
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:711–750
https://doi.org/10.1007/s11227-020-03296-w

1 3

An efficient resource provisioning approach for analyzing
cloud workloads: a metaheuristic‑based clustering
approach

Mostafa Ghobaei‑Arani1  · Ali Shahidinejad1 

Published online: 23 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
With the recent advancements in Internet-based computing models, the usage of
cloud-based applications to facilitate daily activities is significantly increasing
and is expected to grow further. Since the submitted workloads by users to use the
cloud-based applications are different in terms of quality of service (QoS) metrics,
it requires the analysis and identification of these heterogeneous cloud workloads to
provide an efficient resource provisioning solution as one of the challenging issues
to be addressed. In this study, we present an efficient resource provisioning solution
using metaheuristic-based clustering mechanism to analyze cloud workloads. The
proposed workload clustering approach used a combination of the genetic algorithm
and fuzzy C-means technique to find similar clusters according to the user’s QoS
requirements. Then, we used a gray wolf optimizer technique to make an appropri-
ate scaling decision to provide the cloud resources for serving of cloud workloads.
Besides, we design an extended framework to show interaction between users, cloud
providers, and resource provisioning broker in the workload clustering process. The
simulation results obtained under real workloads indicate that the proposed approach
is efficient in terms of CPU utilization, elasticity, and the response time compared
with the other approaches.

Keywords  Cloud computing · Workload clustering · Resource provisioning · Gray
wolf optimizer · Genetic algorithm · Fuzzy C-means

 *	 Mostafa Ghobaei‑Arani
	 m.ghobaei@qom‑iau.ac.ir

1	 Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

https://orcid.org/0000-0003-2639-0900
https://orcid.org/0000-0003-4856-9119
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03296-w&domain=pdf

712	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

1  Introduction

With rapid developments of Internet-based computing, the cloud computing model
has emerged as one of the promising distributed computing technologies to offer the
IT resources, such as computational servers, network, storage, and applications to
meet the user’s quality of service (QoS) constraints through the Internet. The usage
of cloud-based applications is significantly increased for performing the activities
of daily life in both personal and professional life [1–3]. Therefore, it is necessi-
tated that cloud infrastructure automatically provisioned the cloud resources for
executing these cloud-based applications. To this end, cloud resource management
is one challenging issue to be addressed. The cloud resource management includes
several issues such as resource scheduling, load balancing, resource provisioning,
and resource discovery, and resource adaptation [4]. Since users frequently use the
cloud-based applications and they may experience workload fluctuations, we focus
on the resource provisioning issue to handle their workload changes. The number
of resources and the number of users are two of the important factors that affect
the provisioning of cloud resources to execute these applications. All the resource
provisioning mechanisms are based on analyzing the characteristics and fluctua-
tions the cloud workloads. The resource provisioning mechanisms can dynamically
scale up to serve the burst workloads, whereas scale down when workload demands
subside [5]. Examples of these workloads include financial services, web services,
mobile computing services, graphics-based services, and online transaction process-
ing services. On the other hands, the users submit their demands (i.e., workloads)
with various QoS constraints in the form of service level objectives (SLOs) to exe-
cute on the cloud infrastructure. Since the submitted cloud workloads by users are
heterogeneous in terms of QoS metrics, analysis and identification of them to meet
QoS constraints agreed in SLOs can play an important role to provision the cloud
resources in a cloud environment. Therefore, it requires allocating or de-allocating
cloud resources to serve the heterogeneous cloud workloads for achieving the desir-
able elasticity at runtime. Although some resource provisioning mechanisms using
workload clustering based on QoS metrics have already been investigated [6, 7], still
more effort is necessitated for analyzing cloud workloads better.

In this paper, we propose an efficient resource provisioning solution based on
metaheuristic-based clustering mechanism to analyze the cloud workloads. The
proposed approach utilized a combination of the genetic algorithm (GA) and fuzzy
C-means technique [8] for clustering the heterogeneous cloud workloads based on
QoS metrics. First, we eliminate the abnormal user requests from incoming work-
load and then index the accepted user requests for clustering to make the training
workloads. Afterward, the training workloads are compared with the test workloads
to find the most similar cluster to the current user request. Finally, a gray wolf opti-
mizer (GWO) metaheuristic technique [9] to identify appropriate scaling decisions
to provide an efficient resource provisioning solution is utilized.

The main contributions of this study can be summarized as follows:

713

1 3

An efficient resource provisioning approach for analyzing…

•	 Designing an extended framework inspired by the three-tier architecture of the
cloud ecosystem to interact between users, cloud providers, and resource provi-
sioning broker.

•	 Proposing a hybrid solution using the GA algorithm and fuzzy C-means tech-
nique for clustering the heterogeneous cloud workloads based on QoS metrics.

•	 Utilizing a GWO technique to determine scaling decisions for efficient resource
provisioning.

•	 Simulating a set of experiments to validate the effectiveness of our proposed
solution under real and synthetic workloads in terms of cost, response time, elas-
ticity, and CPU utilization metrics.

The rest of this paper is organized as follows: In Sect. 2, we review studies related
to the workload clustering-based resource provisioning mechanisms. We explain the
proposed approach in more detail in Sect. 3. The experimental results through simu-
lations are provided in Sect. 4, and we finally provide the conclusions and future
directs in Sect. 5.

2 � Related works

Several approaches have been proposed previously to handle the resource provision-
ing issue using workload analysis in cloud environments.

Gill et al. [10] have developed an extended framework to provision the cloud
resource automatically for serving the heterogeneous clustered workloads. Their pro-
posed framework utilized autonomic computing paradigm for self-managing resource
to execute cloud-based applications for satisfying QoS requirements. Their solution
used workload analyzer component for clustering of heterogeneous cloud workloads
using k-means technique and provisioned the required resources according to their
QoS requirements. Finally, they validated the proposed framework on the e-com-
merce application as a cloud-based application and demonstrated that their proposed
framework outperforms in terms of execution time, energy consumption, throughput,
SLA violation ration, and resource utilization compared with the existing frame-
work. Erradi et al. [11] have proposed a new scheme to predict required resources
according to access logs for meeting QoS requirements of web applications. Their
proposed method used unsupervised learning to extract the workload latent features
to estimate the hardware resource demands such as memory, CPU, and bandwidth
utilization and response time for executing varying-time workloads. They validate the
proposed scheme with RUBiS and Acme Air application benchmarks under repeated
and increasing random workloads and indicated that their proposed scheme outper-
forms in terms of mean squared error metric compared with the existing schemes.
Xu et al. [12] have investigated the outage probability forecasting in mobile multiuser
communication systems. They extracted a closed form for the outage probability on
the fading channels. Then, they combined gray wolf optimization and neural network
to predict the performance of outage probability for generating training data. They
validated the proposed solution using Monte Carlo simulation and indicated that
their proposed solution outperformed in terms of accuracy metrics compared with

714	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

other machine learning-based mechanisms. Besides, in other work [13], they utilized
cooperative communications to reduce the bit error probability in mobile IoT net-
work. They also describe closed-form expressions for the direct link signal-to-noise
ratio and end-to-end link and investigate the effect of fading channels on the bit error
probability metric. Yi-Han Xu et al. [14] have studied the resource allocation issue to
maximize energy efficiency in wireless body area networks. They take into account
the relay selection, transmission power, and transmission mode to find an efficient
allocation decision. Besides, they formulated their problem in the form of Markov
decision process and utilized a reinforcement learning technique for reducing the
state space and improving the convergence speed. Xu et al. [15] have presented a
mobility management approach for device-to-device communication to meet QoS
requirements such as latency, power consumptions on the heterogeneous network sys-
tems. Their proposed approach extends IEEE 802.21 to improve mobility experience
of users on the heterogeneous network environment. Besides, they developed a load-
aware mode selection mechanism to select the best target mode.

In [16], a particle swarm optimization-based solution to schedule of both hetero-
geneous and homogenous and workloads on the cloud resources for minimizing the
cost, execution time have proposed. The main aims of their proposed solution are:
extracting QoS parameters of workloads, clustering workloads using patterns, and
k-means-based clustering technique, and resource provisioning classified workloads
according to their QoS parameters before resource scheduling. Also, they indicated
that their proposed solution avoids over- and under-utilization of cloud resources,
and it reduces queuing time, and energy compared with other existing methods. Mian
et al. [17] investigated the data analytic workloads for provisioning resources in a
public cloud environment. They introduce a framework that includes a cost model
to predict the cost of serving a workload on a configuration to specify the most cost-
effective configuration for a certain data analytic workload. They validated their pro-
posed framework on Amazon EC2 with data-intensive workloads and demonstrated
that their solution minimizes the resource costs while the QoS requirements associ-
ated with the workload are satisfied. Iqbal et al. [6] designed a framework for auto-
scaling of web applications based on workload patterns prediction. They utilized an
unsupervised learning technique to analyze the web application access logs using
response time and document size metrics. Besides, they model the web application
workload in the form of a probabilistic workload pattern to predict the future work-
load pattern of the web application using a nonnegative least square technique for
future time intervals. They implemented their proposed framework under three real-
world web application access logs and indicated that their solution could accurately
predict future workload patterns compared to existing methods. Magalhães et al. [18]
introduced a web application model to obtain the behavioral patterns of various user
profiles for a cloud workload. Their solution models the workload patterns as statisti-
cal distributions to represent dynamic cloud environments for supporting and simu-
lating of resources utilization in cloud data centers. Also, they validated their pro-
posed web application model as an extension of the CloudSim toolkit and indicated
that their model can generate data to accurately represent various user profiles.

Amiri et al. [19] proposed a prediction-based with capability online learning
method for extracting knowledge about the application behavior changes for efficient

715

1 3

An efficient resource provisioning approach for analyzing…

resource provisioning in the cloud environment. They utilized a consistency met-
ric to extract the workload patterns to predict the behavior changes of the appli-
cation. Their simulation results showed that their method learns the new workload
behavioral patterns compared with linear regression and neural networks methods.
Meenakshi et al. [20] presented an efficient resource provisioning method using
k-means clustering and gray wolf optimization (GWO) partitioning technique. They
utilized GWO for prioritization and k-means clustering to analyze QoS metrics to
allocate cloud resources for serving user requests. Their numerical results illustrated
that their method outperforms in terms of clustering accuracy, memory usage, and
execution time compared with existing methods. Raza et al. [21] reviewed auto-
nomic workload management in large-scale database management systems and data
warehouses. They explore studies related to various domains of workload manage-
ment, including workload performance prediction, workload adaptation, and work-
load classification. They used three characteristics autonomic computing, namely
self-adaptation, self-prediction, and self-inspection, to select workload management
studies on large-scale data repositories.

Liu et al. [22] proposed an adaptive classified technique for workload predic-
tion in a large-scale heterogeneity cloud environment. Their technique classifies the
workloads into different patterns according to workload features and then assigned
for various prediction models. They transform the workload clustering problem
using linear programming model according to prediction accuracy and the predict-
ing time metrics. Further, they validated their proposed technique under Google
Cluster trace and demonstrated that their solution reduces prediction errors com-
pared with existing time-series prediction techniques. Singh et al. [23] proposed a
classification-based approach for predicting workload patterns of web applications
in a cloud environment. Their solution utilized the support vector regression, linear
regression, and ARIMA to select the prediction model according to workload fea-
tures. They evaluated the effectiveness of the proposed solution on the ClarkNet and
NASA as two real workload traces and indicated that their approach significantly
reduces root-mean-squared error and mean absolute percentage error metrics com-
pared with other time-series prediction approaches.

Generally, most of the current researches only focus on heuristic-based mecha-
nisms with the k-means [10, 17], or unsupervised learning [6, 11] techniques for
clustering the heterogeneous cloud workloads for satisfying the QoS requirements.
Since the cloud workloads are heterogeneous, combination heuristic-based mecha-
nisms with the other clustering techniques are still not entirely adequate for achiev-
ing high clustering accuracy. Therefore, we combine the GA as a metaheuristic
approach with fuzzy C-means clustering technique to estimate the hardware resource
demands for executing the cloud heterogeneous workloads. Besides, our approach
uses preprocessing workload phase to eliminate the abnormal user requests from
incoming workload for enhancing clustering accuracy. Although some studies [20]
have already been utilized the metaheuristic-based clustering mechanism to address
workload clustering based on QoS criteria, still more effort is necessitated for ana-
lyzing cloud workloads in an efficient manner.

Finally, we provide a summarization of the most relevant works related to
resource provisioning techniques using workload clustering into Table 1 based on

716	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

six metrics: (1) utilized technique, (2) performance criteria, (3) policy, (4) method
(5) evaluation tool and (6) workload type.

3 � Proposed approach

In this section, we present our proposed approach in more details. First, we design
an extended framework to interact with users, cloud providers, and resource provi-
sioning broker in the cloud ecosystem. In the proposed solution, users send their
requests, and then, their required resources will be allocated. The proposed solu-
tion is categorized into three main phases. In the first phase, preprocessing of the
workload is fulfilled, which are mainly focused on eliminating noisy and abnormal
requests. Then, it is defined as an ID for each request which is used for creating an
SLA table according to these requests. In the second phase, the workload is clus-
tered by the GA algorithm and fuzzy C-means technique. Then, the closest center of
the cluster from the test workload is selected. Finally, resource scaling decisions are
carried out by GWO algorithm in the third phase.

3.1 � Proposed framework

The framework of the proposed solution is depicted in Fig. 1. As it is depicted in
Fig. 1, the framework is categorized into three main entities: management of the
workload resources, the users, and the cloud. Resource provisioning broker (RPB) is
the intermediate level of the proposed method to provision required cloud resources
and services of the users from data centers of cloud providers (CPs). These data
centers include one or more virtual machines acting as the main processing ele-
ments, each of which has its particular processing resources. The results of each
request are finally returned to the user. Each service is running on a particular VM,
and incoming requests of these VMs and services are variable and depend on incom-
ing workload traffic. Services to these VMs have one of the two statuses: alloca-
tion, not-allocation. Each CP which is arrived in the cloud ecosystem has to register
itself in Cloud Information Service (CIS). Firstly, a query is created by RPB and is
sent to CIS requesting CP’s name to execute the user’s requests. For example, if the
user request is determined to be CP1, RPB sends requests to this provider. On each
CP, there are predefined enough VMs to execute the incoming workload requests
according to the policy. After completing the tasks, these VMs are deallocated, and
the results are sent back to the requesters or users.

For solving the cloud resources provisioning problem in the proposed framework,
if the required processing resources are estimated and calculated, it will be possi-
ble to identify the similarity between the current service request and the frequent
cases for determining required VMs and processing resources to the manager of
cloud computing resources. Specifically, the worst possible cases of demands could
be considered to ignore the minor differences between the new incoming request and
the most frequent requests.

As another important problem, since it is not possible to identify the amount
of required resources for executing requests precisely while service requests are

717

1 3

An efficient resource provisioning approach for analyzing…

Ta
bl

e 
1  

S
ur

ve
y

of
 st

ud
ie

s r
el

at
ed

 to
 w

or
kl

oa
d

cl
us

te
rin

g-
ba

se
d

re
so

ur
ce

 p
ro

vi
si

on
in

g
te

ch
ni

qu
es

Re
f.

U
til

iz
ed

 te
ch

ni
qu

e
Pe

rfo
rm

an
ce

 c
rit

er
ia

Po
lic

y
M

et
ho

d
B

en
ch

m
ar

k
W

or
kl

oa
d

Iq
ba

l [
6]

U
ns

up
er

vi
se

d
le

ar
n-

in
g-

ba
se

d
cl

us
te

r-
in

g +
 N

N
LS

 +
 P

W
P

Re
sp

on
se

 ti
m

e,
 o

cc
up

an
cy

pr

ob
ab

ili
ty

, r
es

id
ua

l e
rr

or
Pr

oa
ct

iv
e

Re
pl

ic
at

io
n

C
lo

ud
Si

m
 to

ol
ki

t +
 R

U
B

iS

be
nc

hm
ar

k
Sa

fe
ty

, N
ew

s l
in

k,
 a

nd
 D

A
R

w

or
kl

oa
ds

G
ill

 [1
0]

H
eu

ris
tic

-b
as

ed
 +

 K
-m

ea
ns

cl

us
te

rin
g

Su
bm

is
si

on
 b

ur
st

tim
e,

 to
ta

l
ex

ec
ut

io
n

tim
e,

 n
et

w
or

k
us

ag
e,

 se
rv

ic
ea

bi
lit

y

Pr
oa

ct
iv

e
Re

pl
ic

at
io

n
C

lo
ud

Si
m

 to
ol

ki
t

Re
al

 w
or

kl
oa

ds

Er
ra

di
 [1

1]
U

ns
up

er
vi

se
d

le
ar

ni
ng

-
ba

se
d

cl
us

te
rin

g
Re

sp
on

se
 ti

m
e,

 C
PU

ut

ili
za

tio
n,

 m
em

or
y

ut
ili

za
tio

n,
 b

an
dw

id
th

ut

ili
za

tio
n,

 M
SE

Pr
oa

ct
iv

e
Re

pl
ic

at
io

n
A

m
az

on
 E

C
2 +

 R
U

B
iS

,
A

cm
e

A
ir

be
nc

hm
ar

ks
W

eb
-b

as
ed

 w
or

kl
oa

ds

Si
ng

h
[1

6]
PS

O
 +

 K
-m

ea
ns

 c
lu

ste
rin

g
Ex

ec
ut

io
n

tim
e,

 e
xe

cu
tio

n
co

st,
 e

ne
rg

y
co

ns
um

p-
tio

n,
 re

so
ur

ce
 u

til
iz

at
io

n,

re
lia

bi
lit

y,
 av

ai
la

bi
lit

y,

la
te

nc
y

Re
ac

tiv
e

Re
pl

ic
at

io
n

C
lo

ud
Si

m
 to

ol
ki

t
Re

al
 w

eb
-b

as
ed

 w
or

kl
oa

ds

M
ia

n
[1

7]
H

eu
ris

tic
-b

as
ed

 se
ar

ch

al
go

rit
hm

C
os

t,
co

st/
pe

rfo
rm

an
ce

Pr
oa

ct
iv

e
Re

pl
ic

at
io

n/
re

si
zi

ng
A

m
az

on
 E

C
2 +

 be
nc

hm
ar

k
fa

ct
or

y
O

LA
P

w
or

kl
oa

d

M
ag

al
hã

es
 [1

8]
St

at
ist

ic
al

 a
na

ly
si

s
Re

sp
on

se
 ti

m
e,

 C
PU

 u
til

i-
za

tio
n,

 m
em

or
y

ut
ili

za
-

tio
n,

 d
is

k
ut

ili
za

tio
n

Pr
oa

ct
iv

e
Re

si
zi

ng
C

lo
ud

Si
m

 to
ol

ki
t +

 R
U

B
iS

be

nc
hm

ar
k

W
eb

-b
as

ed
 w

or
kl

oa
ds

A
m

iri
 [1

9]
O

nl
in

e
le

ar
ni

ng
 +

 pa
tte

rn

m
in

in
g

Pr
ec

is
io

n,
 c

ov
er

in
g

pe
rc

en
t-

ag
e

Pr
oa

ct
iv

e
Re

pl
ic

at
io

n/
re

si
zi

ng
C

lo
ud

Si
m

 to
ol

ki
t

Sy
nt

he
tic

 w
or

kl
oa

ds

M
ee

na
ks

hi
 [2

0]
G

W
O

 +
 K

-m
ea

ns
 c

lu
ste

rin
g

A
cc

ur
ac

y,
 e

xe
cu

tio
n

tim
e

Re
ac

tiv
e

Re
pl

ic
at

io
n

C
lo

ud
Si

m
 to

ol
ki

t
Sy

nt
he

tic
 w

or
kl

oa
ds

Li
u

[2
2]

M
ix

ed
 in

te
ge

r l
in

ea
r p

ro
-

gr
am

m
in

g
C

PU
 u

sa
ge

, p
re

di
ct

io
n

tim
e,

M

R
PE

Pr
oa

ct
iv

e
Re

pl
ic

at
io

n
C

lo
ud

Si
m

 to
ol

ki
t

G
oo

gl
e

cl
us

te
r w

or
kl

oa
d

Si
ng

h
[2

3]
A

R
IM

A
 +

 SV
R

 +
LR

 p
re

-
di

ct
io

n
m

od
el

s
M

A
E,

 M
SE

, R
M

SE
 a

nd

M
A

PE
Pr

oa
ct

iv
e

Re
pl

ic
at

io
n

M
A

TL
A

B
N

A
SA

 a
nd

 C
la

rc
kN

et

w
or

kl
oa

ds

718	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

M
AE

 m
ea

n
ab

so
lu

te
 e

rr
or

; M
AP

E
m

ea
n

ab
so

lu
te

 p
er

ce
nt

ag
e

er
ro

r;
RM

SE
 ro

ot
-m

ea
n-

sq
ua

re
d

er
ro

r;
M

SE
 m

ea
n

sq
ua

re
 e

rr
or

; M
RP

E
m

ea
n

re
la

tiv
e

pe
rc

en
ta

ge
 e

rr
or

; O
LA

P
O

nL
in

e
an

al
yt

ic
al

 p
ro

ce
ss

in
g;

 N
N

LS
 n

on
ne

ga
tiv

e
le

as
t s

qu
ar

e;
 P

W
P

pr
ob

ab
ili

sti
c

w
or

kl
oa

d
pa

tte
rn

; D
AR

 d
ai

ly
 a

ct
iv

ity
 re

po
rti

ng
; R

U
Bi

S
ric

e
un

iv
er

si
ty

 b
id

di
ng

 s
ys

te
m

;
PS

O
 p

ar
tic

le
 s

w
ar

m
 o

pt
im

iz
at

io
n;

 G
W

O
 g

ra
y

w
ol

f o
pt

im
iz

at
io

n;
 G

A
ge

ne
tic

 a
lg

or
ith

m
; L

R
lin

ea
r r

eg
re

ss
io

n;
 S

VR
 s

up
po

rt
ve

ct
or

 re
gr

es
si

on
; A

RI
M

A
au

to
-r

eg
re

ss
iv

e
in

te
-

gr
at

ed
 m

ov
in

g
av

er
ag

e

Ta
bl

e 
1  

(c
on

tin
ue

d)

Re
f.

U
til

iz
ed

 te
ch

ni
qu

e
Pe

rfo
rm

an
ce

 c
rit

er
ia

Po
lic

y
M

et
ho

d
B

en
ch

m
ar

k
W

or
kl

oa
d

O
ur

 w
or

k
G

A
/fu

zz
y

C
-m

ea
ns

 c
lu

ste
r-

in
g +

 G
W

O
Ex

ec
ut

io
n

tim
e,

 e
xe

cu
tio

n
co

st,
 e

ne
rg

y
co

ns
um

pt
io

n,

la
te

nc
y,

 S
LA

 v
io

la
tio

n
ra

te

Re
ac

tiv
e

Re
pl

ic
at

io
n

C
lo

ud
Si

m
 to

ol
ki

t
W

eb
-b

as
ed

 w
or

kl
oa

ds

719

1 3

An efficient resource provisioning approach for analyzing…

coming, calculating the amount of processing resources is hard and impracticable.
In addition, it is time-consuming and demanding huge and precise amount of calcu-
lation, which is out of the real-time cases. This problem leads us to utilize clustering
in which the required calculation could be postponed to the other times in the future;
therefore, the results could be saved to be used later.

According to the proposed framework, after accepting requests, the sequence of
removing abnormal requests, indexing these requests, and creating SLA table is ful-
filled. This table is next saved for future search and reference. Then, users’ requests
are clustered for the training requests. Finally, the test workload is compared with the
training workload to find and select the most similar cluster for the current request
using Euclidian distance approach. Based on the prior calculations, the amounts of
required processing resources are determined using GWO algorithm. Noteworthy, to
have a decent clustering and good samples, the state space (i.e., different requests)
should be covered well as the history of clustering. More the request samples better
and further the coverage of the state space.

3.2 � Problem formulation

In this section, we present the required notations in the proposed approach, as shown
in Table 2.

Let’s Request =
{
Req1,Req2,… ,ReqN

}
 be the N incoming requests of the work-

load. The SLA represents the structure’s name for accepting service of each request.
This structure consists of response time, cost, availability, and reliability. Train_new

Fig. 1   The proposed Framework

720	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

holds processed noiseless requests. The variable α holds the number of constructed
clusters with the cluster center of Center which is defined as
Center =

{
center1, center2,… , center�

}
 . RCi

j
 shows the requests belonging to each

cluster in which i is the number of cluster with request number of j. Also, Dis (i, j)
defines Euclidian distance between requests i and j.

For each violation from the SLA, different punishment is kept in Penalty
with the exponential coefficient for next violations, Penalty_rate. In addition,
VM =

{
VM1,VM2,… ,VMk

}
 is k virtual machines with different service specifications

such that VMk.MIPS , VMk.Cost , VMi.RAM , and VMi.Storage represent Million Instruc-
tion Per Second (MIPS) of i-th VM, the cost of using i-th VM, RAM of i-th VM, and
storage of i-th VM, respectively. When adding a new VM, the total cost consists of
the summation of VM normal usage cost and booting cost, VM_Boot_Cost. Besides, in

Table 2   Variables and their
description

Variable Description

N Number of requests
M Number of request’s fields
Reqi i-th request
Train_req Training workload requests
Test_req Test workload requests
Train_New Processed workload requests
SLA Service level agreement
SLAi ⋅ Cost Cost of i-th request based on SLA
SLAi ⋅ Res Response time of i-th request based on SLA
SLAi ⋅ Av Availability of i-th request based on SLA
SLAi ⋅ Rel Reliability of i-th request based on SLA
Penalty Payment rate in the case of deviation from SLA
Penalty_Rate Exponential coefficient of penalty
K Number of VMs
VMk ⋅ Cost The cost of using k-th VM
VMk ⋅MIPS MIPS of k-th VM
VMk ⋅ RAM RAM of k-th VM
VMk ⋅ Storage Storage of k-th VM
VM_Init_Cost Configuration cost of new VM
VM_Boot_Cost Initializing cost of new VM
VM_UP_Cost Cost of adding extra resources to the new VM
Reqx ⋅ SLA Number of deviation from SLA for i th request
Reqx ⋅ Penalty Total penalty of request x
Reqx ⋅ benefit Total benefit of request x
Cost Total cost
Penalty Total penalty
Response Total response time
Availability Total availability
Center Center of cluster

721

1 3

An efficient resource provisioning approach for analyzing…

the case of needing new configuration, this new configuration demands extra costs for
memory, storage, or MIPS that is added to reconfiguration costs, VM_Init_Cost.

3.3 � Proposed algorithm

In this section, the proposed algorithm is presented. In the proposed model, the
structure of workloads is as follows: user’s IP, the date and time of the request, the
type of requested service identified by the user, the protocol of information transfer-
ring, cost, response time, availability, and reliability predefined in SLOs.

3.3.1 � Workload preprocessing phase

Workload preprocessing is one of the most important steps for achieving the results
of research more precisely and completely. In this respect, different techniques are
used to remove noisy data.

Workload preprocessing is depicted in Fig. 2. As it is shown, the requests will be
processed in the first step. In this step, the unnecessary requests are removed from
the incoming workload, which includes lack of user access right for the requested
service, the incomplete fields of request (e.g., null field), and the fake user as a robot
to search, propagandize, and desolate purposes.

For the ease of Availability, a unique number named Request ID is defined for
each request. This unique number will help in creating SLA table for each request,
as shown in Table 3.

Fig. 2   The workload preproc-
essing phase

722	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

The pseudo-code for workload preprocessing in the proposed algorithm is
depicted in Algorithm 1. As it is shown, N training workloads are entered to the
algorithm, each of which has M attributes (line 1). According to the above-men-
tioned reasons, incoming requests will be removed under certain conditions (lines
4–12). A new array is defined for indexing each workload (lines 13–16). Finally, the
SLA table is created for all preprocessed workloads (line 17).

3.3.2 � Workload clustering phase

In this section, we describe the workload clustering as one of the most important
phases of the proposed approach to provide an efficient resource provisioning solu-
tion. To have proper clusters, a combining GA and fuzzy c-mean is utilized for
clustering the training workload, as shown in Fig. 3. The workload clustering phase
consists of four step, namely: (A) Generating initial population and identifying the
number of clusters, (B) calculating the value of each request, (C) applying genetic
operators, and (D) termination condition.

A.	 Generating initial population and identifying the number of clusters

In the proposed algorithm, each initial chromosome (i.e., request) includes two
vectors: the first vector, H, which indicates the number of cluster center’s requests,
and the second one holds the number of sub-clusters for each cluster in α. Indeed,

Table 3   SLA structure for
requests Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

723

1 3

An efficient resource provisioning approach for analyzing…

the second vector holds  * α elements under the centrality of clusters’ requests. Each
element of this vector has one ID of the request. Creating such vector and selecting
ID of cluster center’s candidate requests is random. Therefore, cluster Ci in the pro-
posed algorithm with sub-cluster Xi has the following structure:

B.	 Calculating the value of each request

In this section, we select the best requests (i.e., the best parents for generating
children) using an objective function. Obviously, the objective function in fuzzy
c-mean clustering is as follows:

In Eq. (2), n data are divided into c clusters to meet the following condition.

(1)COne =
[
C1,C2,… ,CH

][
X1,X2,… ,X� ,… ,XH�∗c

]

(2)Jm(U,V) =

C∑

i=1

n∑

k=1

um
ik
xk − v2

i

c∑

i=1

uik = 1. ∀k = 1,… , n

(3)Mfcm =

{
U ∈ Rc∗n| ∀i ⋅ k ∶ 0 ≤ 𝜇ik ≤ 1;

c∑

i=1

𝜇ik = 1; 0 <

n∑

k=1

𝜇ik

}

Fig. 3   The training workload clustering using GA and fuzzy c-mean

724	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

To optimize the function Jm(U,V) , optimization algorithm estimates U and V in
two steps such that clusters’ center in step r is calculated regarding U in step (r − 1)
th, as follows:

Since the algorithm continues until satisfying the condition Ui+1 − Ui , the fuzzy
c-mean algorithm always converges. Therefore, the fitness function is defined as
follows:

Generally, the main purpose of this phase is to minimize the fuzzy c-mean func-
tion by utilizing GA, thereby identifying clusters of all requests. In other words, less
distance from clusters’ center, more qualification of the chromosome and more the
probability of its selection.

C.	 Applying genetic operators

We use the standard operators such as selection, single-point crossover, muta-
tion operators for changing clusters’ center and replace requests in the clusters. For
selecting the parent (i.e., superior request), the number of parents for the next gen-
eration should be generated.

Crossover operation For this purpose, the single-point crossover method is utilized
such that a random point for the crossover is selected as follows:

Mutation operation At first, a random number between 1 and 4 is generated, and
based on this generated random number, the values of SLOi will be changed. For
example, if this generated number is 3, SLO3 of the selected request will be changed.

Since GA improves its generation by repetition, it is better to reduce mutation by
increasing repetitions. This process is simulated by applying an exponential function
as follows:

where �0 = 0.2 and e = 2.718218284.

(4)vi =

∑n

k=1
um
ik
xk

∑n

k=1
um
ik

uik =

c∑

j=1

(
xk − vi

xk − vj

)−2∕(m−1)

(5)F =

H∑

i=1

∝∑

k=1

um
ik

4∑

z=1

(
Xk ⋅ SLOz − Ci ⋅ SLOz

)
, m > 1

(6)Pnew = �Pm� + (1 + �)Pd�

(7)� = �0e
−Counter

725

1 3

An efficient resource provisioning approach for analyzing…

D.	 Termination condition

If the condition Ui+1 − Ui is satisfied, then the algorithm is terminated; otherwise,
a new population derived from previous population, children, and mutations will be
selected. Next, the fitness value for the new population will be calculated.

Pseudo-code for the proposed algorithm is depicted in Algorithm 2. Generating
initial population and identifying the number and also the center of clusters is car-
ried out in lines 2–9. For each workload, the belonging matrix is constructed (lines
10–13). Then, the fitness value of each workload is calculated using the objective
function of fuzzy c-mean clustering (lines 14–24). After calculating fitness for
all requests, determined numbers of those requests with higher fitness values are
selected (line 25). Crossover of workloads, mutations, and as the final step, selecting
the best cases among parents, children, and mutations workload are fulfilled (lines
26–28). Finally, the termination condition is checked. If the result of checking is
positive, then the loop will be repeated (lines 29–31); otherwise, the clustering train-
ing workload phase is terminated.

726	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

3.3.3 � Resource provisioning phase

In this section, we utilized a gray wolf optimizer (GWO) metaheuristic technique to
identify appropriate scaling decisions to provide an efficient resource provisioning
solution. After clustering training workloads, it requires to select the closest cluster
to the test workload. To this end, each request of test workload is compared with
each cluster centroid using Euclidian distance. The distance of the request i from the
cluster centroid j is calculated as follows:

After finding the closest cluster to the user request, resource provisioning process
should be carried out. In this regard, three resource scaling decisions are considered
as follows:

(a)	 Adding resources In this decision, the numbers of VMs are not adequate for
serving user requests. Therefore, new VMs should be turned on.

(b)	 Removing resources In this decision, the numbers of VMs are more than the need
for serving user requests. Therefore, some VMs should be turned off.

(c)	 Balanced resources In this decision, the numbers of VMs are adequate for serv-
ing user requests, and there is no need to change the numbers of VMs.

In the following, we describe the resource provisioning algorithm using GWO
technique in more details, as shown in Fig. 4. The resource provisioning (i.e.,
resource scaling) phase consist of four steps, namely: A) initialization, B) generating
initial population, C) calculating the value of wolves, and D) replacing wolves and
termination condition.

A.	 Initialization

As it is mentioned earlier, it should be identified the constant coefficient of vec-
tors A and D, random value r, iteration numbers of the algorithm, and linear value a,
then it is selected some incoming test workload randomly.

B.	 Generating initial population

Since there are cl clusters, the best cluster should be selected for the test work-
load. First, each cluster is identified as a wolf utilizing WGO. It is proposed an array
of bits as the place array of the wolves, X. Initial population is filled randomly, and
each wolf has some 0 s or 1 s. This array is defined as follows:

(8)Disi.cj =

√√√√
4∑

k=1

(
Reqi ⋅ SLOk − Cj ⋅ SLOk

)2

(9)X =
[
bit1, bit2,⋯ , bitNvar

]

727

1 3

An efficient resource provisioning approach for analyzing…

where Nvar is the number of solutions for the problem such that if the value 0 is pro-
duced, the request with this index is ignored, else if the value of the index is 1, the
request will be selected. Table 4 illustrates the selection of requests for the wolves.

As an example, if the cluster has 14 requests, the initial population includes 14
bits filled with 0 s or 1 s. If the bit has the value 1, the requests with this index will
be selected and will be considered in the selection operator; otherwise, the request
will be ignored. The requests are selected randomly. If the requests, for example, 1,
2, 5, 7, 11, and 14, are selected, the created wolf will be as shown in Table 5.

Fig. 4   Resource provisioning of test workload using GWO

Table 4   The selection of
requests for the wolves

Request’s ID Request 1 Request 2 … Request Nvar

Bit 0 1 … 1
selection Unselected Selected … Selected

Table 5   The example of the wolf’s structure with 14 requests

1 1 0 0 1 0 1 0 0 0 1 0 0 1

728	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

C.	 Calculating the value of the wolves

In this step, the average Euclidian distance of the test workload’s request is calcu-
lated, as follows:

where T is the elements of the fitness function for each wolf.
Regarding the calculated fitness function (i.e., average Euclidian distance of the

test workload and each wolf), the first three ones are selected as the wolves α, β, δ in
the sorted list.

D.	 Replacing wolves and termination condition

Evaluating and identifying the position of each wolf (i.e., request) are calculated
as follows. Besides, the position of the wolves (i.e., clusters) keeps changing until
the victim (i.e., test workload) is enclosed.

where A⃗ and C⃗ are the coefficient vectors, and X⃗p , X⃗ , and t are the cluster’s location,
location vector of each request, and iteration number, respectively. Also, A⃗ and C⃗ are
calculated as follows:

(10)F =

T∑

j=1

√√√√
4∑

k=1

(
Reqi ⋅ SLOk − Cj ⋅ SLOk

)2

(11)D⃗ =
|||C⃗ ⋅ X⃗p(t) − X⃗(t)

|||

(12)X⃗(t + 1) = X⃗p(t) − A⃗ ⋅ D⃗

(13)A⃗ = 2a⃗ ⋅ r⃗1 − a⃗

Table 6   An example of the movement of the wolves and identifying their locations

Current location of the wolf 1 1 0 0 1 0 1 0 0 0 1 0 0 1
The wolf α 0 0 1 1 1 0 1 0 0 0 0 1 1 0
The wolf β 1 0 1 1 0 1 0 0 0 1 0 0 1 1
The wolf δ 1 1 0 1 1 0 1 0 1 0 1 0 0 0
New location of the wolf 0 1 0 0 1 0 1 0 0 0 1 0 0 0

729

1 3

An efficient resource provisioning approach for analyzing…

where vectors of a⃗ are decreased from 2 to 0 linearly and iteratively, and r⃗1 and r⃗2 are
random vectors in the interval [0, 1].

An example of the movement of the wolves and identifying new location are
depicted in Table 6.

Among the sorted requests, the first three ones are selected and labeled as α, β and
δ. These three requests can estimate cluster’s location at each iteration, as follows:

In every iteration, the locations of the other wolves are updated after identifying
the location of α, β and δ. Besides, A⃗ , C⃗ , and a⃗ are updated as well. Finally, the loca-
tion of the wolf α is considered as the optimum point.

Algorithm 3 depicts the pseudo-code for the GWO-based resource provision-
ing algorithm. After initializing the parameters (lines 1–11), the cluster with the
least Euclidian distance compared with the test workload is selected to provision
the resources for the test workload using GWO algorithm (lines 12–15). Afterward,
the fitness value for the population and the location of each wolf is calculated, and
finally, this location will be sorted (lines 16–24), and the best wolves are identi-
fied as α, β and δ. (line 25). By varying directions and speed of wolves, tree new
locations are generated, and fitness value for the new wolves is recalculated, and
the results are re-sorted (lines 26–39). If the fitness value for the new wolf is bet-
ter than the wolf α, the new wolf is replaced with the wolf α; otherwise, it is com-
pared with the wolves β, and δ and replacement is performed in its case (line 40).
Then, updating the required variables for fitness function, changing the location, and
updating the counters are fulfilled (lines 41–43). If the termination condition is not
satisfied, the above-mentioned steps will be repeated (line 44) which is held in Max-
Iter. Finally, the algorithm returns the first wolf as the best one (line 45) and thereby
selected resource scaling decisions (i.e., adding, removing, and balanced) for the test
workload on VMs will be run.

(14)C⃗ = 2r⃗2

(15)D⃗𝛼 =
|||C⃗1 ⋅ X⃗𝛼 − X⃗

|||. D⃗𝛽 =
|||C⃗2 ⋅ X⃗𝛽 − X⃗

|||. D⃗𝛿 =
|||C⃗3 ⋅ X⃗𝛿 − X⃗

|||

X⃗1 = X⃗𝛼 − A⃗1 ⋅

(
D⃗𝛼

)
. X⃗2 = X⃗𝛼 − A⃗2 ⋅

(
D⃗𝛼

)
. X⃗3 = X⃗𝛼 − A⃗3 ⋅

(
D⃗𝛼

)

X⃗(t + 1) =
X⃗1 + X⃗2 + X⃗3

3

730	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

731

1 3

An efficient resource provisioning approach for analyzing…

3.3.4 � An example of the use of the proposed approach

In this section, an example for better understanding the proposed approach in more
details is provided.

A.	 Workload preprocessing phase

At first, the request structure and its correctness is checked. The structure of the
incoming workload is depicted in Table 7.

(a)	 Removing the abnormal requests

As it is mentioned earlier, the unnecessary and abnormal requests are removed
from the incoming workload based on the predefined rules. As it was shown in
Table 6, the user with ID 82 has not the access right to the requested service, and the
users with ID 74856 and also 510 have not filled the requested fields correctly and
the users 74856 is recognized as a robot. The results of this process are depicted in
Table 8.

(b)	 Creating the SLA table

For each request, the SLA table is created. An example of the SLA table for the
requests of Table 6 is shown in Table 9.

B.	 Workload clustering phase

In the following, the clustering process for this example is described briefly.

(a)	 Generating an initial population and identifying the number of clusters

The SLA table is considered as the initial population. If the numbers of clusters
are 3 each of which containing three sub-clusters, the first and the send vectors will
contain 3 and 9 elements. It means that the second vector contains 3 * 3 elements of
the requests. Three elements are selected randomly as the candidates of the clutters’
centroid, such that each Xi is its sun-cluster as well.

Table 10 depicts the example of 13 requests and 3 clusters.

(b)	 Calculating the value of each request

By applying the parameter m = 2 in Eq. (10) and utilizing the second vector of the
requests (i.e., initial population), the belonging matrix U is initialized as randomly
as it is depicted in Table 11.

COne =
[
C1,C2,C3

][
X1,X2,… ,X6,… ,X9

]

732	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

Ta
bl

e 
7  

A
n

ex
am

pl
e

of
 in

co
m

in
g

w
or

kl
oa

d

U
se

r I
D

Th
e

da
te

 a
nd

 th
e

tim
e

of

th
e

re
qu

es
t

Ty
pe

 o
f u

se
r’s

re

qu
es

te
d

se
rv

ic
e

D
at

a
tra

ns
fe

rr
in

g
pr

ot
oc

ol
Th

e
re

qu
ire

d
co

st
Th

e
re

qu
ire

d
re

sp
on

se
 ti

m
e

Th
e

re
qu

ire
d

av
ai

l-
ab

ili
ty

Th
e

re
qu

ire
d

re
lia

bi
lit

y

10
00

−
20

18
20

04
14

:2
5

3
4

15
0

50
20

30

24
58

−
20

18
20

04
14

:5
0

2
2

30
0

10
0

33
50

33
52

−
20

18
20

04
15

:3
4

1
4

25
0

15
0

44
30

42
4

−
20

18
20

04
10

:3
3

5
3

36
0

33
0

20
40

15
5

−
20

18
20

04
10

:2
2

12
4

50
0

40
0

10
0

60

66
−

20
18

20
04

08
:2

0
5

4
40

0
42

0
70

70

30
00

−
20

18
20

04
15

:3
0

1
4

23
0

14
0

42
33

74
85

6
−

20
18

20
04

11
:1

7
N

U
LL

2
15

00
35

0
5

10

14
0

−
20

18
20

04
10

:2
0

12
4

49
0

39
5

99
62

82
−

20
18

20
04

10
:2

0
6

2
10

0
30

10
80

9
−

20
18

20
04

06
:3

0
7

1
12

0
40

20
60

40
1

−
20

18
20

04
10

:3
0

5
3

34
0

32
0

25
42

14
2

−
20

18
20

04
10

:1
5

12
4

52
0

39
0

11
0

58

56
−

20
18

20
04

08
:1

8
5

4
41

0
40

0
65

60

733

1 3

An efficient resource provisioning approach for analyzing…

Ta
bl

e 
7  

(c
on

tin
ue

d)

U
se

r I
D

Th
e

da
te

 a
nd

 th
e

tim
e

of

th
e

re
qu

es
t

Ty
pe

 o
f u

se
r’s

re

qu
es

te
d

se
rv

ic
e

D
at

a
tra

ns
fe

rr
in

g
pr

ot
oc

ol
Th

e
re

qu
ire

d
co

st
Th

e
re

qu
ire

d
re

sp
on

se
 ti

m
e

Th
e

re
qu

ire
d

av
ai

l-
ab

ili
ty

Th
e

re
qu

ire
d

re
lia

bi
lit

y

51
0

−
20

18
20

04
10

:5
2

1
N

U
LL

15
0

55
60

30

734	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

Table 8   After removing the abnormal requests

User ID The date and
the time of
the request

Type of
user’s
requested
service

Data
transferring
protocol

Intended
cost

Intended
response
time

Intended
availabil-
ity

Intended
reliability

1000 −20182004
14:25

3 4 150 50 20 30

2458 −20182004
14:50

2 2 300 100 33 50

3352 −20182004
15:34

1 4 250 150 44 30

424 −20182004
10:33

5 3 360 330 20 40

155 −20182004
10:22

12 4 500 400 100 60

66 −20182004
08:20

5 4 400 420 70 70

3000 −20182004
15:30

1 4 230 140 42 33

140 −20182004
10:20

12 4 490 395 99 62

9 −20182004
06:30

7 1 120 40 20 60

401 −20182004
10:30

5 3 340 320 25 42

142 −20182004
10:15

12 4 520 390 110 58

56 −20182004
08:18

5 4 410 400 65 60

Table 9   Indexing each request
and creating the SLA table

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

1000 150 50 20 30
2458 300 100 33 50
3352 250 150 44 30
424 360 330 20 40
155 500 400 100 60
66 400 420 70 70
300 230 140 42 33
140 490 395 99 62
9 120 40 20 60
401 340 320 25 42
142 520 390 110 58
56 410 400 65 60

735

1 3

An efficient resource provisioning approach for analyzing…

As it is mentioned earlier, each request’s belonging degree of all clusters is pre-
sented by matrix U. Therefore, the minimization function of least distance from the
clusters’ center for all parent requests is shown in Table 12.

The objective is to minimize the fuzzy c-means function using GA. It means that
smaller the distance of each request from the clusters’ center will result in better fit-
ness of the request and greater the probability of its selection.

(c)	 Applying genetic operators

First, the requests are sorted by their fitness values in ascending order; some iden-
tified numbers of requests are selected for crossover operation to achieve the next
generation. The requests third and eighth of Table 8 are selected to make Table 13.

Table 10   The example of 13 requests and 3 clusters

Vector of the cluster’s centroid C1 C2 C3

424 3000 9

Sub-cluster’s vector X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

2458 66 3352 1000 155 140 401 142 56

Table 11   Evaluating each
request of the example

Chromosome Belonging matrix U

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

Cluster 1 0.1 0.3 0.4 0.3 0.6 0.1 0.5 0.7 0.8
Cluster 2 0.6 0.2 0.3 0.6 0.2 0.5 0.2 0.1 0.1
Cluster 3 0.3 0.5 0.3 0.1 0.2 0.4 0.3 0.2 0.1

Table 12   The minimization function of least distance from the clusters’ center for all parent requests

Request X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

Fitness function 1039 1620 951 1338 1950 1970 881 2103 1497

Table 13   Selected requests for
crossover

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

3352 250 150 44 30
401 340 320 25 42

736	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

By selecting a point randomly for crossover operation and utilizing Eq. (6) with
β = 0.6 and intended parameter SLO3, crossover the two requests for the next genera-
tion is depicted in Table 14.

To improve the next generation by iteration, Eq. (7) is solved. In this example,
three requests are selected randomly in which the least distance from the clusters’
center is selected. For mutation operation, we set iteration number μ = 1. Therefore,
a random number between 1 and 4 is produced and based on this produced number,
and the SLOi is changed. For example, if the produced number is 3, then the SLO3
of the selected requests will be changed. Based on this description, the results of the
mutation are depicted in Tables 15 and 16.

As the example, ten requests from the parent population, the next generation, and
mutants are selected and depicted in Table 17.

(d)	 Termination condition

The quality of clustering depends on increasing the most similarity among the
members of a cluster and the least similarity among the members of a cluster com-
pared with the other clusters. In each iteration, the belonging matrix U is calcu-
lated, and then, this matrix is compared with the matrix of the last step regarding

Table 14   The next generation
by crossover the parents’
requests

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

3352 250 150 37 30
401 340 320 32 42

Table 15   Selecting requests for
mutation

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

66 400 420 70 70
142 520 390 110 58
56 410 400 65 60

Table 16   Mutant requests Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

66 400 420 60 70
142 520 390 95 58
56 410 400 60 60

737

1 3

An efficient resource provisioning approach for analyzing…

Ui+1 − Ui . If this condition is satisfied, the algorithm is finalized; otherwise, it is
continued until satisfaction.

C.	 Resource provisioning using GWO algorithm

In this phase, each request of test workload is compared with each cluster’s center
using Euclidian distance. This process is fulfilled by utilizing Eq. (8). Therefore,
SLA indices of requests are compared with each other to obtain the distance. Sup-
pose test request is as depicted in Table 18.

After calculating the distance of these four values from four values of clusters’
center of the previous step, it is identified that test request becomes the member of
which cluster. If it is a member of cluster 3, the results are depicted in Table 19.

To fulfill this process, the following steps should be followed, respectively.

(a)	 Initializing

Table 17   Obtained population
by running the algorithm in the
first step

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

1000 150 50 20 30
2458 300 100 33 50
3352 250 150 37 30
424 360 330 20 40
155 500 400 100 60
66 400 420 60 70
3000 230 140 42 33
140 490 395 99 62
9 120 40 20 60
401 340 320 25 42
142 520 390 95 58
56 410 400 60 60

Table 18   A simple test request Request’s ID SLO1 SLO2 SLO3 SLO4

5001 200 120 40 30

Table 19   The cluster’s members
that the test request belongs to

Request’s ID SLO1 SLO2 SLO3 SLO4

155 500 400 100 60
66 400 420 60 70
56 410 400 60 60

738	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

Constant coefficients such as vectors A and D, random values r, numbers of itera-
tions of the algorithm, and the linear value of a should be initialized.

(b)	 Generating initial population

In the presented example, it is necessary to find the best case for the cluster iden-
tified for the test workload. Therefore, four cases are selected for the requests using
GWO algorithm in which each cluster is identified as a wolf. The wolf’s location
is identified by the array X of Eq. (9) filled by 0 s and 1 s such that if the produced
value is 0, then the request with the index 0 is ignored; otherwise, it is selected. The
solution of this problem needs finding three answers. As an example, if the requests
1 and 2 are selected, the results are depicted in Table 20.

(c)	 Calculating the value of wolves

By utilizing Eq. (10), the average Euclidian distance of test workload request of
each wolf, as the fitness function, is calculated. Therefore, the SLA indices of the
requests are compared to find their distance, as shown in Table 21.

(d)	 Calculation of the wolves α, β and δ

The results of the calculated fitness function are sorted, and the first three values
are identified as the wolves α, β and δ. The results are depicted in Table 22.

(e)	 Replacing wolves and termination condition

By utilizing Eqs. (11), (12), (13), and (14) with a⃗ = 2, and r⃗1 = 0.2, and r⃗2 = 0.1,
will result in A⃗ = 0.8 and C⃗ = 0.4 . Therefore, the values of D⃗𝛼 ,

��⃗D𝛽 , and D⃗𝛿 are

Table 20   The wolves’ structure
for the cluster with three
requests

Wolves Request1 Request2 Request3

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0

Table 21   The average Euclidian
distance of test workload request
of each wolf

Wolves Fitness function

1 351
2 363
3 714
4 415

739

1 3

An efficient resource provisioning approach for analyzing…

calculated, and thereby, the new location of the wolves will be identified, as shown
in Table 23.

According to the sorted values of all requests, the first three requests are selected
as the best ones. This process is continued until satisfying the termination condition.
Finally, the location of the wolf α is returned as the optimum point.

4 � Performance evaluation

In this section, we validate the effectiveness of our solution through simulation
under different workload traces. In the following, we will explain the simulation
setup and performance metrics. Then, the simulation results will be discussed.

4.1 � Experimental setup

We used the Cloudsim toolkit [24] as a Java-based library in NetBeans IDE for mod-
eling cloud ecosystem entities such as virtual machines, data centers, cloudlets, ser-
vice broker and resource scheduling, and provisioning strategies. The configuration
three types of hosts utilized in the simulation process is shown in Table 24.

We configure a number of hosts according to Table 24, randomly. Besides,
the simulation setting used for every experiment in this research is presented in
Table 25. We generate 90 cloud workloads randomly in the form of cloudlets using
CloudSim library. A cloudlet includes all information related to cloud workload
such as memory size, cloud workload size, file size, output size, and cost per work-
load. The heterogeneous cloud workloads are described in [10, 16] to validate the
proposed solution under the same simulation setting.

Table 22   Identifying the wolves
α, β, and δ

Wolves Fitness function

1 (α) 351
2 (β) 363
4 (δ) 415
3 714

Table 23   Replacement of the
wolves and identifying their
location

Current location of the wolf 1 0 1
Wolf α 0 0 1
Wolf β 0 1 0
Wolf δ 1 0 0
The new location of the wolf 0 1 1

740	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

Ta
bl

e 
24

  
H

os
t s

pe
ci

fic
at

io
ns

 [1
6]

H
os

t T
yp

e
Pr

oc
es

so
r c

on
fig

ur
at

io
n

M
em

or
y

(G
B

)
O

pe
ra

tin
g

sy
ste

m
N

um
be

r o
f V

M
s

N
um

be
r o

f E
C

s
Pr

ic
es

($

/E
C

un

it)

H
os

t 1
In

te
l C

or
e2

-D
uo

-2
.4

 G
H

z
1

G
B

 R
A

M
 1

60
 G

B
 H

D
D

W
in

do
w

s
6

18
2

H
os

t 2
In

te
l C

or
ei

5-
23

10
-2

.9
 G

H
z

1
G

B
 R

A
M

 1
60

 G
B

 H
D

D
C

lo
ud

 L
in

ux
4

12
3

H
os

t 3
In

te
l X

EO
N

E-
52

40
7-

2.
2

G
H

z
2

G
B

 R
A

M
 3

20
 G

B
 H

D
D

C
lo

ud
 L

in
ux

2
6

4

741

1 3

An efficient resource provisioning approach for analyzing…

4.2 � Performance metrics

We use the following metrics for comparing the proposed approach with other stud-
ies; energy consumption, execution cost, execution time, latency, and SLA violation
rate. Each metric is described as the following.

Energy consumption The energy consumption has a linear relationship with
resource utilization which can be expressed by Eq. (16):

ETr , EDC , and EMem represent the energy consumption of switching equipment,
datacenter, and storage device, respectively.

Execution cost It is the cost of workload execution which is measured in cloud
dollars (C$) as shown by Eq. (17)

here Cost
(
Wi,Rk

)
 is the cost of executing workload i on resource k.

Execution time Execution time is the finishing time of the last workload.
Latency Latency is a time delay between expected execution ( (Expi ) time and

actual execution time ( Acti ) which is defined by Eq. (18)

where n is the number of workloads.
SLA Violation Rate SLA violations rate ( SLAVR ) is defined by Eq. (19), where

FR is the failure rate and wi is the weight of each SLA =
(
SLA1,… , SLAz

)
.

Failure rate (FR) is calculated by Eq. (20).

(16)E = ETr + EDC + EMem

(17)ExeCost = Min
(
Cost

(
Wi,Rk

))
for1 ≤ i ≤ m and 1 ≤ k ≤ n

(18)Latency =

n∑

i

(
Expi − Acti

)

(19)SLAVR = FR ∗

z∑

i=1

(wi)

Table 25   Simulation setting
[16]

Parameter Value

Number of resources 50–250
Number of workloads (cloudlets) 90
Bandwidth 1000–3000 B/S
Size of cloud workload 10,000 + (10–30%) MB
Number of PEs per machines 1
MIPS rating 100–4000 MIPS
Cost per cloud workload 3$–5$
Memory size 2048–12,576 MB
File size 300 + (15–40%) MB
Cloud workload size 300 + (15–50%) MB

742	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

When SLAi is violated the Failure
(
SLAi

)
= 0 and when SLAi is not violated the

Failure
(
SLAi

)
= 1.

4.3 � Results and discussion

To evaluate the performance of the proposed approach, we design various scenarios
to examine performance metrics presented in the previous section. The proposed
approach is compared with BULLET [16] and SCOOTER [10] methods. The rea-
sons for choosing these two methods are as follows. (1) BULLET and SCOOTER
outperform their counterparts. (2) Both methods and the proposed method oper-
ate on the multilayer cloud. (3) The same workload and parameter setting are used
for the proposed, BULLET, and SCOOTER. BULLET applies a particle swarm
optimization-based solution to schedule both heterogeneous and homogenous and
workloads on the cloud resources. The main aims of their proposed solution are:
extracting QoS parameters of workloads, clustering workloads using patterns, and
k-means-based clustering technique, and resource provisioning classified workloads
according to their QoS parameters before resource scheduling [16]. SCOOTER uti-
lized autonomic computing paradigm for a self-managing resource to execute cloud-
based applications for satisfying QoS requirements. Their solution used workload
analyzer component for clustering of heterogeneous cloud workloads using k-means
technique and provisioned the required resources according to their QoS require-
ments [10].

In the following, the proposed approach (GFA) is compared with BULLET and
SCOOTER in terms of energy consumption, execution cost, execution time, latency,
and SLA violation rate.

4.3.1 � Energy consumption

In this section, the impact of changing the number of workloads on energy consump-
tion and the impact of changing the number of resources on energy consumption are
investigated. Energy Consumption for GFA, BULLET, and SCOOTER against the
number of workloads are shown in Fig. 5. It can be seen that the energy consump-
tion is increasing by increasing the number of workloads because of utilizing the
GWO technique to determine scaling decisions for efficient resource provisioning.

Energy consumption of GFA is less than its counterparts for all workloads
ranging from 15 to 90. The average energy consumption for GFA, BULLET, and
SCOOTER are 73.2 kWh, 80.8 kWh, and 78.3 kWh, respectively. GFA performs
better than BULLET and SCOOTER in terms of energy consumption by 9.4% and
6.5%.

Energy Consumption of GFA, BULLET and SCOOTER against the number of
resources are shown in Fig. 6. Here the number of workloads is considered to be 90.

(20)FR =

z∑

i=1

(
Failure

(
SLAi

)

z

)

743

1 3

An efficient resource provisioning approach for analyzing…

It can be seen that the energy consumption is growing by increasing the number of
resources.

Energy consumption of GFA is less than its counterparts for resources ranging
from 6 to 36. The average energy consumption for GFA, BULLET and SCOOTER
are 62.6 kWh, 75.3 kWh, and 67.3 kWh, respectively. GFA performs better than
BULLET and SCOOTER in terms of energy consumption by 16.8% and 6.9%.

4.3.2 � Execution cost

In this section, the impact of changing the number of workloads on execution cost is
examined. Then the impact of changing the number of resources on execution cost is
investigated. Execution cost for GFA, BULLET, and SCOOTER against the number
of workloads are shown in Fig. 7. It can be seen that the execution cost increases by
increasing the number of workloads because of applying the hybrid solution using
the GA algorithm and fuzzy C-means technique for clustering the heterogeneous
cloud workloads based on QoS metrics.

Execution cost of GFA is less than its counterparts for all workloads ranging from
15 to 90. The average execution cost for GFA, BULLET, and SCOOTER are 252.5

0

20

40

60

80

100

15 30 45 60 75 90

En
er

gy
 C

on
su

m
pt

io
n

(k
W

h)

Number of workloads

GFA BULLET SCOOTER

Fig. 5   Energy consumption by changing the number of workloads

0
20
40
60
80

100
120
140

6 12 18 24 30 36En
er

gy
 C

on
su

m
pt

io
n

(k
W

h)

Number of Resources

GFA BULLET SCOOTER

Fig. 6   Energy consumption by changing the number of resources

744	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

C$, 281.3 C$, and 268.5 C$, respectively. GFA performs better than BULLET and
SCOOTER in terms of execution cost by 10.2% and 6.1%.

Execution cost of GFA, BULLET, and SCOOTER against the number of
resources are shown in Fig. 8. Here the number of workloads is considered to be
90. It can be seen that the execution cost is increasing by increasing the number of
resources.

Execution cost of GFA is less than its counterparts for resources ranging from
6 to 36. The average execution cost for GFA, BULLET, and SCOOTER are 83.3
C$, 93.8 C$, and 89.2 C$, respectively. GFA performs better than BULLET and
SCOOTER in terms of execution cost by 11.1% and 6.6%.

4.3.3 � Execution time

In this section, the impact of changing the number of workloads on execution time
is investigated. Then the impact of changing the number of resources on execution
time is studied. Execution time for GFA, BULLET, and SCOOTER against the
number of workloads are shown in Fig. 9. It can be seen that the execution time is

0
50

100
150
200
250
300
350
400
450

15 30 45 60 75 90

Ex
ec

ut
io

n
C

os
t (

C
$)

Number of workloads

GFA BULLET SCOOTER

Fig. 7   Execution cost by changing the number of workloads

0
20
40
60
80

100
120
140
160

6 12 18 24 30 36

Ex
ec

ut
io

n
C

os
t (

C
$)

Number of Resources

GFA BULLET SCOOTER

Fig. 8   Execution cost by changing the number of resources

745

1 3

An efficient resource provisioning approach for analyzing…

rising by increasing the number of workloads. Applying the hybrid GA and fuzzy
C-means technique for clustering workloads based on QoS metrics and then utiliz-
ing the GWO technique for scaling decisions lead to a better execution time perfor-
mance. Another reason is that, the GFA algorithm converges to the global optimum
faster than other approaches, as discussed in Sect. 4.3.6.

The execution time of GFA is less than its counterparts for all workloads ranging
from 15 to 90. The average execution time for GFA, BULLET, and SCOOTER are
618 S, 670.8 S, and 643.3 S, respectively. GFA performs better than BULLET and
SCOOTER in terms of execution time by 7.8% and 3.9%.

The execution time of GFA, BULLET, and SCOOTER against the number of
resources are shown in Fig. 10. Here the number of workloads is considered to be
90. It can be seen that the execution time is decreasing by increasing the number of
resources.

The execution time of GFA is less than its counterparts for resources ranging
from 6 to 36. The average execution time for GFA, BULLET, and SCOOTER are

0
200
400
600
800

1000
1200
1400

15 30 45 60 75 90

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of workloads

GFA BULLET SCOOTER

Fig. 9   Execution time by changing the number of workloads

40
60
80

100
120
140
160
180

6 12 18 24 30 36

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Resources

GFA BULLET SCOOTER

Fig. 10   Execution time by changing the number of workloads

746	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

98.2 S, 108.3 S, and 102.8 S, respectively. GFA performs better than BULLET and
SCOOTER in terms of execution time by 9.3% and 4.5%.

4.3.4 � Latency

Latency for GFA, BULLET, and SCOOTER against the number of workloads are
shown in Fig. 11. It can be seen that the latency is increased by increasing the num-
ber of workloads.

The latency of GFA is less than its counterparts for all workloads ranging from
15 to 90. The average latency for GFA, BULLET, and SCOOTER are 5.09 S, 5.65
S, and 5.35 S, respectively. GFA performs better than BULLET and SCOOTER in
terms of execution time by 9.9% and 4.9%. By applying a proper workload cluster-
ing algorithm and then an enhanced resource provisioning decision, the proposed
approach has a better performance in terms of latency, compared to its counterparts.

4.3.5 � SLA violation rate

In this section, the impact of changing the number of workloads on the SLA viola-
tion rate is investigated. Then the impact of changing the number of resources on
the SLA violation rate is examined. SLA violation rate varies between 0 and 100%.
SLA violation rate for GFA, BULLET, and SCOOTER against the number of work-
loads are shown in Fig. 12. It can be seen that the SLA violation rate is increased by
increasing the number of workloads. The GFA approach proposed a better execution
time and latency and consequently a lower SLA violation rate.

The SLA violation rate of GFA is less than its counterparts for all workloads
ranging from 15 to 90. The average SLA violation rate for GFA, BULLET, and
SCOOTER are 7.3%, 7.7%, and 7.55%, respectively. GFA performs better than
BULLET and SCOOTER in terms of execution time by 5.2% and 3.3%.

SLA violation rate of GFA is less than its counterparts for resources ranging from
6 to 36, as shown in Fig. 13. The average SLA violation rate for GFA, BULLET,
and SCOOTER are 34.8%, 37.8%, and 36.5%, respectively. GFA performs better
than BULLET and SCOOTER in terms of SLA violation rate by 7.9% and 4.6%.

0
1
2
3
4
5
6
7
8
9

10

15 30 45 60 75 90

La
te

nc
y

(S
ec

on
ds

)

Number of workloads

GFA BULLET SCOOTER

Fig. 11   Latency by changing the number of workloads

747

1 3

An efficient resource provisioning approach for analyzing…

4.3.6 � Convergence speed results

In this section, the convergence speed of GAF, ICA, PSO, and GA algorithms over
iterations is presented. Parameter settings of all utilized algorithms are shown in
Table 26. Besides, the value range of each request, including response time, cost,
availability, and reliability are shown in Table 27.

4

5

6

7

8

9

10

15 30 45 60 75 90

SL
A

 V
io

la
tio

n
R

at
e

(%
)

Number of Workloads

GFA BULLET SCOOTER

Fig. 12   SLA violation rate by changing the number of workloads

20

25

30

35

40

45

50

55

6 12 18 24 30 36

SL
A

 V
io

la
tio

n
R

at
e

(%
)

Number of Resources

GFA BULLET SCOOTER

Fig. 13   SLA violation rate by changing the number of resources

Table 26   Parameters of each algorithm

GAF ICA PSO GA

Parameter Value Parameter Value Parameter Value Parameter Value

Population 90 NPop 90 C1 = C2 2 Population 90
Mutation rate 0.001 NImp 3 ωmin 0.5 Mutation rate 0.001
Crossover 0.8 � 5 ωmax 1 Crossover 0.8

� 0.05

748	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

Figure 14 demonstrates the convergence characteristics of the GAF, ICA, PSO,
and GA for the best solutions on 90 workloads where the y-axis represents iterations
and the x-axis represents the objective function value defined by Eq. (5).

According to the simulation results, the GFA algorithm converges to the global
optimum after 55 iterations while ICA, PSO, and GA algorithms converge to the
global optimum after 71, 74, and 68 iterations, respectively. Besides, the GAF algo-
rithm shows better results on the best solution. The best global solutions for GAF,
ICA, PSO, and GA are 96.48, 96.61, 96.78, and 96.64. It can be concluded that the
proposed algorithm (GFA) converges faster than other methods.

5 � Conclusion

Recently, the usage of cloud computing as a promising computing model for deliv-
ering and hosting the applications over the Internet has increased significantly in
recent years. In this paper, we studied the resource provisioning issue using work-
load clustering for cloud-based applications. Due to the heterogeneity of workloads
submitted, the analysis and identification common workload patterns based on
the user’s QoS requirements can play an important role to provision of the cloud
resources in a cloud environment. We utilized the genetic algorithm with fuzzy
C-means technique for clustering the heterogeneous cloud workloads based on QoS

Table 27   Values of four SLOs SLO Value

Response time Between 20 and 1500
Cost Between 2 and 15
Availability Between 0.95 and 1
Reliability Between 0.4 and 1

96.4
96.5
96.6
96.7
96.8
96.9

97
97.1
97.2
97.3
97.4
97.5
97.6
97.7
97.8
97.9

98

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Iteration

GA PSO ICA GFA

Fig. 14   Convergence characteristic of the proposed method, ICA, PSO, and GA for the best solutions

749

1 3

An efficient resource provisioning approach for analyzing…

metrics. Moreover, GWO as a metaheuristic technique to identify the appropriate
scaling decisions to provide an efficient resource provisioning solution for satisfying
user’s QoS requirements has used. We validate the proposed approach under real-
world workloads, and the obtained simulation results indicated that it outperforms
in terms of the CPU utilization, elasticity, response time, and total cost compared
with the other mechanisms. For future work, we plan for validation the scalability of
proposed approach on the real benchmark application such as Amazon web service
(AWS) cloud benchmark and its extension using container-based virtualization tech-
nology. Besides, we will utilize the pattern mining models to extract user behavioral
patterns to access the cloud-based applications and also use the deep reinforcement
learning algorithm to determine the resource scaling decisions for serving of cloud
workloads.

References

	 1.	 Buyya R, Vecchiola C, Selvi ST (2013) Mastering cloud computing: foundations and applications
programming. In: Newnes

	 2.	 Chandrasekaran K (2014) Essentials of cloud computing. CRC Press, Boca Raton
	 3.	 Ghobaei-Arani M, Khorsand R, Ramezanpour M (2019) An autonomous resource provisioning

framework for massively multiplayer online games in cloud environment. J Netw Comput Appl
142:76–97

	 4.	 Manvi SS, Shyam GK (2014) Resource management for Infrastructure as a Service (IaaS) in cloud
computing: a survey. J Netw Comput Appl 41:424–440

	 5.	 Shahidinejad A, Ghobaei-Arani M, Esmaeili L (2019) An elastic controller using Colored Petri Nets
in cloud computing environment. Cluster Comput 1–27. https​://doi.org/10.1007/s1058​6-019-02972​
-8

	 6.	 Iqbal W, Erradi A, Mahmood A (2018) Dynamic workload patterns prediction for proactive auto-
scaling of web applications. J Netw Comput Appl 124:94–107

	 7.	 Singh S, Chana I (2015) Q-aware: Quality of service based cloud resource provisioning. Comput
Electr Eng 47:138–160

	 8.	 Wang X, Wang H (2020) Driving behavior clustering for hazardous material transportation based on
genetic fuzzy C-means algorithm. IEEE Access 8:11289–11296

	 9.	 Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a
novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

	10.	 Gill SS, Buyya R (2019) Resource provisioning based scheduling framework for execution of heter-
ogeneous and clustered workloads in clouds: from fundamental to autonomic offering. J Grid Com-
put 17(3):385–417

	11.	 Erradi A, Iqbal W, Mahmood A, Bouguettaya A (2019) Web application resource requirements esti-
mation based on the workload latent features. IEEE Trans Services Comput. https​://doi.org/10.1109/
TSC.2019.29187​76

	12.	 Xu L, Wang H, Lin W, Gulliver TA, Le KN (2019) GWO-BP neural network based OP performance
prediction for mobile multiuser communication networks. IEEE Access 7:152690–152700

	13.	 Xu L, Wang J, Wang H, Gulliver TA, Le KN (2019) BP neural network-based ABEP performance
prediction for mobile Internet of Things communication systems. Neural Comput Appl 1–17. https​
://doi.org/10.1007/s0052​1-019-04604​-z

	14.	 Xu Y-H, Xie J-W, Zhang Y-G, Hua M, Zhou W (2020) Reinforcement Learning (RL)-based energy
efficient resource allocation for energy harvesting-powered wireless body area network. Sensors
20(1):44

	15.	 Xu YH, Liu ML, Xie JW, Zhou J (2019) An IEEE 802.21 MIS-based mobility management for D2D
communications over heterogeneous networks (HetNets). Concurr Comput Pract Exp 32:5. https​://
doi.org/10.1002/cpe.5552

https://doi.org/10.1007/s10586-019-02972-8
https://doi.org/10.1007/s10586-019-02972-8
https://doi.org/10.1109/TSC.2019.2918776
https://doi.org/10.1109/TSC.2019.2918776
https://doi.org/10.1007/s00521-019-04604-z
https://doi.org/10.1007/s00521-019-04604-z
https://doi.org/10.1002/cpe.5552
https://doi.org/10.1002/cpe.5552

750	 M. Ghobaei‑Arani, A. Shahidinejad

1 3

	16.	 Gill SS, Buyya R, Chana I, Singh M, Abraham A (2018) BULLET: particle swarm optimization
based scheduling technique for provisioned cloud resources. J Netw Syst Manag 26(2):361–400

	17.	 Mian R, Martin P, Vazquez-Poletti JL (2013) Provisioning data analytic workloads in a cloud. Fut
Gener Comput Syst 29(6):1452–1458

	18.	 Magalhães D, Calheiros RN, Buyya R, Gomes DG (2015) Workload modeling for resource usage
analysis and simulation in cloud computing. Comput Electr Eng 47:69–81

	19.	 Amiri M, Mohammad-Khanli L, Mirandola R (2018) An online learning model based on episode
mining for workload prediction in cloud. Fut Gener Comput Syst 87:83–101

	20.	 Meenakshi A, Sirmathi H, Ruth JA (2019) Cloud computing-based resource provisioning using
k-means clustering and GWO prioritization. Soft Comput 23(21):10781–10791

	21.	 Raza B et al (2018) Autonomic workload performance tuning in large-scale data repositories. Knowl
Inf Syst 1–37. https​://doi.org/10.1007/s1011​5-018-1272-0

	22.	 Liu C, Liu C, Shang Y, Chen S, Cheng B, Chen J (2017) An adaptive prediction approach based on
workload pattern discrimination in the cloud. J Netw Comput Appl 80:35–44

	23.	 Singh P, Gupta P, Jyoti K (2018) TASM: technocrat ARIMA and SVR model for workload predic-
tion of web applications in cloud. Clust Comput 22(2):619–633

	24.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011) CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s10115-018-1272-0

	An efficient resource provisioning approach for analyzing cloud workloads: a metaheuristic-based clustering approach
	Abstract
	1 Introduction
	2 Related works
	3 Proposed approach
	3.1 Proposed framework
	3.2 Problem formulation
	3.3 Proposed algorithm
	3.3.1 Workload preprocessing phase
	3.3.2 Workload clustering phase
	3.3.3 Resource provisioning phase
	3.3.4 An example of the use of the proposed approach

	4 Performance evaluation
	4.1 Experimental setup
	4.2 Performance metrics
	4.3 Results and discussion
	4.3.1 Energy consumption
	4.3.2 Execution cost
	4.3.3 Execution time
	4.3.4 Latency
	4.3.5 SLA violation rate
	4.3.6 Convergence speed results

	5 Conclusion
	References

