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Abstract
With the success of deep learning (DL) methods in diverse application domains, 
several deep learning software frameworks have been proposed to facilitate the 
usage of these methods. By knowing the frameworks which are employed in big 
data analysis, the analysis process will be more efficient in terms of time and accu-
racy. Thus, benchmarking DL software frameworks is in high demand. This paper 
presents a comparative study of deep learning frameworks, namely Caffe and Ten-
sorFlow on performance metrics: runtime performance and accuracy. This study 
is performed with several datasets, such as LeNet MNIST classification model, 
CIFAR-10 image recognition datasets and message passing interface (MPI) parallel 
matrix-vector multiplication. We evaluate the performance of the above frameworks 
when employed on machines of Intel Xeon Phi 7210. In this study, the use of vec-
torization, OpenMP parallel processing, and MPI are examined to improve the per-
formance of deep learning frameworks. The experimental results show the accuracy 
comparison between the number of iterations of the test in the training model and 
the training time on the different machines before and after optimization. In addi-
tion, an experiment on two multi-nodes of Xeon Phi is performed. The experimental 
results also show the optimization of Xeon Phi is beneficial to the Caffe and Tensor-
Flow frameworks.
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1 Introduction

Deep learning (DL) technology has blossomed in recent years due to its success 
in diverse applications, such as speech recognition [29, 48], computer vision [25, 
42], object detection [16, 49] and natural language processing [8], etc. The suc-
cess of deep learning technology is attributed to its high representational abil-
ity of input data, by using various layers of artificial neurons. However, training 
these deep neural network (DNN) models requires a vast amount of computa-
tional resources [24, 27].

In the past decade, CPU computing power is increasing significantly. How-
ever, with the increasing of complexity of scientific computing, improving the 
CPU computing power seems to be inadequate. Recently, graphics processing 
units (GPUs) serve as one of the most popular hardware to accelerate the training 
speed of DNNs. Different from the conventional CPU, a typical GPU is gener-
ally equipped with thousands of cores and large Gigabytes of memory bandwidth, 
which significantly accelerates the training and reasoning speed of DNNs com-
pared to the traditional CPU. Thus, many users use the GPU as the computa-
tional accelerator in the big data analysis. Users have to use the CUDA program-
ming language for using the GPU hardware framework. However, it is difficult for 
users to learn the CUDA language and to reuse algorithms by using it. Nowadays, 
Intel introduces the Xeon Phi processor family based on the x86 core architec-
ture. Each core of Xeon Phi supports four hardware threads. The feature is to use 
C or C++ programming language. When a user adds a simple parameter using 
the compiler, it can be executed on the multiple consolidation core architecture 
(MIC). In addition, it supports open multiprocessing (OpenMP), POSIX threads 
(PThread), message passing interfaces (MPI), and other parallel programming 
languages. Compared with the GPU, it only needs to pay a small amount of over-
head can achieve the same performance [34].

With the increasing popularity of the deep learning methods over the last few 
years, several deep learning software frameworks have been proposed to facilitate 
the usage of these methods. These frameworks, such as Caffe, DeepLearning4J, 
TensorFlow, Theano and Torch are used to optimize different aspects of training and 
deployment of deep learning algorithms. Choosing a framework depends on vari-
ous factors, such as community and support, ease of use, prototyping, industry, and 
embedded computer vision. Caffe as one of deep learning framework is a good case 
study for computer vision. Computer vision case represented a vast amount of data 
processing that suitable for benchmarking the performance of the hardware[1, 45].

With the strong backends of GPU hardware framework, developers have con-
stantly improved these frameworks by adding more features and improving speed 
for attracting more and more users to use these frameworks for different appli-
cations. Recently, the efficacy of deep learning software frameworks have been 
evaluated and proposed [26, 36]. However, the current evaluation results are 
mostly focused on speed performance of the convolutional frameworks.

In this work, two deep learning frameworks, which are Caffe and TensorFlow 
running on Xeon Phi are evaluated. In addition, the optimization of Xeon Phi 
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applying in deep learning jobs is demonstrated. In this case, the use of vectori-
zation, OpenMP parallel processing, and Message Passing Interface (MPI) are 
examined to improve the performance of deep learning framework. Finally, in 
the experimental results, which consist of the accuracy comparison between the 
number of iterations of the test in the training model and the training time on the 
different machines before and after optimization. In addition, the experiment with 
two Xeon Phi multi-nodes is evaluated. The results with respect to the measuring 
metrics are shown in the section of experimental results. The main contributions 
of this work are summarized as follows.

• We evaluated the accuracy of the Caffe Deep Learning Framework with LeNet 
MNIST Classification Model training and testing data.

• We evaluated the performance of TensorFlow framework on Intel Xeon Phi 7210 
with CIFAR-10 image recognition datasets.

• We evaluated the performance of Docker containers on Intel Xeon Phi 7210 with 
MPI parallel matrix-vector multiplication.

The remainder of this work is organized as follows. Section 2 presents the literature 
review and related works. In Sect. 3, the system design and implementation are pre-
sented. The experimental results are shown in Sect. 4. In addition, the discussion are 
also stated in this section. Finally, the concluding remarks are given in Sect. 5.

2  Background review and related works

2.1  OpenMP

OpenMP is an implementation of multi-threading, a method of parallelizing 
whereby a master thread (a series of instructions executed consecutively) forks a 
specified number of slave threads and the system divides a task among them. Fig-
ure 1 describes the architecture of OpenMP.

The threads then run concurrently, with the runtime environment allocating 
threads to different processors. The threads then run concurrently, with the runt-
ime environment allocating threads to different processors. The section of code 
that is meant to run in parallel is marked accordingly, with a compiler directive that 
will cause the threads to form before the section is executed. Each thread has an 
id attached to it which can be obtained using a function (called omp_get_thread_
num()). The thread is an integer, and the master thread has an id of 0. After the exe-
cution of the parallelized code, the threads join back into the master thread, which 
continues onward to the end of the program. By default, each thread executes the 
parallelized section of code independently. Work-sharing constructs can be used to 
divide a task among the threads so that each thread executes its allocated part of the 
code. Both task parallelism and data parallelism can be achieved using OpenMP in 
this way [46]. Figure 2 shows the OpenMP threads process.

OpenMP contains three components: directives and clauses for compilers, librar-
ies for runtime, and variables for environment. The compiler directives are only 
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perceived when the option to compile OpenMP is switched on. OpenMP uses the 
execution model of “fork and join”: the master thread forks new threads at the start 
of parallel regions, multiple threads share work in parallel; and threads merge at the 
end of parallel regions.

2.2  Message passing interface (MPI)

MPI [11–13, 31] is a standardized and portable message-passing system designed by 
a group of researchers from academia and industry to function on a wide variety of 
parallel computing architectures. The standard defines the syntax and semantics of 
a core of library routines useful to a wide range of users writing portable message-
passing programs in C, C++, and Fortran. There are several well-tested and efficient 
implementations of MPI, many of which are open-source or in the public domain. 

Fig. 1  OpenMP architecture

Fig. 2  OpenMP threads process
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These fostered the development of a parallel software industry, and encouraged 
development of portable and scalable large-scale parallel applications. The architec-
ture of MPI is shown as Fig. 3.

2.3  Caffe

The Berkeley Vision and Learning Center (BVLC) and community contributors cre-
ated Caffe as a deep learning framework. The framework supports Python, C++, 
MATLAB, and CUDA. Caffe’s command line tool has several functions, it can train 
a model, or use a well-trained model for the effectiveness of the test. When it was 
training, it would build a Solver object, and its main function was to coordinate the 
operation of the neural network to carry out training. One can use a configuration 
file to specify the Solver parameters, such as learning rate or Solver types, like SGD 
Solver and so on. In the profile, user can specify a training net parameters, testing 
nets may have more than one. For example, if user want to use different data set to 
verify the effectiveness of the model can be used. Although the network definition 
can also be written directly in the Solver configuration file, but the example code is 
usually written in a separate profile.

Next, Solver will create the corresponding training and testing Net objects based 
on these profiles. Then Net will according to the definition of the entire network to 
establish each Layer, also create a lot of Blobs to place the Layer and Layer between 
the input and output information, and they are connected. Among them, a layer of 
input is called bottom blobs, the output is top blobs. Blob is basically a multidi-
mensional array, except to its use of data, it contains a corresponding set of Diff, 
Gradient can be used to calculate the results. These Blobs provide a simple interface 
that allows Layer to access the data from the GPU or CPU. The entire architecture 
process is shown in Fig. 4

2.4  TensorFlow

TensorFlow is an open-ended machine learning platform. It has an extensive and 
versatile tool, library and community resources ecosystem that allows scientists to 
advance the cutting edge in ML and allows ML powered apps to be readily built and 
deployed by developers. TensorFlow has several abstraction levels so it can choose 

Fig. 3  MPI architecture
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the one to suit your requirements. Use the high-level Keras API to build and work 
models, making it simple to start with TensorFlow and machine learning. When 
more flexibility is needed, eagerness to execute iters immediately and intuitively. 
Use the Distribution Strategy API for distributed training on various hardware set-
tings for major ML training activities without altering the definition of the model 
[32, 39, 43].

2.5  Docker containers

Docker is a collection of paired software products and platforms as a service to 
create and offer software in packages called containers that use the operating sys-
tem-level virtually. Docker Engine is the software hosting the containers. This is a 
conventional software unit, that packages code with all its dependencies so that the 
application operates fast and reliably from one computer setting to the other. It was 
first launched in 2013 and is created by Docker Inc. A Docker container picture is 
an easy, standalone, executable software package which contains all the necessary 
software for the implementation: code, run-time, system instruments, system librar-
ies and setups[14].

Container images are transformed into containers during run-time and in the 
Docker case-when running on Docker Engine pictures are converted into contain-
ers. Containerized software is always the same, regardless of the infrastructure, and 
is available for both Linux and Windows applications. Containers isolate software 

Fig. 4  Caffe architecture
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from its setting and guarantee that, despite variations between growth and staging, it 
functions in a uniform manner [9, 15, 21].

2.6  Related works

Caffe enables experimentation and seamless switching between platforms to facili-
tate creation and deployment from prototyping machines to cloud environments. Jia 
et al. [19] separates model representation from real implementation. With the sup-
port of an active GitHub group of contributors, Caffe is supported by the Berkeley 
Vision and Learning Center (BVLC). It supports study initiatives on the basis of 
vision, voice and multimedia, large scale industrial apps and start-up prototypes.

Tanno et  al. [37] created Caffe2C which converts CNN (Convolutional Neural 
Network) models trained with the existing CNN framework, Caffe, C-language 
source codes for mobile devices. Since Caffe2C generates a single C code which 
includes everything needed to execute the trained CNN, csCaffe2C makes it easy to 
run CNN-based applications on any kinds of mobile devices and embedding devices 
without GPUs. Moreover, Caffe2C achieves faster execution speed compared to the 
existing Caffe for iOS/Android and the OpenCV iOS/Android DNN class. The rea-
sons are as follows: (1) directly converting of trained CNN models to C codes, (2) 
efficient use of NEON/BLAS with multi-threading, and (3) performing pre-compu-
tation as much as possible in the computation of CNNs. In addition, in this paper, 
they demonstrate the availability of Caffe2C by showing four kinds of CNN-base 
object recognition mobile applications.

Bottleson et al. [3] presented OpenCL acceleration of a well-known deep learn-
ing framework, Caffe, while focusing on the convolution layer which has been 
optimized with three different approaches, GEMM, spatial domain, and frequency 
domain. Their research, clCaffe, greatly improves the performance on all types of 
OpenCL devices to utilize deep learning use cases, specifically on small form factor 
devices in which discrete GPUs are uncommon and integrated GPUs are far more 
common. Compared to CPU-only AlexNet on the ImageNet dataset, their bench-
mark shows 2.5 cm speedup on the Intel Integrated-GPU. As such, our research pro-
vides the ability for the deep learning community to adopt a wide range of devices 
through OpenCL.

CaffePresso, a Caffe-compatible framework for creating an optimized mapping of 
ConvNet user-supplied requirements to target multiple accelerators such as FPGAs, 
DSPs, GPUs, RISC multicores, was suggested by Hegde et  al. [18]. They use an 
automated code generation and autotuning strategy based on ConvNet requirements 
experience, as well as platform-specific limitations such as on-chip memory ability, 
bandwidth, and potential for ALU. While the Jetson TX1 + cuDNN may be expected 
to deliver high performance for ConvNet configurations, it shows a slow-move GPU 
transformation with a faster and energy-efficient implementation on older 28 nm TI 
KeystoneIIDSP compared to most other systems for smaller embedded-friendliness-
based data sets like MNIST and CIFAR10 over new 20 nm NVIDIA TX1 SoC in all 
instances.
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Kurth et al. [23] discussed various alternatives on modern SuperComputing sys-
tems for the Tensorflow Framework to be scaled to thousands of nodes.

Tarasov et al. [38] unravel Docker’s multi-faceted nature and show its effect on 
system and working capacity. As we reveal fresh features of the famous Storage 
Docker drivers, this reminds us that new techniques are used extensively and can 
often be evaluated in advance.

In order to assess containers acquired from heterogeneous providers, Ven-
kateswaran et  al. [41] suggested a fresh metric called fitness quotient (FQ). They 
leverage machine training methods in injecting automation into the following two 
stages: the first-level K-mean clustering to correctly categorize IaaS costs and per-
formance information, and the second-level provisioning time polynomial retrench-
ment to find linkages between SaaS performance and container strength.

Purushotham et al. [33] present the results of benchmarking for several medical 
forecasting processes such as death prediction, duration of stay analysis, and ICD-9 
code category analysis using Deep Learning models, set of machine learning models 
(Super Learner algorithm), SAPS II and SOFA ratings. Regarding the benchmark-
ing activities, we used the publicly accessible Medical Information Mart regarding 
Intensive Care III (MIMIC-III) (v1.4) which includes all patients assigned to an ICU 
at the Beth Israel Deaconess Medical Center from 2001 until 2012. Their findings 
show that deep learning models consistently outperform all other approaches par-
ticularly when the data from the real clinical time series is used as features of input 
to the models.

3  System design and implementation

In the section, the system introduces system design and implementation. In the sys-
tem design, the dataset used and the system flow are explained in detail. In the sys-
tem implementation, the vectorization and parallelism of OpenMP are described in 
detail.

3.1  System design

3.1.1  Caffe deep learning framework

Caffe architecture has been used in this paper with CIFAR-10 [5, 6, 22] complete 
sigmoid model, CNN model [20, 35, 47] involves convolution, biggest pool, batch 
standardization, complete connection, multi-layer and softmax layer. The CIFAR-10 
dataset is shown in Fig. 5, comprises of 60,000 color pictures, each with 32 × 32, 
similarly split and labeled as to the following ten categories of dimensions: cata-
logue, aircraft, vehicle, bird, frog, deer, horse, dog, (such as sedans or sports util-
ity instruments) or defeated all vehicles (which contain only big vehicles) without 
overlapping.
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3.1.2  TensorFlow deep learning framework

TensorFlow was implemented for benchmarking the performance of Intel Xeon Phi 
Processor 7210 Platform. In this case, Cifar 10 was trained on single Bare Metal 
with Intel MKL-DNN optimized Tensor. For this experiment, tests were done for 
1000 steps, for a batch size of 128, and logging frequency of 1.

3.1.3  Docker containers benchmark

Docker containers were examined in the experiment on Intel Xeon Phi Processor 
7210 Platform. In this case, the experiment run two parallel MPI processes on MPI 
Matrix action on a vector, with 2000 iterations of size 1000 (length of vector v). 
Demonstrating a MPI parallel Matrix-Vector Multiplication that run the iterations of 
following equation:

The t value is defined as iteration, where v is a vector of length and M a dense size.
The other experiments were MPI Latency Test, MPI Bandwidth Test, and MPI 

Bi-Directional Bandwidth Test.

(1)v(t + 1) = M ∗ v(t)

Fig. 5  CIFAR-10 dataset
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3.1.4  System flow

Caffe framework which optimized for Intel architecture now includes the latest 
version of Intel Math Core Library (Intel MKL) 2017 Optimized Advanced Vec-
tor Extensions (AVX)-2 and AVX-512 instructions to support Intel Xeon with the 
Intel Xeon Phi (and others) processor. All the benefits found in BVLC Caffe on Intel 
architectures and training courses that can be used for different nodes effectively. 
The system flow for the design is

• Install Caffe environment on Xeon Phi Processor.
• Train and test on LeNet MNIST[4, 17]
• Test pre-trained models such as bvlc googlenet.caffemodel, certain pictures.
• Fine-tune the Cats vs Dog Challenge the trained model.
• Install TensorFlow and Intel MKL-DNN optimized Tensor environment on Intel 

Xeon Phi Processor 7210.
• Train and Test CIFAR10 images classification dataset.
• Install Docker environment with MPI Parallel Processing.
• Run two parallel MPI processes on MPI Matrix action, MPI Latency Test, Band-

width Test, and Bi-Directional Bandwidth Test.

3.2  System implementation

3.2.1  Vectorization

In the analysis of the BVLC Caffe code, and find the wireless Internet site—function 
call, consume the maximum CPU time, this project applied the vectorization optimi-
zation. These optimizations include the following:

• Basic Linear Algebra Complex (BLAS) [2] Library (Intel MKL to Switch from 
Auto-Adjust Linear Algebra System [ATLAS] [30])

• Optimized components (Xbyak just-in-time [JIT] [44] group translator)
• GNU Compiler Collection (GCC) and OpenMP code vectorization

BVLC Caffe has used the Intel MKL BLAS feature call or other implementation 
options. For example, for vectorization, multi-threading, and better cache memory 
traffic optimization GEMM functions. For better vectorization, this project also use 
the Xbyak-JIT translator (ia-32) for x86 and x64 (AMD64 or x86-64). Xbyak cur-
rently supports vector instruction sets for MMX, Intel SSE, Intel SSE3, Intel SSE4, 
floating point units, Intel AVX, Intel AVX2 and Intel avx-512.

The Xbyak translator is an C++ x86/x64 JIT translator, especially for libraries 
that efficiently develop code. The code that is executed only on the title is provided 
by the Xbyak group translator. It can also dynamically combine x86 and x64 amuse-
ment keys. The JIT binary code generated by the code is executed while allowing 
several optimizations, quantization, such as using a job that can be used to specify 
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the array of elements of the second array, with the polynomial calculated item, Sta-
ble, variable x, new, sub, mul, div, etc. Intel Advanced Vector Extensions and Intel 
AVX2 Vector Instruction Set support, Xbyak can achieve a better vectorization of 
Caffe’s optimized for Intel architecture. The latest version of Xbyak with Intel avx-
512 vector instruction set support, which can improve operational efficiency, using 
Intel Xeon Phi processor × 200 products. This improved vectorization ratio allows 
Xbyak to process more information, along with single instruction, multiple data 
(SIMD) instructions, and more efficient use of data parallel processing. The use of 
Xbyak vector for this job can improve the performance of the large shared layer of 
the program. If know the parameters of the cluster, the code of the component can 
be generated to handle the particular shared model that applies to a particular shared 
window or shared algorithm. The result is that the proven, more efficient than the 
C++ code is superior to the general component.

3.2.2  Parallelism and OpenMP

OpenMP threads parallel processing is used to optimize the neural networks layers 
in the following list:

Convolution layers
Convolution layers learn to weigh or filter, as the name indicates, with each pro-

gram input producing a function graph in the picture output. This optimization pro-
tects a hardware group from using the infrequent input feature.

Shared or Sub-sampling
The largest pool, the average area, and the stochastic area are different meth-

ods that can down-sampling the most popular methods with the largest pool. The 
common layers are usually not overlapping with the results of a layer of rectangle 
dynamic bricks. Each of these sub-regions, the layer re-output, the maximum value, 
the arithmetic meaning, or the stochastic value of the samples formed by each parti-
tion is enabled for multinomial delivery. The Pooling function is useful for CNNs in 
three main reasons:

• The area can be reduced and the dimension of the layer at the top right of the 
load is calculated.

• The lower level of shared functionality allows the core convolutional to be higher 
in multi-layered coverage of larger areas of input data and thus learn more com-
plex functions. For example, lower-level cores usually learn to identify small 
edges, while high-level cores may learn to judge forests or beaches.

• The largest pool can provide some form of translation invariance. Eight possible 
directions, a 2 × 2 partition (a typical partition of the area) can convert it to a sin-
gle pixel, from three will return the same maximum. 3 × 3 windows, the five will 
not return the same maximum value.

Pooling a single function on the map of the job mode, Xbyak was used to build effi-
cient programs with the largest average shared one or more input feature maps. This 
set of programs can be implemented as a batch input function corresponding to the 
execution program when parallel to OpenMP.
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Shared levels are parallel and multi-threaded; OpenMP images are independent 
because they can handle different threads in parallel.

Softmax and the loss layer
The lost (cost) function is a key component that compares the predicted output to 

the target or the label that will guide the network training program to the machine, 
and then readjusting the calculation of the gradient to minimize the cost, for the 
weighting part of the lost part of the derivative project. Softmax [10, 40] (through 
the normalization index) is the classification of the probability of distribution gradi-
ent—logon normalization program function. In general, this is used to calculate the 
possible results of a random event that allows one of the possible outcomes of K, 
with the probability of specifying each result individually. Specifically, in the multi-
nomial logistic regression (multilevel classification problem), the input of this func-
tion is the result of a different linear function of K and the possibility of j prediction. 
For example the vector x class is:

where T is exponentiation value, where w is a vector of the inputs to the output layer 
(if it has 10 output units, then there are 10 elements in z, j indexes the output units), 
so j = 1, 2,… ,K.

Multi-threading, OpenMP applies these calculations, is a bifurcation of a spe-
cific number of subordinate threads, and a way of working between them to use the 
main thread parallel processing. Threads are executed at the same time, and they are 
assigned to different processors.

Rectified Linear Unit (ReLU)
ReLUs [7, 28] presently use the deep learning algorithm’s most common non-

linear features. Allows the element-wise neuron layer operator to place a reduced 
point block and generate the same size top dot. (Integrated memory interface point-
for-architecture with a standard array. Using the product and derivative information 
via the Internet, Caffe storage, communication, and management information.) The 
ReLU layer must enter the value x as x positive values to calculate the output and 
extend it to negative slope adverse values:

If x = 0 then the function is not smooth. This is the reason why the derivative of the 
ReLU function is not defined at x = 0.

4  Experimental results

In this section, the experiments are demonstrated. The experimental environ-
ment, including experimental hardware and software, and experimental design are 
described in detail.

(2)P(y = j ∣ x) =
ex

Twj

∑K

k=1
ex

Twk

(3)f (x) =

{

x, if x > 0

������������� ∗ x, otherwise
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4.1  Experimental environment

In the experimental environment, there are two kinds of experiments. Single node, 
including one Xeon E5 and one Xeon Phi 7210 spect processor. Multinode distrib-
uted training, including two Xeon E5 and two Xeon Phi 7210 spect processor were 
used.

4.2  The experimental hardware

In this experiment, the employed hardware are presented in detail in Table 1.

4.3  Experimental software

In the experimental software, list of the software version were used in the experi-
ments, and describe its function. The detail can be shown in the Table 2.

4.4  Caffe framework benchmark

The LeNet is trained in this section, which is Caffe’s MNIST Classification Model. 
Start the experiment with the following primary phase: dataset preparation, model 
training, and model timing. First, download the MNIST dataset and generate the 
LMDB format dataset. Next to train the dataset, the amount of the steps is set to 1 K 
in order to run fast. Then, running the iteration of propagations forward and back-
ward in 50, 100, 500, 1000, 2000, and 10.000 iteration. Finally, in the validation test, 
the trained model is examined. Figure 6 demonstrates the findings.

Then, in two platforms, Intel Xeon E5-2560 and Intel Xeon Phi 7210, were 
benchmarked using BLVC Caffe and Intel optimized Caffe. The time command cal-
culates the forward and backward propagation time of the layer-by-layer. It estimates 
the time spent in each layer and provides a distinct model with the comparative exe-
cution times. The results are presented in Figs. 7 and 8.

Use the distributed multi-node training on two Intel Xeon Phi 7210, as well. The 
training can be distributed across two primary methods: parallel model and parallel 
data. The model is split between the nodes in model parallel and each node has the 
complete data batch. The data batch is split between the nodes in data parallelism, 

Table 1  Hardware specification Intel Xeon E5-2650 Intel Xeon Phi 7210

CPU clock 2 GHz 1.30 GHz
CPU core 12 core 64 core
RAM 132 GB 384 GB
Disk 1 TB 10 TB
OS CentOS 7.2
Linux kernel 2.6.32–504.el6.x86_64 3.10.0–327.el7.x86_64
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Fig. 6  LeNet model training results

Fig. 7  BLVC Caffe execution time comparison

Fig. 8  The execution time comparisons with respect to the Intel optimized Caffe
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and every node has the complete model. Parallel data is particularly helpful if there 
is a tiny amount of weights and if the data batch is big. A hybrid model and data par-
allelism are feasible, where the data-parallel method is used for the training of layers 
with few weights, such as convolutional layers, and layers with many weights, such 
as fully-connected layers, with a parallel model strategy. The training results shows 
as Fig. 9

4.4.1  TensorFlow benchmark

In this experiments, it can be evaluated the training of CIFAR10 image recognition 
dataset achieved 60.8% accuracy after 1000 steps for a batch size of 128, and log-
ging frequency of 1 as shown in Fig. 10.

In term of speed, the benchmark processes a single batch of 128 images in 
1.515–2.599 s (i.e. 49–85 images /s). Figure 11 shows the amount of pictures being 
processed per seconds.

The model reaches  60% accuracy after 1000 steps in 30 min of training time. 
Figure 12 shows the graph of image processing in 1758 s per batch on average.

4.4.2  Docker containers benchmark

In the Docker containers performance tests, it based on one mpi head container and 
three mpi node containers. Figure 13 describes the installation on Intel Xeon Phi.

Fig. 9  Multinode execution results

Fig. 10  The accuracy after 1000 steps
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First, the experiment was running two parallel MPI Matrix action processes on 
a vector, 20 iterations of size 1000. Table 3 and Fig. 14 describe the visualization 
of MPI Matrix action on Docker clusters. Overall, the duration went through the 
throughput of fluctuation.

Fig. 11  The amount of pictures being processed per seconds

Fig. 12  The image processing time in seconds per batch
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Second, in term of MPI latency test, when the size is below than 32,768 B, the 
latency is stable at 53.18 μ s on average. While more than 32,768 B, the latency 
increasing is random. Table 4 and Fig. 15 shows MPI latency test on Docker clusters.

Third, in term of bandwidth test, the bandwidth increasing in random size. 
Table 5 and Fig. 16 describes MPI bandwidth test on Docker clusters.

Lastly, in term of bidirectional bandwidth test, when the size is below than 8192 
B, the increasing of bandwidth is twice per MB/s. While more than 8192 B, the 
bandwidth increasing is random. Table 6 and Fig.  17 describes MPI bidirectional 
bandwidth test on Docker.

4.5  Discussion

The training output can be reducted 60.59% at Intel Xeon E5-2650, 20.10% at Intel 
Xeon Phi 7210 by using the vectorization and parallelism of OpenMP optimization 

Fig. 13  Docker installation

Table 3  MPI matrix action on a 
vector, 20 iterations of size 1000

# Duration (s) Throughput (#/s)

4.725 04.23
4.662 04.29
4.619 04.33
4.694 04.26
4.534 04.41
4.733 04.23
4.657 04.29
4.545 04.40
4.568 04.38
4.681 04.27
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technique. The optimization was successfully implemented on the Caffe framework, 
and the training time was reduced significantly. It can be assumed that Intel Xeon 
E5-2650 has a very bad output without optimization, but it can be reduced by 3795 
for Intel Xeon Phi 7210. The training time is decreasing three times after optimization 
on Intel Xeon E5-2650 comparing with Intel Xeon Phi 7210. In terms of accuracy, we 
tested the accuracy only on Intel Xeon Phi 7210 on the different iterations of 50, 100, 
500, 1000, 2000, and 10.000 iterations. The LeNet model training shows the high accu-
racy at 0.980742 on Intel Xeon Phi 7210. In addition, using the multi-node of two Intel 
Xeon Phi 7210, it can be achieved even better performance at 9.327 s.

In the TensorFlow experiments, it can be evaluated from the graph of the training on 
CIFAR10 image recognition dataset. The amount of the pictures being processed per 
second and the speed of training processes are quite stable.

In the Docker clusters tests, 20 iterations of size 1000 on two parallel MPI Matrix 
action processes on a vector. Overall, the duration had passed into the fluctuation 
throughput. There are a stable phase and unstable phase of processing the specific size 
on the MPI latency test, bandwidth test, and bidirectional bandwidth test.

Fig. 14  MPI matrix action on Docker clusters
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5  Conclusion and future works

This research has optimized Caffe and TensorFlow deep learning frameworks 
on the Intel Xeon Phi Processor. From the experiments, it can be seen the best 
practice in the training of big data. The analysis process will be more efficient in 
terms of time and performance. The presented results can be used as a consider-
able action on machine learning processing. The optimization was successfully 
on the Caffe framework usage, and the training time was reduced significantly. 
In the TensorFlow experiments, the amount of the pictures being processed per 
seconds and the speed of training processes are quite stable. While in the Docker 
clusters experiments, there is a stable phase and unstable phase on processing 
specific size.

In the future, advantage comparison can be performed due to the limitation of 
this research in which we evaluate three kinds of performance benchmarking and 
not to do a comparison ranking between Hypervisor and Container. The further 
improvements and future enhancements might described as follows:

Table 4  MPI latency test # Size (B) Latency ( μs)

0 49.42
1 51.04
2 51.15
4 51.55
8 51.12
16 51.95
32 51.35
64 48.63
128 49.02
256 49.05
512 50.07
1024 49.89
2048 51.13
4096 52.98
8192 54.16
16,384 58.38
32,768 83.17
65,536 211.59
131,072 289.97
262,144 410.39
524,288 684.62
1,048,576 1116.26
2,097,152 1901.83
4,194,304 3568.79
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Fig. 15  MPI latency test on Docker clusters

Table 5  MPI bandwidth test # Size (B) Bandwidth (MB/s)

1 0.02
2 0.05
4 0.09
8 0.19
16 0.34
32 0.75
64 1.50
128 3.00
256 6.00
512 11.82
1024 23.84
2048 45.88
4096 90.75
8192 171.50
16,384 317.20
32,768 654.34
65,536 467.31
131,072 701.81
262,144 918.13
524,288 1056.43
1,048,576 1113.48
2,097,152 1207.08
4,194,304 1253.42
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Fig. 16  MPI bandwidth test on Docker clusters

Table 6  MPI bi-directional 
bandwidth test

# Size (B) Bandwidth (MB/s)

1 0.02
2 0.04
4 0.08
8 0.16
16 0.31
32 0.63
64 1.25
128 2.49
256 4.82
512 9.98
1024 17.54
2048 37.56
4096 75.06
8192 155.08
16,384 268.05
32,768 363.07
65,536 242.08
131,072 387.76
262,144 463.88
524,288 486.19
1,048,576 533.05
2,097,152 567.72
4,194,304 585.46
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• Compare the accuracy of the Caffe Deep Learning Framework with LeNet 
MNIST Classification Model training and testing data between Hypervisor and 
Container.

• Compare the performance of TensorFlow Framework on Intel Xeon Phi 7210 
with CIFAR-10 image recognition datasets between Hypervisor and Container.

• Compare the MPI parallel Matrix-Vector Multiplication calculation between 
Hypervisor and Container.
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