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Abstract
With the recent advancements in Internet-based computing models, the usage of 
cloud-based applications to facilitate daily activities is significantly increasing 
and is expected to grow further. Since the submitted workloads by users to use the 
cloud-based applications are different in terms of quality of service (QoS) metrics, 
it requires the analysis and identification of these heterogeneous cloud workloads to 
provide an efficient resource provisioning solution as one of the challenging issues 
to be addressed. In this study, we present an efficient resource provisioning solution 
using metaheuristic-based clustering mechanism to analyze cloud workloads. The 
proposed workload clustering approach used a combination of the genetic algorithm 
and fuzzy C-means technique to find similar clusters according to the user’s QoS 
requirements. Then, we used a gray wolf optimizer technique to make an appropri-
ate scaling decision to provide the cloud resources for serving of cloud workloads. 
Besides, we design an extended framework to show interaction between users, cloud 
providers, and resource provisioning broker in the workload clustering process. The 
simulation results obtained under real workloads indicate that the proposed approach 
is efficient in terms of CPU utilization, elasticity, and the response time compared 
with the other approaches.
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1  Introduction

With rapid developments of Internet-based computing, the cloud computing model 
has emerged as one of the promising distributed computing technologies to offer the 
IT resources, such as computational servers, network, storage, and applications to 
meet the user’s quality of service (QoS) constraints through the Internet. The usage 
of cloud-based applications is significantly increased for performing the activities 
of daily life in both personal and professional life [1–3]. Therefore, it is necessi-
tated that cloud infrastructure automatically provisioned the cloud resources for 
executing these cloud-based applications. To this end, cloud resource management 
is one challenging issue to be addressed. The cloud resource management includes 
several issues such as resource scheduling, load balancing, resource provisioning, 
and resource discovery, and resource adaptation [4]. Since users frequently use the 
cloud-based applications and they may experience workload fluctuations, we focus 
on the resource provisioning issue to handle their workload changes. The number 
of resources and the number of users are two of the important factors that affect 
the provisioning of cloud resources to execute these applications. All the resource 
provisioning mechanisms are based on analyzing the characteristics and fluctua-
tions the cloud workloads. The resource provisioning mechanisms can dynamically 
scale up to serve the burst workloads, whereas scale down when workload demands 
subside [5]. Examples of these workloads include financial services, web services, 
mobile computing services, graphics-based services, and online transaction process-
ing services. On the other hands, the users submit their demands (i.e., workloads) 
with various QoS constraints in the form of service level objectives (SLOs) to exe-
cute on the cloud infrastructure. Since the submitted cloud workloads by users are 
heterogeneous in terms of QoS metrics, analysis and identification of them to meet 
QoS constraints agreed in SLOs can play an important role to provision the cloud 
resources in a cloud environment. Therefore, it requires allocating or de-allocating 
cloud resources to serve the heterogeneous cloud workloads for achieving the desir-
able elasticity at runtime. Although some resource provisioning mechanisms using 
workload clustering based on QoS metrics have already been investigated [6, 7], still 
more effort is necessitated for analyzing cloud workloads better.

In this paper, we propose an efficient resource provisioning solution based on 
metaheuristic-based clustering mechanism to analyze the cloud workloads. The 
proposed approach utilized a combination of the genetic algorithm (GA) and fuzzy 
C-means technique [8] for clustering the heterogeneous cloud workloads based on 
QoS metrics. First, we eliminate the abnormal user requests from incoming work-
load and then index the accepted user requests for clustering to make the training 
workloads. Afterward, the training workloads are compared with the test workloads 
to find the most similar cluster to the current user request. Finally, a gray wolf opti-
mizer (GWO) metaheuristic technique [9] to identify appropriate scaling decisions 
to provide an efficient resource provisioning solution is utilized.

The main contributions of this study can be summarized as follows:
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•	 Designing an extended framework inspired by the three-tier architecture of the 
cloud ecosystem to interact between users, cloud providers, and resource provi-
sioning broker.

•	 Proposing a hybrid solution using the GA algorithm and fuzzy C-means tech-
nique for clustering the heterogeneous cloud workloads based on QoS metrics.

•	 Utilizing a GWO technique to determine scaling decisions for efficient resource 
provisioning.

•	 Simulating a set of experiments to validate the effectiveness of our proposed 
solution under real and synthetic workloads in terms of cost, response time, elas-
ticity, and CPU utilization metrics.

The rest of this paper is organized as follows: In Sect. 2, we review studies related 
to the workload clustering-based resource provisioning mechanisms. We explain the 
proposed approach in more detail in Sect. 3. The experimental results through simu-
lations are provided in Sect.  4, and we finally provide the conclusions and future 
directs in Sect. 5.

2 � Related works

Several approaches have been proposed previously to handle the resource provision-
ing issue using workload analysis in cloud environments.

Gill et  al. [10] have developed an extended framework to provision the cloud 
resource automatically for serving the heterogeneous clustered workloads. Their pro-
posed framework utilized autonomic computing paradigm for self-managing resource 
to execute cloud-based applications for satisfying QoS requirements. Their solution 
used workload analyzer component for clustering of heterogeneous cloud workloads 
using k-means technique and provisioned the required resources according to their 
QoS requirements. Finally, they validated the proposed framework on the e-com-
merce application as a cloud-based application and demonstrated that their proposed 
framework outperforms in terms of execution time, energy consumption, throughput, 
SLA violation ration, and resource utilization compared with the existing frame-
work. Erradi et  al. [11] have proposed a new scheme to predict required resources 
according to access logs for meeting QoS requirements of web applications. Their 
proposed method used unsupervised learning to extract the workload latent features 
to estimate the hardware resource demands such as memory, CPU, and bandwidth 
utilization and response time for executing varying-time workloads. They validate the 
proposed scheme with RUBiS and Acme Air application benchmarks under repeated 
and increasing random workloads and indicated that their proposed scheme outper-
forms in terms of mean squared error metric compared with the existing schemes. 
Xu et al. [12] have investigated the outage probability forecasting in mobile multiuser 
communication systems. They extracted a closed form for the outage probability on 
the fading channels. Then, they combined gray wolf optimization and neural network 
to predict the performance of outage probability for generating training data. They 
validated the proposed solution using Monte Carlo simulation and indicated that 
their proposed solution outperformed in terms of accuracy metrics compared with 
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other machine learning-based mechanisms. Besides, in other work [13], they utilized 
cooperative communications to reduce the bit error probability in mobile IoT net-
work. They also describe closed-form expressions for the direct link signal-to-noise 
ratio and end-to-end link and investigate the effect of fading channels on the bit error 
probability metric. Yi-Han Xu et al. [14] have studied the resource allocation issue to 
maximize energy efficiency in wireless body area networks. They take into account 
the relay selection, transmission power, and transmission mode to find an efficient 
allocation decision. Besides, they formulated their problem in the form of Markov 
decision process and utilized a reinforcement learning technique for reducing the 
state space and improving the convergence speed. Xu et  al. [15] have presented a 
mobility management approach for device-to-device communication to meet QoS 
requirements such as latency, power consumptions on the heterogeneous network sys-
tems. Their proposed approach extends IEEE 802.21 to improve mobility experience 
of users on the heterogeneous network environment. Besides, they developed a load-
aware mode selection mechanism to select the best target mode.

In [16], a particle swarm optimization-based solution to schedule of both hetero-
geneous and homogenous and workloads on the cloud resources for minimizing the 
cost, execution time have proposed. The main aims of their proposed solution are: 
extracting QoS parameters of workloads, clustering workloads using patterns, and 
k-means-based clustering technique, and resource provisioning classified workloads 
according to their QoS parameters before resource scheduling. Also, they indicated 
that their proposed solution avoids over- and under-utilization of cloud resources, 
and it reduces queuing time, and energy compared with other existing methods. Mian 
et  al. [17] investigated the data analytic workloads for provisioning resources in a 
public cloud environment. They introduce a framework that includes a cost model 
to predict the cost of serving a workload on a configuration to specify the most cost-
effective configuration for a certain data analytic workload. They validated their pro-
posed framework on Amazon EC2 with data-intensive workloads and demonstrated 
that their solution minimizes the resource costs while the QoS requirements associ-
ated with the workload are satisfied. Iqbal et al. [6] designed a framework for auto-
scaling of web applications based on workload patterns prediction. They utilized an 
unsupervised learning technique to analyze the web application access logs using 
response time and document size metrics. Besides, they model the web application 
workload in the form of a probabilistic workload pattern to predict the future work-
load pattern of the web application using a nonnegative least square technique for 
future time intervals. They implemented their proposed framework under three real-
world web application access logs and indicated that their solution could accurately 
predict future workload patterns compared to existing methods. Magalhães et al. [18] 
introduced a web application model to obtain the behavioral patterns of various user 
profiles for a cloud workload. Their solution models the workload patterns as statisti-
cal distributions to represent dynamic cloud environments for supporting and simu-
lating of resources utilization in cloud data centers. Also, they validated their pro-
posed web application model as an extension of the CloudSim toolkit and indicated 
that their model can generate data to accurately represent various user profiles.

Amiri et  al. [19] proposed a prediction-based with capability online learning 
method for extracting knowledge about the application behavior changes for efficient 
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resource provisioning in the cloud environment. They utilized a consistency met-
ric to extract the workload patterns to predict the behavior changes of the appli-
cation. Their simulation results showed that their method learns the new workload 
behavioral patterns compared with linear regression and neural networks methods. 
Meenakshi et  al. [20] presented an efficient resource provisioning method using 
k-means clustering and gray wolf optimization (GWO) partitioning technique. They 
utilized GWO for prioritization and k-means clustering to analyze QoS metrics to 
allocate cloud resources for serving user requests. Their numerical results illustrated 
that their method outperforms in terms of clustering accuracy, memory usage, and 
execution time compared with existing methods. Raza et  al. [21] reviewed auto-
nomic workload management in large-scale database management systems and data 
warehouses. They explore studies related to various domains of workload manage-
ment, including workload performance prediction, workload adaptation, and work-
load classification. They used three characteristics autonomic computing, namely 
self-adaptation, self-prediction, and self-inspection, to select workload management 
studies on large-scale data repositories.

Liu et  al. [22] proposed an adaptive classified technique for workload predic-
tion in a large-scale heterogeneity cloud environment. Their technique classifies the 
workloads into different patterns according to workload features and then assigned 
for various prediction models. They transform the workload clustering problem 
using linear programming model according to prediction accuracy and the predict-
ing time metrics. Further, they validated their proposed technique under Google 
Cluster trace and demonstrated that their solution reduces prediction errors com-
pared with existing time-series prediction techniques. Singh et al. [23] proposed a 
classification-based approach for predicting workload patterns of web applications 
in a cloud environment. Their solution utilized the support vector regression, linear 
regression, and ARIMA to select the prediction model according to workload fea-
tures. They evaluated the effectiveness of the proposed solution on the ClarkNet and 
NASA as two real workload traces and indicated that their approach significantly 
reduces root-mean-squared error and mean absolute percentage error metrics com-
pared with other time-series prediction approaches.

Generally, most of the current researches only focus on heuristic-based mecha-
nisms with the k-means [10, 17], or unsupervised learning [6, 11] techniques for 
clustering the heterogeneous cloud workloads for satisfying the QoS requirements. 
Since the cloud workloads are heterogeneous, combination heuristic-based mecha-
nisms with the other clustering techniques are still not entirely adequate for achiev-
ing high clustering accuracy. Therefore, we combine the GA as a metaheuristic 
approach with fuzzy C-means clustering technique to estimate the hardware resource 
demands for executing the cloud heterogeneous workloads. Besides, our approach 
uses preprocessing workload phase to eliminate the abnormal user requests from 
incoming workload for enhancing clustering accuracy. Although some studies [20] 
have already been utilized the metaheuristic-based clustering mechanism to address 
workload clustering based on QoS criteria, still more effort is necessitated for ana-
lyzing cloud workloads in an efficient manner.

Finally, we provide a summarization of the most relevant works related to 
resource provisioning techniques using workload clustering into Table 1 based on 
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six metrics: (1) utilized technique, (2) performance criteria, (3) policy, (4) method 
(5) evaluation tool and (6) workload type.

3 � Proposed approach

In this section, we present our proposed approach in more details. First, we design 
an extended framework to interact with users, cloud providers, and resource provi-
sioning broker in the cloud ecosystem. In the proposed solution, users send their 
requests, and then, their required resources will be allocated. The proposed solu-
tion is categorized into three main phases. In the first phase, preprocessing of the 
workload is fulfilled, which are mainly focused on eliminating noisy and abnormal 
requests. Then, it is defined as an ID for each request which is used for creating an 
SLA table according to these requests. In the second phase, the workload is clus-
tered by the GA algorithm and fuzzy C-means technique. Then, the closest center of 
the cluster from the test workload is selected. Finally, resource scaling decisions are 
carried out by GWO algorithm in the third phase.

3.1 � Proposed framework

The framework of the proposed solution is depicted in Fig. 1. As it is depicted in 
Fig.  1, the framework is categorized into three main entities: management of the 
workload resources, the users, and the cloud. Resource provisioning broker (RPB) is 
the intermediate level of the proposed method to provision required cloud resources 
and services of the users from data centers of cloud providers (CPs). These data 
centers include one or more virtual machines acting as the main processing ele-
ments, each of which has its particular processing resources. The results of each 
request are finally returned to the user. Each service is running on a particular VM, 
and incoming requests of these VMs and services are variable and depend on incom-
ing workload traffic. Services to these VMs have one of the two statuses: alloca-
tion, not-allocation. Each CP which is arrived in the cloud ecosystem has to register 
itself in Cloud Information Service (CIS). Firstly, a query is created by RPB and is 
sent to CIS requesting CP’s name to execute the user’s requests. For example, if the 
user request is determined to be CP1, RPB sends requests to this provider. On each 
CP, there are predefined enough VMs to execute the incoming workload requests 
according to the policy. After completing the tasks, these VMs are deallocated, and 
the results are sent back to the requesters or users.

For solving the cloud resources provisioning problem in the proposed framework, 
if the required processing resources are estimated and calculated, it will be possi-
ble to identify the similarity between the current service request and the frequent 
cases for determining required VMs and processing resources to the manager of 
cloud computing resources. Specifically, the worst possible cases of demands could 
be considered to ignore the minor differences between the new incoming request and 
the most frequent requests.

As another important problem, since it is not possible to identify the amount 
of required resources for executing requests precisely while service requests are 
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coming, calculating the amount of processing resources is hard and impracticable. 
In addition, it is time-consuming and demanding huge and precise amount of calcu-
lation, which is out of the real-time cases. This problem leads us to utilize clustering 
in which the required calculation could be postponed to the other times in the future; 
therefore, the results could be saved to be used later.

According to the proposed framework, after accepting requests, the sequence of 
removing abnormal requests, indexing these requests, and creating SLA table is ful-
filled. This table is next saved for future search and reference. Then, users’ requests 
are clustered for the training requests. Finally, the test workload is compared with the 
training workload to find and select the most similar cluster for the current request 
using Euclidian distance approach. Based on the prior calculations, the amounts of 
required processing resources are determined using GWO algorithm. Noteworthy, to 
have a decent clustering and good samples, the state space (i.e., different requests) 
should be covered well as the history of clustering. More the request samples better 
and further the coverage of the state space.

3.2 � Problem formulation

In this section, we present the required notations in the proposed approach, as shown 
in Table 2.

Let’s Request =
{
Req1,Req2,… ,ReqN

}
 be the N incoming requests of the work-

load. The SLA represents the structure’s name for accepting service of each request. 
This structure consists of response time, cost, availability, and reliability. Train_new 

Fig. 1   The proposed Framework
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holds processed noiseless requests. The variable α holds the number of constructed 
clusters with the cluster center of Center which is defined as 
Center =

{
center1, center2,… , center�

}
 . RCi

j
 shows the requests belonging to each 

cluster in which i is the number of cluster with request number of j. Also, Dis (i, j) 
defines Euclidian distance between requests i and j.

For each violation from the SLA, different punishment is kept in Penalty 
with the exponential coefficient for next violations, Penalty_rate. In addition, 
VM =

{
VM1,VM2,… ,VMk

}
 is k virtual machines with different service specifications 

such that VMk.MIPS , VMk.Cost , VMi.RAM , and VMi.Storage represent Million Instruc-
tion Per Second (MIPS) of i-th VM, the cost of using i-th VM, RAM of i-th VM, and 
storage of i-th VM, respectively. When adding a new VM, the total cost consists of 
the summation of VM normal usage cost and booting cost, VM_Boot_Cost. Besides, in 

Table 2   Variables and their 
description

Variable Description

N Number of requests
M Number of request’s fields
Reqi i-th request
Train_req Training workload requests
Test_req Test workload requests
Train_New Processed workload requests
SLA Service level agreement
SLAi ⋅ Cost Cost of i-th request based on SLA
SLAi ⋅ Res Response time of i-th request based on SLA
SLAi ⋅ Av Availability of i-th request based on SLA
SLAi ⋅ Rel Reliability of i-th request based on SLA
Penalty Payment rate in the case of deviation from SLA
Penalty_Rate Exponential coefficient of penalty
K Number of VMs
VMk ⋅ Cost The cost of using k-th VM
VMk ⋅MIPS MIPS of k-th VM
VMk ⋅ RAM RAM of k-th VM
VMk ⋅ Storage Storage of k-th VM
VM_Init_Cost Configuration cost of new VM
VM_Boot_Cost Initializing cost of new VM
VM_UP_Cost Cost of adding extra resources to the new VM
Reqx ⋅ SLA Number of deviation from SLA for i th request
Reqx ⋅ Penalty Total penalty of request x
Reqx ⋅ benefit Total benefit of request x
Cost Total cost
Penalty Total penalty
Response Total response time
Availability Total availability
Center Center of cluster
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the case of needing new configuration, this new configuration demands extra costs for 
memory, storage, or MIPS that is added to reconfiguration costs, VM_Init_Cost.

3.3 � Proposed algorithm

In this section, the proposed algorithm is presented. In the proposed model, the 
structure of workloads is as follows: user’s IP, the date and time of the request, the 
type of requested service identified by the user, the protocol of information transfer-
ring, cost, response time, availability, and reliability predefined in SLOs.

3.3.1 � Workload preprocessing phase

Workload preprocessing is one of the most important steps for achieving the results 
of research more precisely and completely. In this respect, different techniques are 
used to remove noisy data.

Workload preprocessing is depicted in Fig. 2. As it is shown, the requests will be 
processed in the first step. In this step, the unnecessary requests are removed from 
the incoming workload, which includes lack of user access right for the requested 
service, the incomplete fields of request (e.g., null field), and the fake user as a robot 
to search, propagandize, and desolate purposes.

For the ease of Availability, a unique number named Request ID is defined for 
each request. This unique number will help in creating SLA table for each request, 
as shown in Table 3.

Fig. 2   The workload preproc-
essing phase
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The pseudo-code for workload preprocessing in the proposed algorithm is 
depicted in Algorithm  1. As it is shown, N training workloads are entered to the 
algorithm, each of which has M attributes (line 1). According to the above-men-
tioned reasons, incoming requests will be removed under certain conditions (lines 
4–12). A new array is defined for indexing each workload (lines 13–16). Finally, the 
SLA table is created for all preprocessed workloads (line 17).

3.3.2 � Workload clustering phase

In this section, we describe the workload clustering as one of the most important 
phases of the proposed approach to provide an efficient resource provisioning solu-
tion. To have proper clusters, a combining GA and fuzzy c-mean is utilized for 
clustering the training workload, as shown in Fig. 3. The workload clustering phase 
consists of four step, namely: (A) Generating initial population and identifying the 
number of clusters, (B) calculating the value of each request, (C) applying genetic 
operators, and (D) termination condition.

A.	 Generating initial population and identifying the number of clusters

In the proposed algorithm, each initial chromosome (i.e., request) includes two 
vectors: the first vector, H, which indicates the number of cluster center’s requests, 
and the second one holds the number of sub-clusters for each cluster in α. Indeed, 

Table 3   SLA structure for 
requests Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability
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the second vector holds  * α elements under the centrality of clusters’ requests. Each 
element of this vector has one ID of the request. Creating such vector and selecting 
ID of cluster center’s candidate requests is random. Therefore, cluster Ci in the pro-
posed algorithm with sub-cluster Xi has the following structure:

B.	 Calculating the value of each request

In this section, we select the best requests (i.e., the best parents for generating 
children) using an objective function. Obviously, the objective function in fuzzy 
c-mean clustering is as follows:

In Eq. (2), n data are divided into c clusters to meet the following condition.

(1)COne =
[
C1,C2,… ,CH

][
X1,X2,… ,X� ,… ,XH�∗c

]

(2)Jm(U,V) =

C∑

i=1

n∑

k=1

um
ik
xk − v2

i

c∑

i=1

uik = 1. ∀k = 1,… , n

(3)Mfcm =

{
U ∈ Rc∗n| ∀i ⋅ k ∶ 0 ≤ 𝜇ik ≤ 1;

c∑

i=1

𝜇ik = 1; 0 <

n∑

k=1

𝜇ik

}

Fig. 3   The training workload clustering using GA and fuzzy c-mean
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To optimize the function Jm(U,V) , optimization algorithm estimates U and V  in 
two steps such that clusters’ center in step r is calculated regarding U in step (r − 1) 
th, as follows:

Since the algorithm continues until satisfying the condition Ui+1 − Ui , the fuzzy 
c-mean algorithm always converges. Therefore, the fitness function is defined as 
follows:

Generally, the main purpose of this phase is to minimize the fuzzy c-mean func-
tion by utilizing GA, thereby identifying clusters of all requests. In other words, less 
distance from clusters’ center, more qualification of the chromosome and more the 
probability of its selection.

C.	 Applying genetic operators

We use the standard operators such as selection, single-point crossover, muta-
tion operators for changing clusters’ center and replace requests in the clusters. For 
selecting the parent (i.e., superior request), the number of parents for the next gen-
eration should be generated.

Crossover operation For this purpose, the single-point crossover method is utilized 
such that a random point for the crossover is selected as follows:

Mutation operation At first, a random number between 1 and 4 is generated, and 
based on this generated random number, the values of SLOi will be changed. For 
example, if this generated number is 3, SLO3 of the selected request will be changed.

Since GA improves its generation by repetition, it is better to reduce mutation by 
increasing repetitions. This process is simulated by applying an exponential function 
as follows:

where �0 = 0.2 and e = 2.718218284.

(4)vi =

∑n

k=1
um
ik
xk

∑n

k=1
um
ik

uik =

c∑

j=1

(
xk − vi

xk − vj

)−2∕(m−1)

(5)F =

H∑

i=1

∝∑

k=1

um
ik

4∑

z=1

(
Xk ⋅ SLOz − Ci ⋅ SLOz

)
, m > 1

(6)Pnew = �Pm� + (1 + �)Pd�

(7)� = �0e
−Counter
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D.	 Termination condition

If the condition Ui+1 − Ui is satisfied, then the algorithm is terminated; otherwise, 
a new population derived from previous population, children, and mutations will be 
selected. Next, the fitness value for the new population will be calculated.

Pseudo-code for the proposed algorithm is depicted in Algorithm 2. Generating 
initial population and identifying the number and also the center of clusters is car-
ried out in lines 2–9. For each workload, the belonging matrix is constructed (lines 
10–13). Then, the fitness value of each workload is calculated using the objective 
function of fuzzy c-mean clustering (lines 14–24). After calculating fitness for 
all requests, determined numbers of those requests with higher fitness values are 
selected (line 25). Crossover of workloads, mutations, and as the final step, selecting 
the best cases among parents, children, and mutations workload are fulfilled (lines 
26–28). Finally, the termination condition is checked. If the result of checking is 
positive, then the loop will be repeated (lines 29–31); otherwise, the clustering train-
ing workload phase is terminated.



726	 M. Ghobaei‑Arani, A. Shahidinejad 

1 3

3.3.3 � Resource provisioning phase

In this section, we utilized a gray wolf optimizer (GWO) metaheuristic technique to 
identify appropriate scaling decisions to provide an efficient resource provisioning 
solution. After clustering training workloads, it requires to select the closest cluster 
to the test workload. To this end, each request of test workload is compared with 
each cluster centroid using Euclidian distance. The distance of the request i from the 
cluster centroid j is calculated as follows:

After finding the closest cluster to the user request, resource provisioning process 
should be carried out. In this regard, three resource scaling decisions are considered 
as follows:

(a)	 Adding resources In this decision, the numbers of VMs are not adequate for 
serving user requests. Therefore, new VMs should be turned on.

(b)	 Removing resources In this decision, the numbers of VMs are more than the need 
for serving user requests. Therefore, some VMs should be turned off.

(c)	 Balanced resources In this decision, the numbers of VMs are adequate for serv-
ing user requests, and there is no need to change the numbers of VMs.

In the following, we describe the resource provisioning algorithm using GWO 
technique in more details, as shown in Fig.  4. The resource provisioning (i.e., 
resource scaling) phase consist of four steps, namely: A) initialization, B) generating 
initial population, C) calculating the value of wolves, and D) replacing wolves and 
termination condition.

A.	 Initialization

As it is mentioned earlier, it should be identified the constant coefficient of vec-
tors A and D, random value r, iteration numbers of the algorithm, and linear value a, 
then it is selected some incoming test workload randomly.

B.	 Generating initial population

Since there are cl clusters, the best cluster should be selected for the test work-
load. First, each cluster is identified as a wolf utilizing WGO. It is proposed an array 
of bits as the place array of the wolves, X. Initial population is filled randomly, and 
each wolf has some 0 s or 1 s. This array is defined as follows:

(8)Disi.cj =

√√√√
4∑

k=1

(
Reqi ⋅ SLOk − Cj ⋅ SLOk

)2

(9)X =
[
bit1, bit2,⋯ , bitNvar

]
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where Nvar is the number of solutions for the problem such that if the value 0 is pro-
duced, the request with this index is ignored, else if the value of the index is 1, the 
request will be selected. Table 4 illustrates the selection of requests for the wolves.

As an example, if the cluster has 14 requests, the initial population includes 14 
bits filled with 0 s or 1 s. If the bit has the value 1, the requests with this index will 
be selected and will be considered in the selection operator; otherwise, the request 
will be ignored. The requests are selected randomly. If the requests, for example, 1, 
2, 5, 7, 11, and 14, are selected, the created wolf will be as shown in Table 5.

Fig. 4   Resource provisioning of test workload using GWO

Table 4   The selection of 
requests for the wolves

Request’s ID Request 1 Request 2 … Request Nvar

Bit 0 1 … 1
selection Unselected Selected … Selected

Table 5   The example of the wolf’s structure with 14 requests

1 1 0 0 1 0 1 0 0 0 1 0 0 1
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C.	 Calculating the value of the wolves

In this step, the average Euclidian distance of the test workload’s request is calcu-
lated, as follows:

where T is the elements of the fitness function for each wolf.
Regarding the calculated fitness function (i.e., average Euclidian distance of the 

test workload and each wolf), the first three ones are selected as the wolves α, β, δ in 
the sorted list.

D.	 Replacing wolves and termination condition

Evaluating and identifying the position of each wolf (i.e., request) are calculated 
as follows. Besides, the position of the wolves (i.e., clusters) keeps changing until 
the victim (i.e., test workload) is enclosed.

where A⃗ and C⃗ are the coefficient vectors, and X⃗p , X⃗ , and t are the cluster’s location, 
location vector of each request, and iteration number, respectively. Also, A⃗ and C⃗ are 
calculated as follows:

(10)F =

T∑

j=1

√√√√
4∑

k=1

(
Reqi ⋅ SLOk − Cj ⋅ SLOk

)2

(11)D⃗ =
|||C⃗ ⋅ X⃗p(t) − X⃗(t)

|||

(12)X⃗(t + 1) = X⃗p(t) − A⃗ ⋅ D⃗

(13)A⃗ = 2a⃗ ⋅ r⃗1 − a⃗

Table 6   An example of the movement of the wolves and identifying their locations

Current location of the wolf 1 1 0 0 1 0 1 0 0 0 1 0 0 1
The wolf α 0 0 1 1 1 0 1 0 0 0 0 1 1 0
The wolf β 1 0 1 1 0 1 0 0 0 1 0 0 1 1
The wolf δ 1 1 0 1 1 0 1 0 1 0 1 0 0 0
New location of the wolf 0 1 0 0 1 0 1 0 0 0 1 0 0 0
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where vectors of a⃗ are decreased from 2 to 0 linearly and iteratively, and r⃗1 and r⃗2 are 
random vectors in the interval [0, 1].

An example of the movement of the wolves and identifying new location are 
depicted in Table 6.

Among the sorted requests, the first three ones are selected and labeled as α, β and 
δ. These three requests can estimate cluster’s location at each iteration, as follows:

In every iteration, the locations of the other wolves are updated after identifying 
the location of α, β and δ. Besides, A⃗ , C⃗ , and a⃗ are updated as well. Finally, the loca-
tion of the wolf α is considered as the optimum point.

Algorithm  3 depicts the pseudo-code for the GWO-based resource provision-
ing algorithm. After initializing the parameters (lines 1–11), the cluster with the 
least Euclidian distance compared with the test workload is selected to provision 
the resources for the test workload using GWO algorithm (lines 12–15). Afterward, 
the fitness value for the population and the location of each wolf is calculated, and 
finally, this location will be sorted (lines 16–24), and the best wolves are identi-
fied as α, β and δ. (line 25). By varying directions and speed of wolves, tree new 
locations are generated, and fitness value for the new wolves is recalculated, and 
the results are re-sorted (lines 26–39). If the fitness value for the new wolf is bet-
ter than the wolf α, the new wolf is replaced with the wolf α; otherwise, it is com-
pared with the wolves β, and δ and replacement is performed in its case (line 40). 
Then, updating the required variables for fitness function, changing the location, and 
updating the counters are fulfilled (lines 41–43). If the termination condition is not 
satisfied, the above-mentioned steps will be repeated (line 44) which is held in Max-
Iter. Finally, the algorithm returns the first wolf as the best one (line 45) and thereby 
selected resource scaling decisions (i.e., adding, removing, and balanced) for the test 
workload on VMs will be run.

(14)C⃗ = 2r⃗2

(15)D⃗𝛼 =
|||C⃗1 ⋅ X⃗𝛼 − X⃗

|||. D⃗𝛽 =
|||C⃗2 ⋅ X⃗𝛽 − X⃗

|||. D⃗𝛿 =
|||C⃗3 ⋅ X⃗𝛿 − X⃗

|||

X⃗1 = X⃗𝛼 − A⃗1 ⋅

(
D⃗𝛼

)
. X⃗2 = X⃗𝛼 − A⃗2 ⋅

(
D⃗𝛼

)
. X⃗3 = X⃗𝛼 − A⃗3 ⋅

(
D⃗𝛼

)

X⃗(t + 1) =
X⃗1 + X⃗2 + X⃗3

3
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3.3.4 � An example of the use of the proposed approach

In this section, an example for better understanding the proposed approach in more 
details is provided.

A.	 Workload preprocessing phase

At first, the request structure and its correctness is checked. The structure of the 
incoming workload is depicted in Table 7.

(a)	 Removing the abnormal requests

As it is mentioned earlier, the unnecessary and abnormal requests are removed 
from the incoming workload based on the predefined rules. As it was shown in 
Table 6, the user with ID 82 has not the access right to the requested service, and the 
users with ID 74856 and also 510 have not filled the requested fields correctly and 
the users 74856 is recognized as a robot. The results of this process are depicted in 
Table 8.

(b)	 Creating the SLA table

For each request, the SLA table is created. An example of the SLA table for the 
requests of Table 6 is shown in Table 9.

B.	 Workload clustering phase

In the following, the clustering process for this example is described briefly.

(a)	 Generating an initial population and identifying the number of clusters

The SLA table is considered as the initial population. If the numbers of clusters 
are 3 each of which containing three sub-clusters, the first and the send vectors will 
contain 3 and 9 elements. It means that the second vector contains 3 * 3 elements of 
the requests. Three elements are selected randomly as the candidates of the clutters’ 
centroid, such that each Xi is its sun-cluster as well.

Table 10 depicts the example of 13 requests and 3 clusters.

(b)	 Calculating the value of each request

By applying the parameter m = 2 in Eq. (10) and utilizing the second vector of the 
requests (i.e., initial population), the belonging matrix U is initialized as randomly 
as it is depicted in Table 11.

COne =
[
C1,C2,C3

][
X1,X2,… ,X6,… ,X9

]
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Table 8   After removing the abnormal requests

User ID The date and 
the time of 
the request

Type of 
user’s 
requested 
service

Data 
transferring 
protocol

Intended 
cost

Intended 
response 
time

Intended 
availabil-
ity

Intended 
reliability

1000 −20182004 
14:25

3 4 150 50 20 30

2458 −20182004 
14:50

2 2 300 100 33 50

3352 −20182004 
15:34

1 4 250 150 44 30

424 −20182004 
10:33

5 3 360 330 20 40

155 −20182004 
10:22

12 4 500 400 100 60

66 −20182004 
08:20

5 4 400 420 70 70

3000 −20182004 
15:30

1 4 230 140 42 33

140 −20182004 
10:20

12 4 490 395 99 62

9 −20182004 
06:30

7 1 120 40 20 60

401 −20182004 
10:30

5 3 340 320 25 42

142 −20182004 
10:15

12 4 520 390 110 58

56 −20182004 
08:18

5 4 410 400 65 60

Table 9   Indexing each request 
and creating the SLA table

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

1000 150 50 20 30
2458 300 100 33 50
3352 250 150 44 30
424 360 330 20 40
155 500 400 100 60
66 400 420 70 70
300 230 140 42 33
140 490 395 99 62
9 120 40 20 60
401 340 320 25 42
142 520 390 110 58
56 410 400 65 60
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As it is mentioned earlier, each request’s belonging degree of all clusters is pre-
sented by matrix U. Therefore, the minimization function of least distance from the 
clusters’ center for all parent requests is shown in Table 12.

The objective is to minimize the fuzzy c-means function using GA. It means that 
smaller the distance of each request from the clusters’ center will result in better fit-
ness of the request and greater the probability of its selection.

(c)	 Applying genetic operators

First, the requests are sorted by their fitness values in ascending order; some iden-
tified numbers of requests are selected for crossover operation to achieve the next 
generation. The requests third and eighth of Table 8 are selected to make Table 13.

Table 10   The example of 13 requests and 3 clusters

Vector of the cluster’s centroid C1 C2 C3

424 3000 9

Sub-cluster’s vector X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

2458 66 3352 1000 155 140 401 142 56

Table 11   Evaluating each 
request of the example

Chromosome Belonging matrix U

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

Cluster 1 0.1 0.3 0.4 0.3 0.6 0.1 0.5 0.7 0.8
Cluster 2 0.6 0.2 0.3 0.6 0.2 0.5 0.2 0.1 0.1
Cluster 3 0.3 0.5 0.3 0.1 0.2 0.4 0.3 0.2 0.1

Table 12   The minimization function of least distance from the clusters’ center for all parent requests

Request X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

Fitness function 1039 1620 951 1338 1950 1970 881 2103 1497

Table 13   Selected requests for 
crossover

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

3352 250 150 44 30
401 340 320 25 42
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By selecting a point randomly for crossover operation and utilizing Eq. (6) with 
β = 0.6 and intended parameter SLO3, crossover the two requests for the next genera-
tion is depicted in Table 14.

To improve the next generation by iteration, Eq.  (7) is solved. In this example, 
three requests are selected randomly in which the least distance from the clusters’ 
center is selected. For mutation operation, we set iteration number μ = 1. Therefore, 
a random number between 1 and 4 is produced and based on this produced number, 
and the SLOi is changed. For example, if the produced number is 3, then the SLO3 
of the selected requests will be changed. Based on this description, the results of the 
mutation are depicted in Tables 15 and 16.

As the example, ten requests from the parent population, the next generation, and 
mutants are selected and depicted in Table 17.

(d)	 Termination condition

The quality of clustering depends on increasing the most similarity among the 
members of a cluster and the least similarity among the members of a cluster com-
pared with the other clusters. In each iteration, the belonging matrix U is calcu-
lated, and then, this matrix is compared with the matrix of the last step regarding 

Table 14   The next generation 
by crossover the parents’ 
requests

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

3352 250 150 37 30
401 340 320 32 42

Table 15   Selecting requests for 
mutation

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

66 400 420 70 70
142 520 390 110 58
56 410 400 65 60

Table 16   Mutant requests Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

66 400 420 60 70
142 520 390 95 58
56 410 400 60 60
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Ui+1 − Ui . If this condition is satisfied, the algorithm is finalized; otherwise, it is 
continued until satisfaction.

C.	 Resource provisioning using GWO algorithm

In this phase, each request of test workload is compared with each cluster’s center 
using Euclidian distance. This process is fulfilled by utilizing Eq.  (8). Therefore, 
SLA indices of requests are compared with each other to obtain the distance. Sup-
pose test request is as depicted in Table 18.

After calculating the distance of these four values from four values of clusters’ 
center of the previous step, it is identified that test request becomes the member of 
which cluster. If it is a member of cluster 3, the results are depicted in Table 19.

To fulfill this process, the following steps should be followed, respectively.

(a)	 Initializing

Table 17   Obtained population 
by running the algorithm in the 
first step

Request’s ID User SLA

SLO1 SLO2 SLO3 SLO4

Cost Response time Availability Reliability

1000 150 50 20 30
2458 300 100 33 50
3352 250 150 37 30
424 360 330 20 40
155 500 400 100 60
66 400 420 60 70
3000 230 140 42 33
140 490 395 99 62
9 120 40 20 60
401 340 320 25 42
142 520 390 95 58
56 410 400 60 60

Table 18   A simple test request Request’s ID SLO1 SLO2 SLO3 SLO4

5001 200 120 40 30

Table 19   The cluster’s members 
that the test request belongs to

Request’s ID SLO1 SLO2 SLO3 SLO4

155 500 400 100 60
66 400 420 60 70
56 410 400 60 60
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Constant coefficients such as vectors A and D, random values r, numbers of itera-
tions of the algorithm, and the linear value of a should be initialized.

(b)	 Generating initial population

In the presented example, it is necessary to find the best case for the cluster iden-
tified for the test workload. Therefore, four cases are selected for the requests using 
GWO algorithm in which each cluster is identified as a wolf. The wolf’s location 
is identified by the array X of Eq. (9) filled by 0 s and 1 s such that if the produced 
value is 0, then the request with the index 0 is ignored; otherwise, it is selected. The 
solution of this problem needs finding three answers. As an example, if the requests 
1 and 2 are selected, the results are depicted in Table 20.

(c)	 Calculating the value of wolves

By utilizing Eq. (10), the average Euclidian distance of test workload request of 
each wolf, as the fitness function, is calculated. Therefore, the SLA indices of the 
requests are compared to find their distance, as shown in Table 21.

(d)	 Calculation of the wolves α, β and δ

The results of the calculated fitness function are sorted, and the first three values 
are identified as the wolves α, β and δ. The results are depicted in Table 22.

(e)	 Replacing wolves and termination condition

By utilizing Eqs. (11), (12), (13), and (14) with a⃗ = 2, and r⃗1 = 0.2, and r⃗2 = 0.1, 
will result in A⃗ = 0.8 and C⃗ = 0.4 . Therefore, the values of D⃗𝛼 ,

��⃗D𝛽 , and D⃗𝛿 are 

Table 20   The wolves’ structure 
for the cluster with three 
requests

Wolves Request1 Request2 Request3

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0

Table 21   The average Euclidian 
distance of test workload request 
of each wolf

Wolves Fitness function

1 351
2 363
3 714
4 415
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calculated, and thereby, the new location of the wolves will be identified, as shown 
in Table 23.

According to the sorted values of all requests, the first three requests are selected 
as the best ones. This process is continued until satisfying the termination condition. 
Finally, the location of the wolf α is returned as the optimum point.

4 � Performance evaluation

In this section, we validate the effectiveness of our solution through simulation 
under different workload traces. In the following, we will explain the simulation 
setup and performance metrics. Then, the simulation results will be discussed.

4.1 � Experimental setup

We used the Cloudsim toolkit [24] as a Java-based library in NetBeans IDE for mod-
eling cloud ecosystem entities such as virtual machines, data centers, cloudlets, ser-
vice broker and resource scheduling, and provisioning strategies. The configuration 
three types of hosts utilized in the simulation process is shown in Table 24.

We configure a number of hosts according to Table  24, randomly. Besides, 
the simulation setting used for every experiment in this research is presented in 
Table 25. We generate 90 cloud workloads randomly in the form of cloudlets using 
CloudSim library. A cloudlet includes all information related to cloud workload 
such as memory size, cloud workload size, file size, output size, and cost per work-
load. The heterogeneous cloud workloads are described in [10, 16] to validate the 
proposed solution under the same simulation setting.

Table 22   Identifying the wolves 
α, β, and δ

Wolves Fitness function

1 (α) 351
2 (β) 363
4 (δ) 415
3 714

Table 23   Replacement of the 
wolves and identifying their 
location

Current location of the wolf 1 0 1
Wolf α 0 0 1
Wolf β 0 1 0
Wolf δ 1 0 0
The new location of the wolf 0 1 1
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4.2 � Performance metrics

We use the following metrics for comparing the proposed approach with other stud-
ies; energy consumption, execution cost, execution time, latency, and SLA violation 
rate. Each metric is described as the following.

Energy consumption The energy consumption has a linear relationship with 
resource utilization which can be expressed by Eq. (16):

ETr , EDC , and EMem represent the energy consumption of switching equipment, 
datacenter, and storage device, respectively.

Execution cost It is the cost of workload execution which is measured in cloud 
dollars (C$) as shown by Eq. (17)

here Cost
(
Wi,Rk

)
 is the cost of executing workload i on resource k.

Execution time Execution time is the finishing time of the last workload.
Latency Latency is a time delay between expected execution ( (Expi ) time and 

actual execution time ( Acti ) which is defined by Eq. (18)

where n is the number of workloads.
SLA Violation Rate SLA violations rate ( SLAVR ) is defined by Eq. (19), where 

FR is the failure rate and wi is the weight of each SLA =
(
SLA1,… , SLAz

)
.

Failure rate (FR) is calculated by Eq. (20).

(16)E = ETr + EDC + EMem

(17)ExeCost = Min
(
Cost

(
Wi,Rk

))
for1 ≤ i ≤ m and 1 ≤ k ≤ n

(18)Latency =

n∑

i

(
Expi − Acti

)

(19)SLAVR = FR ∗

z∑

i=1

(wi)

Table 25   Simulation setting 
[16]

Parameter Value

Number of resources 50–250
Number of workloads (cloudlets) 90
Bandwidth 1000–3000 B/S
Size of cloud workload 10,000 + (10–30%) MB
Number of PEs per machines 1
MIPS rating 100–4000 MIPS
Cost per cloud workload 3$–5$
Memory size 2048–12,576 MB
File size 300 + (15–40%) MB
Cloud workload size 300 + (15–50%) MB
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When SLAi is violated the Failure
(
SLAi

)
= 0 and when SLAi is not violated the 

Failure
(
SLAi

)
= 1.

4.3 � Results and discussion

To evaluate the performance of the proposed approach, we design various scenarios 
to examine performance metrics presented in the previous section. The proposed 
approach is compared with BULLET [16] and SCOOTER [10] methods. The rea-
sons for choosing these two methods are as follows. (1) BULLET and SCOOTER 
outperform their counterparts. (2) Both methods and the proposed method oper-
ate on the multilayer cloud. (3) The same workload and parameter setting are used 
for the proposed, BULLET, and SCOOTER. BULLET applies a particle swarm 
optimization-based solution to schedule both heterogeneous and homogenous and 
workloads on the cloud resources. The main aims of their proposed solution are: 
extracting QoS parameters of workloads, clustering workloads using patterns, and 
k-means-based clustering technique, and resource provisioning classified workloads 
according to their QoS parameters before resource scheduling [16]. SCOOTER uti-
lized autonomic computing paradigm for a self-managing resource to execute cloud-
based applications for satisfying QoS requirements. Their solution used workload 
analyzer component for clustering of heterogeneous cloud workloads using k-means 
technique and provisioned the required resources according to their QoS require-
ments [10].

In the following, the proposed approach (GFA) is compared with BULLET and 
SCOOTER in terms of energy consumption, execution cost, execution time, latency, 
and SLA violation rate.

4.3.1 � Energy consumption

In this section, the impact of changing the number of workloads on energy consump-
tion and the impact of changing the number of resources on energy consumption are 
investigated. Energy Consumption for GFA, BULLET, and SCOOTER against the 
number of workloads are shown in Fig. 5. It can be seen that the energy consump-
tion is increasing by increasing the number of workloads because of utilizing the 
GWO technique to determine scaling decisions for efficient resource provisioning.

Energy consumption of GFA is less than its counterparts for all workloads 
ranging from 15 to 90. The average energy consumption for GFA, BULLET, and 
SCOOTER are 73.2  kWh, 80.8  kWh, and 78.3  kWh, respectively. GFA performs 
better than BULLET and SCOOTER in terms of energy consumption by 9.4% and 
6.5%.

Energy Consumption of GFA, BULLET and SCOOTER against the number of 
resources are shown in Fig. 6. Here the number of workloads is considered to be 90. 

(20)FR =

z∑

i=1

(
Failure

(
SLAi

)

z

)
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It can be seen that the energy consumption is growing by increasing the number of 
resources.

Energy consumption of GFA is less than its counterparts for resources ranging 
from 6 to 36. The average energy consumption for GFA, BULLET and SCOOTER 
are 62.6  kWh, 75.3  kWh, and 67.3  kWh, respectively. GFA performs better than 
BULLET and SCOOTER in terms of energy consumption by 16.8% and 6.9%.

4.3.2 � Execution cost

In this section, the impact of changing the number of workloads on execution cost is 
examined. Then the impact of changing the number of resources on execution cost is 
investigated. Execution cost for GFA, BULLET, and SCOOTER against the number 
of workloads are shown in Fig. 7. It can be seen that the execution cost increases by 
increasing the number of workloads because of applying the hybrid solution using 
the GA algorithm and fuzzy C-means technique for clustering the heterogeneous 
cloud workloads based on QoS metrics.

Execution cost of GFA is less than its counterparts for all workloads ranging from 
15 to 90. The average execution cost for GFA, BULLET, and SCOOTER are 252.5 
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C$, 281.3 C$, and 268.5 C$, respectively. GFA performs better than BULLET and 
SCOOTER in terms of execution cost by 10.2% and 6.1%.

Execution cost of GFA, BULLET, and SCOOTER against the number of 
resources are shown in Fig. 8. Here the number of workloads is considered to be 
90. It can be seen that the execution cost is increasing by increasing the number of 
resources.

Execution cost of GFA is less than its counterparts for resources ranging from 
6 to 36. The average execution cost for GFA, BULLET, and SCOOTER are 83.3 
C$, 93.8 C$, and 89.2 C$, respectively. GFA performs better than BULLET and 
SCOOTER in terms of execution cost by 11.1% and 6.6%.

4.3.3 � Execution time

In this section, the impact of changing the number of workloads on execution time 
is investigated. Then the impact of changing the number of resources on execution 
time is studied. Execution time for GFA, BULLET, and SCOOTER against the 
number of workloads are shown in Fig. 9. It can be seen that the execution time is 
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rising by increasing the number of workloads. Applying the hybrid GA and fuzzy 
C-means technique for clustering workloads based on QoS metrics and then utiliz-
ing the GWO technique for scaling decisions lead to a better execution time perfor-
mance. Another reason is that, the GFA algorithm converges to the global optimum 
faster than other approaches, as discussed in Sect. 4.3.6.

The execution time of GFA is less than its counterparts for all workloads ranging 
from 15 to 90. The average execution time for GFA, BULLET, and SCOOTER are 
618 S, 670.8 S, and 643.3 S, respectively. GFA performs better than BULLET and 
SCOOTER in terms of execution time by 7.8% and 3.9%.

The execution time of GFA, BULLET, and SCOOTER against the number of 
resources are shown in Fig. 10. Here the number of workloads is considered to be 
90. It can be seen that the execution time is decreasing by increasing the number of 
resources.

The execution time of GFA is less than its counterparts for resources ranging 
from 6 to 36. The average execution time for GFA, BULLET, and SCOOTER are 
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98.2 S, 108.3 S, and 102.8 S, respectively. GFA performs better than BULLET and 
SCOOTER in terms of execution time by 9.3% and 4.5%.

4.3.4 � Latency

Latency for GFA, BULLET, and SCOOTER against the number of workloads are 
shown in Fig. 11. It can be seen that the latency is increased by increasing the num-
ber of workloads.

The latency of GFA is less than its counterparts for all workloads ranging from 
15 to 90. The average latency for GFA, BULLET, and SCOOTER are 5.09 S, 5.65 
S, and 5.35 S, respectively. GFA performs better than BULLET and SCOOTER in 
terms of execution time by 9.9% and 4.9%. By applying a proper workload cluster-
ing algorithm and then an enhanced resource provisioning decision, the proposed 
approach has a better performance in terms of latency, compared to its counterparts.

4.3.5 � SLA violation rate

In this section, the impact of changing the number of workloads on the SLA viola-
tion rate is investigated. Then the impact of changing the number of resources on 
the SLA violation rate is examined. SLA violation rate varies between 0 and 100%. 
SLA violation rate for GFA, BULLET, and SCOOTER against the number of work-
loads are shown in Fig. 12. It can be seen that the SLA violation rate is increased by 
increasing the number of workloads. The GFA approach proposed a better execution 
time and latency and consequently a lower SLA violation rate.

The SLA violation rate of GFA is less than its counterparts for all workloads 
ranging from 15 to 90. The average SLA violation rate for GFA, BULLET, and 
SCOOTER are 7.3%, 7.7%, and 7.55%, respectively. GFA performs better than 
BULLET and SCOOTER in terms of execution time by 5.2% and 3.3%.

SLA violation rate of GFA is less than its counterparts for resources ranging from 
6 to 36, as shown in Fig. 13. The average SLA violation rate for GFA, BULLET, 
and SCOOTER are 34.8%, 37.8%, and 36.5%, respectively. GFA performs better 
than BULLET and SCOOTER in terms of SLA violation rate by 7.9% and 4.6%.
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4.3.6 � Convergence speed results

In this section, the convergence speed of GAF, ICA, PSO, and GA algorithms over 
iterations is presented. Parameter settings of all utilized algorithms are shown in 
Table 26. Besides, the value range of each request, including response time, cost, 
availability, and reliability are shown in Table 27.
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Fig. 12   SLA violation rate by changing the number of workloads

20

25

30

35

40

45

50

55

6 12 18 24 30 36

SL
A

 V
io

la
tio

n 
R

at
e 

(%
)

Number of Resources

GFA BULLET SCOOTER

Fig. 13   SLA violation rate by changing the number of resources

Table 26   Parameters of each algorithm

GAF ICA PSO GA

Parameter Value Parameter Value Parameter Value Parameter Value

Population 90 NPop 90 C1 = C2 2 Population 90
Mutation rate 0.001 NImp 3 ωmin 0.5 Mutation rate 0.001
Crossover 0.8 � 5 ωmax 1 Crossover 0.8

� 0.05
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Figure 14 demonstrates the convergence characteristics of the GAF, ICA, PSO, 
and GA for the best solutions on 90 workloads where the y-axis represents iterations 
and the x-axis represents the objective function value defined by Eq. (5).

According to the simulation results, the GFA algorithm converges to the global 
optimum after 55 iterations while ICA, PSO, and GA algorithms converge to the 
global optimum after 71, 74, and 68 iterations, respectively. Besides, the GAF algo-
rithm shows better results on the best solution. The best global solutions for GAF, 
ICA, PSO, and GA are 96.48, 96.61, 96.78, and 96.64. It can be concluded that the 
proposed algorithm (GFA) converges faster than other methods.

5 � Conclusion

Recently, the usage of cloud computing as a promising computing model for deliv-
ering and hosting the applications over the Internet has increased significantly in 
recent years. In this paper, we studied the resource provisioning issue using work-
load clustering for cloud-based applications. Due to the heterogeneity of workloads 
submitted, the analysis and identification common workload patterns based on 
the user’s QoS requirements can play an important role to provision of the cloud 
resources in a cloud environment. We utilized the genetic algorithm with fuzzy 
C-means technique for clustering the heterogeneous cloud workloads based on QoS 

Table 27   Values of four SLOs SLO Value

Response time Between 20 and 1500
Cost Between 2 and 15
Availability Between 0.95 and 1
Reliability Between 0.4 and 1

96.4
96.5
96.6
96.7
96.8
96.9

97
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Fig. 14   Convergence characteristic of the proposed method, ICA, PSO, and GA for the best solutions
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metrics. Moreover, GWO as a metaheuristic technique to identify the appropriate 
scaling decisions to provide an efficient resource provisioning solution for satisfying 
user’s QoS requirements has used. We validate the proposed approach under real-
world workloads, and the obtained simulation results indicated that it outperforms 
in terms of the CPU utilization, elasticity, response time, and total cost compared 
with the other mechanisms. For future work, we plan for validation the scalability of 
proposed approach on the real benchmark application such as Amazon web service 
(AWS) cloud benchmark and its extension using container-based virtualization tech-
nology. Besides, we will utilize the pattern mining models to extract user behavioral 
patterns to access the cloud-based applications and also use the deep reinforcement 
learning algorithm to determine the resource scaling decisions for serving of cloud 
workloads.
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