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Abstract
The distributed denial-of-service (DDoS) attack is a security challenge for the soft-
ware-defined network (SDN). The different limitations of the existing DDoS detec-
tion methods include the dependency on the network topology, not being able to 
detect all DDoS attacks, applying outdated and invalid datasets and the need for 
powerful and costly hardware infrastructure. Applying static thresholds and their 
dependency on old data in previous periods reduces their flexibility for new attacks 
and increases the attack detection time. A new method detects DDoS attacks in 
SDN. This method consists of the three collector, entropy-based and classification 
sections. The experimental results obtained by applying the UNB-ISCX, CTU-13 
and ISOT datasets indicate that this method outperforms its counterparts in terms of 
accuracy in detecting DDoS attacks in SDN.

Keywords Distributed denial-of-service attacks · Software-defined networks · High-
volume DDoS attack · Low-volume DDoS attack · Network security

1 Introduction

The SDN is a new architecture consisting of the three data, control and application 
plane layers, where data and control layers are independent of each other, as shown 
in Fig. 1. The data plane consists of switches and routers involved in network traffic 
forwarding; the control plane constitutes the network intelligent section consisting 
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of NOX, POX, Beacon, Floodlight and OpenDaylight controllers, and the applica-
tion plane contains applications for SDN configuration [1].

The IT organizations may possibly encounter security procedures like DDoS 
attacks due to the lack of network coherency during re-configuration of the networks 
to SDN [2]. The DDoS is one of the most adverse attacks in the Internet realm, 
which weakens the network and the server by influencing the network bandwidth or 
connectivity in providing regular service [3], as shown in Fig. 2, where as observed 
the attackers put in too many requests to the open-flow switch from different hosts in 
a simultaneous manner, thus facing the network with difficulties.

The DDoS attacks target a wide spectrum of different resources and sites, begin-
ning from servers’ banks up to new sites by introducing big challenges for the 
managers and users of these systems. On Feb 28, 2018, the GitHub site, one of the 
most important code variety perceptions for programs, was attacked with a high 
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mass traffic of 1.3 Tbps volume, which made it to become off-line for 5 min. This 
attack introduced many problems to this site [4]. In a time interval within Febru-
ary 5–March 1, 2019, about 17 DDoS attacks were made on University of Albany 
site, which disturbed the server therein for at least 5 min. Though the data related to 
the instructors and students were exempt, some of the servers become off-line [5]. 
These nonstop attacks necessitate devising procedures in detecting and preventing 
the DDoS attacks.

There exist approaches in this context which next to their advantages have the fol-
lowing drawbacks.

Difficulty in selecting the appropriate time periods for monitoring the traffic in 
periodic methods [6], the shortcoming and delays in detecting DDoS attacks may 
lead to losing resources such as bandwidth and CPU [7], deactivation of the control-
ler and switch, unwanted increase in response time [8] and maintaining the network 
security at high cost of adding hardware therein.

A method including statistical and machine learning methods involved in SDN 
is proposed in this article to overcome the available drawbacks in DDoS attack 
detection.

In this method, the mechanism for selection of time periods is applied in moni-
toring attacks, something not considered in the available methods. Attempt is made 
here to select the best time period for achieving the maximum detection rate, which 
is not necessarily of the lowest or highest volume. Periodic monitoring and sched-
uled traffic screening increase the efficiency of the controller in terms of the work-
load. Another advantage of this idea is that no custom hardware is necessary to 
detect attacks. This method increases the accuracy of DDoS detection and provides 
independence from the network topology.

The assessed attacks here are of the HTTP-based application layer attack type 
[9], which are observed in their low-volume or high-volume states. The high-volume 
attacks send many requests to a server or computer and consume extra bandwidth 
and processors therein [10], while the low-volume attacks have lower entry traffic 
mass capable of being deceived by expert or impostor attackers [11]. In this method, 
both these states are assessed. This model consists of collector, entropy-based and 
classification sections.

The statistical information from switches and host is collected in the controller 
sections. The entropy volume and the static and dynamic thresholds are calculated 
through the entropy-based section.

The 15 features for the hosts of the same flow and recorded data samples for 
incoming packets are extracted through the classification section. The samples are 
fed into the classification section as the training inputs to devise models through dif-
ferent classification algorithms.

This method yields 99.85% accuracy with 0.1 FPR on UNB-ISCX and 99.12% 
on CTU-13 dataset. These results indicate this model’s outperformance versus its 
counterparts. The main contribution of this article is to combine machine learning 
and statistical methods to improve the detection of DDoS attacks in SDN networks. 
In the available methods, the advantage of statistical methods and machine learning 
combination is not addressed in achieving higher detection performance.



2386 A. Banitalebi Dehkordi et al.

1 3

This article is organized as follows: The literature is reviewed in Sect.  2; the 
method is proposed in Sect.  3; the datasets are presented in Sect.  4; the model is 
evaluated in Sect. 5; the model is implemented in Sect. 6; the results are expressed 
in Sect. 7; the analysis are run in Sect. 8; the experiments are compared in Sect. 9; 
and the article is concluded in Sect. 10.

2  Literature review

There exist many studies on DDoS attack detection. The findings of some of the 
available articles are briefed in this section.

Researchers in [12] applied the K-means clustering and Naive Bayes method 
for DDoS attack detection, consisting of: (1) clustering the similar data as to their 
behaviors in groups and labeling all data according to K cluster and (2) classifying 
the labeled data groups through Naive Bayes algorithm.

The computer vision technique is applied to detect DDoS attacks in [13], where 
unlike the statistical and machine learning methods, the traffic records are consid-
ered as images and detecting the attacks is viewed as a computer version issue. A 
multivariable coherence analytical method is introduced for accurate traffic record 
detection and its conversion into images. This method is named the Earth mover’s 
distance (EMD) computed based on the measured distance between two probable 
distributions.

As to the known and unknown DDoS attacks, researchers in [14] applied the 
artificial neural network (ANN) and revealed that the method is subject to algo-
rithm training through the given dataset. Their proposed method is compared with 
its counterparts such as the backpropagation (BP), Chi-square and support vector 
machines (SVM) and Snort. They obtained a detection accuracy of 98%.

The DDoS attack detection in cloud computing and SDN networks is assessed 
in [15], where different models with features are applied to the datasets involved 
in both the training and test. For them, to increase efficiency updating is a must. 
Among the three proposed DDoS attack detection models in SDN networks, the best 
is Mglobal with 89.30% accuracy.

The authors in [16] applied different features to detect whether an attack has 
occurred or not. Because there exist more than one major parameter in judging 
DDoS attacks, the significant issue is related to how these parameters are deter-
mined; that is, the destination Internet Protocol (IP) address is considered as one 
of the attack detection parameters which can be detected by entropy. The detection 
method is evaluated through this model and many parameters.

A fast attack detection method is proposed in [17] to decrease the controllers and 
switches workload, where the neural network algorithm is applied. A combination 
of entropy-based and classification algorithms is presented as well. This method can 
detect both the high-volume and low-volume DDoS attacks.

To implement their own model, researchers in [18] applied the two data mining 
algorithms of C5.0 and Ripper. Their model is tested on UNB-ISCX datasets and a 
detection rate of 99% plus is achieved.
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Researchers in [19] applied a statistical approach to detect the attacks next to 
learning machine techniques. In the statistical approach, usually the predetermined 
distributions are applied to model the traffic network’s normal and abnormal behav-
iors, in addition to the distance measures techniques, and in the machine learning 
stage, the K-Means, SVM, decision tree, Naive Bayes algorithm and AI algorithm 
are applied as a classifier.

A new solution for determining DDoS attack in IOT network infrastructures is 
proposed in [20], where for managing high traffic flows, the sFlow- and adaptive 
polling-based sampling techniques are applied in the data-plane layer. After sam-
pling the distributed traffic in data plane, to increase real attack detection, the Snort-
IDS and stacked autoencoders (SAE), an unsuperficial algorithm, are applied to 
obtain the high accuracy and low FPR to distinguish normal traffic from attack.

In a general assessment in [21], the deep learning modules of convolutional 
neural networks, deep neural networks, recurrent neural networks and deep Boltz-
mann machines models are of concern. The efficiency of the model of concern is 
determined by assessing every model in both the binary and multiclass categories 
by applying the CSE-CIC-IDS2018 and BoT–IoT datasets which contain real traffic. 
They revealed that implementation of their method is costly and complex because 
it requires special hardware such as Graphic Process Unit (GPU) and hundreds of 
software machines.

The researchers in [22] proposed a dynamic multilayer perceptron (MLP) com-
bined with a feature selection technique to detect DDoS attacks, where a feedback 
mechanism is applied to promote and reconstruct the detector system when detec-
tion is not accurate. In their model, as the complexities of traffic network increase 
and change, some of the selected features will not be able to distinguish the traffic 
and normal attacks and determine the failure therein. The proposed method in their 
article in comparison with their counterparts can be of good functionality, while 
applying feedback mechanism here can enhance FPR and FNR.

3  The proposed method

In this study, a combination of entropy-based method and classification algorithm is 
applied for detecting high-volume and low-volume DDoS attacks. A two-class clas-
sification task for distinguishing normal flows from attacks is of concern here. The 
three applications introduced in Floodlight controller [23] for collecting flows and 
calculating entropy are shown in Fig. 3.

The method shown in Fig. 3 consists of the collector, entropy-based and classifi-
cation sections, which operate together to detect the DDoS attacks that occur in the 
Floodlight controller. Each section is introduced in the following text.

3.1  Collector section

Both the statistics of the network flows and communications recorded by switches 
for a specific period of time are collected in this section. These statistics include 
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the total count of the bytes sent, the count of packets sent and the flow time. Upon 
establishing a connection between two hosts, the first packet is sent to the controller, 
to be stored next to IP source, source port, destination IP, destination port, packet 
bytes and packet arrival time [24]. This phenomenon holds true for all packet-in 
messages. After making all the flows available, the statistics between the two hosts 
are obtained and given to the controller.

3.2  Entropy‑based section

Here, entropy is applied to detect most of the attacks. Providing a fast and conveni-
ent manner in filtering suspicious flows is the main advantage of entropy-based fil-
tering. This section is easily developed and implemented in SDN network environ-
ments, where low CPU load and easy implementation by the controller suffice.

The DDoS attacks impose additional overhead and disrupt Web activities; thus, 
the target system is measured by calculating the entropy of each IP in SDN net-
works. To calculate the entropy, it is assumed that there exists a time window, W, 
with n distinct elements and X(i,t) is the observation i in the set at time t. The size of 
W in Eq. (1) is named as the size of time window [25].

Fig. 3  Proposed method
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where W is the time window, and X(i,t) is the count of flows i in time t at n different 
possible states.

The probability of X(i,t) occurring in W is calculated through Eq. (2):

where p(X(i,t)) is the occurrence probability of each X(i,t) in W.
To calculate the entropy H(i,t) , the probability of each element in the set should be 

multiplied by its logarithm and summed through Eq. (3).

where P(X(i,t)) is the occurrence probability of each IP.
If the calculated entropy < threshold (Thr), as expressed in Eq. (4), then the occur-

rence of an attack is reported.

where Thr is a threshold in this network.
The optimal entropy for each period is determined by testing different time periods. 

Changing the time periods is very easy in the SDN controller, and this flexibility is 
one of the advantageous features in SDN networks. Both the time period duration and 
threshold size are effective in attack detection. The static and dynamic thresholds are 
introduced in [26], and the detection of high-volume DDoS attacks with DARPA2000 
is assessed in [27]. The DARPA2000 datasets are detected by experts based on the 
DDoS attacking software, indicating that these attacks are simple in structure and type 
in spite of the complexity of the real data. In this study, these two thresholds are evalu-
ated for both the high- and low-volume attacks by running tests on datasets collected 
from actual SDN networks and a method is proposed and compared for threshold cal-
culation so as to select the best threshold volume for each type of attack.

3.2.1  Static threshold

This threshold has a static volume, based on the packets specified to the DDoS 
attacks. Normal traffic and attack traffic are transmitted separately to the network at 
different time periods. The mean volume of the entropy for different time periods is 
calculated once for the attack mode and once for the normal mode. Consequently, 
the static threshold is obtained through Eq. (5).

where Hattack is the entropy average in normal flows and Hnormal is the entropy aver-
age in the attack flow.

(1)W = {X(1,t),X(2,t),… ,X(n,t)}

(2)p(X(i,t)) =
X(i,t)

n

(3)H(i,t) = −

n
∑

i=1

P(X(i,t)) logP(X(i,t))

(4)H(i,t) < Thr

(5)Thr = T1 =
Hattack +Hnormal

2
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3.2.2  Dynamic threshold

A computational method based on time sequence is applied to calculate the dynamic 
threshold, because it is fast in detecting DDoS attacks in small time windows, as in 
Eq. (6):

where H̄(i,t−1) is the calculated mean volumes of the entropies, as in Eq. (7), �H(i, t−1)
 is 

the standard deviation (SD), at time t − 1 , as in Eq. (8), and Cd is the constant vol-
ume of a coefficient determined based on experiments, which does not depend on 
the time period and the volume of previous entropy.

where H(i,t−1) calculates the entropy levels for different time periods and H̄(i,t−1) is 
the entropy average. At this stage, the entropy volume and dynamic threshold are 
calculated for each time period by applying a Cd value specifically calculated for the 
dataset. If the entropy value < the threshold, the attack is detected and a volume is 
added to the alarm rate parameter that calculates the volume of attack alarms. Cd is 
an experimental parameter, and its volume is influenced by the accuracy of attack 
detection. Because selecting the best value for Cd is subjective, depending on differ-
ent parameters, to calculate the best Cd for each time period, it is better to consider 
an interaction between the different parameters. One of these parameter has to do 
with the ability of detecting all attacks, which should not make the count of time 
periods different, require less computational burden and generate low false alarm 
rates.

To select the best Cd , first, in each time period, the TPR with volume of 100 is of 
concern, next among the selected situations where the FPR is the lowest is of con-
cern, consequently, the obtained Cd volume is considered as the best Cd at the best 
time period.

By determining the best time period and best Cd volume, that portion of the flow 
subject to potential attack is detected, selected and forwarded to the classification 
section to increase the attack detection accuracy. Because this step eliminates a por-
tion of the normal flow that is correctly detected, the count of the normal flow and 
attack flow is balanced before being delivered to the classification section.

(6)Thr = T2 = H̄(i,t−1) + Cd.𝜎H(i, t−1)

(7)H(i,t−1) =
1

t

t−1
∑

i=1

H(i,t−1)

(8)𝜎H(i,t−1)
=
1

t

t−1
∑

i=1

(H(i,t−1) − H̄(i,t−1))
2
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3.3  Classification section

Here, a portion of the dataset at entropy-based section is identified as attack and 
considered as the entry. As observed in Fig. 4, every flow is considered as one edge 
forming both the ends of the host’s graph node

For collecting the flows and extracting the features of concern, each IP is first 
considered as a node, and all the connections between those two and other nodes 
are applied to obtain the features. In feature collection, the neighbors of a node 
are of concern, as given in Table 1.

A set of 15 features is extracted for training the classifiers including 12 features 
for both the host of a flow (six features for each host) and three shared features 
among the hosts. The features independent of speed and type of attack during 

Fig. 4  Flow between two hosts 
in SDN

Table 1  Features extracted

Features Explanations

Host A
 SenderSrc The count of one-way connections of the transmitter host to the total connections 

of the desired node ratio
 ReceiverSrc The count of connections of the recipient host to the total connections of the 

desired node ratio
 EntropySentSrc Calculating the entropy of the flows, the appropriate host of the transmitter
 EntropyReceiveSrc Calculating the entropy of the flows, the appropriate host of the recipient
 CountSentSrc The count of the flows, appropriate host of the transmitter
 CountReceiveSrc The count of the flows, appropriate host of the recipient

Host B
 SenderDst The count of one-way transmitter host to the total connections of the appropriate 

node ratio
 ReceiverDst The count of connections recipient host to the total connections of the node ratio
 EntropySentDst Calculating the entropy of the flows, the appropriate transmitter host
 EntropyReceiveDst Calculating the entropy of the flows, the appropriate recipient host
 CountSentDst The count of flows, appropriate transmitter host
 CountReceiveDst The count of flows, appropriate recipient host

Both A and B
 CountPacket The count of packets in the relevant flow
 SumByte The total count of bytes with their specified flows
 Packet-in This feature is the first packet which transmits a flow for any host that begins the 

flow whether A or B and is raised in SDN networks
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machine learning are extracted through this proposed method, which is able to 
detect both high-volume and low-volume DDoS attacks (Table 1). After extract-
ing the features, the training samples are given as inputs to the BayesNet, J48, 
RandomTree, logistic regression, REPTree classifiers classification algorithms 
[28] to construct the classification models.

To train and test the data, the K-fold method K = 10 is of concern [29]. In this 
method, for data separation, they must be distributed in tenfold in a random man-
ner. Each period in this implementation has some flows where all are put in uniform 
folds. This operation is iterated for ten times, and the classification algorithms are 
obtained for modeling.

By comparing the obtained results, the best classification algorithm that improves 
the accuracy of attack detection is selected for each case.

4  The datasets

To evaluate the performance of this method, the well-known datasets, UNB- ISCX1 
[30] and CTU-132 [31], are selected and applied. Next to these datasets, ISOT3 [32] 
is applied only for the normal traffic. The first dataset, UNB-ISCX, is prepared by 
Canadian Institute of Cyber Security,4 consisting of different sections. In this arti-
cle, the two sections of the datasets, namely ISCX-SlowDDos-2016 and ISCX-
IDS-2012, are applied. The ISCX-SlowDDos-2016 dataset contains both the high- 
and low-volume DDoS attacks. The ISCX-IDS-2012 dataset contains different types 
of attacks like the HTTP DDoS. The HTTP GET DDoS attack is generated by an 
IRC Botnet and a brute force SSH attack. Each scenario contains a pcap file of both 
the attack and normal flows. The CTU-13 dataset is collected from the Czech Uni-
versity,5 with the objective of generating a real traffic for the botnet combined with 
normal and background traffic. This dataset is extracted from 13 different samples of 
different botnet scenarios. In this study, scenarios 10 and 11 are applied to detect the 
DDoS attacks. The traffic applied in the CTU-10 scenario is of the UDP DDoS type 
and in the CTU-11 scenario of the ICMP DDoS type. The ISOT dataset is gener-
ated through the IT Research Center at the University of Victoria.6 In this study, the 
normal section of this dataset is applied in combination with other dataset (Table 2).

1 http://www.unb.ca/cic/datas ets/ids-2017.html.
2 https ://www.strat osphe reips .org/datas ets-ctu13 .
3 https ://www.uvic.ca/engin eerin g/ece/isot/datas ets/.
4 https ://www.unb.ca/cic/.
5 https ://www.esncz .org.
6 https ://www.uvic.ca/.

http://www.unb.ca/cic/datasets/ids-2017.html
https://www.stratosphereips.org/datasets-ctu13
https://www.uvic.ca/engineering/ece/isot/datasets/
https://www.unb.ca/cic/
https://www.esncz.org
https://www.uvic.ca/
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5  Evaluation

The performance of this proposed method is evaluated through the accuracy (ACC), 
precision, recall, F-measure, true positive rate (TPR) and false positive rate (FPR) 
metrics, the related equations of which are presented in Table 3. Let P be the count 
of the actual positive (attack) examples and N be the count of the actual negative 
(normal). The TPR measure is the ratio of attacks correctly recognized as attack, 
and the FPR is the normal cases, wrongly classified as attack. The alarm rate is 
the examples classified as attack to the total count of classified samples ratio. By 
applying WEKA Software, the mean absolute error (MAE), root-mean-square error 
(RMSE), root-mean-square(RMS) and root absolute error (RAE) [33] are obtained 
as shown in Table 3.

Table 2  Dataset statistics

Period of 
time (s)

Avg duration (s) Avg packet number Avg flow number Avg packet-in flow

ISCX-SlowDDos-2016
 15 1.19 1106.58 101.24 13.40
 20 1.17 1475.09 134.93 13.44
 25 1.17 1143.41 168.59 13.37
 30 1.16 2211.62 202.25 13.11
 45 1.15 3315.38 303.06 13.38

ISCX-IDS-2012
 15 1.9666 87.1584 3.0967 25.8474
 20 2.0097 92.974836 3.3031 23.62475
 25 2.0634 96.8227 3.4408 22.9491
 30 2.0952 99.6229 3.5392 23.0845
 45 2.13748 1.4.6096 3.71645 21.07966

CTU-10
 15 0.700 9930.22 565.56 30.12
 20 0.698 13,211.80 752.08 29.97
 25 0.696 16,505.15 939.16 29.75
 30 0.696 19,782.14 1124.83 29.70
 45 0.695 29,564.09 1680.69 29.49

CTU-11
 15 7.57 677,457.77 9337.82 2.65
 20 6.52 70,098.21 9661.93 2.54
 25 4.99 72,601.71 100,005.93 2.39
 30 4.31 70,104.66 9665.17 2.31
 45 4.74 96,807.43 13,343.20 2.40
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6  Implementation

For this implementation, the necessary software and tools are introduced as follows:

6.1  The implementation environment and tools

The experiments are run on an ASUS laptop with an AMD (Bristol Ridge), FX-
9830P CPU 2.8  GHz processor accompanied with a 12GB of RAM. The operat-
ing system is the Linux Ubuntu 14.04 LTS run on Window 8.1 host machine. The 
Floodlight is chosen as the network controller and the Mininet 2.2.1 [34] for network 
simulation.

The Eclipse Neon.3 [35] is applied here for programming the modules in the 
Floodlight controller.

6.2  SDN network configuration

To implement this method in SDN, first a module must be implemented in the 
Floodlight controller which would detect the DDoS attacks. For this purpose to 
commence the SDN networks, the network configuration is a must prior to the 
prerequisites related to the controller and network installation and adjustment. For 
this purpose, a version of Java must be installed. In this study, the Java version 8 is 
installed followed by installing the Eclipse Neon 3 to configure the Floodlight con-
troller operators according to the following steps [36]: 

 1. First install jdk 8 (using “java8offline.txt”)
 2. $ cd  

Table 3  Equation parameters Parameter Equation

Accuracy TP+TN

TP+FN+TN+FP

Precision TP

TP+FP

Recall TP

TP+FN

F-measure 2×Precision×Recall

Precision+Recall

TPR TP

TP+FN

FPR FP

FP+TN

Alarm rate (TP+FP)

(TP+TN+FP+FN)

MAE ∑n

i=1 �
yi−xi�

n

RMSE
�

∑n

i=1
(xi−yi)

2

n

RAE ∑n

i=1 �
xi−x̄i�

∑n

i=1 �
yi−ȳ�
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 3. Download Eclipse Neon.3 installer:
 4. $ wget http://ftp.ussg.iu.edu/eclip se/oomph /epp/neon/R/eclip se-inst-linux 64.tar.

gz
 5. $ sudo apt-get remove eclipse eclipse- jdt eclipse-platform eclipse-rcp eclipse-

pde eclipse- platform-data $ rm -r  /.eclipse/
 6. $ sudo tar -zxvf  /eclipse-*.tar.gz&& cd eclipse-*
 7. $. /eclipse-inst
 8. //wait a minute, and then choose Eclipse IDE for Java Developers
 9. //choose Install
 10. //choose accept (for everything)
 11. //select launch

The Eclipse Neon.3 is configured as follows: 

1. $ ant eclipse
2. Open eclipse and create a new workspace:
  File − > Import − > General − > Existing Projects into Workspace.
  Then, click “Next.”
3. From Select root directory, click Browse. Select the parent directory where you 

placed floodlight earlier.
4. Check the box for Floodlight. No other projects should be present and none should 

be selected.
5. Click Finish.

At this stage, after installing and adjusting the Eclipse Neon.3, the same should be 
done in the SDN, with respect to the controller Floodlight therein as follows: 

1. sudo apt-get install build-essential git ant maven python-dev
2. git clone git://github.com/floodlight/floodlight.git
3. cd floodlight
4. git submodule init
5. git submodule update
6. ant
7. sudo mkdir /var/lib/floodlight
8. sudo chmod 777 /var/lib/floodlight

Now that the Floodlight controller is installed, its implementation is subject to the 
following procedures: 

1. sudo apt-get remove openvswitch-testcontroller
2. java -jar target/floodlight.jar
3. in order to see web GUI open link below in browser:
http://127.0.0.1:8080/ui/pages /index .html

http://ftp.ussg.iu.edu/eclipse/oomph/epp/neon/R/eclipse-inst-linux64.tar.gz
http://ftp.ussg.iu.edu/eclipse/oomph/epp/neon/R/eclipse-inst-linux64.tar.gz
http://127.0.0.1:8080/ui/pages/index.html


2396 A. Banitalebi Dehkordi et al.

1 3

To install this Floodlight controller in SDN, the following steps are observed to 
design this proposed module in DDoS detection: 

1. Expand the Floodlight item in the Package Explorer and find the
  src/main/java folder.
2. Right click on the src/main/javafolder and choose New/Class.
3. Enter net.floodlightcontroller.ddosdetection in the “Package” box.
4. Enter DdosDetection in the Name box.
5. Next to the Interfaces box, choose Add ...
6. Add the IOFMessageListener and the IFloodlightModule, click OK.
7. Click Finish in the dialog.

Now, this proposed algorithm is added to the Floodlight controller in the form of 
DdosDetection module, but it is not able to be run and must be registered in the 
controller first, if the following steps are met: 

1. src/main/resources/META-INF/services/net.floodlightcontroller.
  core.module.IFloodlightModulenet.floodlightcontroller.ddosdetection.Ddos-

Detection
2. src/main/resources/floodlightdefault.properties
  net.floodlightcontroller.ddosdetection.DdosDetection

At this point, through this proposed module, to simulate the attack, the dataset of 
concern is injected into the network through the attacker and the Floodlight con-
troller is able to detect the DDoS attacks. This process is run in Mininet emulator 
through Tcpreplay tool [37], which with its selected speed redistributes the pcap 
files in the network. To detect the DDoS attacks, the data of concern required for 

Fig. 5  Flow assessment in Wireshark
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the injectable dataset must be collected from the switch, host and the available 
communications. The data related to the packages and flows transmitted in the 
network in wireshark are shown in Fig. 5.

Fig. 6  Implementation of affect detector module in Floodlight controller in Eclipse Neon.3

Fig. 7  Implementation of this Module and the Entropy calculation
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After flow data extraction and its transmission to the Floodlight controller, by 
applying this module, the attack detection assessment begins.

A portion of this module related to the entropy calculations is implemented 
through the Floodlight controller in Eclipse Neon.3 which is shown in Fig. 6.

The implementation code reveals a portion of the control module for this pur-
pose. The module implementation in the controller and obtaining the entropy vol-
ume are shown in Fig. 7.

The modules implemented in the controller which begin to calculate the 
entropy by summing the flows and providing the list flow are shown in this figure.

After the attack detection is made in the entropy-based section, some of the 
results identified as attack are sent to the other sections of the learning machine, 
where by running classification algorithm in WEKA Software, the K-fold method 
detects the attacks.

7  Results of the experiments

The objective here is to identify the low-volume DDoS and high-volume DDoS 
attacks in their separate sense. In this study, the periods are within 10–240  s 
range, among which the ones within 15–45 s range are considered the best for this 
purpose. This is justified by the fact that more attacks are detected in a shorter 
time within this period.

If a long time period is chosen, the response time would increase, and the 
attack detection would be delayed as well, that is, the detection may occur after 
the attack cause destruction, thus making controller and switches handle large 
volumes of attacks flows and causing harm thereof. By choosing short time peri-
ods, the attack detection process begins early and makes the controller to overuse 
the CPU and network bandwidth resources, which affects the controller perfor-
mance, and consequently, the attacks spread over a long time span, that is, a nega-
tive effect on attack detection. With respect to these two points, different time 
periods within 15–45 s range constitute the best choice.

Fig. 8  Evaluation results of static threshold in high-volume DDoS attack detection
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Table 4  Evaluation results of dynamic threshold for high-volume DDoS attack detection in the ISCX-
SlowDDos-2016 database

Period time (s) C
d

Alarm rate (%) TPR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

15 − 1 20.54 88.60 16.88 83.39 22.00 35.25
0 54.89 99.26 52.21 50.13 9.22 16.88
1 87.16 100 86.47 17.93 5.85 11.06

20 − 0.2 47.22 100 44.37 57.89 10.82 19.53
0 55.03 100 52.61 50.07 9.28 17.00
1 86.35 100 85.62 18.75 5.92 11.17

25 − 0.2 45.88 100 42.82 59.45 11.64 20.86
0 54.84 100 52.29 50.50 9.74 17.75
1 87.24 100 86.52 18.09 6.12 11.54

30 − 0.2 46.45 100 43.49 58.78 11.28 20.27
0 54.80 100 52.30 50.43 9.56 17.45
1 87.27 100 86.57 17.96 6.00 11.33

45 − 0.3 40.16 100 36.67 65.34 13.71 24.12
0 53.85 100 51.16 51.65 10.22 18.55
1 87.27 100 86.53 18.23 6.31 11.87

Table 5  Results of dynamic threshold in high-volume DDoS attack detection in the ISCX-IDS-2012 
dataset

Period of 
time (s)

C
d

Alarm rate (%) PR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

15 0 11.57 59.87 7.84 89.84 37.08 45.80
1 18.51 78.89 13.84 85.63 30.56 44.06
1.9 20.06 100 13.88 87.11 35.74 52.66

20 0 11.47 60.49 7.75 90.00 37.17 46.05
1 18.50 78.65 13.94 85.54 29.97 43.41
1.8 20.03 100 13.97 87.01 35.20 52.07

25 0 11.49 60.85 7.74 90.03 37.36 46.3
1 18.57 79.84 13.92 85.64 30.34 43.97
2 20.03 100 13.95 87.03 35.24 52.12

30 0 11.5 61.53 7.73 90.11 37.47 46.58
1 18.57 79.93 13.95 85.62 30.16 43.79
1.8 20.01 100 13.98 86.99 35.02 51.88

45 0 11.45 63.03 5.88 92.42 38.12 47.51
1 18.64 80.86 10.83 88.72 30.04 43.81
2 19.99 100 10.84 89.74 34.65 51.46
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7.1  High‑volume DDoS attack detection results

In this section, the results of the experiments on various datasets are described 
with the purpose of high-volume DDoS attack detection.

Table 6  Results of dynamic threshold in high-volume DDoS attack detection in the CTU-10 dataset

Period of 
time (s)

C
d

Alarm rate (%) TPR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

15 − 1 24.44 88.59 17.27 83.31 36.46 51.66
0 38.21 92.98 32.09 70.43 24.48 38.75
2.9 83.14 97.36 81.55 26.39 11.78 21.02

20 − 1 22.30 9.41 14.86 85.56 40.00 55.27
0 36.15 96.47 29.46 73.12 26.62 41.73
3.9 92.37 98.82 91.65 17.37 10.67 19.26

25 − 1 21.40 89.85 13.70 86.65 42.46 57.67
0 35.48 94.20 28.87 73.46 26.85 41.80
3.8 93.25 98.55 92.65 16.56 10.69 19.29

30 − 1 21.26 93.10 13.11 87.52 44.62 60.33
0 34.62 94.82 27.78 74.51 27.91 43.13
4 95.07 98.27 94.71 14.76 10.53 19.03

45 − 1 18.37 92.30 9.94 90.28 51.42 66.05
0 34.12 94.87 27.19 75.06 28.46 43.78
1.4 71.39 97.43 68.42 38.32 13.97 24.43

Table 7  Results of dynamic threshold in high-volume DDoS attack detection in the CTU-11 dataset

Period of 
time (s)

C
d

Alarm rate (%) TPR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

15 − 1.5 42.18 100 32.72 71.87 33.33 50.00
0 54.68 100 47.27 59.37 25.71 40.90
1 73.43 100 69.09 40.62 19.14 32.14

20 − 1.3 58.33 100 51.21 56.25 25.00 40.00
0 62.50 100 56.09 52.08 23.33 37.88
1 68.75 100 63.41 45.83 21.21 35.00

25 − 1.8 50.00 100 42.42 63.15 26.31 41.66
0 52.63 100 45.45 60.52 25.00 40.00
1 60.52 100 54.54 52.63 21.73 35.71

30 − 1.5 53.12 100 44.44 62.50 29.41 45.45
0 59.37 100 51.85 56.25 26.31 41.66
1 65.62 100 59.25 50.00 23.80 38.46

45 − 1.4 57.14 100 47.05 61.90 33.33 50.00
0 66.66 100 58.82 52.38 28.57 44.44
1 66.66 100 58.82 52.38 28.57 44.44
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7.1.1  The results of entropy‑based section

The results of applying entropy-based method with static threshold on UNB-
ISCX and CTU-13 datasets are bar-charted in Fig.  8, where, as observed, this 
parameter fails to identify attacks in the periods that contain both normal and 
attack flows.

The findings in Fig.  8 indicate that the static threshold method lacks proper 
functionality in detecting high-volume DDoS attacks in all datasets except for 
CTU-11. Now, the dynamic results are assessed:

The results of the entropy-based method for high-volume DDoS attack detec-
tion through the dynamic threshold are presented in Tables 4, 5, 6 and 7.

All assessments in Tables  4,  5,  6 and  7 at all time periods take place within 
15–45 s range. The volume of Cd and the experimental volume in dynamic threshold 
equations are assessed within −4 to 4 range. Not all these volumes are expressed in 
the tables, but the ones more effective in attack predictions.

In these tables, for different time periods in the first step, TPR becomes 100, 
which is of concern, and when FPR volume is low at all states, it is selected as the 
optimized Cd volume of the period (Tables 4, 5, 6 and 7). The dataset in this section 
is identified as a portion of the attack and is directed to the classification section. 
The results of different dataset evaluations are tabulated in Table 8.

The results in Table 8 indicate that the appropriate range for selecting Cd values 
for different datasets is between −2 and 2.

7.1.2  The results of classification algorithms

By applying the BayesNet, J48, logistic regression, RandomTree and REPTree clas-
sification algorithms, a module is developed to determine the normal and attack 
flows.

To train and test the data, the K-fold method is applied where K = 10 is of con-
cern. The volume of the parameters of concern in learning and testing for different 
classification algorithms is shown in Table 9a–e.

The data regarding the ten steps of K-fold method for training and test and the 
average therein for the ISCX-SlowDDos2016 dataset are given in Table 10a–e.

The data regarding ten steps of K-fold method for training and test and the aver-
age therein for the ISCX-SlowDDoS2016, ISCX-IDS-2012, CTU-10, ctu-11 data-
sets are presented in Table 11.

Table 8  Value of the best C
d
 and 

the best time period for attack 
detection in different datasets

Dataset name Attack type Best 
time 
period

Optimal C
d
 value

ISCX-SlowDDos-2016 High volume 45 − 0.3
ISCX-IDS-2012 High volume 45 2
CTU-10 High volume 45 1.4
CTU-11 High volume 15 − 1.5
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Table 9  Volume of the parameters of concern in learning and testing for different classification algo-
rithms applied in K-fold method

(a) J48 algorithm

J48 classifier parameters

Batch size 100
Binary split False
Collapse tree True
Confidence factor 0.25
doNotMakeSplitPointActualValue False
minNumObj 2
numDecisionPlaces 2
numFolds 3
reduceErrorPruning False
saveinstanceData False
Seed 1

(b) REPTree algorithm

REPTree classifier parameters

Batch size 100
displayModelInOldFormat False
doNotCjeckCapabilities False
Initial count 0.0
maxDepth − 1
minNum 2.0
minVarianceProp 0.001
noPruning False
numDecimalPlaces 2
numFolds 3
Seed 1

(c) Naive Bayes algorithm

Naive Bayes classifier

Batch size 100
Debug False
displayModelInOldFormat False
doNotCjeckCapabilities False
NumDecimalPlaces 4
useKernelEstimator False
UseSupervisedDiscretization False

(d) Logistic regression algorithm

Logistic regression classifier

Batch size 100
Debug False
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The content of Table 11 indicates that in the classification section, the best algo-
rithm for detecting high-volume DDoS attacks in ISCX-SlowDDos-2016 dataset is 
the REPTree algorithm at 99.88% accuracy and 0.04% FPR volume. The evalua-
tion results of the ISCX-IDS-2012 dataset revealed that the REPTree algorithm with 
99.85% accuracy and 0.1% FPR volume is the best algorithm to detect high-volume 
DDoS attacks. As to the CTU-10 dataset, the J48 algorithm with an accuracy of 
99.12% and 0.35% FPR volume is the best algorithm to detect high-volume DDoS 
attacks. As to CTU-11 dataset, the classification section results suggest that the 
logistic algorithm is of higher accuracy in high-volume DDoS attack detection with 
higher FPR volume. Between the two RandomTree and REPTree algorithms, the 
accuracy volume in the first is high, while to FPR volume the second is low.

The comparative diagram of the best results in high-volume attack detection for 
different datasets is shown in Fig. 9.

7.2  Low‑volume DDoS attack detection results

The results of these proposed methods for different datasets are provided for low-
volume DDoS attack detection. Both the static and dynamic threshold methods 
are applied to examine entropy-based section results.

Table 9  (continued)

(d) Logistic regression algorithm

Logistic regression classifier

displayModelInOldFormat False
doNotCjeckCapabilities False
Maxits − 1
NumDecimalPlaces 4
Ridge 1.0E−8
useConjugateGradientDecent False

(e) BayesNet algorithm

Bayes net classifier parameters

Batch size 100
Debug False
DoNotCheckCapabilities False
Estimator Simple Estimator-A 0.5
numDecimalPlaces 2
Search algorithm K2-p1-S BAYES
useADTree False
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Table 10  Results of K-fold method as to the high-volume attack detection are obtained by applying 
ISCX-SlowDDos2016

Step MAE RMSE RAE Correctly clas-
sified instance

Incorrectly clas-
sified instance

TPR FPR

(a) Logistic algorithm
1 0.0085 0.0533 16.23 523,577 1340 99.74 0.255
2 0.0102 0.0767 14.016 556,416 3824 99.31 0.682
3 0.0089 0.0504 13.596 539,411 1560 99.71 0.288
4 0.008 0.0517 12.606 522,638 1356 99.74 0.258
5 0.0095 0.0636 12.377 574,583 3459 99.40 0.598
6 0.0123 0.0752 19.598 512,399 3559 99.31 0.689
7 0.0089 0.0514 13.83 532,823 781 99.85 0.146
8 0.0083 0.0559 14.538 549,042 1893 99.65 0.343
9 0.0086 0.0617 11.564 534,508 1919 99.64 0.357
10 0.0067 0.0465 10.332 510,709 902 99.82 0.176
11 Average-step TPR FPR ACC Precision F-Measure

99.87 0.39 99.62 88.82 94.02
(b) J48 algorithm
1 0.0007 0.0225 1.3435 524,631 286 99.94 0.054
2 0.0019 0.0413 2.6106 559,257 983 99.82 0.175
3 0.0008 0.0252 1.209 540,611 360 99.93 0.066
4 0.0006 0.0205 0.9502 523,753 241 99.95 0.046
5 0.0006 0.0196 0.7507 577,796 246 99.95 0.042
6 0.0049 0.0689 7.8996 51,371 2487 99.51 0.482
7 0.0023 0.046 3.4912 532,461 1143 99.78 0.214
8 0.0012 0.0315 2.0813 550,365 570 99.89 0.103
9 0.0011 0.0309 1.5207 535,897 530 99.90 0.098
10 0.0005 0.0189 0.7737 511,415 196 99.96 0.038
11 Average step TPR FPR ACC Precision F-measure

98.59 0.09 99.87 97.53 98.06
(c) BayesNet algorithm
1 0.0078 0.0868 15.07 520,673 4244 99.19 0.808
2 0.0059 0.0753 8.09 556,963 3277 99.41 0.584
3 0.0077 0.0852 11.65 536,993 3978 99.26 0.735
4 0.0192 0.1374 30.21 513,900 10094 98.07 1.926
5 0.0031 0.0564 4.30 576,175 1867 99.67 0.323
6 0.0062 0.0769 9.94 512,772 3186 99.38 0.617
7 0.0039 0.0568 5.990 531,737 1867 99.65 0.349
8 0.0088 0.091 15.42 546,067 4868 99.11 0.883
9 0.0027 0.0513 3.68 534,954 1473 99.72 0.274
10 0.0023 0.0472 3.5549 510,412 1199 99.76 0.234
11 Average step TPR FPR ACC Precision F-measure

96.23 0.58 99.33 83.48 89.40
(d) RandomTree algorithm
1 0.0056 0.0735 10.667 522,059 2858 99.45 0.544
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7.2.1  The results of the entropy‑based section

These results together with the static threshold for low-volume DDoS attack 
detection are presented in Table 12.

As observed in Table 12, both the FPR and the TPR volumes are low, while 
due to the abundance of attacks in one or more specific time periods, the results 
are relatively better for short time periods.. The results of the entropy-based sec-
tion for detecting low-volume DDoS attacks applying dynamic threshold are pre-
sented in Table 13.

The results in Table  13 indicate that the best time period for detecting low-
volume attacks in the ISCX-SlowDDos-2016 dataset is 30 s at Cd = 1 , as the best 
volume.

Table 10  (continued)

Step MAE RMSE RAE Correctly clas-
sified instance

Incorrectly clas-
sified instance

TPR FPR

2 0.0004 0.0174 0.6083 560,029 211 99.96 0.037
3 0.0007 0.024 1.0662 540,629 342 99.93 0.063
4 0.0004 0.017 0.6526 523,818 176 99.96 0.033
5 0.0015 0.0365 1.9033 577,250 792 99.86 0.137
6 0.0006 0.0228 1.0333 515,653 305 99.94 0.059
7 0.0005 0.0203 0.7817 533,373 231 99.95 0.043
8 0.0012 0.0334 2.192 550,229 636 99.88 0.115
9 0.0011 0.0313 1.4758 535,877 550 99.89 0.102
10 0.0005 0.0206 0.8003 511,380 231 99.95 0.045
11 Average step TPR FPR ACC Precision F-measure

98.01 0.05 99.88 98.53 98.27
(e) REPTree algorithm
1 0.0054 0.0722 10.411 522,155 2762 99.47 0.526
2 0.0011 0.0306 1.5591 559,676 564 99.89 0.100
3 0.0005 0.0171 0.6987 540,790 181 99.96 0.033
4 0.001 0.0289 1.5754 523,528 466 99.91 0.088
5 0.0022 0.0446 2.8207 576,863 1179 99.79 0.204
6 0.0008 0.0243 1.2624 515,609 349 99.93 0.067
7 0.0003 0.0122 0.4253 533,507 97 99.98 0.018
8 0.0004 0.0139 0.6696 550,801 134 99.97 0.024
9 0.0006 0.0198 0.7546 536,184 243 99.95 0.045
10 0.0006 0.0221 0.9844 511,346 265 99.94 0.051
11 Average step TPR FPR ACC Precision F-measure

97.99 0.04 99.88 98.60 98.29
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Table 11  Classification technique results for different datasets in different algorithms

Algorithms TPR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

ISCX-SlowDDos-2016
 BayesNet 96.23 0.58 99.33 83.48 89.40
 J48 98.59 0.09 99.87 97.53 98.06
 Logistic regression 99.87 0.39 99.62 88.82 94.02
 RandomTree 98.01 0.05 99.88 98.53 98.27
 REPTree 97.99 0.04 99.88 98.60 98.29

ISCX-IDS-2012
 J48 99.64 0.10 99.83 99.66 99.65
 BayesNet 96.70 0.54 98.80 98.22 97.46
 Logistic regression 96.69 4.00 96.14 86.47 91.29
 Naive Bayes 90.76 2.58 95.84 91.56 91.16
 RandomTree 99.65 0.12 99.82 99.60 99.62
 REPTree 99.68 0.10 99.85 99.66 99.67

CTU-10
 J48 98.60 0.35 99.12 99.64 99.11
 BayesNet 96.24 0.03 98.10 99.96 98.06
 Logistic regression 97.41 0.62 98.39 99.38 97.89
 Naive Bayes 96.14 0.11 98.01 99.88 97.97
 RandomTree 98.07 0.48 98.79 99.51 99.51
 REPTree 98.10 0.34 98.87 99.64 98.86

CTU-11
 J48 96.47 0 96.60 100 98.20
 BayesNet 38.02 0 40.38 100 55.09
 Logistic regression 99.99 9.20 99.64 99.63 99.80
 Naive Bayes 99.08 14.49 98.57 99.42 99.24
 RandomTree 98.88 0.61 98.88 99.97 99.42
 REPTree 98.53 0.76 98.55 99.96 99.23

Fig. 9  The best results on attack detection in each dataset
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7.2.2  The results of classification algorithm

Similar to the approach in detecting high-volume attacks, the RandomTree, 
Logistic Regression, J48, BayesNet and REPTree classification algorithms and 
the K-fold method at K = 10 , are involved in low-volume attack detection. The 
details of this process are presented in Table 14a–e.

In the mentioned tables, the parameters are calculated for different classify-
ing algorithms and ISCX-SlowDDoS2016 dataset, results of which are given in 
Table 15.

As observed in Table  15, most classifying algorithms except the Naive Bayes 
have high accuracy in detection and low alarm rate, while the efficiency of this 

Table 12  Evaluation results of static threshold in low-volume DDoS attack detection in the ISCX-
SlowDDos-2016 dataset

Time period 
(s)

Entropy in 
attack

Entropy 
in nor-
mal

TPR (%) FPR (%) ACC (%) Precision 
(%)

F-measure (%)

10 0.91 2.81 65.87 4.04 94.32 48.25 55.70
15 0.91 2.84 63.97 1.72 96.52 66.66 65.29
20 0.91 2.87 60.09 0.88 97.12 78.61 68.11
25 0.91 2.86 56.81 0.41 97.29 88.49 69.20
30 0.91 2.86 60 0.26 97.65 92.55 72.80
45 0.91 2.84 52.42 0.16 97.21 94.73 67.50

Table 13  Evaluation results of dynamic threshold in low-volume DDoS attack detection for the ISCX-
SlowDDos-2016 dataset

Time period C
d

Alarm rate (%) TPR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

15 -1 26.07 71.56 24.19 75.63 10.89 18.91
0 55.71 91.46 54.23 47.58 6.51 12.16
1.4 89.87 100 89.45 14.09 4.41 8.46

20 -1 28.67 81.01 26.55 73.73 10.98 19.34
0 56.38 93.03 54.90 46.96 6.41 12.00
1.1 84.07 100 83.43 19.81 4.62 8.84

25 -1 27.94 86.15 25.54 74.91 12.18 21.35
0 56.12 93.84 54.57 47.33 6.60 12.34
1.5 90.08 100 89.68 13.86 4.38 8.40

30 -1 28.86 87.50 26.56 73.96 11.40 20.17
0 56.92 97.11 55.35 46.61 6.41 12.03
1 82.56 100 35.52 68.27 25.24 40.31

35 -1 27.98 87.87 25.79 74.69 11.08 19.69
0 56.92 98.48 55.40 46.49 6.10 11.50
1.1 84.00 100 83.41 19.52 4.20 8.06
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Table 14  The K-fold method results for low-volume attack detection by applying ISCX-SlowDDoS2016 
dataset

(a) REPTree algorithm

Step Mean absolute 
error

Root-mean-
squared 
error

Relative 
absolute 
error

Correctly 
classified 
instance

InCorrectly 
classified 
instance

TPR FPR

1 0.0002 0.0098 0.8036 524,971 58 99.98 0.011
2 0.0007 0.025 3.0129 504,569 326 99.93 0.064
3 0.0002 0.011 0.8608 523,214 73 99.98 0.014
4 0.0004 0.018 1.7751 544,230 188 99.96 0.034
5 0.0002 0.0094 0.5599 517,863 53 99.98 0.010
6 0.0002 0.01 0.6937 537,723 57 99.98 0.010
7 0.0004 0.0164 1.4678 549,482 150 99.97 0.027
8 0.0025 0.0488 8.3219 519,459 1245 99.76 0.239
9 0.0003 0.0128 0.9439 500,961 89 99.98 0.017
10 0.0003 0.015 1.3528 558,772 129 99.97 0.023
11 Average step TPR FPR ACC Precision F-measure

99.44 0.04 99.96 97.15 98.28
(b) J48 algorithm
1 0.0002 0.0125 1.0562 524,941 88 99.98 0.01
2 0.0008 0.0267 3.3768 504,527 368 99.92 0.072
3 0.0002 0.0129 0.9811 523,193 94 99.98 0.018
4 0.0006 0.0218 2.28 544,154 264 99.95 0.048
5 0.0002 0.0102 0.6228 517,856 60 99.98 0.011
6 0.0014 0.0364 5.3664 537,058 722 99.86 0.134
7 0.0007 0.0236 2.6054 549,322 310 99.94 0.056
8 0.0024 0.0484 8.1773 519,478 1226 99.76 0.235
9 0.0008 0.0269 3.0671 500,682 368 99.92 0.07
10 0.0004 0.018 1.744 558,717 184 99.96 0.032
11 Average step TPR FPR ACC Precision F-measure

99.15 0.060 99.93 95.52 97.30
(c) Random tree algorithm
1 0.0007 0.0259 3.137 524,672 357 99.93 0.068
2 0.0012 0.0335 4.982 504,321 574 99.88 0.113
3 0.0002 0.0123 0.8536 523,198 89 99.98 0.017
4 0.0003 0.0137 1.0489 544,313 105 99.98 0.019
5 0.0006 0.0237 2.0096 517,621 295 99.94 0.057
6 0.0002 0.0116 0.7035 537,701 79 99.98 0.014
7 00004 0.0187 1.6852 549,435 197 99.96 0.035
8 0.0014 0.0372 4.8223 519,976 728 99.86 0.139
9 0.0005 0.022 2.0206 500,800 250 99.95 0.049
10 0.0003 0.0162 1.372 558,756 145 99.97 0.025
11 Average step TPR FPR ACC Precision F-measure

98.98 0.04 99.95 96.95 97.95
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Table 14  (continued)

(a) REPTree algorithm

Step Mean absolute 
error

Root-mean-
squared 
error

Relative 
absolute 
error

Correctly 
classified 
instance

InCorrectly 
classified 
instance

TPR FPR

(d) Logistic algorithm
1 0.002 0.0223 8.7296 524,787 242 99.95 0.046
2 0.0053 0.0576 22.339 503,175 1720 99.65 0.340
3 0.0032 0.0316 12.574 522,681 606 99.88 0.115
4 0.0022 0.025 8.8104 544,095 323 99.94 0.0593
5 0.0047 0.0496 15.707 516,509 1407 99.72 0.2717
6 0.0028 0.0247 10.803 537,478 302 99.94 0.056
7 0.0037 0.0421 14.495 548,626 1006 99.81 0.183
8 0.0052 0.0535 17.507 518,942 1762 99.66 0.338
9 0.0044 0.0462 16.448 499,856 1194 99.76 0.238
10 0.006 0.0639 24.23 556,231 2670 99.52 0.477
11 Average step TPR FPR ACC Precision F-measure

96.32 0.17 99.79 87.19 91.53
(e) Bayes net algorithm
1 0.0004 0.0177 1.6909 524,849 180 99.96 0.034
2 0.0032 0.0546 13.677 503,231 1664 99.67 0.329
3 0.0035 0.0566 13.911 521,536 1751 99.66 0.334
4 0.001 0.0289 4.069 543,890 528 99.90 0.097
5 0.0047 0.067 15.602 515,533 2383 99.53 0.460
6 0.0033 0.0555 12.733 536,048 1732 99.67 0.322
7 0.0029 0.0516 11.147 547,980 1652 99.69 0.300
8 0.002 0.0422 6.5925 519,611 1093 99.79 0.209
9 0.0035 0.0558 13.116 499,384 1666 99.66 0.332
10 0.0047 0.0684 19.121 556,266 2635 99.52 0.4715
11 Average step TPR FPR ACC Precision F-measure

87.46 0.12 99.71 91.09 89.24

Table 15  Results of the ISCX-SlowDDos-2016 dataset for low-volume DDoS attack detection

Algorithm TPR (%) FPR (%) ACC (%) Precision (%) F-measure (%)

J48 99.15 0.06 99.93 95.52 97.30
BayesNet 87.46 0.12 99.71 91.09 89.24
Logistic regression 96.32 0.17 99.79 87.19 91.53
Naive Bayes 36.44 0.07 97.75 95.08 52.69
RandomTree 98.98 0.04 99.95 96.95 97.95
REPTree 99.44 0.04 99.96 97.15 98.28
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proposed model for low-volume attack detection is outstanding. The low-volume 
DDoS attack detection results for different classifying algorithms are bar-charted in 
Fig. 10 for comparison.

High accuracy and low FPR in all classifying algorithms shown in Fig. 10 reveal 
the high efficiency and quality of the features extracted through this proposed 
method in low-volume attack detection.

The results indicate that REPTree algorithm has the high accuracy of 99.96% and 
a low FPR value of 0.04% in detecting low-volume DDoS attacks.

8  Analysis of computational complexity and time cost of this 
proposed method

The method proposed here is a combination of entropy-based and classification 
method. Its computational complexity is derived from the combination of complexity 
of these two methods. The entropy is calculated through the entropy-based step, and the 
results are compared with the threshold where calculations are of O (n) computational 
complexity and n is the flow count. Assuming that the count of time period is d, the 
computational complexity here is calculated in Eq. (9):

where n is the flow count and d is the time period count. In the classification section, 
the complexity of calculating the flow features is of O(n) order, while different clas-
sification algorithms have different computational complexities (e.g., decision tree 
algorithms have computational complexities in O(log n) order which leads to a total 
of O(n) + O(log n) ). Assuming that the count of time period is d, the computational 
complexity for classification step would be expressed in Eq. (10):

(9)Computational-ComplexityEntropy = O(d × n)

Fig. 10  Comparison of the ISCX-SlowDDos-2016 dataset results for low-volume DDoS attack detection
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Each one of these time periods has a constant coefficient, assumed as one in calcu-
lating the computational complexity. Now, by assuming that alarms are triggered 

(10)Computational-ComplexityMachine-Learning = O(d × (n + log n))

Table 16  Results of DDoS attack detection with different methods for the UNB-ISCX dataset

Authors Technique Ref. ACC (%) FPR

Warusia Yassin et al. K-means + NBC [12] 99 2.2%
Zhiyuan Tan et al. Computer vision technique [13] 90.12 7.92%
Alan Saied et al. Neural network [14] 98 Not mentioned
Bing Wang et al. Cloud computing [15] 89.30 Not mentioned
Naser Fallahi et al. Ripper + C5.0 [18] 99 2%
Carlos Catania et al. Machine learning [38] 81.80 8.2%
Proposed method Statistical method + machine learning 99.85 0.1%

Table 17  Results of DDoS attack detection with different methods for the CTU-13 dataset

Authors Technique Ref. ACC (%) TPR Precision F-measure

P. Kalaivani REPTree + SVM [39] 98.40 99.10% 98.40% 98.70%
Ankit Bansal 

et al.
RNN neural 

network
[40] 98.39 84.47% 86.45% 85.45%

Ruidong Chen 
et al.

RandomForest 
model

[41] 93.61 Not mentioned Not mentioned Not mentioned

Proposed method Statistical 
method + 
machine learn-
ing

99.12 98.60% 99.64% 99.11%

Fig. 11  Comparing the accuracy of this proposed method to other studies for the UNB-ISCX dataset
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in 1
k
 periods, the computational complexity of an attack occurrence is calculated 

through Eq. (11):

where n is the flow count, d is the period count and 1/K is the count of periods con-
sidered as attacks.

9  Comparative performance experiments

In DDoS attack detections, the model is ranked as highly efficient which is of high 
accuracy and low FPR. The accuracy and FPR of the studies where the UNB-ISCX 
dataset is applied are shown in Table 16.

As observed in this table, this proposed method outperforms its counterpart at 
99.85% accuracy and 0.1% FPR, where the error awareness level is lower than all 
mentioned methods. These results indicate the high efficiency of this proposed 
method. The three techniques applied in CTU-13 dataset for attack detection through 
this proposed method are compared to its counterparts in Table 17.

As observed in this table, an accuracy of 99.12%, the highest on CTU-13 dataset 
is obtained through this proposed method.

The content of Table 16 is reflected in bar-charts in Figs. 11 and 12
As observed in Figs. 11 and 12, the higher efficiency of this model for both the 

datasets in relation to the available methods is evident.

(11)Computational-Complexitythis-method = O
(

d × n +
(

d

k

)

× (n + log n)
)

Fig. 12  Comparing the accuracy of this proposed method to other studies for the CTU-13 dataset
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10  Conclusion and future works

SDNs are the latest in improving computer networks, due to their being flexible 
and reducing operational costs and providing security against DDoS attacks. To 
improve the security herein, a new method for detecting high-volume and low-
volume DDoS attacks by applying a combination of statistical and machine learn-
ing techniques is proposed here. This method consists of the collector, entropy-
based and classification sections.

This proposed method is evaluated and analyzed, and the findings indicate that 
the entropy-based sections with static threshold do not yield appropriate results 
according to experiments run on different datasets. The better results are obtained 
for the dynamic threshold at the cost of high FPR. To remove this drawback, dif-
ferent classification algorithms are run and more accurate results are obtained.

The significance of this method, as to accuracy, is its outperformance versus 
its counterparts. Results indicated that the accuracy of this proposed method is 
higher than other similar methods. Because this proposed model is to find solu-
tions after attack event, the manner of DDoS attack prevention in SDN networks 
should be assessed. Though, in this article, the DDoS attacks are detected only 
by one controller in SDN, in the studies to come this method can be improved in 
networks by involving more than one controller.
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