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Abstract
The exponential growth of computer networks and the adoption of new network-
based technologies have made computer security an important challenge. With the 
emergence of new internet-connected devices, the attack surface is increasing for 
cyber intruders. Many intrusion detection systems attempt to detect known attacks 
using signatures in network traffic. In recent years, researchers used several machine 
learning techniques to detect network attacks without relying on these signatures. 
These techniques generally suffer from a high false-positive rate which is not accept-
able for an industry-ready intrusion detection product. In this paper, we propose a 
multi-architectural modular deep neural network model to decrease the false-positive 
rate of anomaly-based intrusion detection systems. Our model consists of a feed-
forward module, a stack of restricted Boltzmann machine module, and two recurrent 
modules, the output weights of these modules are fed to an aggregator module to 
produce the answer of the model. The experiments are performed using CSE-CIC-
IDS2018 dataset, and final models can be used in an IDS for generating alerts or 
preventing new attacks. The experimental results show improvement in the detection 
of some types of network attacks with accuracy as high as 100% for network-level 
attacks compared to related works.

Keywords Intrusion detection · Artificial neural networks · Cyber security

 * Mahmood Ahmadi 
 m.ahmadi@razi.ac.ir

 Ramin Atefinia 
 ramina@post.com

1 Computer Engineering and Information Technology Department, Razi University, Kermanshah, 
Iran

http://orcid.org/0000-0003-4110-6824
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03410-y&domain=pdf


3572 R. Atefinia, M. Ahmadi 

1 3

1 Introduction

Computer and Information Security is a growing problem. In the past 20 years, 
intrusion techniques as well as security protections have advanced rapidly. 
Although cyberattacks have evolved using new techniques, most organizations 
are still using the old generation of cybersecurity measures. These new attacks 
can bypass the static defense methods being used by today’s organizations. The 
government today holds valuable information on web servers which include sen-
sitive data related to every citizen. This makes web servers a popular target for 
intruders.

An Intrusion Detection System (IDS) is a security software/hardware system that 
alerts administrators when suspicious activity is discovered in networks or comput-
ers. Some systems can also attempt to stop intrusions and block the potential threats; 
these systems are called Intrusion Prevention Systems (IPS), but organizations 
should consider that an IPS can block legitimate activity due to false positives. In 
terms of scope, an IDS can be classified into network-based, host-based, or hybrid 
systems. Host-based IDS (HIDS) analyzes and monitors inside of computers such as 
operating system audit records, application logs, and key system files for suspicious 
activity. Network-based IDS (NIDS) monitors the network for suspicious traffic and 
is deployed in a strategic point or multiple points in the network [25, 27]. An IDS 
that can detect attacks from host and network sources is using the hybrid approach.

In terms of detection method, an IDS can be classified into signature-based or 
misuse detection and anomaly-based methods. The signature-based method origi-
nates from anti-virus software that can detect patterns known as signatures. This 
type of detection has high accuracy and low false-positive rate for already rec-
ognized attacks, but when no pattern is available, it is difficult to detect the new 
attacks. The anomaly-based method tries to detect unknown attacks by using tech-
niques such as machine learning to create a model of normal and anomaly or a class 
of anomalous activities and compare the new traffic pattern against the model. The 
problem of this approach is a higher false-positive rate and more time needed to 
detect anomalies. Based on recent published academic works, anomaly-based intru-
sion detection shows more promising results in detecting network attacks compared 
to host-based attacks. In the past two decades, researchers have used several machine 
learning methods to enhance the performance and accuracy of anomaly-based net-
work IDSes. These techniques include pattern tracking, classification, clustering, 
association, outlier detection, regression, and prediction. Examples of these include 
Self-Organising Map (SOM) [14, 29], K-Nearest Neighbor (KNN) [4], Decision 
Tree [19, 28], support vector machine (SVM) [1, 30], etc. The main weakness of 
nearest-neighbor-based techniques is that if normal traffic data do not have close 
enough neighbors or attack traffic do not have close enough neighbors, the KNN 
technique cannot properly label the traffic. Also computing the distance of each item 
might require complex computation. The clustering techniques might not perform 
well in small datasets, and dynamic updating of attack profiles might require a high 
amount of time. The statistical techniques also depend on some assumptions about 
the generation of data in a particular distribution.
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Over last few years, the use of neural networks and deep learning methods for 
intrusion detection proved to be very more effective [6]. These networks have 
unique properties that result in a higher detection rate and a low false-positive 
rate. The deep learning strength is the ability of the neural network to perform 
automatic feature selection, but dimensionality reduction techniques like Princi-
pal Component Analysis (PCA) can still be used by common sense. Examples of 
deep learning methods deployed for intrusion detection include autoencoders [31] 
Convolutional Neural Network (CNN) [15, 33, 36], Multilayer Perceptron (MLP) 
[7, 13], Feed-Forward Artificial Neural Network (FNN) [16], Deep Belief Net-
work (DBN) [17], etc. The underfitting vs overfitting problem is usually a chal-
lenge in these methods.

In the traditional machine learning approach to intrusion detection, we need to 
build entities and make representations of data; therefore, too much feature engi-
neering is needed in these approaches. Useful features of network traffic data always 
need to be represented in these techniques [24]. Deep Learning algorithms with the 
ability of automated extraction of very complex features can overcome these chal-
lenges. In traditional Machine learning techniques, a domain expert should identify 
the applied features to reduce the complexity and make patterns visible to the algo-
rithm. Deep Learning algorithms can eliminate the need for domain expertise and 
save more time. In determining the success of an IDS method, reducing the num-
ber of false-positives is the main factor. If we develop a model with higher accu-
racy, a smaller number of unnecessary generated alerts need to be suppressed in the 
deployed system and less manual confirmation is needed to verify their legitimacy. 
This issue even exists for the current signature-based IDS technology but the num-
ber of false-positives is currently higher in anomaly-based methods. By disabling 
some rules in a signature-based IDS, we can reduce false alarm rates and have a 
more accurate system. In this work, we have reduced the false-positive rate for 
network-level attacks by using a modular architecture. A better architecture of the 
model can result in a lower false-positive rate and narrow the gap between anomaly-
based and signature-based systems.

In this paper, we focus on analyzing features extracted from network attacks on 
vulnerable systems using different network and web attack tools; we construct a new 
bio-inspired modular deep neural network architecture using a feed-forward mod-
ule, restricted Boltzmann machines (SRBM) module, RNN with long short-term 
memory (LSTM) units [12] and RNN with gated recurrent units (GRU) [5]. The 
main advantages of this method are fault tolerance, lower false positive, functional 
specialization, scalability, and extendibility. The results of our work show that the 
accuracy for some type of network-level attacks can be as high as 100%.

The main contributions of this paper are in the following.

• Proposal of a novel modular deep neural network model, with hyperparameter 
optimization for the detection of network attacks.

• Use of more efficient techniques such as batch normalization in the feed-forward 
module instead of dropout to maximum benefit from the batch norm.

• The use of an efficient aggregator module to reduce the variance of a single neu-
ral network model.
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The rest of the paper is organized as follows. In Sect. 2 of this paper, we review sev-
eral related approaches for the identification of web attacks and detection of network 
intrusion. In Sect. 3, we describe modular neural networks. In Sect. 4, we describe 
our proposed approach and describe our dataset, and in Sect. 5, experimental results 
are presented. Finally Sect. 6 explains the conclusion of the paper.

2  Related work

The network traffic generally consists of legitimate activity with only a few attack 
attempts. This makes network anomaly detection an imbalanced classification task 
and requires up to date datasets with realistic scenarios. In this section, recent works 
on two realistic datasets, namely CIC-IDS-2017 and CSE-CIC-IDS2018, are briefly 
discussed.

In [35], they suggested a two-level anomalous activity detection model in order to 
detect intrusions in the Internet of Things networks. The level-1 model categorizes 
the network flow as normal or anomaly and operates at the network layer. The net-
work flow is then forwarded to the level-2 model to determine which category the 
detected anomaly belongs to. They used the decision tree classifier for the level-1 
model. They showed that a binary classification can achieve 100% Precision for 
CICIDS2017 dataset while the performance measures are lower than determining 
the class of attack, especially web attacks.

In [32], they used four variable selection algorithms, namely Classifier Subset 
Evaluator using Naive Bayes, CfsSubset Attribute Evaluator, Classifier Subset Eval-
uator using J48, and Classifier Subset Evaluator combined with Decision Tree using 
weka data mining tool and applied OneR and REPTree to CICIDS2017 dataset. The 
results show that different combinations of variable selection algorithms along with 
the REPTree algorithm can provide the best performance for each different type of 
attack. Thus, a single feature selection technique cannot provide the best result for 
all types of attacks.

In [3], they used state-of-the-art deep learning frameworks such as TensorFlow, 
Theano, fast.ai, and PyTorch to detect network intrusions in CSE-CIC-IDS2018 
dataset. The results of their work show that the fast.ai library that sits on top of 
PyTorch provides the best results with accuracy as high as about 99% with low false 
rates in the detection and also classification of different intrusion types.

In research at [37], they used six supervised machine learning classification mod-
els to detect Zero-Day intrusions. They implemented algorithms using sklearn and 
numpy library. By using data laundry techniques such as deleting noisy features, 
formatting data into standard datatype, replacing NaN and Infinity numbers on 
CSE-CIC-IDS2018 dataset they achieved high accuracy results; however, the result 
of their work cannot be compared with others since they reduced the labels to two 
classes and the method they used to change the dataset is unknown.

In [18], they used six algorithms, namely Linear Discriminant Analysis, K Near-
est Neighbor, Gradient Boosting, Adaboost, Decision Tree, and Random Forest to 
carry out a practical IDS using CSE-CIC-IDS2018 cybersecurity dataset. They used 
a synthetic data generation model known as SMOTE to reduce the imbalance ratio. 
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This approach is shown to enhance the detection rate for intrusions with few sam-
ples in the CSE-CIC-IDS2018 dataset.

In [22], they used LSTM to make a model with good performance that can pro-
cess time-correlated sequences. They used the CSE-CIC-IDS2018 dataset to reflect 
the real attributes of today’s network traffic. They also used an over-sampling algo-
rithm known as SMOTE to solve the class-imbalance issue. In their experimental 
results, they achieved 96.2% overall accuracy by combining two techniques.

In [26], they used the broad learning system (BLS) to detect denial of service 
(DoS) attack in communication networks. The effectiveness of their approach is 
tested using subsets of CICIDS2017 and CSE-CIC-IDS2018 dataset that both con-
tain DoS attacks. The developed BLS and its extensions are evaluated as alternative 
supervised learning algorithms for the detection of network anomalies.

In [21], they used CICIDS2017, CIC-DoS and CSE-CIC-IDS2018 and a cus-
tomized dataset to detect DoS and DDoS Attack Using Machine Learning. Their 
approach has the advantage of early detection of a variety of volumetric attacks 
including UDP flood, TCP flood and HTTP flood, etc. Their smart detection system 
benefits from the Random Forest Tree algorithm to classify and label network traf-
fic based on samples. The samples are taken directly from network devices by the 
sFlow protocol. Based on the Smart Detection approach results, the Detection Rate 
(DR) is higher than 93% with False Alarm Rate (FAR) as low as 1%.

In a patent at [20], they proposed a hierarchical neural network to monitor the 
network functions. In this method, we need to build a set of primary neural networks 
that can receive inputs associated with respective ones of the network functions. 
Each primary neural network has an output, and tier 1 neural networks are oper-
atively connected to consolidate selected outputs of the primary neural networks. 
Detection of an anomaly is accomplished by monitoring chosen areas of network 
behavior, such as protocols, that are anticipated in advance. Joining outputs of neu-
ral networks within the hierarchical network yields adequate anomaly detection.

The main advantage of our work compared to similar works is lower optimiza-
tions needed for parameters. That is because our approach follows a bio-inspired 
architecture that reduces false positives without much hyperparameter optimization 
or tuning of a single neural network. So the number of trials and errors in the train-
ing phase is reduced.

3  Modular neural networks

Modular Neural networks (MNNs) use the modularity principle. They deploy dif-
ferent techniques to achieve modularity. By using these networks, it is possible to 
make isolated subproblems that can be solved individually [2]. Loose coupling in 
MMNs allows interconnecting the components of a big neural network with the least 
practicable dependability which results in fault tolerance. This type of design allows 
scaling the model without redesigning the entire network. The recent research on the 
artificial neural network tries to inspire from the biological basis of these networks 
and emulate the modularization and segmentation in the brain. The human brain, for 
example, can divide the complex visual perception task into many subtasks [8].
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The modularity can be used to lower the number of parameters that need to be 
optimized and also have a good generalization capability. Figure 1 shows a Highly-
Clustered Non-Regular module (HCNR). In this kind of topology, we have dense 
within-module connections and the connectivity between different modules is 
sparse. The connections are non-regular which means the topology cannot be 
explained by a template containing repeating structures.

Figure 2 shows a multi-architectural topology. This kind of topology is composed 
of some full network architectures which are integrated using a simple algorithm 
at the end. Each module has its separate output and different architectures could be 
homogeneous or heterogeneous. The difference between modules could be limited 
to an implementation scheme or only the type of activation functions.

Figure 3 shows the repeated block topologies. In this type of topologies, modu-
lar neural networks are structured from repeated blocks connected in a certain way. 
The blocks can have slight differences but the general blueprint is the same. Fig-
ure 3a shows a multi-path topology which is neural networks with semi-independ-
ent subnetworks that connect the inputs to outputs. These networks are inspired by 
the microcircuitry of the retina. Figure 3b shows a modular node topology which 
is a traditional feedforward neural network but each node is replaced by a module 
with multiple neurons. This topology has the advantage of replacing a single activa-
tion function that depends on only one weight vector, with a collection of functions 
depending on multiple vectors. Figure 3c depicts a sequential topology. In sequential 
topology, similar modules are connected in series. The idea of this topology is the 
same as increasing hidden layers in neural networks and building deep neural net-
works. Figure 3d demonstrates a recursive network with nested levels of modules. 
Each module is defined by the earlier module in the recursion. These networks can 
be specifically targeted for recursive problems.

Cluster/Module

Fig. 1  Highly clustered non-regular (HCNR)
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The topology of a network suggests that how different nodes and modules in the 
whole network connect with each other. There is sparse connectivity between mod-
ules. If we want to assign a subtask to each different module, we need functional 
modularity. The human brain also tries to be evolvable and minimize the connection 
cost [34]. For a single neural network, it is very hard and sometimes impossible to 
decipher how the network makes predictions about the problem; that’s because the 
nodes inside a single network are tightly coupled components and the functions can-
not be separated from each other so the modularity can be exploited to create fault 
tolerance.

4  Applying multi‑architectural modular deep neural network 
to network intrusion detection

4.1  Proposed modular deep neural network model

Our proposed modular deep neural network model has a multi-architectural topology 
and is a combination of 4 full architectures integrated with an aggregator module. As 
shown in the abstract of our model in Fig. 4, our model has 4 component networks 
each producing separate outputs. We used a Deep Feed-Forward Module (DFFM), A 
Stacked Restricted Boltzmann Machine Module (SRBMM), and two recurrent mod-
ules one with gated recurrent units (GRUM) and one with long short-term memory 
(LSTMM). As discussed in Sect. 2, these models perform well in the problem of net-
work attack detection. Thus, the prediction of a deep modular network created using 

Integration

Fully functional 
Network

Fig. 2  Multi-architectural topology
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these models will be highly correlated and can find patterns that are harder to predict. 
So the combination of these modules can lead to more accurate results.

As depicted in Fig. 4, each of our modules is using different networks to achieve bet-
ter collective performance. Although our models are different, we can still exploit mod-
ular networks with the same type of modules; that’s because stochastic learning and 
random initialization make each module perform differently. The training time for the 
entire modular architecture is equal to the training time of the slowest module, which in 
our case is the SRBMM module. The structure of each module will be presented in the 
following subsections.

Path

Multi path

Modular 
Node

Modular node

Module/Block

Sequential

Recursive 
Module

Recursive

(a) (b)

(c) (d)

Fig. 3  Repeated blocks
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4.2  Stacked restricted Boltzmann machine module (SRBMM)

RBMs are also called Stochastic Neural Networks because they take a probabilistic 
approach. They are composed of three parts: 

1. One input layer or visible unit
2. One hidden layer or hidden unit
3. Bias unit

RBM can be utilized as a generative model for unlabeled or labeled data. A visuali-
zation of an RBM is depicted in Fig. 5, as depicted in this figure, there is no intra-
layer communication in RBM which is the restriction. At the first node of the hidden 
layer, an input value is multiplied by a weight and added to bias and the result is sent 
to the activation function and then the output is produced [10, 11].

Output

DFFM

GRUM

LSTMM

SRBMM

Aggregator Module

Input

Fig. 4  Proposed modular deep neural network architecture
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The energy of a joint configuration of hidden and visible units is calculated as:

vi and hj are the binary states of visible unit i and hidden unit j, ai ; bj are their biases 
and wij is the weight between them. In order to calculate the contribution of biases 
and the hidden or visible units, the dot product of them is calculated. The probability 
of every possible pair of hidden and visible vector is then calculated using energy 
function in:

In Eq. 2, Z is the partition function and formulated as follows:

The probability that the network assigns to a visible vector is calculated as:

The derivative of the log probability of a training vector with respect to weight is 
calculated as shown in Eq. 5.

Which leads to a very simple rule with � as learning rate:

Geoffrey Hinton proposed a much faster learning procedure in 2002 in which a 
reconstruction is produced by setting each vi to 1:

(1)E(v, h) = −
∑

i

aivi −
∑

j

bjhj −
∑

i,j

vihjwij

(2)p(v, h) =
1

Z
e−E(v,h)

(3)Z =
∑

v,h

e−E(v,h)

(4)p(v) =
1

Z

∑

h

e−E(v,h)

(5)
� log p(v)

�wij

=
⟨

vihj
⟩

data
−
⟨

vihj
⟩

model

(6)Δwij = �(
⟨

vihj
⟩

data
−
⟨

vihj
⟩

model
)

(7)Δwij = �(
⟨

vihj
⟩

data
−
⟨

vihj
⟩

reconstruction
)

Bias

Bias

Bias

Bias

Visible Nodes

Hidden Nodes

Fig. 5  Visualization of an RBM
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This module has the highest training time among all the modules; thus, the overall 
training time of our model is equal to the training time of the SRBMM module.

The value of network traffic features in our used dataset corresponds to ”visible” 
units of the RBM since they can be observed.

The pre-training step involves a stack of RBMs with contrastive divergence algo-
rithm. The extracted features from first complete representation RBM are used for 
training in the next RBM, and finally, back-propagation of errors is performed.

In our case is not possible to use Eq. 2 in our approach. We have to replace binary 
visible units by linear units (with independent Gaussian noise). Gaussian RBM 
assumes there are real-valued visible units between 0 and 1 and so the function then 
becomes:

The purpose of training RBM is to update our weights and biases to maximize the 
likelihood of learning rule by gradient descent. The weights are initialized to small 
random values. These values are chosen from a zero-mean Gaussian with a standard 
deviation of about 0:01. For determining a good number of hidden units, we follow 
Hinton’s approach. Considering the number of labels in our case, 6 layers of RBMs 
are used to get the most satisfying results. A learning rate decay value of 0.9 is used 
which will be multiplied by initial learning rate after each repeat of the training and 
the fine-tuning step is done for 5 epochs.

4.3  Deep feed‑forward module (DFFM)

In a fully connected module, the neurons receive some inputs, perform dot prod-
ucts, and use a nonlinear function such as Sigmoid, Tanh, ReLU, Leaky ReLU, Para-
metric ReLU, or other nonlinear functions. These functions allow models to make 
complex mappings between inputs and outputs of the network. This is important for 
datasets with high dimensionality. Figure  6 depicts a sample FNN. In this figure, 
every neuron use a nonlinear activation function and the last layer will use softmax.

In a forward pass of FNN, a set of operations that transform input to output 
are performed. Activation functions are used for introducing nonlinearity into the 
network and learning more complex operations. The backward pass is used if an 
incorrect output is reached. In backpropagation, error gradients concerning neu-
ron weights and biases are calculated. Cross-entropy loss or log loss can measure 
the performance of the classification model with outputs between 0 and 1. The loss 
function can be a differentiable mathematical expression.

If x ∈ R represents the input to the fully connected layer, yi ∈ R is the i-th output 
from our fully connected layer. yi ∈ R is thus computed as:

The nonlinear � function in our method is a rectifier to stop vanishing gradient 
problem:

(8)E(v, h) =
∑

i

(

vi − ai
)2

2�2
i

−
∑

j

bjhj −
∑

i,j

vi

�i

hjwij

(9)yi = �(w1x1 + w2x2 + ... + wmxm)
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DFFM can be trained much faster than SRBMM. So a deep network with 12 hidden 
layers is used. We use batch normalization with a batch size of 10000 instead of a 
dropout technique to get more accurate results, and the gradient of the full dataset 
will have a stable estimate. The batch size only changes the speed of learning and 
does not affect the quality of learning. To prevent our model from memorizing the 
attacks, early stopping is also used. We use the value of 0.01 as the learning rate; 
choosing a smaller value can lead to longer training time and higher values make the 
training unstable. Adam optimization algorithm which is an extension to stochas-
tic gradient descent is used for updating the network weights, and this algorithm is 
more effective than algorithms like AdaGrad or RMSProp in our scenario. Categori-
cal cross-entropy is used in our multi-class scenario.

4.4  Recurrent modules

Recurrent layers have some loop units which allow them to persist information. In the 
human brain, each concept is understood from previous concepts and we don’t have to 
start thinking from the starting point. The DFFM and SRBMM modules do not have 
this capability. In a recurrent layer, the output from the last stage is fed as input to the 
current stage. Although the recurrent network has these advantages, they still suffer 
from gradient vanishing and exploding problems. The training time of RNN depends 
on the way of implementation, but due to the slow training time of these networks, we 
used 6 hidden layers in these modules.

In RNN, the same weights and biases are provided to all the layers to convert the 
independent activations into dependent activations. The current state can be calculated 
using the below formula.

(10)� = max(0, x)

(11)ht = f (h(t−1), xt)

Fig. 6  Network architecture of 
FNN

Output

Input 

Input 

Input 

Input Layer Hidden Layer Output Layer
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where ht , ht−1 and xt are current, previous and input state, respectively. The formula 
for applying tanh activation function is:

where whh and wxh are weight at recurrent and input neuron, respectively, and the 
formula for calculating the output is:

where Yt is output and Why is the weight at the output layer.
When training an RNN first, a single time step of the input is present to the net-

work. In the next step, the current state is calculated using the current input and 
the previous state. The value of ht will become ht−1 for the next time step. After the 
completion of all needed time steps, the final state is used to calculate the output. 
After the output is generated, it is compared to true output and an error is generated. 
The error can be back-propagated to the network to update the weights.

We use two variants of RNN in our work to make the two GRU and LSTM mod-
ules. Long short-term memory (LSTM) is augmented by forget recurrent gates. This 
system can avoid the vanishing and exploding gradient problem. Figure 7 shows a 
long short-term memory unit.

Gated recurrent units (GRUs) are introduced in 2014 and have fewer parameters 
than LSTM because they do not have an output gate. They use the update gate and 
reset gate to solve the vanishing gradient problem in vanilla RNN. Figure 8 shows a 
Gated recurrent unit.

The reset gate and update gate vectors decide what information must be passed to 
the output. They can keep information that is irrelevant to the prediction.

4.5  Aggregator module

Our aggregator module uses a weighted averaging technique to produce the output 
of the modular network based on 4 inputs. The weighted averaging enables us to 

(12)ht = tanh(Whhht−1 +Wxhxt)

(13)yt = Whyht

Fig. 7  Long short-term memory unit



3584 R. Atefinia, M. Ahmadi 

1 3

weight predictions proportional to the trust we have for our implemented model. 
This method averages out the various errors of the individual modules and relies on 
the following properties of artificial neural networks:

• In any neural network, the bias can be decreased at the expense of increased vari-
ance.

• In a collection of neural networks, the variance can be decreased at no expense to 
bias.

The method for the implementation of the aggregator module is presented in Algo-
rithm 1. In this algorithm, (a) is a set of weights and we can find their optimized 
values using a neural network and each expert is defined as yi and the overall result 
is defined as ȳ . 

 The provided model averaging algorithm is an extension of the simple model 
averaging technique. In this algorithm, we can give a higher weight to the results of 
that particular module proportional to the robustness of that module. The weight (a) 
of a module has a positive value, and the sum of all weights are equal to one. So, the 
weights of a skillful module can contribute more to the results. If we want to use a 
raw average, we can set all ai values equal to some constant value.

Algorithm 1 is implemented using python and the sci-kit-learn library.

4.6  Dataset description

The CSE-CIC-IDS2018 dataset is created by the same organization that created the 
CICIDS2017 dataset. This dataset contains more up to date and number of attacks 
and normal records compared to the CICIDS2017 dataset. The attacks in this data-
set include Brute-force, Heartbleed, Botnet, Denial-of-Service, Distributed Denial-
of-Service, Infiltration of the network from inside, and Web Attacks. The dataset 

Fig. 8  Gated recurrent unit
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is organized per day. In each day, the PCAP files and operating system event logs 
are recorded per machine, and CICFlowMeter-V3 is used to extract more than 80 
network traffic features as a CSV file. CSV files can be loaded easily to a pandas 
data frame and PCAP and Log files can be used to extract new features from traffic. 
Table 1 depicts a list of executed attacks and the duration of each attack.

Table 2 shows some features of this dataset.

4.7  Dataset preprocessing

The first step to work with the CSE-CIC-IDS2018 dataset is to remove socket infor-
mation. To make our predictions unbiased toward certain socket information, it is 
necessary to remove the information such as IP address and port numbers of the 
source hosts but the destination port number can be useful in the detection of some 
type of attacks. Also, the labels in the dataset have string values and it is necessary 
to encode them into numerical values corresponding to each label. Before we start 
feeding our dataset to our neural network, we want the features to be properly scaled 
so that we do not have some features dominating others. The range of 0 and 1 is 
suitable as we have a stack of RBMs module in our model. The rows with missing 
values and the columns with too much missing values are also dropped from the 
dataset.

5  Experimental results

In this section, we discuss the experimental results of applying our model to the 
intrusion detection dataset.

The performance of an IDS is generally calculated using True Positive (TP) or 
Hit, True Negative (TN) or Rejection, False Positive (FP), False Alarm or Type I 
error, and False Negative (FN), miss or Type II error [9]. True Positive (TP) is the 
number of correctly classified attacks. True Negative (TN) is the number of correctly 
classified benign records. False Positive (FP) is the number of incorrectly classified 
benign records. False Negative (FN) is the number of incorrectly classified mali-
cious records. Performance is then evaluated in terms of the following equations:

Recall:

Precision:

Accuracy:

F1 score or F-measure (It considers both the precision and recall to compute the 
score):

(14)(TP∕(TP + FN)

(15)(TP∕(TP + FP)

(16)(TN + TP)∕(TN + TP + FN + FP)
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Some researchers also use the term Detection Rate which is simply 1 minus the 
False Negative Rate. The experiments are performed using intel Xeon CPU with 
4 cores, 2.30GHz clock speed, 46MB cache, and 24GB of RAM. The train and test 
dataset are generated using 20:80 Stratified sampling of each subset. The results are 
compared in terms of accuracy, precision, recall, and F1 score with related compre-
hensive work at [3] (only the same implementations are compared) and in terms of 
train accuracy with best results of similar work at [23]. Table 3 shows the differ-
ent accuracy metrics of our network for CSE-CIC-IDS2018 datasets using the MNN 
approach for different types of network attacks.

The evaluation results include 20:80 stratified sampling of the datasets. The 
results of modular network classification are presented by the 4 most used perfor-
mance measures. As presented in Table  3, we can see improvements in detection 
rate in all attack types except for web attacks compared to related work. One reason 
for this can be improper web attack features in the CSE-CIC-IDS2018 dataset. Most 
extracted features in the CSE-CIC-IDS2018 dataset are related to network proper-
ties, and we need more content features to increase the detection rate in the web 
attacks subset. Thus, the modular architecture cannot improve web attack results. 
The infiltration attacks also can be detected better using signatures in raw traffic. The 
aggregator module can remove some false negatives from Botnet and DoS attack, so 
the performance measures are improved compared to related work.

Figures 9, 10, 11, 12, 13 and 14 depict the confusion matrix for BruteForce, Web, 
Bot, DoS, DDoS and Infiltration, respectively. These figures describe the perfor-
mance of our classification model. The confusion matrix is a performance meas-
urement for our classification problem. It shows different combinations of predicted 
and actual values. For Brute-force attacks, classes 1, 2, and 3 represent Benign, 
FTP-BruteForce and SSH-Bruteforce, respectively, and for Web attacks, classes 1, 
2, 3, and 4 represent Benign, Brute Force-web, Brute Force -XSS and SQL Injec-
tion, respectively. Most instances belong to Benign class so we have an imbalanced 

(17)(2TP)∕(2TP + FP + FN)

Table 2  Example features of CSE-CIC-IDS2018 dataset and description

Feature name Description

fl_dur Flow duration
tot_fw_pk Total packets in the forward direction
tot_bw_pk Total packets in the backward direction
tot_l_fw_pkt Total size of packet in forward direction
fw_pkt_l_max Maximum size of packet in forward direction
fw_pkt_l_min Minimum size of packet in forward direction
fw_pkt_l_avg Average size of packet in forward direction
fw_pkt_l_std Standard deviation size of packet in forward direction
Bw_pkt_l_max Maximum size of packet in backward direction
Bw_pkt_l_min Minimum size of packet in backward direction
Bw_pkt_l_avg Mean size of packet in backward direction
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dataset. More instances are displayed with a darker green color. We can see the com-
binations of predicted and actual values in this matrix and decide whether to change 
our model or not. By looking at the confusion matrix, the number of type 1 and type 
2 errors can be understood. The results show a very low false-positive rate for Bot, 
DoS, DDoS, and BruteForce attacks as can be seen by high elements in diagonal and 
near-zero elements in off-diagonal of confusion matrixes. If fewer errors are present, 
then the model is less confused and is making true predictions. Confusion matrix 
thus can give more valuable information than accuracy measures about the perfor-
mance of our model. The diagonal elements show the number of correct classifica-
tions and off-diagonal elements show incorrect classifications. As depicted in these 
figures, almost all network-level attacks are detected with our proposed method.

Fig. 9  Confusion matrix for BruteForce attacks

Fig. 10  Confusion matrix for web attacks
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6  Conclusion

In this paper, we have designed a modular deep neural network model to detect 
intrusions in network traffic. To tackle the problem of a high false-positive rate 
which is not suitable for a real-world implementation of an IDS, we used the con-
cept of modularity in neural networks inspired by the human brain. The experi-
mental results show that our model can decrease false alarms in some type of 
intrusions and achieve accuracies as high as 100% compared to monolithic neural 
networks. Extracting features that can help to identify Nmap or Metasploit traf-
fic can be a new research topic for anomaly-based intrusion detection researches. 
For future work, we plan to make a custom feature extractor and build a custom 

Fig. 11  Confusion matrix for Bot attacks

Fig. 12  Confusion matrix for DoS attacks
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dataset for our purpose and enhance training time using parallel and big data 
frameworks such as Apache Spark.
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