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Abstract
A many-core parallel approach of the multilevel fast multipole algorithm (MLFMA) 
based on the Athread parallel programming model is presented on the homegrown 
many-core SW26010 CPU of China. In the proposed many-core implementation of 
MLFMA, the data access efficiency is improved by using data structures based on 
the structure of array. The adaptive workload distribution strategies are adopted on 
different MLFMA tree levels to ensure full utilization of computing capability and 
the scratchpad memory. A double buffering scheme is specially designed to make 
communication overlapped computation. The resulting Athread-based many-core 
implementation of the MLFMA is capable of solving real-life problems with over 
one million unknowns with a remarkable speedup. The capability and efficiency of 
the proposed method are analyzed through the examples of computing scattering 
by spheres and a practical aerocraft. Numerical results show that with the proposed 
parallel scheme, the total speedup ratios from 6.4 to 8.0 can be achieved, compared 
with the CPU master core.

Keywords Multilevel fast multipole algorithm · Many-core parallelization · 3D 
scattering · Surface integral equations · Sw26010 processor

1 Introduction

The fast multipole method (FMM) is recognized as one of the top 10 algorithms 
of the twentieth Century [1]. Its multilevel version is developed later in computa-
tional electromagnetics and has been one of the most powerful numerical methods 
for computing electromagnetic scattering by electrical large objects with complex 
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geometry due to its O(N logN) complexity [2, 3], where N is the number of spatial 
degrees of freedom. Over the past two decades, researchers in computational elec-
tromagnetics (CEMS) have achieved a significant progress in the parallelization of 
the multilevel fast multipole algorithm (MLFMA) on homogeneous designed paral-
lel computing architectures, for example the Intel multi-core system via the mes-
sage passing interface (MPI) or OpenMP multithread programming [5–10], thereby 
increasing the problem size from tens of millions to billions.

Although the capability of the MLFMA is significantly improved, the actual 
electromagnetic engineering problem always puts a higher demand on the comput-
ing power toward real-time design. However, due to power consumption, network 
scalability and overheating problem, the increasing of the core CPU frequency has 
slowed down, and the heterogeneous many-core systems with both CPU resources 
and many-core accelerator resources have been recognized as a developing trend 
in the high-performance computing (HPC) area, the CPU and graphics processing 
unit (GPU) [11, 12], the CPU and Intel Xeon Phi Coprocessors (MIC) [13–15], the 
homegrown many-core processor Sunway SW26010 of China [16, 17], etc. The par-
allelization of MLFMA on a heterogeneous many-core system is a challenging task, 
not only due to the heterogeneity of the computer system, which may introduce non-
uniformity in collaborative computing and bring difficulties in making full use of 
many-core capability, but also due to the complicated design of MLFMA itself.

Among various heterogeneous many-core supercomputer systems, the Sunway 
Taihulight, which took the top spot of the TOP500 list in 2016 and 2017 with a peak 
performance of 125 PFlops, is very special. Not only the computing performance, 
its power efficiency is also among the top in 2016. Its computing performance and 
power efficiency are outstanding when compared with existing GPU and MIC chips, 
but the on-chip buffer size and the memory bandwidth are relatively limited, which 
brings more difficulties in many-core parallel programming. Therefore, compared 
with those intensive researches dedicated to developing a variety of GPU parallel-
ized algorithms of MLFMA [18–22], there is no successful many-core implementa-
tion of the MLFMA in computational electromagnetics (CEM) community on the 
SW26010 CPU to date.

Since the MPI-based parallelization of MLFMA was extensively studied in the 
past decade, the key of designing an efficient heterogeneous parallel implementa-
tion approach of MLFMA is how to explore capacity of the many-core fully. In this 
paper, an efficient many-core parallel implementation of the MLFMA based on the 
Athread parallel programming model on the SW26010, denoted as SW-MLFMA, is 
presented. A double buffering scheme is specially designed to make communication 
between master and slave cores overlapped with slave core computation. The arrays 
to be sent to slave cores are collated following the interface of structure of array (SoA) 
instead of array of structure (AoS) for optimum data transmission performance there-
fore improves data access efficiency. To ensure full utilization of computing capabil-
ity, the adaptive workload distribution strategies are adopted, including pre-statistics of 
transmission volume and proper setting of block size of plane waves in different levels. 
This algorithm is shown to have a very high efficiency when solving large electromag-
netic scattering problems. Numerical results show the speedup of the coefficient matrix 
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assembly and the iterative solution is about 15 times and 5 times compared with which 
running on the CPU master core, respectively.

The remainder of the paper is organized as follows: In Sect.  2, the basic idea of 
MLFMA is outlined, followed by an introduction to the many-core programming 
model and architecture of SW26010 in Sect.  3. In Sect.  4, the parallelization of the 
SW-MLFMA is discussed in detail. Numerical analysis is presented in Sect. 5, and the 
conclusion is drawn in Sect. 6.

2  The formulation and implementation of the MLFMA

To present the implementation strategy of the SW-MLFMA clearly, a brief review of 
the MLFMA formulation and its numerical implementation is given here. Consider the 
scattering by a 3D object of arbitrary shape, when it is irradiated by an incident field 
(Ei,Hi) , the electric field integral equation (EFIE) and the magnetic field integral equa-
tion (MFIE) on the outer surface of the object are given by

 respectively, where |t denotes the tangential components, J is the unknown surface 
current density, Z =

√
�∕� is the wave impedance in vacuum, n is the unit vector of 

surface outward norm. The integral operators L and K are defined as

where k = �
√
�� is the free space wave number and R = |r − r�| denotes the dis-

tance between the field and source points.
To get rid of interior resonance, we can combine EFIE and MFIE together to form 

the combined field integral equation (CFIE) as follows:

where � is the combination parameter and is usually set to be 0.5.
Equation (5) can be discretized by following the procedure of method of moment 

(MoM). We first expand the unknown current density with the Rao–Wilton–Glisson 
(RWG) vector basis function [23] as

(1)[Ei + ZL(J)]|t = 0

(2)J − n × K(J) = n ×Hi

(3)L(X) = − jk ∫ [X +
1

k2
∇(∇�X)]Gd��

(4)K(X) = − ∫ X × ∇
e−jkR

4�R
d��

(5)
𝛼 ⋅ ZL(J) + (1 − 𝛼) ⋅ Z(J − �̂ × K(J)) = 𝛼 ⋅

(
−�̂ × (�̂ × Ei)

)
+ (1 − 𝛼) ⋅ Z

(
�̂ ×Hi

)

(6)J =

NS∑

j=1

Jj�j
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where NS denotes the total number of edges on S and �j is the RWG basis function. 
In implementation, the surface of the particle is modeled by using small triangular 
patches and the RWG basis functions are associated with the edges of the triangular 
patches. By applying �i as the trial functions, a full matrix equation system can be 
obtained

with

This matrix equation system can be solved efficiently via a Krylov subspace algo-
rithm, in which the MLFMA is utilized to accelerate matrix vector multiplication. 
In MLFMA, the matrix vector multiplication is split into the near-field and the far-
field interaction parts. The near-field interactions are calculated as in the conven-
tional MoM, and the corresponding matrix entries are assembled and stored as a 
sparse matrix. The far-field interactions are calculated in a more complicated man-
ner via a group approach in which aggregation, translation and disaggregation are 
performed level by level [3]. Both the operators L and K are involved in the matrix 
equation of CFIE; therefore, we need to solve two types of multiplication which can 
be expressed in terms of the multipole expansion as follows: [2, 3]:

where the aggregation terms V1s and V2s , the disaggregation term Vf  and the transla-
tion term T are explicitly expressed as:

(7)ZJ = f

(8)Z[i, j] =𝛼 ∫S

�i ⋅ L(�j)d� + (1 − 𝛼)∫S

(�̂ × �i) ⋅ K(�j)d�

(9)f [i] = − 𝛼(1∕Z)∫S

�i ⋅ E
i(�)d� − (1 − 𝛼)∫S

(�̂ × �i) ⋅H
i(�)d�

(10)∫S

�i ⋅ L(�j)d� = −k−2(4𝜋)−2 ∫ V1s(�̂) ⋅ T(�̂ ⋅ �̂)Vf (�̂)d
2�̂

(11)∫S

(�̂ × �i) ⋅ K(�j)d� = k−2(4𝜋)−2 ∫ V2s(�̂) ⋅ T(�̂ ⋅ �̂)Vf (�̂)d
2�̂

(12)

V1s = ∫S

e−j�⋅�im (
↔

I − �̂�̂) ⋅ �idS

V2s = ∫S

e−j�⋅�im (�̂ × �̂ × �i)dS

Vf = ∫S�
e−j�⋅�jm� �jdS

�

T =

L∑

n=0

(−j)n(2n + 1)h(2)
n
(krmm� )Pn(�̂ ⋅ �̂mm� )
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where 
↔

I  denotes the 3 × 3 unit dyad and the integral is evaluated on the unit 
sphere, � = k�̂ . �i and �j are the basis functions at ith and j th edges which reside 
in the groups m or m′ centered at �m and �m′ , respectively, and we note �im = �i − �m , 
�jm� = �j − �m� and �mm� = �m − �m� . h(2)n

 denotes the spherical Hankel function of the 
second kind, Pn the Legendre polynomial of degree n and L the truncation number 
of multipole expansion terms.

In implementation, an octree is constructed by placing the object in a cubic box 
and bisecting each dimension of the cubic box recursively to generated at most eight 
boxes. This procedure is continued until the box size on the lowest tree level is in a 
specified size range. For a surface mesh of general 3D object, the number of boxes 
increases approximately fourfold, while the number of plane waves in each box 
decrease twofold at approximately the same speed in the � and �-directions from the 
current level to the next lower level.

In MLFMA, aggregation is performed via post-order traversal of the MLFMA 
tree from the lowest to the second highest level. At the lowest level, the coefficients 
that are provided by the iterative solver are multiplied by the aggregation matrix Vs . 
Then, the radiated plane waves of the boxes at higher levels are obtained via central 
shifting and combining all the radiated fields of child boxes at lower levels. This 
procedure continues until it reaches the second level of the MLFMA tree. Disag-
gregation is conducted via pre-order traversal of the MLFMA tree from the second 
level to the lowest level, which is opposite the traversal direction for aggregation. 
In the disaggregation phase, not only the disaggregation operations of the plane 
waves from parent boxes at the higher level, but also the translation operations of the 
plane waves at the same level are required. At the second level, the radiated plane 
waves are first translated to the receiving plane waves for each group, which is then 
anterpolated and shifted to the centers of child boxes at the lower level. At the same 
time, the radiated plane waves at the lower level are translated to the receiving plane 
waves at the same level. Then, the total receiving plane waves at the lower level 
can be achieved by summing up the above two receiving plane waves. After all the 
receiving plane waves are achieved, the next level’s disaggregation and translation 
can be processed. This procedure is executed recursively until it reaches the low-
est level. Then, the final far interactions can be obtained by multiplying the receiv-
ing plane waves at each smallest box with the corresponding disaggregation matrix 
Vf  . Note that near-field matrix, the aggregation/disaggregation matrix at the low-
est level, the interpolation/anterpolation and the translation matrix at each level are 
assembled and stored explicitly during the setup stage of MLFMA.

3  The SW26010 architecture and the Athread many‑core parallel 
programming model

Before presenting details of the SW-MLFMA, the key features of the SW26010 
architecture and the Athread many-core parallel programming model are reviewed 
in this section [24, 25].
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As shown in Fig.  1, the SW26010 processor is comprised of four core groups 
(CGs). Each CG has one management processing element (MPE), a protocol pro-
cessing unit (PPU), a memory controller (MC) and 64 computing processing ele-
ments (CPEs). The MPE is like a CPU core, and the CPE cluster is like a many-
core accelerator. From a micro-architecture perspective, two execution pipelines are 
embedded in each CPE. Both pipes can issue integer arithmetic instructions. But the 
Pipeline No.0 only supports floating-point operations, while the Pipeline No.1 only 
handles loading/storage and registering communication operations. Therefore, the 
computing capacity of a CPE is only about halved of that for an MPE.

There are two ways provided for accessing the main memory on SW26010: (1) 
transferring a chunk of data with direct memory access (DMA) or (2) using normal 
load/store instructions with global memory addresses (global load/store). The read-
ing & writing bandwidth of DMA (about 22.6 GB/s) is almost an order of magnitude 
faster than global memory access (about 1.45 GB/s) [26]. The DMA operation is 
essentially asynchronous, which provides the possibility to implement hidden com-
munication operations. Each CPE is equipped with a local 64 KB scratchpad mem-
ory (SPM). The SPM can be configured as either a fast buffer that supports precise 
user-controlled or a software-emulated cache that achieves automatic data caching. 
However, as the performance of the software-emulated cache is low, in practice we 
need a user-controlled buffering scheme to achieve good performance. Therefore, 
not only design of data transformation via DMA to reduce communication between 
master and slave cores, but also design of precise user-controlled SPM utilization to 
improve data caching is crucial to the SW26010 many-core parallel computation.

To make full use of the capacity of many-core, user-driven directive-based per-
formance-portable parallel programming models, including OpenACC [27] and 
Athread [28], are specially designed for SW26010. These programming modes can 
help users port their codes to the SW26010 heterogeneous HPC hardware platform 
with significantly less programming effort. OpenACC is a user-driven directive-
based performance-portable parallel programming model, which can quickly ramp-
up application code in a simple way, but it can hardly achieve as high speedup as 

Fig. 1  Architecture of the SW26010 many-core processor
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the Athread model for the parallelization of complicated algorithms such as the 
MLFMA. Therefore, the Athread programming model is used for the many-core 
implementation of MLFMA in this paper. The Athread programming model sup-
ports normal fork and join parallelism. Up to 64 threads, one thread per CPE can 
be started, and each thread executes the same code. It also provides a set of inter-
faces for DMA operations, which are asynchronous by default to facilitate overlap 
between computation and data communication. Details of the many-core paralleliza-
tion of MLFMA with Athread are given in the following section.

4  The SW‑MLFMA algorithm

The implementation of the SW-MLFMA algorithm contains two main parts: One is 
the setup stage, in which all the matrices to be used, including the near-field matrix, 
the aggregation/disaggregation matrix at the lowest level, the interpolation/anterpo-
lation and the translation matrix at each level, are assembled and stored in the main 
memory. The other is the iterative solution stage, in which the evaluation of the far-
field interaction ZfarJ and the near-field interaction ZnearJ are done repeatedly. To 
get a higher parallel efficiency, three main optimizations are employed.

The first optimization is the structure of array to improve data accessing effi-
ciency. Take the mesh data to be used for filling matrices as an example. Conven-
tionally, different types of mesh data are stored in sequence in different arrays by the 
global number, edge index, patch index, coordinate index, etc., which is essentially 
arranged based on array of structure. However, in MLFMA, when these arrays are 
used for filling matrices, they are extracted in the unit of a small box that was defined 
by the MLFMA tree, which are usually not continuous in memory, as illustrated in 
Fig. 2. Theoretically, each access operation to the main memory in DMA takes 278 
clock cycles, while an SPM access by CPE only takes 4 clock cycles. The discon-
tinuity of data will increase the number of times of DMA data transmission and 
reduce the computational efficiency. Therefore, in the process of data preprocessing, 

Fig. 2  Illustration of data structure based on SoA
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the original mesh data need to be reordered in the order of calculation, or in other 
words, based on the structure of array. Similar optimizations are also required for 
these arrays storing pre-calculated matrices to be used in the iterative solution stage. 
By using structure of array, total times of accessing global memory are significantly 
reduced, which in turn improves computation efficiency.

The second optimization is the double buffering scheme to make data transition 
between main memory and the SPM overlapped CPE’s computation. Since the SPM 
of each CPE in SW26010 is very small, frequent data transferring is inevitable. If we 
use one buffer to receive data extracted from main memory to SPM through DMA, 
as shown in Fig. 3, too much time will be spent on waiting for finishing receiving 
data. In the double buffering scheme, as shown in Fig. 4, two individual buffers of 
the same size are used. In addition to the first and the last round, in each round of 
CPE calculation, one buffer (buffer A) is used for calculation and results storage, 
while the other (Buffer B) is used for receiving data only. Once the current round of 
calculation is finished, Buffer A sends the results back to the main memory; Buffer 
B is used for calculation and results storage. Such operations continue until each 
CPE finishes all the assigned computing tasks in this part. Obviously, with the dou-
ble buffering scheme, the pipelining is implemented for each CPE. Therefore, its 
computation capacity is better explored; thereby, the efficiency is improved.

The last optimization is the adaptive workload distribution strategy to balance com-
putation and data communication of each CPE for the aggregation/disaggregation 

Fig. 3  Illustration of processor work status with one buffering scheme

Fig. 4  Illustration of processor work status with double buffering scheme
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stage. In MLFMA, the number of plane waves in each box increases about fourfold 
from the current level to the next higher level. Since the size of SPM for each CPE 
is only 64KB, it is not sufficient for storing all plane waves in a box at higher levels, 
which brings great difficulties in performing interpolation/anterpolation operations. To 
solve such problem, on these levels, plane waves of each box are partitioned stripwise 
along the � direction. In MLFMA, the plane waves are uniformly sampled in � and � , 
which yields a Cartesian grid of sampling points. When a local Lagrange interpola-
tion is adopted, according to the bicubic interpolation schemes, for a given � direc-
tion higher-level plane waves, at most four sets of lower-level plane waves along � are 
required, irrespective of the �-values. Therefore, the interpolation of the higher-level 
plane wave (the red small cube) requires at most 16 lower-level plane waves (small 
circles enclosed by the red dashed line), as shown in Fig. 5. Hence, the interpolation 
matrix is highly sparse and has at most 16 nonzero entries per row. Then, we can esti-
mate the total memory cost Ml

total
 per stripwise � range of the l level as:

with Ml
pw

 and Ml+1
pw

 denoting the memory cost for storing required plane waves on 
the current level and its lower level in single precision complex , Ml

interpol
 the mem-

ory cost for storing corresponding interpolation matrix part in single precision float-
ing point. They can be evaluated as:

(13)Ml
total

= Ml
pw

+Ml+1
pw

+Ml
interpol

(14)Ml
pw

= 2 × Nl
R
× 2Ll × 8

(15)Ml+1
pw

= 2 × 4NRl × 2L(l+1) × 8

(16)Ml
interpol

=Nl
R
× 16 × (4 + 4)

Fig. 5  Local interpolation of a higher-level plane wave by lower-level waves
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where Lh and Ll are, respectively, truncation number of series for higher and lower 
MLFMA levels and Nl

R
 the total plane waves per � strip. Taking into consideration 

that the Ml
total

 should be no greater than the size of SPM (64KB) and Nl
R
 should be as 

large as possible to reduce total number of DMA operations, an optimal value of Nl
R
 

can be getting. For a given 3D objects, Nl
R
 varies of different levels. Since each box 

of the same level has the same number of planewaves, the Nl
R
 is predetermined auto-

matically. Such procedure is done during the setup stage of MLFMA with neglecta-
ble time. Similar treatment is done for the anterpolation stage. Note the interpolation 
matrix and plane waves should be stored continuously by � per � to improve data 
accessing efficiency, which in fact follows the rule of structure of array.

5  Numerical results and analysis

In this section, a variety of numerical examples are presented to demonstrate the 
accuracy and efficiency of the SW-MLFMA. All the numerical examples are solved 
by the generalized minimum residual method (GMRES) with a targeted relative 
residual error of 5 × 10−3 . The single precision floating-point arithmetic is used. The 
CPU-MLFMA is executed on only one MPE. The SW-MLFMA is executed on a 
CPE Cluster equipped with 64 CPEs.

We first validate our code. The scattering by a conducting sphere with radius 
of 5m is simulated. The sphere is illuminated by a 0.3 GHz plane wave. Its sur-
face is discretized into 80,000 triangular patches with 120,000 unknowns. The VV-
polarized bistatic radar cross section (RCS) is computed in Fig. 6. Good agreement 
between the CPU-MLFMA, the SW-MLFMA and Mie series is observed. To show 
effectiveness of these optimization methods aforementioned, including SoA , double 
buffering scheme and adaptive workload distribution strategy, the running time for 
different parts is summarized in Table 1, in which Vs and Vf  represent aggregation 
and disaggregation matrix assembly, Znear represents the near-field system matrix 
assembly and GMRES represents the iterative solution, respectively. Significant 
time reductions are obtained with these optimization methods.

Next we investigate the data transfer overhead of the implementation. Wall clock 
time taken by different parts of the code is summarized in Table 2. As can be seen 
from this table, the data transfer overhead for the matrix assembly part can be nearly 
neglected. Hence, the matrix assembly part is computationally intensive and is 
easy to achieve a very high speedup. In contrast, the data transfer overhead plays 
an important role in the GMRES iterative solution procedure  and therefore caused 
significant drawback on the overall speedup.

To study parallel computational efficiency of the SW-MLFMA, we consider 
the scattering by two larger conducting spheres with radius of 10 m and 14 m at 
0.3 GHz, respectively. The former is discretized into 480,000 edges, and the latter 
is discretized into 904,800 edges. Tables  3 and  4 show details of the computa-
tion time for different parts for the two spheres. As we can see from this table, 
the speedup of near-field system matrix assembly part is over 15 times, which is 
significant because it is computation dense and gives full play to the CPE ability. 
Compared with near-field matrix assembly, far-field iteration takes up more time 
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in data transmission; therefore, the speedup is not as large. The total speedup 
decreases as the number of unknowns increases, because the GMRES solution 
part plays a more important role than the matrix assembly part with increment of 
sphere size. However, the overall speedup achieved is still between 6.4 and 7.5 
times, which is excellent.
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Fig. 6  Scattering analysis of a conducting sphere with 120,000 unknowns

Table 1  Time reduction of 
optimization methods

Time (s)

Without optimization 
methods

With 
optimization 
methods

Vs and Vf 90.8 1.7
Znear 33 27
GMRES 14.5 2.15

Table 2  Time of calculation and 
data transmission

Time (s)

Calculation and data transmis-
sion

Data 
trans-
mission

Znear 33 0.55
GMRES 2.15 1.72
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To further illustrate the capability and efficiency of the proposed method, an 
aerocraft model with 1209204 unknowns is considered (Fig.  7). The HH-polar-
ized and VV-polarized bistatic RCSs for the aerocraft unknowns are shown in 
Fig.  8; details of the computation are listed in Table  5. We can see from this 
table similar speedups with those for the conducting sphere can be observed. The 
speedup for near-field system matrix assembly is over 21 times, the speedup of 
the GMRES iterative solution is 5 times, and the total speedup is 8 times. Com-
paring Table 3 and 4, it is easy to observe that for the problems with a similar 
number of unknowns, the speedup for each part is similar. Hence, the paralleli-
zation scheme is very robust and is insensitive to the geometrical shape of the 
object.

Table 3  Speedup of a 10-m conducting sphere with 480,000 unknowns

Time (s) Speedup

MPE Single CPE The CPE cluster MPE Single CPE The CPE cluster

Vs and Vf 90.8 198.0 5.2 1 0.49 17.46
Znear 1799.3 3299.8 121.2 1 0.6 14.9
GMRES 1413.6 6287.2 305.6 1 0.2 4.6
Total 3313.7 13121.5 442.1 1 0.3 7.5

Table 4  Speedup of a 14-m conducting sphere with 940800 unknowns

Time (s) Speedup

MPE Single CPE The CPE cluster MPE Single CPE The CPE cluster

Vs and Vf 216.6 494.1 14.2 1 0.44 15.25
Znear 4018.6 7239.8 264.6 1 0.5 15.2
GMRES 6037.9 27591.3 1322.2 1 0.2 4.6
Total 10283.1 35335.2 1611.0 1 0.3 6.4

Fig. 7  Aerocraft with 1209204 unknowns
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As can be seen from these numerical examples, excellent speedup is achieved in 
the matrix assembly, which increases as the number of unknowns grows. For differ-
ent numbers of unknowns, the acceleration in the GMRES iterative solution remains 
almost the same because the data communications between the MPE and CPE take the 
majority of the time. The same phenomenon is observed for the GPU implementations 
given in references [19, 21, 22], where the speedup for the near-field system matrix fill-
ing is over 4 times of that for the iterative solution. This drawback is due to the design 
of MLFMA, independent of computer architecture.

6  Conclusion

In this paper, a many-core parallel implementation of the MLFMA on China’s 
homegrown SW26010 processor is presented for computing 3D electromagnetic 
scattering problems. The data structure of SoA is applied to reduce the number 
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Fig. 8  Scattering analysis of an aerocraft with 1209204 unknowns

Table 5  Speedup of an aerocraft with 1209204 unknowns

Time (s) Speedup

MPE Single CPE The CPE cluster MPE Single CPE The CPE cluster

Vs and Vf 343.8 793.8 21.1 1 0.43 16.38
Znear 7380.2 12282.8 352.1 1 0.6 21.0
GMRES 7961.8 38683.7 1585.1 1 0.2 5.0
Total 15694.3 51768.8 1968.2 1 0.3 8.0
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of data transmission times. The adaptive workload distribution strategies for dif-
ferent MLFMA tree levels are designed to ensure full utilization of CPE comput-
ing capability. A double buffering scheme is employed to make communication 
overlapped computation. Several examples are given to illustrate the effectiveness 
of the optimization method. The RCS from a practical aircraft model is also pre-
sented. Numerical results show the total speedup of the SW-MLFMA achieved is 
between 6.4 and 8.0 times compared with the CPU-MLFMA on the MPE, which 
can be quite important on heterogeneous supercomputers with many-core accel-
erators. Although the architecture of SW26010 is special, the basic idea of many-
core parallel implementation of the MLFMA and optimizations presented in this 
paper are also very helpful for the case of other heterogeneous HPC hardware 
platforms, such as the CPU and GPU.
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