C2” is the memory size measured with eight processes, with the latter two being
base constants. For a better understanding of the algorithm, Table 4 shows the
notation used.

Fig. 6 Shared memory size according to the number of processes within a node (AFS-1, AFS-2, AFS-4)

Table 4 Notation Used Notation Description

P Process number
C1 Shared memory measured with one process
C2 Shared memory measured with eight processes
a Number assigned to each set of seven processes
b Adjustment constant

4601

1 3

Analysis of parallel application checkpoint storage for system…

Algorithm 1 Model 1: Estimating the size of shared memory within a node
1: Input: P,C1, C2
2: Output: Size SHMEM Zone
3: Variable Initialization: a = 0, b = 5
4: if (P ≥ 1 or P ≤ 7) then
5: SHMEM = C1 + ((b− 1) ∗ (P − 1))
6: else if (P ≥ 8 or P ≤ 14) then
7: a = 1
8: SHMEM = C2 + (b+ (a− 1)) ∗ (P − (8 ∗ a)))
9: else if (P ≥ 15 or P ≤ 21) then
10: a = 2
11: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a)))
12: else if (P ≥ 22 or P ≤ 28) then
13: a = 3
14: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a))) +

∑a−2
i=1 (7 ∗ (b+ i))

15: else if (P ≥ 29 or P ≤ 35) then
16: a = 4
17: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a))) +

∑a−2
i=1 (7 ∗ (b+ i))

18: else if (P ≥ 36 or P ≤ 42) then
19: a = 5
20: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a))) +

∑a−2
i=1 (7 ∗ (b+ i))

21: else if (P ≥ 43 or P ≤ 49) then
22: a = 6
23: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a))) +

∑a−2
i=1 (7 ∗ (b+ i))

24: else if (P ≥ 50 or P ≤ 56) then
25: a = 7
26: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a))) +

∑a−2
i=1 (7 ∗ (b+ i))

27: else if (P ≥ 57 or P ≤ 63) then
28: a = 8
29: SHMEM = C1 + C2 + ((b+ (a− 1)) ∗ (P − (7 ∗ a))) +

∑a−2
i=1 (7 ∗ (b+ i))

30: end if

The algorithm shown in Model 1 has been derived by observing the growth
behavior mode of the checkpoint, taking into account the number of processes
within a node that use MPI communications with MPICH. For this, a synthetic pro-
gram has been designed that only performs communications, an in-depth analysis
was made from the experimental measurement and it has been validated with differ-
ent benchmarks and applications. In this way, with this approach, we have an idea
of the logical functioning of the shared memory within the same node, with which
it can serve as a tool to represent predictions or simulations that require using and
representing this element.

5 Experimental results and discussion

In this section, we will analyze the scalability behavior of an application with fault
tolerance, through an analysis of various relevant aspects that influence the size of
the checkpoint:

– Impact of the MPI implementation used on the size of the zones that make up the
checkpoint.

– Influence of the compression of the checkpoint files.

4602 B. León et al.

1 3

– Impact of mapping on checkpoint size (scalability).
– Impact of the file system on the checkpoint behavior.
– Estimate with limited resources the size of the checkpoint data zone.

The experiments have been designed with the execution of a checkpoint in different
systems and different well-known applications (benchmarks).

5.1 Experimentation environment

The experiments have been carried out on different types of machines, with different
architectures, which we will identify as follows (AFS: Architecture File System):

– AFS-1: AMD OpteronTM 6200 @ CPU 1.56 GHz, processors: 4, CPU cores: 16,
memory: 256 GiB, file system: ext3. (HDD).

– AFS-2: AMD Athlon(TM) II X4 610e CPU 2.4GHz, processors: 1, CPU cores: 4,
memory: 16 GiB, file system: PVFS. (SSD).

– AFS-3: AMD Athlon(TM) II X4 610e CPU 2.4GHz, processors: 1, CPU cores: 4,
memory: 16 GiB, file system: NFS. (HDD).

– AFS-4: Intel®. Xeon®CPU E5430 @ 2.66 Ghz, processors: 2, CPU cores: 4,
memory: 16 GB, file system: ext3.

The MPI implementation used was MPICH 3.2.1. and OpenMPI 1.6.5. For check-
points, the DMTCP-2.4.5 was used.

The results obtained from the experiments with the parallel executions of four
NAS Parallel Benchmarks called Block Tri-diagonal solver (BT), Lower–Upper
Gauss–Seidel solver (LU), Scalar Penta-diagonal solver (SP) and Conjugate Gradi-
ent (CG) [35]. In addition, we use Lulesh 2.0, which is part of the CORAL bench-
mark suit and it is a shock hydro mini-app [36]. The values presented in all experi-
ments are the average of ten runs.

5.2 The scalability behavior of an application with fault tolerance

Fault tolerance is a necessary strategy for applications that require long execution
time, which helps to protect them and maintain their availability, but their use affects
adding more time and resource use; therefore, the scalability of applications could
also be affected. Scalability indicates the ability of a parallel application to use the
increase in computational resources efficiently. Otherwise, if resources are increased
and efficiency is not achieved, it is said that it is not scalable. Scalability is classified
as strong scalability and weak scalability.

In strong scalability, the workload remains constant as the application scales
and the objective is to decrease the execution time of the application while
increasing the number of processes. The workload is distributed among all the
processes, and the instructions executed by each process decrease as the num-
ber of processes increases. In weak scalability, the number of processes and the

4603

1 3

Analysis of parallel application checkpoint storage for system…

workload of the application is increased, keeping the workload for each constant
process. Therefore, the computation time also remains constant. This paper will
address strong scalability.

As we have seen, among the fault tolerance strategies is the checkpoint, which
generates a file for each process. This must be stored in a storage system; the size of
each checkpoint file depends on several aspects, which must be taken into account
when managing fault tolerance in applications, because this generates an overhead,
in addition to the space it occupies and so it must be managed efficiently.

We assume that fault tolerance can impact the execution time of the application,
not only the increase for saving the checkpoint, which is the expected behavior, but
that it could have a different impact on the application’s behavior, as we have seen
that due to this, the size of the checkpoint depends on the amount of memory used
and the workload. This could cause the time to increase as we increase the number
of resources, due to having to store more information. The amount of information
that is stored in the checkpoint is related to the state of the process. Therefore, in
addition to the data of the application itself, it must store system information such as
communication between processes and what is necessary for its operation. To char-
acterize the impact of the checkpoint on the scalability of the application, we select
some NAS Parallel Benchmarks with a different workload.

Figure 7 shows the application BT Class D in AFS-1. The total processes num-
ber (Npt) used and its distribution per node (pn) were the following:

– Npt = 16, 25, 36, 49 and 64, processes: one node.
– Npt = 81, processes: two nodes (41pn, 40pn).
– Npt =100, processes: two nodes (50pn, 50pn).
– Npt = 196, processes: four nodes (49pn, 49pn, 49pn, 49pn).
– Npt = 256, processes: four nodes (64pn, 64pn, 64pn, 64pn).
– Npt = 324, processes: six nodes (54pn, 54pn, 54pn, 54pn, 54pn, 54pn).

These experiments were performed with one checkpoint during the execution of
each application. Local storage with an ext3 file system was used. Here, we are

Fig. 7 Application time, fault tolerant application time and total storage ckpt size, BT Class D AFS-1

4604 B. León et al.

1 3

measuring the application time (Tapp), the fault tolerant application time (Tapp_
ft) and the total size of all generated files (Gstored) at a checkpoint.

Figure 7 shows that the Gstored increases up to 64 processes, because the shared
memory zone increases to manage communication. By using 81 processes, there are
fewer internal communications between nodes because two nodes were used: one
node with 41 processes and the other node with 40 processes. So, the number of
processes per node drops. Then, it increases in size again because the number of
processes per node also increases.

Regarding the time it is scaling, but when more than 100 processes are used, it
does not continue scaling. It must be taken into account that there are already three
nodes and the communications are beginning to be affected, in addition to the fact
that it is very likely that each process has a low workload. In all cases shown, it can
be seen how fault tolerance affects the execution time of the application because the
Tapp_ft takes more time than running the application (Tapp) without a checkpoint.
Likewise, it can be seen that the necessary storage size increases as we increase the
number of processes per node, even if it is the same application and the same work-
load. The communication between them increases; therefore, the size of the files is
greater.

The four graphs in Fig. 8 show the BT Classes C and B application and the SP
and CG Class B applications in AFS-1, in a single node, with a checkpoint.

Fig. 8 Application time, fault tolerant application time and total storage ckpt size, BT, Classes B, C and
SP, CG Class B AFS-1

4605

1 3

Analysis of parallel application checkpoint storage for system…

Comparing Fig. 8 (Classes C and B) with Fig. 7 (Class D), the result of these
experiments has been different. In the graphs in Fig. 8, it can be seen that the appli-
cations used have a small workload; if we scale the application and increase the
number of processes, the workload per process decreases and the impact of toler-
ance has increased. In contrast, in Fig. 7, where the workload is higher, fault tol-
erance had less impact between 16 and 100 processes, because each process had
enough application input to process. After 100 processes, the time began to increase
accordingly with more processes, so it was no longer scaling. Therefore, in applica-
tions with a small workload or if we make an excessive increase in the number of
processes, the work per process decreases, and since the workload is so small, the
inflexion point varies when the fault tolerance is incorporated.

5.3 Aspects analyzed that affect size

The experiments presented below were analyzed through different elements that
impact on the behavior of the checkpoint. This is very useful to determine strate-
gies and make decisions that will help in the implementation of fault tolerance in
applications. In this way, the following aspects have been taken into account for this
work:

Compression and non-compression of checkpoint files, to compare the impact on
handling smaller files and how this compression operation might influence the time
of executing the checkpoint. In addition, we will detail the structure of the image
that integrates the checkpoint, which will be identified by zones. This is important
for understanding the size behavior of the checkpoint files. These experiments will
be carried out from the point of view of the different workloads and the different
number of processes, using MPICH and OpenMPI. Another aspect we will deal with
is the way the mapping impacts on the checkpoint behavior because this element can
influence the size of the checkpoint files.

5.3.1 Impact of the MPI implementation used on the size of the zones that make
up the checkpoint

This section analyzes the zones that were explained in Sect. 3.1 and their behavior
with respect to two MPI implementations, such as MPICH and OpenMPI, as well
as their impact on various applications. This behavior of the zones varies from one
MPI implementation to another. Another element that impacts the size of the zones
is the number of processes used. Therefore, it could affect the volume of storage
required as well as the time, which would affect the scalability of the fault toler-
ant application. Below is the behavior of the size of the checkpoint files in different
applications and the comparison of the size of the zones, total size and size of the
checkpoint.

Figure 9 shows the percentage of each of the zones for the NAS Parallel Bench-
mark BT application, for Classes B, C and D, executed with MPICH. We can
observe the importance of each zone in the size of the checkpoint file. When the
workload is small and the number of processes increases, the DTAPP zone is

4606 B. León et al.

1 3

smaller, so it does not represent the greatest part in the checkpoint size. If the appli-
cation workload is large, this DTAPP zone takes up a significant percentage of the
size. With regard to the size of the LB zone, the percentage is very small compared
to the other two zones. The SHMEM zone becomes more important with MPICH,
when the number of processes increases and the workload is small.

Table 5 shows information about the size of the checkpoint generated during the
execution of the BT application with MPICH and with OpenMPI on a node. Here,
we can observe the behavior of each one of the checkpoint zones when we are run-
ning the application with these MPI implementations and we can compare them.

In the case of results obtained with MPICH, it can be seen that the DTAPP zone
is very variable, and it depends on the workload of application and the number of
processes. In the case of the zone (LB) in all cases, it remained constant, regardless
of the workload and the number of processes used. If we observe in the SHMEM
zone column, it presents differences between the experiments carried out with a
different number of processes. However, for those experiments that used the same
number of processes within the same node, this SHMEM zone remained constant.
For example, for BT.B.64, BT.C.64 and BT.D.64 the size of this zone is 534 MiB.
As we comment on the model for estimating the size of shared memory within a
node, SHMEM is independent of the workload and dependent on the number of pro-
cesses in the same node.

When comparing the information obtained from the size of the zones that make
up the BT application checkpoint between MPICH and OpenMPI, we can see that
the size of the DTAPP zone is similar when we use the same workload and the same
number of processes. Regarding the size of the LB zone, its result was constant with
OpenMPI and very similar to that obtained with MPICH. With respect to the size of
the SHMEM zone with OpenMPI, its value remained approximately 90 MiB in all
cases, with negligible variability. Otherwise, with MPICH, the SHMEM zone was
increasing in size as the number of processes within a node increased. Therefore, the
difference in the size of the checkpoint files represented in these two tables is caused
by the SHMEM zone. This is due to the fact that each MPI implementation handles

Fig. 9 Percentage of zone sizes that integrate the checkpoint file of the BT app, executed with MPICH
(AFS-1)

4607

1 3

Analysis of parallel application checkpoint storage for system…

it differently, which affects the size of the checkpoint and therefore the amount of
information that must be transferred and stored.

Observing the growth of the size of each zone that makes up the checkpoint exe-
cuted with MPICH, we consider it pertinent to analyze it with other different appli-
cations. Table 6 shows the results obtained with respect to the size of the checkpoint
files, for other NAS applications, such as SP, LU and CG, Class B, as well as for the
Lulesh 2.0 app.

The size of the checkpoint file zones has the same behavior as the BT app, in
which the zone corresponding to the data depends on the application and the num-
ber of processes used. The library zone has very constant sizes, and the zone of
the shared memory created by the communication between the processes within the
same node varies according to the number of processes used within the node. Due
to the way of handling the memory shared by MPICH, we will study its influence in
greater detail on the application with fault tolerance in the following sections.

5.3.2 Influence of the compression of the checkpoint files

An element that could influence the size and storage time of the checkpoint is
the storage mode, such as compressed (gzip) or uncompressed (non-gzip).
By default, DMTCP uses gzip to compress the checkpoint images. In [37], the

Table 5 Size of the zones that integrate the checkpoint file of the BT app, executed with MPICH and
OpenMPI (AFS-1)

App Zone size (MiB) Zone size (MiB)

MPI: MPICH MPI: OpenMPI

File DT LB SH File DT LB SH

APP MEM APP MEM

size size

(MiB) (MiB)

BT.B.4 157.51 109.94 2.45 42.45 206.00 111.49 2.73 91.14
BT.B.36 270.12 17.49 2.44 249.31 114.00 18.61 2.75 91.10
BT.B.64 548.35 9.911 2.45 534.08 114.00 11.23 2.72 99.32
BT.C.16 220.49 112.09 2.45 105.01 207.51 113.89 2.73 90.10
BT.C.25 242.84 75.91 2.45 163.57 172.36 77.70 2.75 91.08
BT.C.36 309.83 57.61 2.45 248.91 154.09 59.50 2.73 91.10
BT.C.49 416.49 43.95 2.45 369.27 139.65 46.08 2.72 90.10
BT.C.64 572.27 35.02 2.45 534.46 137.79 37.14 2.73 97.30
BT.D.16 1725.15 1626.72 2.45 105.01 1712.15 1628.48 2.66 90.17
BT.D.25 1205.82 1042.88 2.45 163.62 1134.27 1044.66 2.73 90.10
BT.D.36 1007.16 756.92 2.45 248.97 851.47 758.85 2.72 90.11
BT.D.49 932.09 561.09 2.45 369.58 656.64 563.04 2.73 90.11
BT.D.64 982.73 445.39 2.45 534.54 548.25 447.59 2.75 98.27

4608 B. León et al.

1 3

authors indicate that gzip reduces checkpoint traffic substantially, but at a cost to
the CPU. As we saw, compression is a trade-off between the time consumed to do
the compression (Tckpt_m) with the aim of reducing the size and therefore the
storage time (Tstorageckpt). The results in Tables 7 and 8 are displayed after exe-
cuting a compressed and an uncompressed checkpoint of the BT Class D app with
a different number of processes (P) within the same node (1N). Each execution
of each application was carried out ten times for each experiment. The average of
the times obtained is shown in executions with MPICH and with OpenMPI.

Table 6 Size of the zones that
make up the checkpoint file
SP, LU, CG and Lulesh app,
executed with MPICH (AFS-1)

Checkpoint Zone size (MiB)

MPI: MPICH

(No-Gzip) Size Total

App (MiB) DTAPP LB SHMEM Size

SP.B.4 139.48 94.30 2.45 42.45 139.20
LU.B.4 93.15 49.55 2.45 41.07 93.06
CG.B.4 157.94 116.59 2.45 40.56 159.60
CG.B.16 140.49 34.62 2.45 103.14 140.21
Lulesh 2.0 (16p) 104.41 5.69 2.45 106.25 114.39
SP.B.25 186.07 19.29 2.45 164.02 185.76
LU.B.25 174.76 10.37 2.45 162.57 175.38
CG.B.32 236.17 18.61 2.45 214.45 235.50
SP.B.36 268.19 16.55 2.45 249.24 268.24
LU.B.36 258.54 7.39 2.45 246.90 256.74

Table 7 Time difference
checkpoint, files generated,
MPI: MPICH, No-Gzip and
Gzip. App: BT.D. AFS-1

N x P Time (s.) App: BT.D, MPI: MPICH

Average time (s.) Average Gstored
(GiB)

No-Gzip Gzip No-Gzip Gzip

1N x 16P Tapp_ft 3354.26 3414.21 26.95 24.12
Lcckpt 194.07 312.27

1N x 25P Tapp_ft 2790.03 3082.74 29.43 23.53
Lcckpt 152.87 297.06

1N x 36P Tapp_ft 2520.03 2801.29 35.40 23.34
Lcckpt 172.44 403.87

1N x 49P Tapp_ft 2124.24 2269.11 44.60 23.73
Lcckpt 178.22 276.92

1N x 64P Tapp_ft 1853.27 1995.05 47.02 24.37
Lcckpt 204.11 324.25

N= Node, P= Processes

4609

1 3

Analysis of parallel application checkpoint storage for system…

In Table 7 and Table 8, we can see size increases as the number of processes
increases, compression decreases in size, compressed size is practically constant.
With few processes, it is not worth compressing, but as the number of processes
increases, compression improves. Furthermore, that in OpenMPI SHMEM zone is
smaller and affects the size of the No-Gzip checkpoint.

As for the compression of the files, with this Class D, it was observed that the
coordinated checkpoint latency (Lcckpt) in compressed form increases by more
than 50%, there are even some cases in which it increased by more than 100% and
even by about 200%. When compressing the files, the time of the application with
fault tolerance (Tapp_ft) was not significantly affected in the experiments carried
out with the BT application. The maximum increase in one of the cases studied was
close to 17%, whereas in the remaining cases it was less. This behavior was simi-
lar in MPICH (Table 7) and OpenMPI (Table 8). In Tables 9 and 10, the previous
experiment was repeated but this time with Class C.

In these cases, the compression size percentage is higher than 50% or more. In
respect to Tapp_ft, the action of compressing did not always increase this time as
in the case of Tables 7 and 8, because the sizes between the uncompressed files
were similar to the compressed ones. In the case of Lcckpt from 16 to 36 processes,
no significant difference is observed with MPICH. With OpenMPI, the latency was
very similar in all cases. Therefore, when the workload is small, compression can be
a transparent operation, which does not affect the latency of the coordinated check-
point nor the application time with fault tolerance.

In this paper, we have ensured that the data are similar and we perform a trans-
parent analysis of the application, without the need to have the source code or have
explicit application data. The objective of the work is to be able to give the adminis-
trator clues regardless of the applications that are executed, which is why we make
the observations and monitor.

Table 8 Time difference
checkpoint, files generated,
MPI: OpenMPI, No-Gzip and
Gzip. App: BT.D. AFS-1

N x P Time (s.) App: BT.D, MPI:OpenMPI

Average time (s.) Average Gstored
(GiB)

No-Gzip Gzip No-Gzip Gzip

1N x 16P Tapp_ft 4323.69 3919.99 26.75 24.15
Lcckpt 183.74 283.88

1N x 25P Tapp_ft 2838.62 3165.76 27.50 23.21
Lcckpt 143.06 354.38

1N x 36P Tapp_ft 2499.82 2748.19 29.93 23.90
Lcckpt 145.8 411.96

1N x 49P Tapp_ft 2053.5 2228.96 31.42 24.40
Lcckpt 145.65 294.07

1N x 64P Tapp_ft 1618.56 1870.67 34.26 25.25
Lcckpt 112.79 341.85

N= Node, P= Processes

4610 B. León et al.

1 3

5.3.3 Impact of mapping on checkpoint size

Mapping analysis allows us to see some elements that can reduce the storage size
and time required for the checkpoint. As we show in the previous section in Fig. 9,
the increase in the checkpoint file size was over 50% in half of the cases when we
used MPICH. This is because the mapping (number of processes per node) affects
the shared memory zone in a significant percentage. On the other hand, mapping is
related to congestion:

Table 9 Time difference
checkpoint, files generated
No-Gzip and Gzip. MPI:
MPICH, App: BT.C. AFS-1

N x P Time (s.) App: BT.C, MPI:Mpich

Average time (s.) Average Gstored
(GiB)

No-Gzip Gzip No-Gzip Gzip

1N x 16P Tapp_ft 216.99 200.70 3.44 1.60
Lcckpt 23.86 24.66

1N x 25P Tapp_ft 183.50 174.93 5.92 2.49
Lcckpt 37.09 30.76

1N x 36P Tapp_ft 185.41 200.50 10.89 3.24
Lcckpt 52.73 53.11

1N x 49P Tapp_ft 254.85 163.66 19.92 3.58
Lcckpt 81.55 44.34

1N x 64P Tapp_ft 224.98 167.20 35.76 4.77
Lcckpt 118.02 56.83

N= Node, P= Processes

Table 10 Time difference
checkpoint, files generated
No-Gzip and Gzip. MPI:
OpenMPI, App: BT.C. AFS-1

N x P Time (s.) App: BT.C, MPI:OpenMPI

Average time (s.) Average Gstored
(GiB)

No-Gzip Gzip No-Gzip Gzip

1N x 16P Tapp_ft 200.48 192.71 3.24 1.73
Lcckpt 18.71 26.04

1N x 25P Tapp_ft 159.82 184.37 4.20 2.00
Lcckpt 20.00 24.57

1N x 36P Tapp_ft 160.16 175.7 5.41 2.39
Lcckpt 28.10 42.45

1N x 49P Tapp_ft 123.91 145.64 6.68 2.73
Lcckpt 22.94 37.70

1N x 64P Tapp_ft 145.81 146.43 8.61 3.31
Lcckpt 56.17 49.31

N= Node, P= Processes

4611

1 3

Analysis of parallel application checkpoint storage for system…

– On disk if stored in the same node.
– On the network output if stored on a server or another node.

Using more than one node to distribute the processes when executing the application
with the checkpoint can impact the storage time (Tstorageckpt) of the checkpoint,
decreasing it. The shared memory zone may decrease, which would make the total
size of the checkpoint also decrease, as fewer processes are communicating within
the node. This aspect can also influence the coordination time (Tcoordckpt) and
transfer of the checkpoint, since there will be less congestion on the node. Therefore,
the latency of the coordinated checkpoint (Lcckpt) will also decrease. In order to
verify this, we have carried out two experiments: the first one with the BT, SP and
LU Class B applications and the second one with the same applications but with
Class D, with one, two, three and four nodes.

In Fig. 10, we can see that the Gstored decreased as we used more nodes, as well
as there being a decrease in the latency of the coordinated checkpoint. The worst
case observed in terms of size and time was when we used a single node. In the
execution of the three applications with fault tolerance, it can be observed that for
the rest of the executions with more nodes, the size and time were reduced by half
or less. This is because, if we run the application with fault tolerance with all the
processes to be used within a single node, this will generate more communications
within the node, which will cause the size of the SHMEM zone to be larger in each
of the checkpoint files and therefore the amount of storage space required will be
greater. There may also be disk congestion because the checkpoint’s files are being
stored on the same node. In Fig. 11, we can see the results of the experiment per-
formed with the same previous applications, but Class D is observed.

In the case of Fig. 11, the total storage size (Tstored) was also decreasing as
the number of nodes increased, the same as in the previous experiment with Class
B. With respect to the Lcckpt, this also decreased when several nodes were used.
In the case of the BT, SP and LU applications with more nodes, the time was

Fig. 10 Comparison of the mapping in applications Class B execution with fault tolerance in several
nodes (AFS-1)

4612 B. León et al.

1 3

shorter in all cases where four nodes were used. In this way, we can infer that
mapping is an element that impacts the latency of the coordinated checkpoint,
because depending on the configuration we use, we can decrease or lengthen the
time and size of the checkpoint. Therefore, if there are enough resources, we can
distribute the processes executed in several nodes, according to the way that may
be more suitable, in order to reduce the overhead generated in terms of sizes and
storage time of the checkpoint.

Figures 10 and 11 show the time difference ((Lcckpt)) when changing the map-
ping under different conditions to three different applications. Mapping is one of
the elements studied in this paper that influence the size and latency of the check-
point. Likewise, in addition to mapping, Fig. 12 also shows the influence of the
file system on the checkpoint latency. Based on this information and depending
on the resources that the computer center has, an administrator can make the nec-
essary decisions to configure their applications with checkpoint.

Fig. 11 Comparison of the mapping in applications using Class D execution with fault tolerance in sev-
eral nodes (AFS-1)

Fig. 12 Impact of the file system on the size and time of the checkpoint (AFS-1, AFS-2, AFS-3)

4613

1 3

Analysis of parallel application checkpoint storage for system…

5.3.4 Impact of the file system on the checkpoint behavior

To observe the impact of the file system on the size and time of the checkpoint,
experiments have been performed with third extended file system (ext3), parallel
virtual file system (PVFS) and network file system (NFS), and the results are shown
in the graphs in Fig. 12. In the first graph, a comparison is made between the total
size of the stored checkpoint files (Tstored) and in the second graph the latency of
the coordinated checkpoint (Lcckpt) of BT Class B runs, with 4, 16 and 25 pro-
cesses, with the following mapping (Mp):

– Mp1 (4N x 4P) = 4 processes in 4 nodes (1pn, 1pn, 1pn, 1pn).
– Mp2 (1N x 4P) = 4 processes in 1 node (4 pn).
– Mp3 (2N x 4P) = 4 processes in 2 nodes (2 pn, 2pn).
– Mp4 (4N x 16P) = 16 processes in 4 nodes (4pn, 4pn, 4pn, 4pn).
– Mp5 (7N x 25P) = 25 processes in 7 nodes (4pn, 4pn, 4pn, 4pn, 4pn, 4pn, 1pn).

When comparing the results obtained between the different types of file system,
the total size of the files remains the same, as we expected there is no variation.
Regarding the time, if there is variation, the shortest times were obtained when run-
ning with ext3 and the longest times with NFS. Therefore, the file systems used do
not impact the size of the checkpoint, but over time, ext3, being local, works faster
than the other two file systems. However, if there is a failure it will affect the repair
time, so it is interesting to analyze the option of parallel file systems.

5.4 Estimate with limited resources the size of the checkpoint data zone

Up to now, we have introduced the three fundamental zones that are part of the
checkpoint, next we want to estimate/predict how the size of the data zone will vary
depending on the number of processes. The next step would be to predict the over-
head of the checkpoint, without the need to run the application, when we vary the
number of processes.

The latency of an application checkpoint (Lcckpt) with few resources could be
extrapolated to the same application with a greater number of processes. As we have
seen in the previous section, the size depends on the application and the number of
processes (Eq. 1), and the time depends on the size of the checkpoint and the charac-
teristics of the system used (example: file system (PVFS, NFS, ext3), storage device
(memory, solid-state drives (SSD), hard disk drive (HDD)), local or remote storage,
among others. What happens in a node with P processes and a small application
workload is similar to what happens in N nodes with P processes and a larger appli-
cation workload, but a similar workload per process. Given a data zone size, we can
analyze what happens in a node.

In our case, we have decided to make this comparison between Classes B and
C of the BT, SP and LU applications and increase the number of cores and nodes.
Each node is equipped with local storage, and hence, this allows it to have a high I/O

4614 B. León et al.

1 3

bandwidth capability to create a scalable checkpoint/restart mechanism. Table 11
shows how we have distributed the nodes of the processes with Class C so that they
are equivalent to those executed with Class B on a single node.

In the graphs that appear in Fig. 13, we can see that the size of the data zone
between Classes B and C of the BT, SP and LU applications following the mapping

Fig. 13 Comparison of the size of the data zone and the Lcckpt between Classes B and C of BT, SP and
LU applications (AFS-1)

Table 11 Distribution of nodes
and processes (AFS-1)

Class B Class C

No. of pro-
cesses

Mapping No. of processes Mapping

4 4P × 1N 16 4P × 4N
9 9P × 1N 36 9P × 4N
16 16P × 1N 64 16P × 4N
25 25P × 1N 100 25P × 4N
36 36P × 1N 144 36P × 4N
49 49P × 1N 196 49P × 4N

4615

1 3

Analysis of parallel application checkpoint storage for system…

of Table 11 is similar. This means that the volume of information stored in each
node is similar. Therefore, as it is working in parallel, the time could also be related.
Hence, we can observe in the graphs that the latency of the checkpoint is also equiv-
alent between both classes. In the cases observed, it does not increase more than
20%. While fewer processes are used with Class C, time is more similar to Class B,
and when we increase the number of processes for Class C, time increases a little
more due to the communications that must be made between more processes and
nodes, but this time the difference is not significant.

The size by process follows the same behavior between both classes, changing
the number of processes but keeping the number of processes per node. In this way,
we could say that since the interactions between the cores within the same node are
similar, between the Classes B and C of the applications studied, the behavior in
terms of the size of the data zone and the storage time can be extrapolated. There-
fore, we can analyze with limited resources to predict what would happen with a
greater number of resources.

6 Conclusions and future work

For all system administrators, it is vital to know the tools that can be used to man-
age resources as well as possible. Therefore, in this document, a thorough study has
been carried out on the scalability that an application with fault tolerance may have,
which depends on the MPI implementation used, the compression or non-compres-
sion of the checkpoint files, the mapping and number of processes used, all of which
are elements that can directly impact the size of the checkpoint files and therefore
the scalability of the application. From this hypothesis, we have carried out a sys-
tematic study of the checkpoint structure, in terms of the zones that comprise it and
their sizes in order to propose a methodology that will help predict the behavior of
the checkpoint size.

If the checkpoint size is known in advance, it can better manage its operation in
terms of the configuration it should have, since it can know the size of the data of
each application it uses and it can establish fault tolerance. It will also know the
size of the zone that depends on the shared memory, and for this, a model has been
designed that shows the logical form of its operation. Knowing all this information,
a system administrator will be able to make decisions in a safer way about what
should be done with the number of processes used and the number of appropri-
ate nodes, adjusting the process mapping. It is intended that the methodology and
a model presented in this document be useful for improving the administration of
HPC systems in the configuration of fault tolerance. Future work will address the
appropriate configuration of these types of elements and other types of fault toler-
ance strategies to find the best way to manage them and reduce their negative impact
on the scalability of the application.

Acknowledgements This publication was supported under contract TIN2017-84875-P, funded by the
Agencia Estatal de Investigación (AEI), Spain, and the Fondo Europeo de Desarrollo Regional (FEDER)

4616 B. León et al.

1 3

UE and partially funded by a research collaboration agreement with the Fundación Escuelas Universi-
tarias Gimbernat (EUG).

References

 1. León B, Franco D, Rexachs D, Luque E (2018) Characterization of I/O Patterns generated by Fault Toler-
ance in HPC environments. International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA) vol 18, p 28

 2. Lemarinier Bouteiller, Capello Krawezik (2003) Coordinated checkpoint versus message log for fault tol-
erant MPI, in 2003 Proceedings IEEE International Conference on Cluster Computing, pp. 242–250.
https ://doi.org/10.1109/CLUST R.2003.12533 21

 3. Shahzad F, Thies J, Kreutzer M, Zeiser T, Hager G, Wellein G (2019) CRAFT: a library for easier applica-
tion-level checkpoint/restart and automatic fault tolerance. IEEE Trans Parallel Distrib Syst 30(3):501.
https ://doi.org/10.1109/TPDS.2018.28667 94

 4. Coti C, Herault T, Lemarinier P, Pilard L, Rezmerita A, Rodriguez E, Cappello F (2006) Blocking vs.
Non-Blocking Coordinated Checkpointing for Large-Scale Fault Tolerant MPI, In: SC ’06: Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 18–18. https ://doi.org/10.1109/
SC.2006.15

 5. Moríñigo JA, Rodríguez-Pascual M, Mayo-García R (2019) On the modelling of optimal coordinated
checkpoint period in supercomputers. J Supercomput 75(2):930

 6. Guermouche A, Ropars T, Brunet E, Snir M, Cappello F (2011) Uncoordinated Checkpointing Without
Domino Effect for Send-Deterministic MPI Applications, in 2011 IEEE International Parallel Distrib-
uted Processing Symposium, pp. 989–1000. https ://doi.org/10.1109/IPDPS .2011.95

 7. Kumar M, Choudhary A, Kumar V (2014) A comparison between different checkpoint schemes with
advantages and disadvantages. Int J Comput Appl Nat Semin Recent Adv Wireless Netw Commun 3:36

 8. Kovács J, Kacsuk P, Januszewski R, Jankowski G (2010) Application and middleware transparent check-
pointing with TCKPT on ClusterGrids. Future Gener Comput Syst 26(3):498

 9. Castro-León M, Meyer H, Rexachs D, Luque E (2015) Fault tolerance at system level based on RADIC
architecture. Journal of Parallel and Distributed Computing 86:98. https ://doi.org/10.1016/j.
jpdc.2015.08.005. http://www.scien cedir ect.com/scien ce/artic le/pii/S0743 73151 50014 34

 10. Subasi O, Zyulkyarov F, Unsal O, Labarta J (2015) Marriage Between Coordinated and Uncoordinated
Checkpointing for the Exascale Era, in 2015 IEEE 17th International Conference on High Performance
Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, pp.
470–478

 11. Takizawa H, Amrizal MA, Komatsu K, Egawa R (2017) An Application-Level Incremental Check-
pointing Mechanism with Automatic Parameter Tuning, In: 2017 Fifth International Symposium on
Computing and Networking (CANDAR), pp. 389–394. https ://doi.org/10.1109/CANDA R.2017.96

 12. Li G, Pattabiraman K, Cher C, Bose P (2015) Experience report: An application-specific checkpoint-
ing technique for minimizing checkpoint corruption, In: 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), pp. 141–152

 13. Ansel J, Arya K, Cooperman G (2009) DMTCP: Transparent checkpointing for cluster computations
and the desktop, In: 2009 IEEE International Symposium on Parallel Distributed Processing, pp. 1–12.
https ://doi.org/10.1109/IPDPS .2009.51610 63

 14. Kongmunvattana A, Tanchatchawal S, Tzeng Nian-Feng (2000) Coherence-based coordinated check-
pointing for software distributed shared memory systems, In: Proceedings 20th IEEE International
Conference on Distributed Computing Systems, pp. 556–563

 15. Cores I, Rodríguez G, González P, Osorio RR et al (2013) Improving scalability of application-level
checkpoint-recovery by reducing checkpoint sizes. New Gener Comput 31(3):163

 16. Kongmunvattana A (2015) Reducing checkpoint creation overhead using data similarity. Int J Comput
4(4):199

 17. Rusu C, Grecu C, Anghel L (2008) Improving the scalability of checkpoint recovery for networks-
on-chip, in 2008 IEEE International Symposium on Circuits and Systems, pp. 2793–2796. https ://doi.
org/10.1109/ISCAS .2008.45420 37

 18. Bouabache F, Herault T, Fedak G, Cappello F (2008) Hierarchical Replication Techniques to Ensure
Checkpoint Storage Reliability in Grid Environment, In: 2008 Eighth IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGRID), pp. 475–483. https ://doi.org/10.1109/CCGRI
D.2008.95

https://doi.org/10.1109/CLUSTR.2003.1253321
https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1109/SC.2006.15
https://doi.org/10.1109/SC.2006.15
https://doi.org/10.1109/IPDPS.2011.95
https://doi.org/10.1016/j.jpdc.2015.08.005
https://doi.org/10.1016/j.jpdc.2015.08.005
http://www.sciencedirect.com/science/article/pii/S0743731515001434
https://doi.org/10.1109/CANDAR.2017.96
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1109/ISCAS.2008.4542037
https://doi.org/10.1109/ISCAS.2008.4542037
https://doi.org/10.1109/CCGRID.2008.95
https://doi.org/10.1109/CCGRID.2008.95

4617

1 3

Analysis of parallel application checkpoint storage for system…

 19. Al-Kiswany S, Ripeanu M, Vazhkudai SS, Gharaibeh A (2008) stdchk: A Checkpoint Storage System
for Desktop Grid Computing, In: 2008 The 28th International Conference on Distributed Computing
Systems, pp. 613–624. https ://doi.org/10.1109/ICDCS .2008.19

 20. Shahzad F, Wittmann M, Zeiser T, Hager G, Wellein G, Evaluation An, of Different I, O Techniques
for Checkpoint, Restart, in, (2013) IEEE International Symposium on Parallel Distributed Processing.
Workshops and Phd Forum 2013:1708–1716. https ://doi.org/10.1109/IPDPS W.2013.145

 21. Wan L, Cao Q, Wang F, Oral S (2017) Optimizing checkpoint data placement with guaranteed burst
buffer endurance in large-scale hierarchical storage systems. Journal of Parallel and Distributed Com-
puting 100:16. https ://doi.org/10.1016/j.jpdc.2016.10.002. http://www.scien cedir ect.com/scien ce/artic
le/pii/S0743 73151 63011 98

 22. Parasyris K, Keller K, Bautista-Gomez L, Unsal O, Support Checkpoint Restart, for Heterogeneous
HPC Applications, in, (2020) 20th IEEE/ACM International Symposium on Cluster. Cloud and Internet
Computing (CCGRID) 2020:242–251

 23. Garg R, Mohan A, Sullivan M, Cooperman G (2018) In: 2018 IEEE International Conference on Clus-
ter Computing (CLUSTER), pp. 302–313

 24. Amrizal A, Hirasawa S, Komatsu K, Takizawa H, Kobayashi H (2012) Improving the scalability of
transparent checkpointing for GPU computing systems, In: TENCON 2012 IEEE Region 10 Confer-
ence (IEEE, 2012), pp. 1–6

 25. Hargrove PH, Duell JC (2006) Berkeley lab checkpoint/restart (blcr) for linux clusters. J Phys Conf Ser
46:494

 26. Ferreira KB, Riesen R, Bridges P, Arnold D, Brightwell R (2014) Accelerating incremental checkpoint-
ing for extreme-scale computing. Future Gener Comput Syst 30:66

 27. Muhammad Abrar Akber S, Chen H, Wang Y, Jin H (2018) Minimizing Overheads of Checkpoints in
Distributed Stream Processing Systems, In: 2018 IEEE 7th International Conference on Cloud Net-
working (CloudNet), pp. 1–4. https ://doi.org/10.1109/Cloud Net.2018.85495 48

 28. Dauwe D, Pasricha S, Maciejewski AA, Siegel HJ (2018) An Analysis of Multilevel Checkpoint Per-
formance Models, In: 2018 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 783–792. https ://doi.org/10.1109/IPDPS W.2018.00125

 29. León B, Franco D, Rexachs D, Luque E (2020) Analysis of Checkpoint I/O Behavior. In: Krzhizh-
anovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J (eds) Computa-
tional Science - ICCS 2020. Springer International Publishing, Cham, pp 191–205

 30. MPICH (2000) Using the Hydra Process Manager, in https ://wiki.mpich .org/mpich /index .php/Using
_the_Hydra _Proce ss_Manag e

 31. Vaidya NH (1997) Impact of checkpoint latency on overhead ratio of a checkpointing scheme. IEEE
Trans Comput 46(8):942

 32. Panadero J, Wong A, Rexachs D, Luque E (2018) P3S: a methodology to analyze and predict applica-
tion scalability. IEEE Trans Parallel Distrib Syst 29(3):642. https ://doi.org/10.1109/TPDS.2017.27631
48

 33. Goodell D, Gropp W, Zhao X, Thakur R (2011) Scalable memory use in MPI: a case study with
MPICH2. European MPI users’ group meeting. Springer, Berlin, pp 140–149

 34. Yoshinaga K, Tsujita Y, Hori A, Sato M, Namiki M, Ishikawa Y (2013) A Delegation Mechanism on
Many-Core Oriented Hybrid Parallel Computers for Scalability of Communicators and Communica-
tions in MPI, In: 2013 21st Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, pp. 249–253

 35. Bailey DH, Barszcz E, Barton JT, Browning DS, Carter RL, Dagum L, Fatoohi RA, Frederickson PO,
Lasinski TA, Schreiber RS et al (1991) The NAS parallel benchmarks. Int J Supercomput Appl 5(3):63

 36. Karlin I, Keasler J, Neely J (2013) LULESH 2.0 Updates and Changes, In: 2009 IEEE International
Symposium on Parallel Distributed Processing, vol. United States, vol. United States

 37. Hou KY, Shin KG, Turner Y, Singhal S (2013) Tradeoffs in Compressing Virtual Machine Check-
points, In: Proceedings of the 7th International Workshop on Virtualization Technologies in Distributed
Computing (Association for Computing Machinery, New York, NY, USA, 2013), VTDC ’13, p. 41–48.
https ://doi.org/10.1145/24658 29.24658 34

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICDCS.2008.19
https://doi.org/10.1109/IPDPSW.2013.145
https://doi.org/10.1016/j.jpdc.2016.10.002
http://www.sciencedirect.com/science/article/pii/S0743731516301198
http://www.sciencedirect.com/science/article/pii/S0743731516301198
https://doi.org/10.1109/CloudNet.2018.8549548
https://doi.org/10.1109/IPDPSW.2018.00125
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manage
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manage
https://doi.org/10.1109/TPDS.2017.2763148
https://doi.org/10.1109/TPDS.2017.2763148
https://doi.org/10.1145/2465829.2465834

	Analysis of parallel application checkpoint storage for system configuration
	Abstract
	1 Introduction
	2 Background and related work
	2.1 The coordination method used
	2.2 The checkpoint storage mode
	2.3 Checkpoint in heterogeneous environments
	2.4 Checkpoint interval

	3 Method description
	3.1 Characterization of checkpoint files
	3.1.1 Checkpoint size
	3.1.2 Checkpoint time

	4 Methodology for estimating the size of the checkpoint
	4.1 Estimation of the values generated by zone in the checkpoint files
	4.2 Methodology
	4.3 Validation of the methodology
	4.4 Model for estimating the size of shared memory within a node.

	5 Experimental results and discussion
	5.1 Experimentation environment
	5.2 The scalability behavior of an application with fault tolerance
	5.3 Aspects analyzed that affect size
	5.3.1 Impact of the MPI implementation used on the size of the zones that make up the checkpoint
	5.3.2 Influence of the compression of the checkpoint files
	5.3.3 Impact of mapping on checkpoint size
	5.3.4 Impact of the file system on the checkpoint behavior

	5.4 Estimate with limited resources the size of the checkpoint data zone

	6 Conclusions and future work
	Acknowledgements
	References

