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Abstract
To overcome the lengthy search time, massive space occupation, and overlong 
planned path of the traditional A* algorithm, this paper integrates the bidirec‑
tional search with the intelligent ant colony algorithm to obtain the heuristic func‑
tion selection factor, and uses the factor to improve the evaluation function of the 
algorithm. The simulation results show that the improved algorithm achieved better 
dynamic navigation than the traditional A* algorithm both in search time and dis‑
tance, featuring shorter path searching time and the algorithm running time. There‑
fore, the result of this research has effectively reduced the search time and enhanced 
the dynamic search.
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1 Introduction

There are two main methods to alleviate urban traffic congestion: increase the 
traffic throughput by building more urban roads, and improve traffic efficiency by 
developing an intelligent transport system (ITS). Facing the increasing scarcity of 
urban land, the most pragmatic solution is to pursue optimal network operation 
and management, and better navigation in the individual aspects with intelligent 
learning. The solution is bound to realize obvious decline in the total cost [1]. 
The optimal path planning is particularly important to the optimization of urban 
road network. In essence, it is a shortest path algorithm based on the topology of 
the road network. The path planning looks for the path with minimal total cost 
(i.e. the shortest path, the least time, and the lowest cost) from the start point to 
the destination point [2].

Much research has been done on path planning at home and abroad. Based 
on the GIS technology, Yan put forward an improved A* algorithm of dynamic 
K‑shortest path by establishing a dynamic travel time estimation model and inte‑
grating the model into the shortest path algorithm [3]. Yang and Jiang proposed 
a path planning algorithm based on fluid neural network, pointed out the linear 
growth relationship between the calculation time and the number of additional 
nodes, and realized substantial decline in the time consumed in path calculation 
[4]. Zhou and Wang introduced statistics into the evaluation function to generate 
the automatic location searching algorithm (ALSA), which overcomes the slow 
calculation and poor practicability of the traditional algorithm [5]. Smiths et al. 
suggested to improve the search efficiency of the A* algorithm data nodes with 
the open and close tables of an orderly binary tree [6]. Developed by Szczerba, 
the sparse A* search (SAS) algorithm can effectively reduce the search space in 
combination with the constraint conditions [7]. Geng and Li presented the appli‑
cation method of parallel reinforcement learning based on artificial neural net‑
work after adjusting the weights based on the feedbacks of the artificial neural 
network, and combining the high learning efficiency of parallel reinforcement 
learning algorithm [8]. Pan described how to use the A* algorithm to find the rea‑
sonable path between two points on the static grid search map [9].

At present, there are quite a number of heuristic search algorithms, such as the 
local optimum search, the best‑first search, and the A* algorithm first proposed by 
Hart, Nilsson, Raphael et al. By introducing the evaluation function, the A* algo‑
rithm speeds up the search and elevates the precision of the local optimum search. 
Compared to the Dijkstra’s algorithm, the A* algorithm occupies a smaller storage 
space and has a lower time complexity O (b, d), where b is the average node degree, 
and d is the search depth of the shortest path from the beginning to the end [10]. 
However, more studies are grounded on static factors and the shortest path. Based 
on the intelligent ant colony algorithm (ACA), this paper digs deep into the evalua‑
tion function and improves the search efficiency by bidirectional search, seeking to 
provide adaptive navigation under dynamic traffic conditions.

At present, many researches are based on ant colony algorithm in routing 
selection of wireless sensor network [11–21], and some ant colony algorithms are 
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applied to route planning of vehicle navigation [22–26]. A* algorithm is widely 
used in route planning only considering distance [27–32], and literature [33–42] 
uses neural network and ant colony algorithm, particle swarm algorithm to study 
route planning, literature [43–56]; the artificial bee colony algorithm is used to 
optimize the path problem, but few literatures use the combination of ant colony 
algorithm and A* in the path planning; especially in the ant colony algorithm, the 
actual road condition is introduced as the influence factor. In this paper, the tradi‑
tional A* algorithm is improved by two‑way search. By introducing the intelligent 
algorithm heuristic function selection factor, the algorithm evaluation function 
is improved, which effectively reduces the search time and enhances the search 
dynamics. Finally, the feasibility of the algorithm is verified by an example.

2  Basic principles of the A* algorithm

There are three goals for path planning in vehicle navigation system: the shortest 
path (graph theory), the least cost, and the shortest time. Considering the driver’s 
habits, the more recent research usually pursues all three goals simultaneously. In 
the course of travelling, the driver is often confronted with various unexpected traf‑
fic incidents. In this case, the vehicle cannot drive along the pre‑set route, calling for 
recalculation of the optimal route. The real‑time vehicle renavigation requires fast 
and efficient computing by the planning algorithm [22]. The heuristic search is a 
good choice under this situation. This strategy guides the search along the potential 
directions, and speeds up the determination of the optimal solution by adding related 
heuristic information into the searching process. The search is knowledge‑based if 
the heuristic strategy is integrated into a computerized search algorithm. Using a 
selected evaluation function, each step in the searching process aims at finding the 
evaluation function node with the minimum cost, and taking it as the extension node 
for the next step. The main advantage of the heuristic search strategy lies in that the 
search can be limited to a certain range. In the heuristic search, the position estima‑
tion method must be selected properly [50–54].

Currently, the A* algorithm is the most popular and effective heuristic search 
algorithm for path optimization. The algorithm is innovative in that the known 
global information is introduced to select the next node, and the possibility of the 
node being in the best route is evaluated against the estimated distance between the 
current node and the target node, making it possible to search for the closest node, 
and improve searching efficiency.

(1) The key of the A* algorithm is to establish the heuristic function. Let f �(v) be 
the heuristic function of the current node v and express it as:

  
where g(v) is the function of the actual cost from the original node O to the 
current node v ; h�(v) is the estimated minimum cost from the current node v to 
the destination node D. If there is no heuristic information, i.e. h�(v) = 0 , then 

(1)f �(v) = g(v) + h�(v)
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the A* algorithm is a common Dijkstra’s algorithm. If h�(n) makes selections, 
h�(n) must be smaller than or equal to the actual minimum cost h∗(n) from node 
v to the destination node D so that the estimated minimum cost of the current 
node is not too high. The algorithm first searches for the node of the minimum 
f �(v) value. In the experiment, h�(n) was defined as the Euclidean distance from 
node v to the destination node D. The A* algorithm is able to compute the opti‑
mal path, as long as the original problem does have the optimal solution.

  Denote the coordinates of the original point O as 
(
Ox, Oy

)
 , the coordinates 

of the destination point D as 
(
Dx, Dy

)
 , and the coordinates of the centre point M 

as 
(
Mx, My

)
 . Then, the heuristic function can be expressed as:

  
where g(v) =

n∑
t=1

d(t) . d(t) refers to the distance between the two adjacent nodes.

(2) The detailed procedure of the A* algorithm is as follows:

① Suppose the initial open table only contains the original node, and make the 
close table empty by setting the cost of the original node to 0, i.e. the g value 
is 0; Set the cost of other nodes as ∞.

② The open table fails if it is empty. If not, identify the node of minimum f �(n) 
value in the open table, and denoted it as the best node. Then, move the best 
node into the close table to see if it is the target node. If yes, go to Step.

③ Otherwise, extend the best to generate successor nodes according to the map 
database and node information. Treat each successor node v with the follow‑
ing procedure:

A. Calculate the cost of node v by summing up the sum of the cost of 
g(v) = best and the cost from the best node to v.

B. If v is the same as any node in the open table, check if v has the lowest g 
value. If yes, replace the node cost with the cost of v in the open table, and 
turn the backward pointer of the matching node towards the best node.

C. If v is the same as any node on the close table, check if v has the lowest 
g value. If yes, replace the node cost with the cost of v in the open table, 
turn the backward pointer of the matching node towards the best node, 
and move the matching node to the open table [11–14, 55, 56].

D. If node v falls neither in the open table nor in the close table, turn the 
backward pointer of node v towards the best node, and put node v into the 
open table. Calculate the evaluation function f �(v) of node v , and repeat 
Step ②.

④ Traverse the node from the backward pointer of the best node to the original 
node to complete building the corresponding path. The traversal process is 
also called back tracing from the best node.

(2)f �(v) = g(v) +
√

(Dx −Mx)
2 + (Dy −My)

2
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Rather than traverse all the nodes, the A* algorithm introduces the heuristic infor‑
mation to guide the moving towards the target node, thereby facilitating and accel‑
erating the computation. However, the deletion of numerous nodes in the search‑
ing process may exert negative effect on the computation. Due to the complexity 
of experience and practice, it is evitable for the cost function which introduces the 
heuristic information to have some mistakes. Thus, some of the deleted nodes may 
happen to be the optimal node. In this case, the final result may be suboptimal, or 
the search may fall into a “dead cycle”, failing to obtain the target node [23].

3  Improvement of the A* algorithm

As a heuristic search algorithm, the A* algorithm assesses the cost from the current 
node n to the target node using the heuristic function, that is, to evaluate the path 
length between the two nodes. According to Eq. (1) and the previous analysis, the 
heuristic function value of the A* algorithm is no greater than the actual minimum 
cost. In the grid search map, the heuristic function h�(n) mainly measures the Man‑
hattan distance from the current node to the target node [24]:

where vd ⋅ x is the x‑coordinate of the target node; vn ⋅ x is the x‑coordinate for the 
current node; vd ⋅ y is the y‑coordinate for the target node;vn ⋅ y is the y‑coordinates 
for the current node.

In many environment models, H(n) is not necessarily smaller than or equal to 
h(n) in Eq. (3). Therefore, the Euclidean distance was taken as the heuristic function 
(e.g. Eq. (2)). The problem is that the shortest path might not be the optimal path or 
the least time‑consuming one, under the effect of traffic, road resistance, road condi‑
tions and other factors in the routing process. Generally, path planning algorithms 
search from the original point to the destination at a rather slow speed. The search 
time may be shortened drastically by searching in two directions. Following this 
train of thought, the author developed the bidirectional search algorithm A*, which 
searches both from the original point to the destination and from the destination 
to the original point, and terminates the search when the current nodes in the two 
search directions coincide with each other. The bidirectional search can calculate the 
shortest path between two nodes in a nonnegative weight network [25]. Moreover, 
the various dynamic influencing factors on traffic conditions should be considered 
in the training of the h(x) [26]. This paper suggests using the ACA to train the h(x), 
aiming to improve the information content of the function.

3.1  ACA 

3.1.1  The principle of the ACA 

The ACA aims to search for an optimal path in a graph, based on the behaviour 
of ants seeking a path between their colony and a source of food. In the cooperative 

(3)h(n) = ||vd ⋅ x − vn ⋅ x
|| + ||vd ⋅ y − vn ⋅ y

||
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foraging process, the path selection is heavily influenced by the pheromone, a hormone 
secreted by ants to send and receive feedbacks. The ants tend to choose the path with 
a high concentration of pheromone. The probability that a path is chosen is positively 
correlated with the pheromone concentration on that path. Besides, the pheromone 
concentration of selected path will increase after the ants move through the path. The 
above is the so‑called positive feedback mechanism, which reduces the total phero‑
mone amount needed on the path. The shortest path can be pinpointed solely based on 
the feedbacks of local pheromone. The ant colony behaviour constantly changes with 
the environment. When the current optimal path is blocked, the ants can quickly find 
another optimal path in the current environment [29–35].

3.1.2  The basic model

The ACA model was expounded with the classical travelling salesman problem 
(TSP) as an example. The TSP asks the following question: Given a list of cities and 
the distances between each pair of cities, what is the shortest possible route that vis‑
its each city exactly once and returns to the origin city? To answer the question, the 
ACA‑based mathematical model was built as follows:

The pheromone concentration of each path remained constant at the initial time 
t = 0, that is, �ij(t0) = C , where �ij(t0) is the pheromone concentration of the road sec‑
tion (i, j) at the t0 , and C is a constant. Suppose there were M ants that choose the 
moving direction according to the pheromone concentration, then the state transition 
probability of ants at time t is:

where �
ij
 is the visibility factor negatively correlated with the distance between two 

points;� is the impact degree of the total pheromone concentration on ants behav‑
iour; � is impact degree of the path length on ants behaviour; 
allowedk =

[
C − ta − buk

]
 are the cities out of the TabuList, which is a collection of 

cities ready for selection.
The TabuList was introduced because artificial ants possess many exclusive fea‑

tures that real ants do not have. To avoid repeated selection, all the cities selected 
in the current cycle was recorded in the TabuList, and released after the end of the 
cycle. At the beginning of the next cycle, the ants were able to choose from all the 
cities.

After n moments, when the M ants had traversed all the cities, the pheromone on 
each path changed according to Eqs. (5) and (6):

(4)pk
ij
(t) =

⎧⎪⎨⎪⎩

��
ij
(t)�

�

ij
(t)

∑
S∈allowedk

��
is
(t)�

�

ij
(t)
, S ∈ allowed

0 otherwise

(5)�
ij
(t + 1) = (1 − �)�

ij
(t) + Δ�

ij
(t, t + 1).



1964 Y. Chen et al.

1 3

where � is the pheromone volatility ( � ∈ (0, 1) ); Δ�k
ij
 is the total amount of phero‑

mone that ant k released on the path (i, j) in the current cycle; Δ�
ij
 is pheromone 

increment on path (i, j) in each cycle.
The pheromone can be updated by various methods. Dorio [27] presented three 

different models: ant‑density system, ant‑quantity system and ant‑cycle system. The 
first two models, using the local information, belong to the category of local update, 
while the last model, using the global information, falls in the category of global 
update. Featuring high consistency with the behaviour of real ants, and well‑dem‑
onstrated performance, the ant‑cycle system was taken as the basic model [27, 28]:

where Q is a constant about the pheromone released by each ant in the cycle; Lk is 
the total length of all the road sections that ant k passes through in the cycle.

3.1.3  The basic steps of the ACA 

Step 1 Parameter initialization: Set the cycles times T = 0; denote the maximum 
cycle times as Max and the pheromone constant as Q; put n ants in the original 
node; initialize the pheromone value on each side < i, j > of the directed graph as 
FI = q, where q is a constant; define the initial time as t = 0.

Step 2 The cycle times of the algorithm is T = T + 1.
Step 3 Initialize the TabuList of the ant population.
Step 4 The number of ants in the algorithm is m = m + 1.
Step 5 The ants select the next node according to the next node formula.
Step 6 Add the selected node to the TabuList.
Step 7 If m < n, go to Step 4; otherwise, go to Step 8.
Step 8 Update the pheromone on the topology.
Step 9 If T < Max, go to Step 2; otherwise, terminate the algorithm.

3.2  ACA‑based bidirectional A* algorithm

In this research, the intelligent ACA was adopted to estimate the cost of nodes dur‑
ing the bidirectional search. In the A* algorithm, the nodes need to be evaluated 
when it is extended. Nevertheless, the algorithm only considers the static factors, 
ignoring the dynamic factors of road traffic. The resultant huge gap between h(x) and 
h�(x) affects the computing efficiency. Since the computing efficiency is positively 
correlated with the proximity between h(x) and h�(x) , the ACA was adopted to train 
the h(x). The ACA improves the computing efficiency, as it adds to the dynamism 
of the algorithm, incorporates various dynamic factors, and brings the h(x) closer to 

(6)Δ�
ij
(t, t + 1) =

m∑
k−1

Δ�k
ij
(t, t + 1)

(7)Δ�k
ij
(t, t + 1) =

{
Q

Lk
, (Ants pass through the path i, j)

0 Otherwise
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the actual optimal value. Despite the upside, the ACA is easily trapped in the local 
optimum. To address the defect, the concurrent reward‑based ACA was developed 
to prevent the trap and increase the convergence speed. The concurrent means that 
each ant has multiple backups. When ant K is looking for the path from the original 
node, its backup ants are doing the same. The reward refers to the additional phero‑
mone rewarded to the optimal path, and the pheromone rewarded to the path adja‑
cent to the optimal path. The global convergence of the algorithm is improved by 
taking the non‑optimal path into account. The additional pheromone rewarded to the 
current optimal path is as follows [36–42]:

where Δ�∗
ij
(vj) is the extra rewarded pheromone; �′ is the reward factor ( 0 < 𝜌′ < 1 ); 

vj is a collection of nodes.
The pheromone update formula is as follows:

The pheromone rewarded to the adjacent path is expressed as:

where m is reward coefficient ( m ∈ N ), which is positively correlated with the dis‑
tance between the optimal path and the adjacent path.

Suppose there were m artificial ants moving at the speed of Ck in the system of n 
nodes, and ant k was looking for the optimal path. Then, the current nodes was eval‑
uated and the heuristic function h(x) were trained by the bidirectional A* algorithm 
based on concurrent reward ant colony system (DA*BCRAS).

Initialize the pheromone on the edge of the network topology as < Vi,Vj > , and 
we have

where const is a constant; Δ�ij(vj) = 0 . Thus, �ij(vj) = 1∕dij , where dij is the distance 
from node Vi to node Vj and �ij is the amount of local heuristic information. Then, the 
following equation holds:

where �ij(vj) is the heuristic information function; TCmax
ij

 is the maximum hourly 
traffic flow; TCdesign

ij
 is the designed hourly traffic flow; TCaverage

ij
 is the average hourly 

traffic flow; Ck is the current speed; �ij is the current traffic density; L
ij
 is the path 

distance. With the maximum number of cycles of the ACA denoted as Nmax , the 
DA*BCRAS was implemented through the following steps:

(8)Δ�∗
ij
(vj) = ��Δ�ij(vj)

(9)�ij(vj) = � × �ij(vj) + Δ�ij(vj) + Δ�∗
ij
(vj)

(10)Δ𝓁∗
ij
(vj) = (��)m ⋅ Δ𝓁ij(vj)

(11)�ij(vj) = const

(12)�ij(vj) = 1∕

⎛⎜⎜⎝

���TCmax
ij

− TC
design

ij

���
���TC

average

ij
− TC

design

ij

���
⋅

L2
ij
�ij

Ck

⎞⎟⎟⎠
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 (1) Let vo be the original node and vD be the target node. Search the network 
topology from the original node by the bidirectional A* algorithm. Suppose 
the nodes vi are not the target node and need to be extended for the next cycle. 
Denote the collection of such nodes as vj , which is expressed as:

 (2) Use the concurrent reward ant colony system to train the h�(vj) , and start evalu‑
ation from the current node vjx to the target node ( vjx ∈ vj ). Put m ants and their 
k backup ants in node vjx , and perform selection with the equation below [31]:

   
where q0 is a fixed value; q is the random number generated by the random 
generator. If q ≤ q0 , select the next node according to Eq.  (1). Otherwise, 
select the next node according to Eq. (2).

 (3) Compared to its backup ants, each ant can choose a minimum cost path after 
one cycle. The pheromone is updated when the ants select the path:

   
where � is pheromone volatility; Δ�k

ij
(vj) is the total amount of pheromone 

that ant k released on the path.

 (4) When all m ants arrive at the destination node, select the optimal path, i.e. the 
minimum cost path obtained through global pheromone update in Step (3), and 
reward the additional pheromone following the equation below.

   
where Δ�∗

ij
(vj) = ��Δ�ij(vj) , where �′ is the pheromone reward factor; Δ�∗

ij
 is 

the amount of pheromone reward.

   
where Δ�ij is the sum of the pheromone that k ants released on the path; Δ�k

ij
 

is the pheromone that ant k released on the path. Δ�k
ij
= Q∕L , where L is the 

distance covered by the optimal path in a cycle at the arrival at the target node 
[32]. Meanwhile, it is necessary to reward additional pheromone to the adja‑
cent path:

(13)f �(vj) = g(vj) + h�(vj)

(14)pk
ij
(vjx ) =

⎧
⎪⎨⎪⎩

arg max{[𝓁k
ijx
(vjx )]

�[�k
ijx
(vjx )]

�}⋯ (1) q ≤ q0
[𝓁k

ijx
(vjx )]

� [�k
ijx
(vjx )]

� ][�k
ijx
(vjx )]

�

∑n

x=1
[𝓁k

ijx
(vjx )]

� [�k
ijx
(vjx )]

� ][�k
ijx
(vjx )]

�
⋯ (2) otherwise

(15)�ij(vj) = (1 − �)�ij(vj) + Δ�k
ij
(vj)

(16)Δ�k
ij
(vj) = Q∕dij

(17)�ij(vj) = (1 − �)�ij(vj) + Δ�ij(vj) + Δ�∗
ij
(vj)

(18)Δ�ij =

m∑
k=1

Δ�k
ij
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where Δ�∗

ijy
(vjy ) = (��)nΔ�

ijx
(vjx ) ; Δ�

∗
ijy
(vjy ) is the amount of pheromone 

reward; n discloses the positive correlation between the reward value and the 
distance from the optimal path.

 (5) When the number of cycles reaches Nmax , compare the optimal paths obtained 
in each cycle, and select the one with the minimum cost. The cost surpassing 
the edge 

⟨
vi, vj

⟩
 is:

   The estimated cost of the optimal path is calculated by the following equa‑
tion:

   
where T is the cost of each road section on the optimal path.

 (6) In order to find the optimal path of the other nodes, the estimated cost of each 
node is obtained through the above steps:

   
where vjOD ∈ vj . Insert the nodes into the OPEN’ table, and rank them in 
descending order by the evaluated value. Then, carry out the bidirectional A* 
search as follows:

 (7) Store the original point in the forward search Open1 table, and denote the origi‑
nal node O as the “Least node”; then, set the cost of O as g1(O) = 0 , and the 
cost of the other nodes as infinitely large.

 (8) After the extension of the original node, carry out the following operations on 
all successor nodes n:

• Calculate the cost of each successor node v by the concurrent reward‑based 
ACA:

  
• Set the search status of the node to “Noleast”;
• Turn the backward pointer of node v to the original point O;
• Insert node v into the forward search Open1 table, namely insert1(n).

 (9) If Open1 table is empty, error massage pops up and the search terminates; Oth‑
erwise, remove node Min which has the minimum f ′

1
 cost from the table Open1 , 

and change the search status of node v to “Least”. Then, determine if node Min 
satisfies the two termination conditions mentioned above. If the conditions are 
satisfied, jump to the last step; If not, perform the following steps on all the 
successor nodes of Min:

(19)�ijy
(vjy ) = (1 − �)�ijy

(vjy ) + Δ�∗
ijy
(vjy )

(20)T =
Lij

Ck

+ pijTij + pT

(21)h(vj) = Min
∑

T

(22)f (vjOD ) = g(vjOD ) + h(vjOD )

(23)f �
1
(v) = g1(v) + h�

1
(v)
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• Calculate the cost of each successor node v by Eq.  (23) of the concurrent 
reward‑based ACA;

• If the search status of node v is Most , turn the backward pointer of node v to 
the Min node, and insert node v into Open1 table;

• If the search status of the node v is “Noleast”, calculate the new cost of node v
:

  
where M(Min, v) is the function of the actual cost from node Min to node v . 
If g�

1
(v) < g1(v) , let g1(v) = g�

1
(v) . If the backward pointer of node v points at 

node Min , update f �
1
(v) of node v in the Open1 table; otherwise, proceed with 

the following steps.
• If the search status of node v is “Least”, then:

  
If g�

1
(v) < g1(v) , let g1(v) = g�

1
(v) . If the backward pointer of node v points at 

node Min , set the search status of node v as “Nonleast”, and insert node v into 
Open1 table;

• Determine whether the steps of forward searching is 3. If yes, go to Step (10) 
(the first switch) or Step (12) (the second switch); otherwise, go to Step (9).

 (10) Handle Open2 in the same way as in Step (7);
 (11) Handle Open2 and Close2 in the same way as in Step (8);
 (12) Handle Open2 and Close2 in the same way as in Step (9);
 (13) To calculate the cost of the optimal path, determine the termination node K of 

the bidirectional search in accordance with the above termination conditions. 
Furthermore, conduct two backtrackings, including the path from the original 
node O to the termination node K and from the termination node K to the 
destination node D , connect the two path, and complete the computing of the 
optimal path [43–49].

3.3  The flow chart of the DA*BCRAS algorithm

In the research of DA*BCRAS algorithm, the dynamic traffic parameters were intro‑
duced to the mathematical model to mirror the real‑time traffic conditions, making it 
possible to identify the optimal path in actual navigation conditions. Besides, the algo‑
rithm convergence was accelerated with the design of backup ants, and the local opti‑
mum was avoided by rewarding extra pheromone to the non‑optimal path. Capable of 
finding the optimal path as long as it exists, the bidirectional A* algorithm was made 
more dynamic by the ACA. Next, the bidirectional search was employed to further 
enhance the convergence and effect of the algorithm. In the following pseudo‑code as 
Table 1, G represents the input of the graph, S represents the starting vertex, T rep‑
resents the target vertex, F represents the evaluation function of improved ant colony 
search, P represents the positive direction, N represents the negative direction, and H 

(24)g�
1
(v) = g1(Min) +M(Min, v)

(25)g�
1
(v) = g1(Min) +M(Min, v)
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represents the ant colony selection path in each two nodes. The flowchart of the pro‑
posed algorithm is shown in Figs. 1 and 2.

4  Simulation

In order to verify the performance of the DA*BCRAS algorithm, the author con‑
ducted a simulation experiment in Guangzhou, China (Tables 2 and 3), and com‑
pared the results of the DA*BCRAS algorithm and the A ∗ algorithm as shown in 
Figs. 3 and 4. Figure 5 shows the result of simulation and comparison of a map 

Table 1  Ours A* algorithm pseudo‑code

Fig. 1  Bidirectional A* schematic
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topology of a certain area of Guangzhou with Dijkstra, traditional A* and ours 
bidirectional A* algorithm.

The computer configuration of the bidirectional A* algorithm experiment in 
this paper is as follows: AMD Ryzen7 PRO 1700 eight‑core Processor 3.0 GHz, 
Memory:8 GB DDR3 1 333 MHz, Disk:WDC SATA 500 GB 5 400 r/min 8 MB, 

Fig. 2  Flowchart of the algorithm
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Table 2  CPU time of ten groups 
OD pairs in Guangzhou city 
unit s

Path CPU time

Dijkstra algorithm Bi‑A* algorithm Our Bi‑A* 
algorithm

1 0.453 0.128 0.109
2 0.694 0.209 0.178
3 0.216 0.084 0.073
4 0.572 0.187 0.108
5 0.046 0.0261 0.0128
6 0.389 0.176 0.128
7 0.559 0.278 0.169
8 0.298 0.087 0.066
9 0.227 0.103 0.086
10 0.398 0.167 0.142

Table 3  Result of ten groups 
OD pairs in Guangzhou city 
unit km

Path Distance

Dijkstra algorithm Bi‑A* algorithm Our Bi‑A* 
algorithm

1 1.000 1 1.000
2 2.710 2.750 2.850
3 0.520 0.560 0.660
4 4.860 4.900 4.900
5 2.600 2.730 3.030
6 1.400 1.550 1.540
7 1.600 2.000 2.200
8 1.200 1.180 1.150
9 1.800 1.920 2.120
10 1.850 1.900 2.100

Fig. 3  Comparison of algorithm efficiency
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computer operating system is Windows 7, development environment are MAT‑
LAB 2007 and Arc GIS 10.

First, the author sets up a road traffic network diagram and established the rec‑
tangular coordinates. Taking the Euclidean distance between two points as the 

Fig. 4  Comparison of algorithm result

Fig. 5  Comparison of the search path among three algorithms
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road weight, the traffic network was mapped to the coordinate system on the 
assumption that the speed is consistent on any road. Next, the original point and 
the destination point were selected in the road traffic network diagram, and the 
path planning was performed in the current network diagram after the confirma‑
tion. Thus, the author obtained the optimal path between the original point and 
destination point.

5  Conclusions

After analysing the advantages and disadvantages of the A* algorithm and the 
ACA, the author developed the DA*BCRAS, which makes the A* algorithm more 
dynamic and speeds up the convergence of the algorithm. By introducing backup 
ants and additional pheromone reward, the algorithm effectively jumps out of the 
local optimum trap and finds the global optimal path. Simulation results show that 
the DA*BCRAS can accelerate path planning, shorten the search time, and increase 
the chance of pinpointing the optimal path. Nevertheless, the endless emergence of 
dynamic factors adds to the complexity of the algorithm and hinders the computing 
efficiency. In the future research, the algorithm will be further improved in consid‑
eration of the driver’s habits, aiming to reduce the congestion rate and achieve real‑
time dynamic navigation.
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