
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:2486–2510
https://doi.org/10.1007/s11227-020-03362-3

1 3

Performance benchmarking of deep learning framework
on Intel Xeon Phi

Chao‑Tung Yang1 · Jung‑Chun Liu1 · Yu‑Wei Chan2 · Endah Kristiani3,4 ·
Chan‑Fu Kuo1

Published online: 17 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
With the success of deep learning (DL) methods in diverse application domains,
several deep learning software frameworks have been proposed to facilitate the
usage of these methods. By knowing the frameworks which are employed in big
data analysis, the analysis process will be more efficient in terms of time and accu-
racy. Thus, benchmarking DL software frameworks is in high demand. This paper
presents a comparative study of deep learning frameworks, namely Caffe and Ten-
sorFlow on performance metrics: runtime performance and accuracy. This study
is performed with several datasets, such as LeNet MNIST classification model,
CIFAR-10 image recognition datasets and message passing interface (MPI) parallel
matrix-vector multiplication. We evaluate the performance of the above frameworks
when employed on machines of Intel Xeon Phi 7210. In this study, the use of vec-
torization, OpenMP parallel processing, and MPI are examined to improve the per-
formance of deep learning frameworks. The experimental results show the accuracy
comparison between the number of iterations of the test in the training model and
the training time on the different machines before and after optimization. In addi-
tion, an experiment on two multi-nodes of Xeon Phi is performed. The experimental
results also show the optimization of Xeon Phi is beneficial to the Caffe and Tensor-
Flow frameworks.

Keywords Intel Xeon Phi · Tensorflow · Caffe · Deep learning · Docker

 * Chao-Tung Yang
 ctyang@thu.edu.tw

1 Department of Computer Science, Tunghai University, Taichung 40704, Taiwan, ROC
2 College of Computing and Informatics, Providence University, Taichung City, Taiwan, ROC
3 Department of Industrial Engineering and Enterprise Information, Tunghai University,

Taichung 40704, Taiwan, ROC
4 Department of Informatics, Faculty of Engineering and Computer Science, Krida Wacana

Christian University, Jakarta 11470, Indonesia

http://orcid.org/0000-0002-9579-4426
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03362-3&domain=pdf

2487

1 3

Performance benchmarking of deep learning framework on Intel…

1 Introduction

Deep learning (DL) technology has blossomed in recent years due to its success
in diverse applications, such as speech recognition [29, 48], computer vision [25,
42], object detection [16, 49] and natural language processing [8], etc. The suc-
cess of deep learning technology is attributed to its high representational abil-
ity of input data, by using various layers of artificial neurons. However, training
these deep neural network (DNN) models requires a vast amount of computa-
tional resources [24, 27].

In the past decade, CPU computing power is increasing significantly. How-
ever, with the increasing of complexity of scientific computing, improving the
CPU computing power seems to be inadequate. Recently, graphics processing
units (GPUs) serve as one of the most popular hardware to accelerate the training
speed of DNNs. Different from the conventional CPU, a typical GPU is gener-
ally equipped with thousands of cores and large Gigabytes of memory bandwidth,
which significantly accelerates the training and reasoning speed of DNNs com-
pared to the traditional CPU. Thus, many users use the GPU as the computa-
tional accelerator in the big data analysis. Users have to use the CUDA program-
ming language for using the GPU hardware framework. However, it is difficult for
users to learn the CUDA language and to reuse algorithms by using it. Nowadays,
Intel introduces the Xeon Phi processor family based on the x86 core architec-
ture. Each core of Xeon Phi supports four hardware threads. The feature is to use
C or C++ programming language. When a user adds a simple parameter using
the compiler, it can be executed on the multiple consolidation core architecture
(MIC). In addition, it supports open multiprocessing (OpenMP), POSIX threads
(PThread), message passing interfaces (MPI), and other parallel programming
languages. Compared with the GPU, it only needs to pay a small amount of over-
head can achieve the same performance [34].

With the increasing popularity of the deep learning methods over the last few
years, several deep learning software frameworks have been proposed to facilitate
the usage of these methods. These frameworks, such as Caffe, DeepLearning4J,
TensorFlow, Theano and Torch are used to optimize different aspects of training and
deployment of deep learning algorithms. Choosing a framework depends on vari-
ous factors, such as community and support, ease of use, prototyping, industry, and
embedded computer vision. Caffe as one of deep learning framework is a good case
study for computer vision. Computer vision case represented a vast amount of data
processing that suitable for benchmarking the performance of the hardware[1, 45].

With the strong backends of GPU hardware framework, developers have con-
stantly improved these frameworks by adding more features and improving speed
for attracting more and more users to use these frameworks for different appli-
cations. Recently, the efficacy of deep learning software frameworks have been
evaluated and proposed [26, 36]. However, the current evaluation results are
mostly focused on speed performance of the convolutional frameworks.

In this work, two deep learning frameworks, which are Caffe and TensorFlow
running on Xeon Phi are evaluated. In addition, the optimization of Xeon Phi

2488 C.-T. Yang et al.

1 3

applying in deep learning jobs is demonstrated. In this case, the use of vectori-
zation, OpenMP parallel processing, and Message Passing Interface (MPI) are
examined to improve the performance of deep learning framework. Finally, in
the experimental results, which consist of the accuracy comparison between the
number of iterations of the test in the training model and the training time on the
different machines before and after optimization. In addition, the experiment with
two Xeon Phi multi-nodes is evaluated. The results with respect to the measuring
metrics are shown in the section of experimental results. The main contributions
of this work are summarized as follows.

• We evaluated the accuracy of the Caffe Deep Learning Framework with LeNet
MNIST Classification Model training and testing data.

• We evaluated the performance of TensorFlow framework on Intel Xeon Phi 7210
with CIFAR-10 image recognition datasets.

• We evaluated the performance of Docker containers on Intel Xeon Phi 7210 with
MPI parallel matrix-vector multiplication.

The remainder of this work is organized as follows. Section 2 presents the literature
review and related works. In Sect. 3, the system design and implementation are pre-
sented. The experimental results are shown in Sect. 4. In addition, the discussion are
also stated in this section. Finally, the concluding remarks are given in Sect. 5.

2 Background review and related works

2.1 OpenMP

OpenMP is an implementation of multi-threading, a method of parallelizing
whereby a master thread (a series of instructions executed consecutively) forks a
specified number of slave threads and the system divides a task among them. Fig-
ure 1 describes the architecture of OpenMP.

The threads then run concurrently, with the runtime environment allocating
threads to different processors. The threads then run concurrently, with the runt-
ime environment allocating threads to different processors. The section of code
that is meant to run in parallel is marked accordingly, with a compiler directive that
will cause the threads to form before the section is executed. Each thread has an
id attached to it which can be obtained using a function (called omp_get_thread_
num()). The thread is an integer, and the master thread has an id of 0. After the exe-
cution of the parallelized code, the threads join back into the master thread, which
continues onward to the end of the program. By default, each thread executes the
parallelized section of code independently. Work-sharing constructs can be used to
divide a task among the threads so that each thread executes its allocated part of the
code. Both task parallelism and data parallelism can be achieved using OpenMP in
this way [46]. Figure 2 shows the OpenMP threads process.

OpenMP contains three components: directives and clauses for compilers, librar-
ies for runtime, and variables for environment. The compiler directives are only

2489

1 3

Performance benchmarking of deep learning framework on Intel…

perceived when the option to compile OpenMP is switched on. OpenMP uses the
execution model of “fork and join”: the master thread forks new threads at the start
of parallel regions, multiple threads share work in parallel; and threads merge at the
end of parallel regions.

2.2 Message passing interface (MPI)

MPI [11–13, 31] is a standardized and portable message-passing system designed by
a group of researchers from academia and industry to function on a wide variety of
parallel computing architectures. The standard defines the syntax and semantics of
a core of library routines useful to a wide range of users writing portable message-
passing programs in C, C++, and Fortran. There are several well-tested and efficient
implementations of MPI, many of which are open-source or in the public domain.

Fig. 1 OpenMP architecture

Fig. 2 OpenMP threads process

2490 C.-T. Yang et al.

1 3

These fostered the development of a parallel software industry, and encouraged
development of portable and scalable large-scale parallel applications. The architec-
ture of MPI is shown as Fig. 3.

2.3 Caffe

The Berkeley Vision and Learning Center (BVLC) and community contributors cre-
ated Caffe as a deep learning framework. The framework supports Python, C++,
MATLAB, and CUDA. Caffe’s command line tool has several functions, it can train
a model, or use a well-trained model for the effectiveness of the test. When it was
training, it would build a Solver object, and its main function was to coordinate the
operation of the neural network to carry out training. One can use a configuration
file to specify the Solver parameters, such as learning rate or Solver types, like SGD
Solver and so on. In the profile, user can specify a training net parameters, testing
nets may have more than one. For example, if user want to use different data set to
verify the effectiveness of the model can be used. Although the network definition
can also be written directly in the Solver configuration file, but the example code is
usually written in a separate profile.

Next, Solver will create the corresponding training and testing Net objects based
on these profiles. Then Net will according to the definition of the entire network to
establish each Layer, also create a lot of Blobs to place the Layer and Layer between
the input and output information, and they are connected. Among them, a layer of
input is called bottom blobs, the output is top blobs. Blob is basically a multidi-
mensional array, except to its use of data, it contains a corresponding set of Diff,
Gradient can be used to calculate the results. These Blobs provide a simple interface
that allows Layer to access the data from the GPU or CPU. The entire architecture
process is shown in Fig. 4

2.4 TensorFlow

TensorFlow is an open-ended machine learning platform. It has an extensive and
versatile tool, library and community resources ecosystem that allows scientists to
advance the cutting edge in ML and allows ML powered apps to be readily built and
deployed by developers. TensorFlow has several abstraction levels so it can choose

Fig. 3 MPI architecture

2491

1 3

Performance benchmarking of deep learning framework on Intel…

the one to suit your requirements. Use the high-level Keras API to build and work
models, making it simple to start with TensorFlow and machine learning. When
more flexibility is needed, eagerness to execute iters immediately and intuitively.
Use the Distribution Strategy API for distributed training on various hardware set-
tings for major ML training activities without altering the definition of the model
[32, 39, 43].

2.5 Docker containers

Docker is a collection of paired software products and platforms as a service to
create and offer software in packages called containers that use the operating sys-
tem-level virtually. Docker Engine is the software hosting the containers. This is a
conventional software unit, that packages code with all its dependencies so that the
application operates fast and reliably from one computer setting to the other. It was
first launched in 2013 and is created by Docker Inc. A Docker container picture is
an easy, standalone, executable software package which contains all the necessary
software for the implementation: code, run-time, system instruments, system librar-
ies and setups[14].

Container images are transformed into containers during run-time and in the
Docker case-when running on Docker Engine pictures are converted into contain-
ers. Containerized software is always the same, regardless of the infrastructure, and
is available for both Linux and Windows applications. Containers isolate software

Fig. 4 Caffe architecture

2492 C.-T. Yang et al.

1 3

from its setting and guarantee that, despite variations between growth and staging, it
functions in a uniform manner [9, 15, 21].

2.6 Related works

Caffe enables experimentation and seamless switching between platforms to facili-
tate creation and deployment from prototyping machines to cloud environments. Jia
et al. [19] separates model representation from real implementation. With the sup-
port of an active GitHub group of contributors, Caffe is supported by the Berkeley
Vision and Learning Center (BVLC). It supports study initiatives on the basis of
vision, voice and multimedia, large scale industrial apps and start-up prototypes.

Tanno et al. [37] created Caffe2C which converts CNN (Convolutional Neural
Network) models trained with the existing CNN framework, Caffe, C-language
source codes for mobile devices. Since Caffe2C generates a single C code which
includes everything needed to execute the trained CNN, csCaffe2C makes it easy to
run CNN-based applications on any kinds of mobile devices and embedding devices
without GPUs. Moreover, Caffe2C achieves faster execution speed compared to the
existing Caffe for iOS/Android and the OpenCV iOS/Android DNN class. The rea-
sons are as follows: (1) directly converting of trained CNN models to C codes, (2)
efficient use of NEON/BLAS with multi-threading, and (3) performing pre-compu-
tation as much as possible in the computation of CNNs. In addition, in this paper,
they demonstrate the availability of Caffe2C by showing four kinds of CNN-base
object recognition mobile applications.

Bottleson et al. [3] presented OpenCL acceleration of a well-known deep learn-
ing framework, Caffe, while focusing on the convolution layer which has been
optimized with three different approaches, GEMM, spatial domain, and frequency
domain. Their research, clCaffe, greatly improves the performance on all types of
OpenCL devices to utilize deep learning use cases, specifically on small form factor
devices in which discrete GPUs are uncommon and integrated GPUs are far more
common. Compared to CPU-only AlexNet on the ImageNet dataset, their bench-
mark shows 2.5 cm speedup on the Intel Integrated-GPU. As such, our research pro-
vides the ability for the deep learning community to adopt a wide range of devices
through OpenCL.

CaffePresso, a Caffe-compatible framework for creating an optimized mapping of
ConvNet user-supplied requirements to target multiple accelerators such as FPGAs,
DSPs, GPUs, RISC multicores, was suggested by Hegde et al. [18]. They use an
automated code generation and autotuning strategy based on ConvNet requirements
experience, as well as platform-specific limitations such as on-chip memory ability,
bandwidth, and potential for ALU. While the Jetson TX1 + cuDNN may be expected
to deliver high performance for ConvNet configurations, it shows a slow-move GPU
transformation with a faster and energy-efficient implementation on older 28 nm TI
KeystoneIIDSP compared to most other systems for smaller embedded-friendliness-
based data sets like MNIST and CIFAR10 over new 20 nm NVIDIA TX1 SoC in all
instances.

2493

1 3

Performance benchmarking of deep learning framework on Intel…

Kurth et al. [23] discussed various alternatives on modern SuperComputing sys-
tems for the Tensorflow Framework to be scaled to thousands of nodes.

Tarasov et al. [38] unravel Docker’s multi-faceted nature and show its effect on
system and working capacity. As we reveal fresh features of the famous Storage
Docker drivers, this reminds us that new techniques are used extensively and can
often be evaluated in advance.

In order to assess containers acquired from heterogeneous providers, Ven-
kateswaran et al. [41] suggested a fresh metric called fitness quotient (FQ). They
leverage machine training methods in injecting automation into the following two
stages: the first-level K-mean clustering to correctly categorize IaaS costs and per-
formance information, and the second-level provisioning time polynomial retrench-
ment to find linkages between SaaS performance and container strength.

Purushotham et al. [33] present the results of benchmarking for several medical
forecasting processes such as death prediction, duration of stay analysis, and ICD-9
code category analysis using Deep Learning models, set of machine learning models
(Super Learner algorithm), SAPS II and SOFA ratings. Regarding the benchmark-
ing activities, we used the publicly accessible Medical Information Mart regarding
Intensive Care III (MIMIC-III) (v1.4) which includes all patients assigned to an ICU
at the Beth Israel Deaconess Medical Center from 2001 until 2012. Their findings
show that deep learning models consistently outperform all other approaches par-
ticularly when the data from the real clinical time series is used as features of input
to the models.

3 System design and implementation

In the section, the system introduces system design and implementation. In the sys-
tem design, the dataset used and the system flow are explained in detail. In the sys-
tem implementation, the vectorization and parallelism of OpenMP are described in
detail.

3.1 System design

3.1.1 Caffe deep learning framework

Caffe architecture has been used in this paper with CIFAR-10 [5, 6, 22] complete
sigmoid model, CNN model [20, 35, 47] involves convolution, biggest pool, batch
standardization, complete connection, multi-layer and softmax layer. The CIFAR-10
dataset is shown in Fig. 5, comprises of 60,000 color pictures, each with 32 × 32,
similarly split and labeled as to the following ten categories of dimensions: cata-
logue, aircraft, vehicle, bird, frog, deer, horse, dog, (such as sedans or sports util-
ity instruments) or defeated all vehicles (which contain only big vehicles) without
overlapping.

2494 C.-T. Yang et al.

1 3

3.1.2 TensorFlow deep learning framework

TensorFlow was implemented for benchmarking the performance of Intel Xeon Phi
Processor 7210 Platform. In this case, Cifar 10 was trained on single Bare Metal
with Intel MKL-DNN optimized Tensor. For this experiment, tests were done for
1000 steps, for a batch size of 128, and logging frequency of 1.

3.1.3 Docker containers benchmark

Docker containers were examined in the experiment on Intel Xeon Phi Processor
7210 Platform. In this case, the experiment run two parallel MPI processes on MPI
Matrix action on a vector, with 2000 iterations of size 1000 (length of vector v).
Demonstrating a MPI parallel Matrix-Vector Multiplication that run the iterations of
following equation:

The t value is defined as iteration, where v is a vector of length and M a dense size.
The other experiments were MPI Latency Test, MPI Bandwidth Test, and MPI

Bi-Directional Bandwidth Test.

(1)v(t + 1) = M ∗ v(t)

Fig. 5 CIFAR-10 dataset

2495

1 3

Performance benchmarking of deep learning framework on Intel…

3.1.4 System flow

Caffe framework which optimized for Intel architecture now includes the latest
version of Intel Math Core Library (Intel MKL) 2017 Optimized Advanced Vec-
tor Extensions (AVX)-2 and AVX-512 instructions to support Intel Xeon with the
Intel Xeon Phi (and others) processor. All the benefits found in BVLC Caffe on Intel
architectures and training courses that can be used for different nodes effectively.
The system flow for the design is

• Install Caffe environment on Xeon Phi Processor.
• Train and test on LeNet MNIST[4, 17]
• Test pre-trained models such as bvlc googlenet.caffemodel, certain pictures.
• Fine-tune the Cats vs Dog Challenge the trained model.
• Install TensorFlow and Intel MKL-DNN optimized Tensor environment on Intel

Xeon Phi Processor 7210.
• Train and Test CIFAR10 images classification dataset.
• Install Docker environment with MPI Parallel Processing.
• Run two parallel MPI processes on MPI Matrix action, MPI Latency Test, Band-

width Test, and Bi-Directional Bandwidth Test.

3.2 System implementation

3.2.1 Vectorization

In the analysis of the BVLC Caffe code, and find the wireless Internet site—function
call, consume the maximum CPU time, this project applied the vectorization optimi-
zation. These optimizations include the following:

• Basic Linear Algebra Complex (BLAS) [2] Library (Intel MKL to Switch from
Auto-Adjust Linear Algebra System [ATLAS] [30])

• Optimized components (Xbyak just-in-time [JIT] [44] group translator)
• GNU Compiler Collection (GCC) and OpenMP code vectorization

BVLC Caffe has used the Intel MKL BLAS feature call or other implementation
options. For example, for vectorization, multi-threading, and better cache memory
traffic optimization GEMM functions. For better vectorization, this project also use
the Xbyak-JIT translator (ia-32) for x86 and x64 (AMD64 or x86-64). Xbyak cur-
rently supports vector instruction sets for MMX, Intel SSE, Intel SSE3, Intel SSE4,
floating point units, Intel AVX, Intel AVX2 and Intel avx-512.

The Xbyak translator is an C++ x86/x64 JIT translator, especially for libraries
that efficiently develop code. The code that is executed only on the title is provided
by the Xbyak group translator. It can also dynamically combine x86 and x64 amuse-
ment keys. The JIT binary code generated by the code is executed while allowing
several optimizations, quantization, such as using a job that can be used to specify

2496 C.-T. Yang et al.

1 3

the array of elements of the second array, with the polynomial calculated item, Sta-
ble, variable x, new, sub, mul, div, etc. Intel Advanced Vector Extensions and Intel
AVX2 Vector Instruction Set support, Xbyak can achieve a better vectorization of
Caffe’s optimized for Intel architecture. The latest version of Xbyak with Intel avx-
512 vector instruction set support, which can improve operational efficiency, using
Intel Xeon Phi processor × 200 products. This improved vectorization ratio allows
Xbyak to process more information, along with single instruction, multiple data
(SIMD) instructions, and more efficient use of data parallel processing. The use of
Xbyak vector for this job can improve the performance of the large shared layer of
the program. If know the parameters of the cluster, the code of the component can
be generated to handle the particular shared model that applies to a particular shared
window or shared algorithm. The result is that the proven, more efficient than the
C++ code is superior to the general component.

3.2.2 Parallelism and OpenMP

OpenMP threads parallel processing is used to optimize the neural networks layers
in the following list:

Convolution layers
Convolution layers learn to weigh or filter, as the name indicates, with each pro-

gram input producing a function graph in the picture output. This optimization pro-
tects a hardware group from using the infrequent input feature.

Shared or Sub-sampling
The largest pool, the average area, and the stochastic area are different meth-

ods that can down-sampling the most popular methods with the largest pool. The
common layers are usually not overlapping with the results of a layer of rectangle
dynamic bricks. Each of these sub-regions, the layer re-output, the maximum value,
the arithmetic meaning, or the stochastic value of the samples formed by each parti-
tion is enabled for multinomial delivery. The Pooling function is useful for CNNs in
three main reasons:

• The area can be reduced and the dimension of the layer at the top right of the
load is calculated.

• The lower level of shared functionality allows the core convolutional to be higher
in multi-layered coverage of larger areas of input data and thus learn more com-
plex functions. For example, lower-level cores usually learn to identify small
edges, while high-level cores may learn to judge forests or beaches.

• The largest pool can provide some form of translation invariance. Eight possible
directions, a 2 × 2 partition (a typical partition of the area) can convert it to a sin-
gle pixel, from three will return the same maximum. 3 × 3 windows, the five will
not return the same maximum value.

Pooling a single function on the map of the job mode, Xbyak was used to build effi-
cient programs with the largest average shared one or more input feature maps. This
set of programs can be implemented as a batch input function corresponding to the
execution program when parallel to OpenMP.

2497

1 3

Performance benchmarking of deep learning framework on Intel…

Shared levels are parallel and multi-threaded; OpenMP images are independent
because they can handle different threads in parallel.

Softmax and the loss layer
The lost (cost) function is a key component that compares the predicted output to

the target or the label that will guide the network training program to the machine,
and then readjusting the calculation of the gradient to minimize the cost, for the
weighting part of the lost part of the derivative project. Softmax [10, 40] (through
the normalization index) is the classification of the probability of distribution gradi-
ent—logon normalization program function. In general, this is used to calculate the
possible results of a random event that allows one of the possible outcomes of K,
with the probability of specifying each result individually. Specifically, in the multi-
nomial logistic regression (multilevel classification problem), the input of this func-
tion is the result of a different linear function of K and the possibility of j prediction.
For example the vector x class is:

where T is exponentiation value, where w is a vector of the inputs to the output layer
(if it has 10 output units, then there are 10 elements in z, j indexes the output units),
so j = 1, 2,… ,K.

Multi-threading, OpenMP applies these calculations, is a bifurcation of a spe-
cific number of subordinate threads, and a way of working between them to use the
main thread parallel processing. Threads are executed at the same time, and they are
assigned to different processors.

Rectified Linear Unit (ReLU)
ReLUs [7, 28] presently use the deep learning algorithm’s most common non-

linear features. Allows the element-wise neuron layer operator to place a reduced
point block and generate the same size top dot. (Integrated memory interface point-
for-architecture with a standard array. Using the product and derivative information
via the Internet, Caffe storage, communication, and management information.) The
ReLU layer must enter the value x as x positive values to calculate the output and
extend it to negative slope adverse values:

If x = 0 then the function is not smooth. This is the reason why the derivative of the
ReLU function is not defined at x = 0.

4 Experimental results

In this section, the experiments are demonstrated. The experimental environ-
ment, including experimental hardware and software, and experimental design are
described in detail.

(2)P(y = j ∣ x) =
ex

Twj

∑K

k=1
ex

Twk

(3)f (x) =

{

x, if x > 0

������������� ∗ x, otherwise

2498 C.-T. Yang et al.

1 3

4.1 Experimental environment

In the experimental environment, there are two kinds of experiments. Single node,
including one Xeon E5 and one Xeon Phi 7210 spect processor. Multinode distrib-
uted training, including two Xeon E5 and two Xeon Phi 7210 spect processor were
used.

4.2 The experimental hardware

In this experiment, the employed hardware are presented in detail in Table 1.

4.3 Experimental software

In the experimental software, list of the software version were used in the experi-
ments, and describe its function. The detail can be shown in the Table 2.

4.4 Caffe framework benchmark

The LeNet is trained in this section, which is Caffe’s MNIST Classification Model.
Start the experiment with the following primary phase: dataset preparation, model
training, and model timing. First, download the MNIST dataset and generate the
LMDB format dataset. Next to train the dataset, the amount of the steps is set to 1 K
in order to run fast. Then, running the iteration of propagations forward and back-
ward in 50, 100, 500, 1000, 2000, and 10.000 iteration. Finally, in the validation test,
the trained model is examined. Figure 6 demonstrates the findings.

Then, in two platforms, Intel Xeon E5-2560 and Intel Xeon Phi 7210, were
benchmarked using BLVC Caffe and Intel optimized Caffe. The time command cal-
culates the forward and backward propagation time of the layer-by-layer. It estimates
the time spent in each layer and provides a distinct model with the comparative exe-
cution times. The results are presented in Figs. 7 and 8.

Use the distributed multi-node training on two Intel Xeon Phi 7210, as well. The
training can be distributed across two primary methods: parallel model and parallel
data. The model is split between the nodes in model parallel and each node has the
complete data batch. The data batch is split between the nodes in data parallelism,

Table 1 Hardware specification Intel Xeon E5-2650 Intel Xeon Phi 7210

CPU clock 2 GHz 1.30 GHz
CPU core 12 core 64 core
RAM 132 GB 384 GB
Disk 1 TB 10 TB
OS CentOS 7.2
Linux kernel 2.6.32–504.el6.x86_64 3.10.0–327.el7.x86_64

2499

1 3

Performance benchmarking of deep learning framework on Intel…

Ta
bl

e
2

 S
of

tw
ar

e
sp

ec
ifi

ca
tio

n

N
am

e
Ve

rs
io

n
D

es
cr

ip
tio

n

In
te

l P
ar

al
le

l S
tu

di
o

X
E

20
17

 u
pd

at
e

3
In

cl
ud

es
 c

om
pi

le
rs

, p
er

fo
rm

an
ce

 li
br

ar
ie

s,
an

d
pa

ra
lle

l m
od

el
s o

pt
im

iz
ed

 to
 b

ui
ld

 fa
ts

 p
ar

al
le

l c
od

e
In

te
l A

dv
is

or
 X

E
20

17
 u

pd
at

e
2

In
te

l A
dv

is
or

 X
E

is
 a

 th
re

ad
in

g
pr

ot
ot

yp
in

g
to

ol
 fo

r C
, C

+
+

, C

an
d

Fo
rtr

an
 so

ftw
ar

e
ar

ch
ite

ct
s

In
te

l I
ns

pe
ct

or
 X

E
X

E
20

17
In

te
l I

ns
pe

ct
or

 X
E

is
 a

n
ea

sy
 to

 u
se

 m
em

or
y

an
d

th
re

ad
in

g
er

ro
r d

eb
ug

ge
r f

or
 C

, C
+

+
, C

an

d
Fo

rtr
an

ap

pl
ic

at
io

ns
 th

at
 ru

n
In

te
l V

Tu
ne

 A
m

pl
ifi

er
20

17
 u

pd
at

e
2

In
te

l Ⓡ
 V

Tu
ne

TM
 P

ro
fil

er
 c

ol
le

ct
s a

nd
 p

re
se

nt
s k

ey
 p

ro
fil

in
g

da
ta

 w
ith

 a
 p

ow
er

fu
l i

nt
er

fa
ce

 w
hi

ch
 si

m
-

pl
ifi

es
 it

s a
na

ly
si

s a
nd

 in
te

rp
re

ta
tio

n
In

te
l M

PI
20

17
 u

pd
at

e
M

PI
 li

br
ar

y,
 a

lo
ng

 w
ith

 M
PI

 e
rr

or
 c

he
ck

in
g

an
d

tu
ni

ng
 to

 d
es

ig
n,

 b
ui

ld
, d

eb
ug

 a
nd

 tu
ne

 fa
st

pa
ra

lle
l c

od
e

th
at

 in
cl

ud
es

 M
PI

In
te

l M
PS

S
3.

8.
1

Is
 n

ec
es

sa
ry

 to
 ru

n
th

e
In

te
l X

eo
n

Ph
i C

op
ro

ce
ss

or

2500 C.-T. Yang et al.

1 3

Fig. 6 LeNet model training results

Fig. 7 BLVC Caffe execution time comparison

Fig. 8 The execution time comparisons with respect to the Intel optimized Caffe

2501

1 3

Performance benchmarking of deep learning framework on Intel…

and every node has the complete model. Parallel data is particularly helpful if there
is a tiny amount of weights and if the data batch is big. A hybrid model and data par-
allelism are feasible, where the data-parallel method is used for the training of layers
with few weights, such as convolutional layers, and layers with many weights, such
as fully-connected layers, with a parallel model strategy. The training results shows
as Fig. 9

4.4.1 TensorFlow benchmark

In this experiments, it can be evaluated the training of CIFAR10 image recognition
dataset achieved 60.8% accuracy after 1000 steps for a batch size of 128, and log-
ging frequency of 1 as shown in Fig. 10.

In term of speed, the benchmark processes a single batch of 128 images in
1.515–2.599 s (i.e. 49–85 images /s). Figure 11 shows the amount of pictures being
processed per seconds.

The model reaches 60% accuracy after 1000 steps in 30 min of training time.
Figure 12 shows the graph of image processing in 1758 s per batch on average.

4.4.2 Docker containers benchmark

In the Docker containers performance tests, it based on one mpi head container and
three mpi node containers. Figure 13 describes the installation on Intel Xeon Phi.

Fig. 9 Multinode execution results

Fig. 10 The accuracy after 1000 steps

2502 C.-T. Yang et al.

1 3

First, the experiment was running two parallel MPI Matrix action processes on
a vector, 20 iterations of size 1000. Table 3 and Fig. 14 describe the visualization
of MPI Matrix action on Docker clusters. Overall, the duration went through the
throughput of fluctuation.

Fig. 11 The amount of pictures being processed per seconds

Fig. 12 The image processing time in seconds per batch

2503

1 3

Performance benchmarking of deep learning framework on Intel…

Second, in term of MPI latency test, when the size is below than 32,768 B, the
latency is stable at 53.18 μ s on average. While more than 32,768 B, the latency
increasing is random. Table 4 and Fig. 15 shows MPI latency test on Docker clusters.

Third, in term of bandwidth test, the bandwidth increasing in random size.
Table 5 and Fig. 16 describes MPI bandwidth test on Docker clusters.

Lastly, in term of bidirectional bandwidth test, when the size is below than 8192
B, the increasing of bandwidth is twice per MB/s. While more than 8192 B, the
bandwidth increasing is random. Table 6 and Fig. 17 describes MPI bidirectional
bandwidth test on Docker.

4.5 Discussion

The training output can be reducted 60.59% at Intel Xeon E5-2650, 20.10% at Intel
Xeon Phi 7210 by using the vectorization and parallelism of OpenMP optimization

Fig. 13 Docker installation

Table 3 MPI matrix action on a
vector, 20 iterations of size 1000

Duration (s) Throughput (#/s)

4.725 04.23
4.662 04.29
4.619 04.33
4.694 04.26
4.534 04.41
4.733 04.23
4.657 04.29
4.545 04.40
4.568 04.38
4.681 04.27

2504 C.-T. Yang et al.

1 3

technique. The optimization was successfully implemented on the Caffe framework,
and the training time was reduced significantly. It can be assumed that Intel Xeon
E5-2650 has a very bad output without optimization, but it can be reduced by 3795
for Intel Xeon Phi 7210. The training time is decreasing three times after optimization
on Intel Xeon E5-2650 comparing with Intel Xeon Phi 7210. In terms of accuracy, we
tested the accuracy only on Intel Xeon Phi 7210 on the different iterations of 50, 100,
500, 1000, 2000, and 10.000 iterations. The LeNet model training shows the high accu-
racy at 0.980742 on Intel Xeon Phi 7210. In addition, using the multi-node of two Intel
Xeon Phi 7210, it can be achieved even better performance at 9.327 s.

In the TensorFlow experiments, it can be evaluated from the graph of the training on
CIFAR10 image recognition dataset. The amount of the pictures being processed per
second and the speed of training processes are quite stable.

In the Docker clusters tests, 20 iterations of size 1000 on two parallel MPI Matrix
action processes on a vector. Overall, the duration had passed into the fluctuation
throughput. There are a stable phase and unstable phase of processing the specific size
on the MPI latency test, bandwidth test, and bidirectional bandwidth test.

Fig. 14 MPI matrix action on Docker clusters

2505

1 3

Performance benchmarking of deep learning framework on Intel…

5 Conclusion and future works

This research has optimized Caffe and TensorFlow deep learning frameworks
on the Intel Xeon Phi Processor. From the experiments, it can be seen the best
practice in the training of big data. The analysis process will be more efficient in
terms of time and performance. The presented results can be used as a consider-
able action on machine learning processing. The optimization was successfully
on the Caffe framework usage, and the training time was reduced significantly.
In the TensorFlow experiments, the amount of the pictures being processed per
seconds and the speed of training processes are quite stable. While in the Docker
clusters experiments, there is a stable phase and unstable phase on processing
specific size.

In the future, advantage comparison can be performed due to the limitation of
this research in which we evaluate three kinds of performance benchmarking and
not to do a comparison ranking between Hypervisor and Container. The further
improvements and future enhancements might described as follows:

Table 4 MPI latency test # Size (B) Latency (μs)

0 49.42
1 51.04
2 51.15
4 51.55
8 51.12
16 51.95
32 51.35
64 48.63
128 49.02
256 49.05
512 50.07
1024 49.89
2048 51.13
4096 52.98
8192 54.16
16,384 58.38
32,768 83.17
65,536 211.59
131,072 289.97
262,144 410.39
524,288 684.62
1,048,576 1116.26
2,097,152 1901.83
4,194,304 3568.79

2506 C.-T. Yang et al.

1 3

Fig. 15 MPI latency test on Docker clusters

Table 5 MPI bandwidth test # Size (B) Bandwidth (MB/s)

1 0.02
2 0.05
4 0.09
8 0.19
16 0.34
32 0.75
64 1.50
128 3.00
256 6.00
512 11.82
1024 23.84
2048 45.88
4096 90.75
8192 171.50
16,384 317.20
32,768 654.34
65,536 467.31
131,072 701.81
262,144 918.13
524,288 1056.43
1,048,576 1113.48
2,097,152 1207.08
4,194,304 1253.42

2507

1 3

Performance benchmarking of deep learning framework on Intel…

Fig. 16 MPI bandwidth test on Docker clusters

Table 6 MPI bi-directional
bandwidth test

Size (B) Bandwidth (MB/s)

1 0.02
2 0.04
4 0.08
8 0.16
16 0.31
32 0.63
64 1.25
128 2.49
256 4.82
512 9.98
1024 17.54
2048 37.56
4096 75.06
8192 155.08
16,384 268.05
32,768 363.07
65,536 242.08
131,072 387.76
262,144 463.88
524,288 486.19
1,048,576 533.05
2,097,152 567.72
4,194,304 585.46

2508 C.-T. Yang et al.

1 3

• Compare the accuracy of the Caffe Deep Learning Framework with LeNet
MNIST Classification Model training and testing data between Hypervisor and
Container.

• Compare the performance of TensorFlow Framework on Intel Xeon Phi 7210
with CIFAR-10 image recognition datasets between Hypervisor and Container.

• Compare the MPI parallel Matrix-Vector Multiplication calculation between
Hypervisor and Container.

Acknowledgements This work was supported by the Ministry of Science and Technology, Taiwan
(R.O.C.), under Grant Number 108-2221-E-029-010-.

References

 1. Ben-Nun T, Besta M, Huber S, Ziogas AN, Peter D, Hoefler T (2019) A modular benchmarking
infrastructure for high-performance and reproducible deep learning. In: 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, pp 66–77

 2. Blackford LS, Petitet A, Pozo R, Remington K, Whaley RC, Demmel J, Dongarra J, Duff I, Ham-
marling S, Henry G et al (2002) An updated set of basic linear algebra subprograms (blas). ACM
Trans Math Softw 28(2):135–151

 3. Bottleson J, Kim S, Andrews J, Bindu P, Murthy DN, Jin J (2016) Clcaffe: Opencl accelerated caffe
for convolutional neural networks. In: Proceedings—2016 IEEE 30th International Parallel and Dis-
tributed Processing Symposium, IPDPS 2016, pp 50–57. www.scopu s.com

 4. Bottou L, Cortes C, Denker JS, Drucker H, Guyon I, Jackel LD, LeCun Y, Muller UA, Sackinger E,
Simard P et al (1994) Comparison of classifier methods: a case study in handwritten digit recogni-
tion. In: Pattern Recognition, 1994. Vol 2-Conference B: Computer Vision & Image Processing.
Proceedings of the 12th IAPR International. Conference on, vol 2. IEEE, pp. 77–82

 5. Cifar10 (2017). https ://www.cs.toron to.edu/~kriz/cifar .html

Fig. 17 MPI bidirectional bandwidth test on Docker clusters

http://www.scopus.com
https://www.cs.toronto.edu/%7ekriz/cifar.html

2509

1 3

Performance benchmarking of deep learning framework on Intel…

 6. Coates A, Ng A, Lee H (2011) An analysis of single-layer networks in unsupervised feature learn-
ing. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statis-
tics, pp 215–223

 7. Dahl GE, Sainath TN, Hinton GE (2013) Improving deep neural networks for lvcsr using rectified
linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp 8609–8613

 8. Deng L, Liu Y (2018) Deep learning in natural language processing. Springer, Berlin
 9. Docker (2019). https ://www.docke r.com/
 10. Gold S, Rangarajan A et al (1996) Softmax to softassign: neural network algorithms for combinato-

rial optimization. J Artif Neural Netw 2(4):381–399
 11. Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the

mpi message passing interface standard. Parallel Comput 22(6):789–828
 12. Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the message-

passing interface, vol 1. MIT Press, Cambridge
 13. Gropp W, Lusk E, Thakur R (1999) Using MPI-2: advanced features of the message-passing inter-

face. MIT Press, Cambridge
 14. Grupp A, Kozlov V, Campos I, David M, Gomes J, García Á L (2019) Benchmarking deep learning

infrastructures by means of tensorflow and containers. In: International Conference on High Perfor-
mance Computing. Springer, pp 478–489

 15. Hacker SK (2018) Mastering docker: a quick-start beginner’s guide. CreateSpace Independent Pub-
lishing Platform. https ://dl.acm.org/doi/book/10.5555/32352 03

 16. Han J, Zhang D, Cheng G, Liu N, Xu D (2018) Advanced deep-learning techniques for salient and
category-specific object detection: a survey. IEEE Signal Process Mag 35(1):84–100

 17. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural
network. In: Advances in Neural Information Processing Systems, pp 1135–1143

 18. Hegde G, Ramasamy N, Kapre N et al (2016) Caffepresso: an optimized library for deep learning on
embedded accelerator-based platforms. In: 2016 International Conference on Compliers, Architec-
tures, and Sythesis of Embedded Systems (CASES). IEEE, pp 1–10

 19. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014)
Caffe: convolutional architecture for fast feature embedding. In: MM 2014—Proceedings of the
2014 ACM Conference on Multimedia, pp 675–678. www.scopu s.com

 20. Kim Y (2014) Convolutional neural networks for sentence classification. arXiv preprint arXiv
:1408.5882

 21. Kristiani E, Yang CT, Wang YT, Huang CY, Ko PC (2018) Container-based virtualization for real-
time data streaming processing on the edge computing architecture. In: International Wireless Inter-
net Conference. Springer, pp 203–211

 22. Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished man-
uscript 40

 23. Kurth T, Smorkalov M, Mendygral P, Sridharan S, Mathuriya A (2018) Tensorflow at scale: perfor-
mance and productivity analysis of distributed training with horovod, mlsl, and cray pe ml. Concur-
rency and Computation: Practice and Experience, p e4989

 24. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network archi-
tectures and their applications. Neurocomputing 234:11–26

 25. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020) Deep learning for
generic object detection: a survey. Int J Comput Vis 128(2):261–318

 26. Liu L, Wu Y, Wei W, Cao W, Sahin S, Zhang Q (2018) Benchmarking deep learning frameworks:
design considerations, metrics and beyond. In: 2018 IEEE 38th International Conference on Distrib-
uted Computing Systems (ICDCS). IEEE, pp 1258–1269

 27. Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang YC, Kim DI (2019) Applications of deep
reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor
21(4):3133–3174

 28. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10), pp 807–814

 29. Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K (2019) Speech recognition using deep neural net-
works: a systematic review. IEEE Access 7:19143–19165

 30. Nath R, Tomov S, Dongarra J (2010) Accelerating GPU kernels for dense linear algebra. In: VEC-
PAR. Springer, pp 83–92

 31. Openmpi (2017). https ://www.open-mpi.org/

https://www.docker.com/
https://dl.acm.org/doi/book/10.5555/3235203
http://www.scopus.com
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
https://www.open-mpi.org/

2510 C.-T. Yang et al.

1 3

 32. Panda DK, Awan AA, Subramoni H (2019) High performance distributed deep learning: a begin-
ner’s guide. In: PPoPP, pp 452–454

 33. Purushotham S, Meng C, Che Z, Liu Y (2018) Benchmarking deep learning models on large health-
care datasets. J Biomed Inform 83:112–134

 34. Rosales C (2014) Porting to the intel xeon phi: opportunities and challenges. In: Proceedings—2013
Extreme Scaling Workshop, XSW 2013, pp 1–7. www.scopu s.com

 35. Roska T, Hamori J, Labos E, Lotz K, Orzó L, Takacs J, Venetianer PL, Vidnyanszky Z, Zarándy Á
(1993) The use of cnn models in the subcortical visual pathway. IEEE Trans Circuits Syst I Fundam
Theory Appl 40(3):182–195

 36. Soheil B, Naveen R, Lukas S, et al (2016) Comparative study of deep learning software frameworks.
arXiv preprint arXiv :1511.06435

 37. Tanno R, Yanai K (2016) Caffe2c: a framework for easy implementation of cnn-based mobile appli-
cations. In: ACM International Conference Proceeding Series, vol 28-November-2016, pp 159–164.
www.scopu s.com

 38. Tarasov V, Rupprecht L, Skourtis D, Li W, Rangaswami R, Zhao M (2019) Evaluating docker stor-
age performance: from workloads to graph drivers. Cluster Computing pp 1–14

 39. Tensorflow description (2019). https ://www.tenso rflow .org/
 40. Tokic M, Palm G (2011) Value-difference based exploration: adaptive control between epsilon-

greedy and softmax. KI 2011: Advances in Artificial Intelligence, pp 335–346
 41. Venkateswaran S, Sarkar S (2019) Fitness-aware containerization service leveraging machine learn-

ing. IEEE Trans Serv Comput. https ://doi.org/10.1109/TSC.2019.28986 66
 42. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer

vision: a brief review. Comput Intell Neurosci. https ://doi.org/10.1155/2018/70683 49
 43. Wang H, Zhang L, Han J, Weinan E (2018) Deepmd-kit: a deep learning package for many-body

potential energy representation and molecular dynamics. Comput Phys Commun 228:178–184
 44. Xbyak (2017). https ://githu b.com/herum i/xbyak
 45. Yang CT, Liu JC, Chan YW, Kristiani E, Kuo CF (2018) On construction of a caffe deep learning

framework based on intel xeon phi. In: International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing. Springer, pp 96–106

 46. Yang CT, Huang CL, Lin CF (2011) Hybrid CUDA, OpenMP, and MPI parallel programming on
multicore GPU clusters. Comput Phys Commun 182(1):266–269

 47. Zarándy Á, Orzó L, Grawes E, Werblin F (1999) CNN-based models for color vision and visual illu-
sions. IEEE Trans Circuits Syst I Fundam Theory Appl 46(2):229–238

 48. Zhang Z, Geiger J, Pohjalainen J, Mousa AED, Jin W, Schuller B (2018) Deep learning for environ-
mentally robust speech recognition: an overview of recent developments. ACM TIST 9(5):1–28

 49. Zhao ZQ, Zheng P, Xu St, Wu X (2019) Object detection with deep learning: a review. IEEE Trans
Neural Netw Learn Syst 30(11):3212–3232

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://www.scopus.com
http://arxiv.org/abs/1511.06435
http://www.scopus.com
https://www.tensorflow.org/
https://doi.org/10.1109/TSC.2019.2898666
https://doi.org/10.1155/2018/7068349
https://github.com/herumi/xbyak

	Performance benchmarking of deep learning framework on Intel Xeon Phi
	Abstract
	1 Introduction
	2 Background review and related works
	2.1 OpenMP
	2.2 Message passing interface (MPI)
	2.3 Caffe
	2.4 TensorFlow
	2.5 Docker containers
	2.6 Related works

	3 System design and implementation
	3.1 System design
	3.1.1 Caffe deep learning framework
	3.1.2 TensorFlow deep learning framework
	3.1.3 Docker containers benchmark
	3.1.4 System flow

	3.2 System implementation
	3.2.1 Vectorization
	3.2.2 Parallelism and OpenMP

	4 Experimental results
	4.1 Experimental environment
	4.2 The experimental hardware
	4.3 Experimental software
	4.4 Caffe framework benchmark
	4.4.1 TensorFlow benchmark
	4.4.2 Docker containers benchmark

	4.5 Discussion

	5 Conclusion and future works
	Acknowledgements
	References

