
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:3571–3593
https://doi.org/10.1007/s11227-020-03410-y

1 3

Network intrusion detection using multi‑architectural
modular deep neural network

Ramin Atefinia1 · Mahmood Ahmadi1

Published online: 25 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The exponential growth of computer networks and the adoption of new network-
based technologies have made computer security an important challenge. With the
emergence of new internet-connected devices, the attack surface is increasing for
cyber intruders. Many intrusion detection systems attempt to detect known attacks
using signatures in network traffic. In recent years, researchers used several machine
learning techniques to detect network attacks without relying on these signatures.
These techniques generally suffer from a high false-positive rate which is not accept-
able for an industry-ready intrusion detection product. In this paper, we propose a
multi-architectural modular deep neural network model to decrease the false-positive
rate of anomaly-based intrusion detection systems. Our model consists of a feed-
forward module, a stack of restricted Boltzmann machine module, and two recurrent
modules, the output weights of these modules are fed to an aggregator module to
produce the answer of the model. The experiments are performed using CSE-CIC-
IDS2018 dataset, and final models can be used in an IDS for generating alerts or
preventing new attacks. The experimental results show improvement in the detection
of some types of network attacks with accuracy as high as 100% for network-level
attacks compared to related works.

Keywords Intrusion detection · Artificial neural networks · Cyber security

 * Mahmood Ahmadi
 m.ahmadi@razi.ac.ir

 Ramin Atefinia
 ramina@post.com

1 Computer Engineering and Information Technology Department, Razi University, Kermanshah,
Iran

http://orcid.org/0000-0003-4110-6824
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03410-y&domain=pdf

3572 R. Atefinia, M. Ahmadi

1 3

1 Introduction

Computer and Information Security is a growing problem. In the past 20 years,
intrusion techniques as well as security protections have advanced rapidly.
Although cyberattacks have evolved using new techniques, most organizations
are still using the old generation of cybersecurity measures. These new attacks
can bypass the static defense methods being used by today’s organizations. The
government today holds valuable information on web servers which include sen-
sitive data related to every citizen. This makes web servers a popular target for
intruders.

An Intrusion Detection System (IDS) is a security software/hardware system that
alerts administrators when suspicious activity is discovered in networks or comput-
ers. Some systems can also attempt to stop intrusions and block the potential threats;
these systems are called Intrusion Prevention Systems (IPS), but organizations
should consider that an IPS can block legitimate activity due to false positives. In
terms of scope, an IDS can be classified into network-based, host-based, or hybrid
systems. Host-based IDS (HIDS) analyzes and monitors inside of computers such as
operating system audit records, application logs, and key system files for suspicious
activity. Network-based IDS (NIDS) monitors the network for suspicious traffic and
is deployed in a strategic point or multiple points in the network [25, 27]. An IDS
that can detect attacks from host and network sources is using the hybrid approach.

In terms of detection method, an IDS can be classified into signature-based or
misuse detection and anomaly-based methods. The signature-based method origi-
nates from anti-virus software that can detect patterns known as signatures. This
type of detection has high accuracy and low false-positive rate for already rec-
ognized attacks, but when no pattern is available, it is difficult to detect the new
attacks. The anomaly-based method tries to detect unknown attacks by using tech-
niques such as machine learning to create a model of normal and anomaly or a class
of anomalous activities and compare the new traffic pattern against the model. The
problem of this approach is a higher false-positive rate and more time needed to
detect anomalies. Based on recent published academic works, anomaly-based intru-
sion detection shows more promising results in detecting network attacks compared
to host-based attacks. In the past two decades, researchers have used several machine
learning methods to enhance the performance and accuracy of anomaly-based net-
work IDSes. These techniques include pattern tracking, classification, clustering,
association, outlier detection, regression, and prediction. Examples of these include
Self-Organising Map (SOM) [14, 29], K-Nearest Neighbor (KNN) [4], Decision
Tree [19, 28], support vector machine (SVM) [1, 30], etc. The main weakness of
nearest-neighbor-based techniques is that if normal traffic data do not have close
enough neighbors or attack traffic do not have close enough neighbors, the KNN
technique cannot properly label the traffic. Also computing the distance of each item
might require complex computation. The clustering techniques might not perform
well in small datasets, and dynamic updating of attack profiles might require a high
amount of time. The statistical techniques also depend on some assumptions about
the generation of data in a particular distribution.

3573

1 3

Network intrusion detection using multi‑architectural modular…

Over last few years, the use of neural networks and deep learning methods for
intrusion detection proved to be very more effective [6]. These networks have
unique properties that result in a higher detection rate and a low false-positive
rate. The deep learning strength is the ability of the neural network to perform
automatic feature selection, but dimensionality reduction techniques like Princi-
pal Component Analysis (PCA) can still be used by common sense. Examples of
deep learning methods deployed for intrusion detection include autoencoders [31]
Convolutional Neural Network (CNN) [15, 33, 36], Multilayer Perceptron (MLP)
[7, 13], Feed-Forward Artificial Neural Network (FNN) [16], Deep Belief Net-
work (DBN) [17], etc. The underfitting vs overfitting problem is usually a chal-
lenge in these methods.

In the traditional machine learning approach to intrusion detection, we need to
build entities and make representations of data; therefore, too much feature engi-
neering is needed in these approaches. Useful features of network traffic data always
need to be represented in these techniques [24]. Deep Learning algorithms with the
ability of automated extraction of very complex features can overcome these chal-
lenges. In traditional Machine learning techniques, a domain expert should identify
the applied features to reduce the complexity and make patterns visible to the algo-
rithm. Deep Learning algorithms can eliminate the need for domain expertise and
save more time. In determining the success of an IDS method, reducing the num-
ber of false-positives is the main factor. If we develop a model with higher accu-
racy, a smaller number of unnecessary generated alerts need to be suppressed in the
deployed system and less manual confirmation is needed to verify their legitimacy.
This issue even exists for the current signature-based IDS technology but the num-
ber of false-positives is currently higher in anomaly-based methods. By disabling
some rules in a signature-based IDS, we can reduce false alarm rates and have a
more accurate system. In this work, we have reduced the false-positive rate for
network-level attacks by using a modular architecture. A better architecture of the
model can result in a lower false-positive rate and narrow the gap between anomaly-
based and signature-based systems.

In this paper, we focus on analyzing features extracted from network attacks on
vulnerable systems using different network and web attack tools; we construct a new
bio-inspired modular deep neural network architecture using a feed-forward mod-
ule, restricted Boltzmann machines (SRBM) module, RNN with long short-term
memory (LSTM) units [12] and RNN with gated recurrent units (GRU) [5]. The
main advantages of this method are fault tolerance, lower false positive, functional
specialization, scalability, and extendibility. The results of our work show that the
accuracy for some type of network-level attacks can be as high as 100%.

The main contributions of this paper are in the following.

• Proposal of a novel modular deep neural network model, with hyperparameter
optimization for the detection of network attacks.

• Use of more efficient techniques such as batch normalization in the feed-forward
module instead of dropout to maximum benefit from the batch norm.

• The use of an efficient aggregator module to reduce the variance of a single neu-
ral network model.

3574 R. Atefinia, M. Ahmadi

1 3

The rest of the paper is organized as follows. In Sect. 2 of this paper, we review sev-
eral related approaches for the identification of web attacks and detection of network
intrusion. In Sect. 3, we describe modular neural networks. In Sect. 4, we describe
our proposed approach and describe our dataset, and in Sect. 5, experimental results
are presented. Finally Sect. 6 explains the conclusion of the paper.

2 Related work

The network traffic generally consists of legitimate activity with only a few attack
attempts. This makes network anomaly detection an imbalanced classification task
and requires up to date datasets with realistic scenarios. In this section, recent works
on two realistic datasets, namely CIC-IDS-2017 and CSE-CIC-IDS2018, are briefly
discussed.

In [35], they suggested a two-level anomalous activity detection model in order to
detect intrusions in the Internet of Things networks. The level-1 model categorizes
the network flow as normal or anomaly and operates at the network layer. The net-
work flow is then forwarded to the level-2 model to determine which category the
detected anomaly belongs to. They used the decision tree classifier for the level-1
model. They showed that a binary classification can achieve 100% Precision for
CICIDS2017 dataset while the performance measures are lower than determining
the class of attack, especially web attacks.

In [32], they used four variable selection algorithms, namely Classifier Subset
Evaluator using Naive Bayes, CfsSubset Attribute Evaluator, Classifier Subset Eval-
uator using J48, and Classifier Subset Evaluator combined with Decision Tree using
weka data mining tool and applied OneR and REPTree to CICIDS2017 dataset. The
results show that different combinations of variable selection algorithms along with
the REPTree algorithm can provide the best performance for each different type of
attack. Thus, a single feature selection technique cannot provide the best result for
all types of attacks.

In [3], they used state-of-the-art deep learning frameworks such as TensorFlow,
Theano, fast.ai, and PyTorch to detect network intrusions in CSE-CIC-IDS2018
dataset. The results of their work show that the fast.ai library that sits on top of
PyTorch provides the best results with accuracy as high as about 99% with low false
rates in the detection and also classification of different intrusion types.

In research at [37], they used six supervised machine learning classification mod-
els to detect Zero-Day intrusions. They implemented algorithms using sklearn and
numpy library. By using data laundry techniques such as deleting noisy features,
formatting data into standard datatype, replacing NaN and Infinity numbers on
CSE-CIC-IDS2018 dataset they achieved high accuracy results; however, the result
of their work cannot be compared with others since they reduced the labels to two
classes and the method they used to change the dataset is unknown.

In [18], they used six algorithms, namely Linear Discriminant Analysis, K Near-
est Neighbor, Gradient Boosting, Adaboost, Decision Tree, and Random Forest to
carry out a practical IDS using CSE-CIC-IDS2018 cybersecurity dataset. They used
a synthetic data generation model known as SMOTE to reduce the imbalance ratio.

3575

1 3

Network intrusion detection using multi‑architectural modular…

This approach is shown to enhance the detection rate for intrusions with few sam-
ples in the CSE-CIC-IDS2018 dataset.

In [22], they used LSTM to make a model with good performance that can pro-
cess time-correlated sequences. They used the CSE-CIC-IDS2018 dataset to reflect
the real attributes of today’s network traffic. They also used an over-sampling algo-
rithm known as SMOTE to solve the class-imbalance issue. In their experimental
results, they achieved 96.2% overall accuracy by combining two techniques.

In [26], they used the broad learning system (BLS) to detect denial of service
(DoS) attack in communication networks. The effectiveness of their approach is
tested using subsets of CICIDS2017 and CSE-CIC-IDS2018 dataset that both con-
tain DoS attacks. The developed BLS and its extensions are evaluated as alternative
supervised learning algorithms for the detection of network anomalies.

In [21], they used CICIDS2017, CIC-DoS and CSE-CIC-IDS2018 and a cus-
tomized dataset to detect DoS and DDoS Attack Using Machine Learning. Their
approach has the advantage of early detection of a variety of volumetric attacks
including UDP flood, TCP flood and HTTP flood, etc. Their smart detection system
benefits from the Random Forest Tree algorithm to classify and label network traf-
fic based on samples. The samples are taken directly from network devices by the
sFlow protocol. Based on the Smart Detection approach results, the Detection Rate
(DR) is higher than 93% with False Alarm Rate (FAR) as low as 1%.

In a patent at [20], they proposed a hierarchical neural network to monitor the
network functions. In this method, we need to build a set of primary neural networks
that can receive inputs associated with respective ones of the network functions.
Each primary neural network has an output, and tier 1 neural networks are oper-
atively connected to consolidate selected outputs of the primary neural networks.
Detection of an anomaly is accomplished by monitoring chosen areas of network
behavior, such as protocols, that are anticipated in advance. Joining outputs of neu-
ral networks within the hierarchical network yields adequate anomaly detection.

The main advantage of our work compared to similar works is lower optimiza-
tions needed for parameters. That is because our approach follows a bio-inspired
architecture that reduces false positives without much hyperparameter optimization
or tuning of a single neural network. So the number of trials and errors in the train-
ing phase is reduced.

3 Modular neural networks

Modular Neural networks (MNNs) use the modularity principle. They deploy dif-
ferent techniques to achieve modularity. By using these networks, it is possible to
make isolated subproblems that can be solved individually [2]. Loose coupling in
MMNs allows interconnecting the components of a big neural network with the least
practicable dependability which results in fault tolerance. This type of design allows
scaling the model without redesigning the entire network. The recent research on the
artificial neural network tries to inspire from the biological basis of these networks
and emulate the modularization and segmentation in the brain. The human brain, for
example, can divide the complex visual perception task into many subtasks [8].

3576 R. Atefinia, M. Ahmadi

1 3

The modularity can be used to lower the number of parameters that need to be
optimized and also have a good generalization capability. Figure 1 shows a Highly-
Clustered Non-Regular module (HCNR). In this kind of topology, we have dense
within-module connections and the connectivity between different modules is
sparse. The connections are non-regular which means the topology cannot be
explained by a template containing repeating structures.

Figure 2 shows a multi-architectural topology. This kind of topology is composed
of some full network architectures which are integrated using a simple algorithm
at the end. Each module has its separate output and different architectures could be
homogeneous or heterogeneous. The difference between modules could be limited
to an implementation scheme or only the type of activation functions.

Figure 3 shows the repeated block topologies. In this type of topologies, modu-
lar neural networks are structured from repeated blocks connected in a certain way.
The blocks can have slight differences but the general blueprint is the same. Fig-
ure 3a shows a multi-path topology which is neural networks with semi-independ-
ent subnetworks that connect the inputs to outputs. These networks are inspired by
the microcircuitry of the retina. Figure 3b shows a modular node topology which
is a traditional feedforward neural network but each node is replaced by a module
with multiple neurons. This topology has the advantage of replacing a single activa-
tion function that depends on only one weight vector, with a collection of functions
depending on multiple vectors. Figure 3c depicts a sequential topology. In sequential
topology, similar modules are connected in series. The idea of this topology is the
same as increasing hidden layers in neural networks and building deep neural net-
works. Figure 3d demonstrates a recursive network with nested levels of modules.
Each module is defined by the earlier module in the recursion. These networks can
be specifically targeted for recursive problems.

Cluster/Module

Fig. 1 Highly clustered non-regular (HCNR)

3577

1 3

Network intrusion detection using multi‑architectural modular…

The topology of a network suggests that how different nodes and modules in the
whole network connect with each other. There is sparse connectivity between mod-
ules. If we want to assign a subtask to each different module, we need functional
modularity. The human brain also tries to be evolvable and minimize the connection
cost [34]. For a single neural network, it is very hard and sometimes impossible to
decipher how the network makes predictions about the problem; that’s because the
nodes inside a single network are tightly coupled components and the functions can-
not be separated from each other so the modularity can be exploited to create fault
tolerance.

4 Applying multi‑architectural modular deep neural network
to network intrusion detection

4.1 Proposed modular deep neural network model

Our proposed modular deep neural network model has a multi-architectural topology
and is a combination of 4 full architectures integrated with an aggregator module. As
shown in the abstract of our model in Fig. 4, our model has 4 component networks
each producing separate outputs. We used a Deep Feed-Forward Module (DFFM), A
Stacked Restricted Boltzmann Machine Module (SRBMM), and two recurrent mod-
ules one with gated recurrent units (GRUM) and one with long short-term memory
(LSTMM). As discussed in Sect. 2, these models perform well in the problem of net-
work attack detection. Thus, the prediction of a deep modular network created using

Integration

Fully functional
Network

Fig. 2 Multi-architectural topology

3578 R. Atefinia, M. Ahmadi

1 3

these models will be highly correlated and can find patterns that are harder to predict.
So the combination of these modules can lead to more accurate results.

As depicted in Fig. 4, each of our modules is using different networks to achieve bet-
ter collective performance. Although our models are different, we can still exploit mod-
ular networks with the same type of modules; that’s because stochastic learning and
random initialization make each module perform differently. The training time for the
entire modular architecture is equal to the training time of the slowest module, which in
our case is the SRBMM module. The structure of each module will be presented in the
following subsections.

Path

Multi path

Modular
Node

Modular node

Module/Block

Sequential

Recursive
Module

Recursive

(a) (b)

(c) (d)

Fig. 3 Repeated blocks

3579

1 3

Network intrusion detection using multi‑architectural modular…

4.2 Stacked restricted Boltzmann machine module (SRBMM)

RBMs are also called Stochastic Neural Networks because they take a probabilistic
approach. They are composed of three parts:

1. One input layer or visible unit
2. One hidden layer or hidden unit
3. Bias unit

RBM can be utilized as a generative model for unlabeled or labeled data. A visuali-
zation of an RBM is depicted in Fig. 5, as depicted in this figure, there is no intra-
layer communication in RBM which is the restriction. At the first node of the hidden
layer, an input value is multiplied by a weight and added to bias and the result is sent
to the activation function and then the output is produced [10, 11].

Output

DFFM

GRUM

LSTMM

SRBMM

Aggregator Module

Input

Fig. 4 Proposed modular deep neural network architecture

3580 R. Atefinia, M. Ahmadi

1 3

The energy of a joint configuration of hidden and visible units is calculated as:

vi and hj are the binary states of visible unit i and hidden unit j, ai ; bj are their biases
and wij is the weight between them. In order to calculate the contribution of biases
and the hidden or visible units, the dot product of them is calculated. The probability
of every possible pair of hidden and visible vector is then calculated using energy
function in:

In Eq. 2, Z is the partition function and formulated as follows:

The probability that the network assigns to a visible vector is calculated as:

The derivative of the log probability of a training vector with respect to weight is
calculated as shown in Eq. 5.

Which leads to a very simple rule with � as learning rate:

Geoffrey Hinton proposed a much faster learning procedure in 2002 in which a
reconstruction is produced by setting each vi to 1:

(1)E(v, h) = −
∑

i

aivi −
∑

j

bjhj −
∑

i,j

vihjwij

(2)p(v, h) =
1

Z
e−E(v,h)

(3)Z =
∑

v,h

e−E(v,h)

(4)p(v) =
1

Z

∑

h

e−E(v,h)

(5)
� log p(v)

�wij

=
⟨

vihj
⟩

data
−
⟨

vihj
⟩

model

(6)Δwij = �(
⟨

vihj
⟩

data
−
⟨

vihj
⟩

model
)

(7)Δwij = �(
⟨

vihj
⟩

data
−
⟨

vihj
⟩

reconstruction
)

Bias

Bias

Bias

Bias

Visible Nodes

Hidden Nodes

Fig. 5 Visualization of an RBM

3581

1 3

Network intrusion detection using multi‑architectural modular…

This module has the highest training time among all the modules; thus, the overall
training time of our model is equal to the training time of the SRBMM module.

The value of network traffic features in our used dataset corresponds to ”visible”
units of the RBM since they can be observed.

The pre-training step involves a stack of RBMs with contrastive divergence algo-
rithm. The extracted features from first complete representation RBM are used for
training in the next RBM, and finally, back-propagation of errors is performed.

In our case is not possible to use Eq. 2 in our approach. We have to replace binary
visible units by linear units (with independent Gaussian noise). Gaussian RBM
assumes there are real-valued visible units between 0 and 1 and so the function then
becomes:

The purpose of training RBM is to update our weights and biases to maximize the
likelihood of learning rule by gradient descent. The weights are initialized to small
random values. These values are chosen from a zero-mean Gaussian with a standard
deviation of about 0:01. For determining a good number of hidden units, we follow
Hinton’s approach. Considering the number of labels in our case, 6 layers of RBMs
are used to get the most satisfying results. A learning rate decay value of 0.9 is used
which will be multiplied by initial learning rate after each repeat of the training and
the fine-tuning step is done for 5 epochs.

4.3 Deep feed‑forward module (DFFM)

In a fully connected module, the neurons receive some inputs, perform dot prod-
ucts, and use a nonlinear function such as Sigmoid, Tanh, ReLU, Leaky ReLU, Para-
metric ReLU, or other nonlinear functions. These functions allow models to make
complex mappings between inputs and outputs of the network. This is important for
datasets with high dimensionality. Figure 6 depicts a sample FNN. In this figure,
every neuron use a nonlinear activation function and the last layer will use softmax.

In a forward pass of FNN, a set of operations that transform input to output
are performed. Activation functions are used for introducing nonlinearity into the
network and learning more complex operations. The backward pass is used if an
incorrect output is reached. In backpropagation, error gradients concerning neu-
ron weights and biases are calculated. Cross-entropy loss or log loss can measure
the performance of the classification model with outputs between 0 and 1. The loss
function can be a differentiable mathematical expression.

If x ∈ R represents the input to the fully connected layer, yi ∈ R is the i-th output
from our fully connected layer. yi ∈ R is thus computed as:

The nonlinear � function in our method is a rectifier to stop vanishing gradient
problem:

(8)E(v, h) =
∑

i

(

vi − ai
)2

2�2
i

−
∑

j

bjhj −
∑

i,j

vi

�i

hjwij

(9)yi = �(w1x1 + w2x2 + ... + wmxm)

3582 R. Atefinia, M. Ahmadi

1 3

DFFM can be trained much faster than SRBMM. So a deep network with 12 hidden
layers is used. We use batch normalization with a batch size of 10000 instead of a
dropout technique to get more accurate results, and the gradient of the full dataset
will have a stable estimate. The batch size only changes the speed of learning and
does not affect the quality of learning. To prevent our model from memorizing the
attacks, early stopping is also used. We use the value of 0.01 as the learning rate;
choosing a smaller value can lead to longer training time and higher values make the
training unstable. Adam optimization algorithm which is an extension to stochas-
tic gradient descent is used for updating the network weights, and this algorithm is
more effective than algorithms like AdaGrad or RMSProp in our scenario. Categori-
cal cross-entropy is used in our multi-class scenario.

4.4 Recurrent modules

Recurrent layers have some loop units which allow them to persist information. In the
human brain, each concept is understood from previous concepts and we don’t have to
start thinking from the starting point. The DFFM and SRBMM modules do not have
this capability. In a recurrent layer, the output from the last stage is fed as input to the
current stage. Although the recurrent network has these advantages, they still suffer
from gradient vanishing and exploding problems. The training time of RNN depends
on the way of implementation, but due to the slow training time of these networks, we
used 6 hidden layers in these modules.

In RNN, the same weights and biases are provided to all the layers to convert the
independent activations into dependent activations. The current state can be calculated
using the below formula.

(10)� = max(0, x)

(11)ht = f (h(t−1), xt)

Fig. 6 Network architecture of
FNN

Output

Input

Input

Input

Input Layer Hidden Layer Output Layer

3583

1 3

Network intrusion detection using multi‑architectural modular…

where ht , ht−1 and xt are current, previous and input state, respectively. The formula
for applying tanh activation function is:

where whh and wxh are weight at recurrent and input neuron, respectively, and the
formula for calculating the output is:

where Yt is output and Why is the weight at the output layer.
When training an RNN first, a single time step of the input is present to the net-

work. In the next step, the current state is calculated using the current input and
the previous state. The value of ht will become ht−1 for the next time step. After the
completion of all needed time steps, the final state is used to calculate the output.
After the output is generated, it is compared to true output and an error is generated.
The error can be back-propagated to the network to update the weights.

We use two variants of RNN in our work to make the two GRU and LSTM mod-
ules. Long short-term memory (LSTM) is augmented by forget recurrent gates. This
system can avoid the vanishing and exploding gradient problem. Figure 7 shows a
long short-term memory unit.

Gated recurrent units (GRUs) are introduced in 2014 and have fewer parameters
than LSTM because they do not have an output gate. They use the update gate and
reset gate to solve the vanishing gradient problem in vanilla RNN. Figure 8 shows a
Gated recurrent unit.

The reset gate and update gate vectors decide what information must be passed to
the output. They can keep information that is irrelevant to the prediction.

4.5 Aggregator module

Our aggregator module uses a weighted averaging technique to produce the output
of the modular network based on 4 inputs. The weighted averaging enables us to

(12)ht = tanh(Whhht−1 +Wxhxt)

(13)yt = Whyht

Fig. 7 Long short-term memory unit

3584 R. Atefinia, M. Ahmadi

1 3

weight predictions proportional to the trust we have for our implemented model.
This method averages out the various errors of the individual modules and relies on
the following properties of artificial neural networks:

• In any neural network, the bias can be decreased at the expense of increased vari-
ance.

• In a collection of neural networks, the variance can be decreased at no expense to
bias.

The method for the implementation of the aggregator module is presented in Algo-
rithm 1. In this algorithm, (a) is a set of weights and we can find their optimized
values using a neural network and each expert is defined as yi and the overall result
is defined as ȳ .

 The provided model averaging algorithm is an extension of the simple model
averaging technique. In this algorithm, we can give a higher weight to the results of
that particular module proportional to the robustness of that module. The weight (a)
of a module has a positive value, and the sum of all weights are equal to one. So, the
weights of a skillful module can contribute more to the results. If we want to use a
raw average, we can set all ai values equal to some constant value.

Algorithm 1 is implemented using python and the sci-kit-learn library.

4.6 Dataset description

The CSE-CIC-IDS2018 dataset is created by the same organization that created the
CICIDS2017 dataset. This dataset contains more up to date and number of attacks
and normal records compared to the CICIDS2017 dataset. The attacks in this data-
set include Brute-force, Heartbleed, Botnet, Denial-of-Service, Distributed Denial-
of-Service, Infiltration of the network from inside, and Web Attacks. The dataset

Fig. 8 Gated recurrent unit

3585

1 3

Network intrusion detection using multi‑architectural modular…

is organized per day. In each day, the PCAP files and operating system event logs
are recorded per machine, and CICFlowMeter-V3 is used to extract more than 80
network traffic features as a CSV file. CSV files can be loaded easily to a pandas
data frame and PCAP and Log files can be used to extract new features from traffic.
Table 1 depicts a list of executed attacks and the duration of each attack.

Table 2 shows some features of this dataset.

4.7 Dataset preprocessing

The first step to work with the CSE-CIC-IDS2018 dataset is to remove socket infor-
mation. To make our predictions unbiased toward certain socket information, it is
necessary to remove the information such as IP address and port numbers of the
source hosts but the destination port number can be useful in the detection of some
type of attacks. Also, the labels in the dataset have string values and it is necessary
to encode them into numerical values corresponding to each label. Before we start
feeding our dataset to our neural network, we want the features to be properly scaled
so that we do not have some features dominating others. The range of 0 and 1 is
suitable as we have a stack of RBMs module in our model. The rows with missing
values and the columns with too much missing values are also dropped from the
dataset.

5 Experimental results

In this section, we discuss the experimental results of applying our model to the
intrusion detection dataset.

The performance of an IDS is generally calculated using True Positive (TP) or
Hit, True Negative (TN) or Rejection, False Positive (FP), False Alarm or Type I
error, and False Negative (FN), miss or Type II error [9]. True Positive (TP) is the
number of correctly classified attacks. True Negative (TN) is the number of correctly
classified benign records. False Positive (FP) is the number of incorrectly classified
benign records. False Negative (FN) is the number of incorrectly classified mali-
cious records. Performance is then evaluated in terms of the following equations:

Recall:

Precision:

Accuracy:

F1 score or F-measure (It considers both the precision and recall to compute the
score):

(14)(TP∕(TP + FN)

(15)(TP∕(TP + FP)

(16)(TN + TP)∕(TN + TP + FN + FP)

3586 R. Atefinia, M. Ahmadi

1 3

Ta
bl

e
1

 L
ist

 o
f e

xe
cu

te
d

at
ta

ck
s a

nd
 d

ur
at

io
n

A
tta

ck
To

ol
s

D
ur

at
io

n
A

tta
ck

er
V

ic
tim

B
ru

te
fo

rc
e

at
ta

ck
FT

P-
Pa

ta
to

r S
SH

-P
at

at
or

O
ne

 d
ay

K
al

i l
in

ux
U

bu
nt

u
16

.4
 (w

eb
 se

rv
er

)
D

oS
 a

tta
ck

H
ul

k,
 G

ol
de

nE
ye

, S
lo

w
lo

ris
, S

lo
w

ht
tp

te
st

O
ne

 d
ay

K
al

i l
in

ux
U

bu
nt

u
16

.4
 (A

pa
ch

e)
D

oS
 a

tta
ck

H
e

ar
t l

ee
ch

O
ne

 d
ay

K
al

i l
in

ux
U

bu
nt

u
12

.0
4

(O
pe

n
SS

L)
W

eb
 a

tta
ck

D
am

n
vu

ln
er

ab
le

 w
eb

 a
pp

 (D
V

W
A

) I
n-

ho
us

e
se

le
ni

um
 fr

am
ew

or
k

(X
SS

an

d
B

ru
te

-fo
rc

e)
Tw

o
da

ys
K

al
i l

in
ux

U
bu

nt
u

16
.4

 (W
eb

 S
er

ve
r)

In
fil

tra
tio

n
at

ta
ck

Fi
rs

t l
ev

el
: D

ro
pb

ox
 d

ow
nl

oa
d

in
 a

 w
in

do
w

s m
ac

hi
ne

 S
ec

on
d

Le
ve

l:
N

m
ap

an

d
po

rts
ca

n
Tw

o
da

ys
K

al
i l

in
ux

W
in

do
w

s V
ist

a
an

d
M

ac
in

to
sh

B
ot

ne
t a

tta
ck

A
re

s {
de

ve
lo

pe
d

by
 P

yt
ho

n)
: r

em
ot

e
sh

el
l,

fil
e

up
lo

ad
/d

ow
nl

oa
d,

 c
ap

tu
rin

g
sc

re
en

sh
ot

s a
nd

 k
ey

 lo
gg

in
g

O
ne

 d
ay

K
al

i l
in

ux
W

in
do

w
s V

ist
a,

 7
, 8

.1
, 1

0
(3

2-
bi

t)
an

d
10

 (6
4-

bi
t)

D
D

oS
+

Po
rtS

ca
n

Lo
w

 O
rb

it
Io

n
C

an
on

 (L
O

IC
) f

or
 U

D
P,

 T
C

P,
 o

r H
TT

P
re

qu
es

ts
Tw

o
da

ys
K

al
i l

in
ux

W
in

do
w

s V
ist

a,
 7

, 8
.1

, 1
0

(3
2-

bi
t)

an
d

10
 (6

4-
bi

t)

3587

1 3

Network intrusion detection using multi‑architectural modular…

Some researchers also use the term Detection Rate which is simply 1 minus the
False Negative Rate. The experiments are performed using intel Xeon CPU with
4 cores, 2.30GHz clock speed, 46MB cache, and 24GB of RAM. The train and test
dataset are generated using 20:80 Stratified sampling of each subset. The results are
compared in terms of accuracy, precision, recall, and F1 score with related compre-
hensive work at [3] (only the same implementations are compared) and in terms of
train accuracy with best results of similar work at [23]. Table 3 shows the differ-
ent accuracy metrics of our network for CSE-CIC-IDS2018 datasets using the MNN
approach for different types of network attacks.

The evaluation results include 20:80 stratified sampling of the datasets. The
results of modular network classification are presented by the 4 most used perfor-
mance measures. As presented in Table 3, we can see improvements in detection
rate in all attack types except for web attacks compared to related work. One reason
for this can be improper web attack features in the CSE-CIC-IDS2018 dataset. Most
extracted features in the CSE-CIC-IDS2018 dataset are related to network proper-
ties, and we need more content features to increase the detection rate in the web
attacks subset. Thus, the modular architecture cannot improve web attack results.
The infiltration attacks also can be detected better using signatures in raw traffic. The
aggregator module can remove some false negatives from Botnet and DoS attack, so
the performance measures are improved compared to related work.

Figures 9, 10, 11, 12, 13 and 14 depict the confusion matrix for BruteForce, Web,
Bot, DoS, DDoS and Infiltration, respectively. These figures describe the perfor-
mance of our classification model. The confusion matrix is a performance meas-
urement for our classification problem. It shows different combinations of predicted
and actual values. For Brute-force attacks, classes 1, 2, and 3 represent Benign,
FTP-BruteForce and SSH-Bruteforce, respectively, and for Web attacks, classes 1,
2, 3, and 4 represent Benign, Brute Force-web, Brute Force -XSS and SQL Injec-
tion, respectively. Most instances belong to Benign class so we have an imbalanced

(17)(2TP)∕(2TP + FP + FN)

Table 2 Example features of CSE-CIC-IDS2018 dataset and description

Feature name Description

fl_dur Flow duration
tot_fw_pk Total packets in the forward direction
tot_bw_pk Total packets in the backward direction
tot_l_fw_pkt Total size of packet in forward direction
fw_pkt_l_max Maximum size of packet in forward direction
fw_pkt_l_min Minimum size of packet in forward direction
fw_pkt_l_avg Average size of packet in forward direction
fw_pkt_l_std Standard deviation size of packet in forward direction
Bw_pkt_l_max Maximum size of packet in backward direction
Bw_pkt_l_min Minimum size of packet in backward direction
Bw_pkt_l_avg Mean size of packet in backward direction

3588 R. Atefinia, M. Ahmadi

1 3

Ta
bl

e
3

 A
cc

ur
ac

y
co

m
pa

ris
on

 o
f p

ro
po

se
d

M
N

N
 m

od
el

 u
si

ng
 C

SE
-C

IC
-I

D
S2

01
8

da
ta

se
ts

A
tta

ck
 ty

pe
A

cc
ur

ac
y

(%
)

Pr
ec

is
io

n
Re

ca
ll

F1
 sc

or
e

B
ot

ne
t (

M
D

N
N

)
99

.9
8,

 9
9.

98
1.

0,
 1

.0
1.

0
, 1

.0
1.

0,
 1

.0
B

ot
ne

t (
D

N
N

 [3
])

99
.8

8,
 9

9.
88

1.
0,

 1
.0

1.
0,

 1
.0

1.
0,

 1
.0

B
ot

ne
t (

R
F

[2
3]

)
99

.0
N

/A
N

/A
N

/A
D

en
ia

l-o
f-

Se
rv

ic
e

(M
D

N
N

)
10

0,
 1

00
, 1

00
1.

0,
 1

.0
, 1

.0
1.

0,
 1

.0
, 1

.0
1.

0,
1.

0,
1.

0
D

en
ia

l-o
f-

Se
rv

ic
e

(D
N

N
 [3

])
99

.9
4,

 9
9.

94
, 1

00
1.

0,
 1

.0
, 1

.0
1.

0,
 1

.0
, 1

.0
1.

0
,1

.0
, 1

.0
D

en
ia

l-o
f-

Se
rv

ic
e

(R
F

[2
3]

)
99

.0
N

/A
N

/A
N

/A
D

ist
rib

ut
ed

 D
en

ia
l-o

f-
Se

rv
ic

e
(M

D
N

N
)

10
0,

 1
00

, 1
00

,
1.

0,
 1

.0
, 1

.0
1.

0,
 1

.0
, 1

.0
1.

0,
 1

.0
, 1

.0
D

ist
rib

ut
ed

 D
en

ia
l-o

f-
Se

rv
ic

e
(D

N
N

 [3
])

N
/A

N
/A

N
/A

N
/A

D
ist

rib
ut

ed
 D

en
ia

l-o
f-

Se
rv

ic
e

(R
F

[2
3]

)
99

.0
N

/A
N

/A
N

/A
W

eb
 A

tta
ck

s (
M

D
N

N
)

10
0,

 1
00

, 1
00

, 1
00

1.
0,

 0
.4

6,
 0

.0
, 0

.0
1.

0,
 0

.5
8,

 0
.0

, 0
.0

1.
0,

 0
.5

1,
 0

.0
, 0

.0
W

eb
 A

tta
ck

s (
D

N
N

 [3
])

N
/A

N
/A

N
/A

N
/A

W
eb

 A
tta

ck
s (

R
F

[2
3]

)
99

.0
N

/A
N

/A
N

/A
In

fil
tra

tio
n

(M
D

N
N

)
82

.8
3,

 8
2.

83
1.

0,
 0

.0
12

0.
83

, 0
.5

2
0.

91
, 0

.0
24

In
fil

tra
tio

n
(D

N
N

 [3
])

N
/A

N
/A

N
/A

N
/A

In
fil

tra
tio

n
(R

F
[2

3]
)

10
0

N
/A

N
/A

N
/A

B
ru

te
-F

or
ce

 (M
D

N
N

)
10

0,
 1

00
, 1

00
1.

0,
 1

.0
, 1

.0
1.

0,
 1

.0
, 1

.0
1.

0,
 1

.0
, 1

.0
B

ru
te

-F
or

ce
 (D

N
N

 [3
])

99
.9

9,
 1

00
, 9

9.
99

1.
0,

 1
.0

, 1
.0

1.
0,

 1
.0

, 1
.0

1.
0,

 1
.0

, 1
.0

B
ru

te
-F

or
ce

 (R
F

[2
3]

)
99

.0
N

/A
N

/A
N

/A

3589

1 3

Network intrusion detection using multi‑architectural modular…

dataset. More instances are displayed with a darker green color. We can see the com-
binations of predicted and actual values in this matrix and decide whether to change
our model or not. By looking at the confusion matrix, the number of type 1 and type
2 errors can be understood. The results show a very low false-positive rate for Bot,
DoS, DDoS, and BruteForce attacks as can be seen by high elements in diagonal and
near-zero elements in off-diagonal of confusion matrixes. If fewer errors are present,
then the model is less confused and is making true predictions. Confusion matrix
thus can give more valuable information than accuracy measures about the perfor-
mance of our model. The diagonal elements show the number of correct classifica-
tions and off-diagonal elements show incorrect classifications. As depicted in these
figures, almost all network-level attacks are detected with our proposed method.

Fig. 9 Confusion matrix for BruteForce attacks

Fig. 10 Confusion matrix for web attacks

3590 R. Atefinia, M. Ahmadi

1 3

6 Conclusion

In this paper, we have designed a modular deep neural network model to detect
intrusions in network traffic. To tackle the problem of a high false-positive rate
which is not suitable for a real-world implementation of an IDS, we used the con-
cept of modularity in neural networks inspired by the human brain. The experi-
mental results show that our model can decrease false alarms in some type of
intrusions and achieve accuracies as high as 100% compared to monolithic neural
networks. Extracting features that can help to identify Nmap or Metasploit traf-
fic can be a new research topic for anomaly-based intrusion detection researches.
For future work, we plan to make a custom feature extractor and build a custom

Fig. 11 Confusion matrix for Bot attacks

Fig. 12 Confusion matrix for DoS attacks

3591

1 3

Network intrusion detection using multi‑architectural modular…

dataset for our purpose and enhance training time using parallel and big data
frameworks such as Apache Spark.

Acknowledgements This research has been supported by the Computer Emergency Response Team at
Razi University (Razi CERT) under grant number 97P101.

References

 1. Al-Yaseen WL, Othman ZA, Nazri MZA (2017) Multi-level hybrid support vector machine and
extreme learning machine based on modified k-means for intrusion detection system. Expert Syst
Appl 67:296–303

Fig. 13 Confusion matrix for DDoS attacks

Fig. 14 Confusion matrix for infiltration attacks

3592 R. Atefinia, M. Ahmadi

1 3

 2. Amer M, Maul T (2019) A review of modularization techniques in artificial neural networks. Artif
Intell Rev 52(1):527–561

 3. Basnet RB, Shash R, Johnson C, Walgren L, Doleck T (2019) Towards detecting and classifying
network intrusion traffic using deep learning frameworks. J Internet Serv Inf Secur 9(4):1–17

 4. Chen CM, Chen YL, Lin HC (2010) An efficient network intrusion detection. Comput Commun
33(4):477–484

 5. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural net-
works on sequence modeling. arXiv preprint arXiv :14123 555

 6. De la Hoz E, Emiro DLH, Andres O, Julio O, Beatriz P (2015) PCA filtering and probabilistic SOM
for network intrusion detection. Neurocomputing 164:71–81

 7. de Lima Filho FS, Silveira FA, de Medeiros Brito Junior A, Vargas-Solar G, Silveira LF (2019)
Smart detection: an online approach for DoS/DDoS attack detection using machine learning. Secu-
rity and Communication Networks 2019

 8. Dong B, Wang X (2016) Comparison deep learning method to traditional methods using for net-
work intrusion detection. In: 8th IEEE International Conference on Communication Software and
Networks (ICCSN), pp 581–585

 9. Govindarajan M, Chandrasekaran R (2011) Intrusion detection using neural based hybrid classifica-
tion methods. Comput Netw 55(8):1662–1671

 10. Happel BL, Murre JM (1994) Design and evolution of modular neural network architectures. Neural
Netw 7(6–7):985–1004

 11. Heberlein LT (2007) Statistical problems with statistical based intrusion detection. Tech. rep., Ver-
sion1, Net Squared, Inc

 12. Hinton GE (2012) A practical guide to training restricted boltzmann machines. In: Neural networks:
tricks of the trade, pp 599–619

 13. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief networks. Neural
Comput 18(7):1527–1554

 14. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
 15. Hodo E, Bellekens X, Hamilton A, Dubouilh PL, Iorkyase E, Tachtatzis C, Atkinson R (2016)

Threat analysis of iot networks using artificial neural network intrusion detection system. In: Inter-
national Symposium on Networks, Computers and Communications (ISNCC), pp 1–6

 16. Hsu CM, Hsieh HY, Prakosa SW, Azhari MZ, Leu JS (2018) Using long-short-term memory based
convolutional neural networks for network intrusion detection. In: IEEE International Wireless
Internet Conference, pp 86–94

 17. Iqbal A, Aftab S (2019) A feed-forward and pattern recognition ann model for network intrusion
detection. Int J Comput Netw Inf Secur 11(4):19–25

 18. Javaid A, Niyaz Q, Sun W, Alam M (2016) A deep learning approach for network intrusion detec-
tion system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information
and Communications Technologies (formerly BIONETICS), pp 21–26

 19. Karatas G, Demir O, Sahingoz OK (2020) Increasing the performance of machine learning-based
IDSs on an imbalanced and up-to-date dataset. IEEE Access

 20. Kevric J, Jukic S, Subasi A (2017) An effective combining classifier approach using tree algorithms
for network intrusion detection. Neural Comput Appl 28(1):1051–1058

 21. Lee S (2004) Hierarchical neural network intrusion detector. US Patent App. 10/433,713
 22. Lin P, Ye K, Xu CZ (2019) Dynamic network anomaly detection system by using deep learning

techniques. In: International Conference on Cloud Computing, pp 161–176
 23. Lypa B, Iver O, Kifer V (2019) Application of machine learning methods for network intrusion

detection system
 24. Marir N, Wang H, Feng G, Li B, Jia M (2018) Distributed abnormal behavior detection approach

based on deep belief network and ensemble SVM using spark. IEEE Access 6:59657–59671
 25. Paxson V (1999) Bro: a system for detecting network intruders in real-time. Comput Netw

31(23–24):2435–2463
 26. Rios ALG, Li Z, Bekshentayeva K, Trajkovic L (2020) Detection of denial of service attacks in

communication networks
 27. Roesch M (1999) Snort: lightweight intrusion detection for networks. In: LISA ’99: Proceedings of

the 13th USENIX Conference on System Administration, vol 99, pp 229–238
 28. Sahu S, Mehtre BM (2015) Network intrusion detection system using j48 decision tree. In: 2015

International Conference on Advances in Computing, Communications and Informatics (ICACCI),
pp 2023–2026

http://arxiv.org/abs/14123555

3593

1 3

Network intrusion detection using multi‑architectural modular…

 29. Saraswati A, Hagenbuchner M, Zhou ZQ (2016) High resolution som approach to improving anom-
aly detection in intrusion detection systems. In: AI 2016: Advances in Artificial Intelligence, pp
191–199

 30. Shams EA, Rizaner A (2018) A novel support vector machine based intrusion detection system for
mobile ad hoc networks. Wireless Netw 24(5):1821–1829

 31. Shone N, Ngoc TN, Phai VD, Shi Q (2018) A deep learning approach to network intrusion detec-
tion. IEEE Trans Emerg Top Comput Intell 2(1):41–50

 32. Singh Panwar S, Raiwani Y, Panwar LS (2019) Evaluation of network intrusion detection with
features selection and machine learning algorithms on CICIDS-2017 dataset. Available at SSRN
3394103

 33. Song H, Woo J, Li FF (2019) In-vehicle network intrusion detection using deep convolutional neural
network

 34. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640
 35. Ullah I, Mahmoud QH (2019) A two-level hybrid model for anomalous activity detection in IoT

networks. In: 2019 16th IEEE Annual Consumer Communications and Networking Conference
(CCNC), pp 1–6

 36. Xiao Y, Xing C, Zhang T, Zhao Z (2019) An intrusion detection model based on feature reduction
and convolutional neural networks. IEEE Access 7:42210–42219

 37. Zhou Q, Pezaros D (2019) Evaluation of machine learning classifiers for zero-day intrusion detec-
tion: an analysis on CIC-AWS-2018 dataset. arXiv preprint arXiv :19050 3685

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/190503685

	Network intrusion detection using multi-architectural modular deep neural network
	Abstract
	1 Introduction
	2 Related work
	3 Modular neural networks
	4 Applying multi-architectural modular deep neural network to network intrusion detection
	4.1 Proposed modular deep neural network model
	4.2 Stacked restricted Boltzmann machine module (SRBMM)
	4.3 Deep feed-forward module (DFFM)
	4.4 Recurrent modules
	4.5 Aggregator module
	4.6 Dataset description
	4.7 Dataset preprocessing

	5 Experimental results
	6 Conclusion
	Acknowledgements
	References

