
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:388–417
https://doi.org/10.1007/s11227-020-03268-0

1 3

A review on architecture and models for autonomic
software systems

Pooja Dehraj1 · Arun Sharma1

Published online: 13 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Autonomic computing was the term coined by IBM in 2001. The term autonomic
computing was used to define the self-adaptable nature of the human body. Accord-
ing to IBM, the same self-adaptable feature was the need to be incorporated in the
software systems. Autonomic computing is the combination of few self-capabilities
such as self-configuration, self-healing, self-optimization, self-protection, self-
awareness, etc. So, autonomic computing approach was then used to develop auto-
nomic software systems. This approach makes the computing systems self-adapt-
able and self-decision-making support systems for various activities. It also helps
to reduce the human intervention in the software management process. Though, the
implementation of autonomic self-capabilities may increase the software complex-
ity, which further requires human intervention for the software maintenance-related
specific tasks. Still, IT industries are approaching to develop autonomic features in
their existing architecture or developing new self-adaptable software systems. Auto-
nomic computing has its importance for providing a bridge for handling and manag-
ing the run-time computation-based issues/exceptions of the software. So, the dis-
cussion of this solution has become a necessity for making the vision of autonomic
decision making more clear and understandable for researchers and developers for
the improvement in an autonomic area. The paper provides an insight vision of the
autonomic decision-making concept and its importance for the various purposes
such as intrusion detection, cloud-based data security, wireless sensor network,
Internet of Things, Big Data and many other areas where management cannot be
handled by a human in real time. To assess the degree of autonomic feature, there is
another term used which is known as autonomicity. The paper also discusses some
solutions suggested and implemented by different researchers during their studies
for estimating the system’s autonomicity level. These solutions will help in compar-
ing different autonomic applications based on the autonomic features implemented
in each application. This paper is an attempt to provide better understandability in
the autonomic computational field.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03268-0&domain=pdf

389

1 3

A review on architecture and models for autonomic software…

Keywords  Autonomic computing · Self-configuration · Self-healing · Self-
optimization · Self-protection · System autonomicity level

1  Introduction

The systems which are capable of doing computation themselves with less human
intervention are considered as autonomic systems. Autonomic computing is a com-
bination of few self-abilities such as self-configuration, self-healing, self-optimiza-
tion, self-protection, self-adaptability, self-awareness, self-openness, etc. Out of all,
only four abilities are considered as major ones. The main four abilities are self-con-
figuration, self-healing, self-optimization and self-protection. These are abbreviated
as CHOP. The human body is a perfect example of self-adaption and self-manage-
ment. IBM’s motive was to bring solutions for handling software complexity. IBM
proposed an idea of autonomic computing and its high-level policies with reference
architecture for the autonomic system. These policies are summarized below:

•	 The system must understand its system activities and must perform intelligent
response and do optimized resource allocation.

•	 The system must be compatible and reconfigure according to environmental
changes and different system standards.

•	 The system must be able to protect itself from external damages.

While Horn [1] only gave the concept of autonomic computing, it was further
elaborated by Kephart and Chess [2] in their paper. The authors have explained the
essence of autonomic systems (AS), i.e., self- management/ self-capable behavior.
This was the first time that anyone had attempted to correlate the autonomic nerv-
ous system properties with few attributes desired in a computer. After a detailed
discussion on CHOP properties, the authors suggested the probable architecture of
any general AS. According to them, architecture should be a collection of interactive
autonomic elements (AE). Each element has an autonomic manager and the man-
aged element. The manager itself has a MAPE-K architecture, i.e., Monitor, Ana-
lyze, Plan, Execute with the help of Knowledge database [3–7]. The architecture
with the control loop will be discussed further in a literature survey in detail.

Again in 2004, DARPA self-regenerative program was followed with the aim
of providing critical situation-enabled system all the time. For this purpose, four
aspects are decided for such systems [8].

•	 Make system resistant to attack by providing a large number of versions with
similar functionality but different implementation.

•	 Enable pushing of binary code of random size onto the system’s stack that makes
an attack difficult. Use a trusted model that keeps the system away from damaged
resources.

•	 For accountability of authorized, malicious client’s updates, use an architecture
which is enabled with intrusion tolerance and also scalable in wide area.

390	 P. Dehraj, A. Sharma

1 3

•	 Identification of malicious operator should be done that helps in prevention of
attack on a military system

The developers were successful in the implementation of the specialized com-
puting system. But the system that handles the emerging requirements dynamically
is still a challenging issue. Distributed systems have evolved to provide solutions
to the problems in an isolated way such as availability, security, efficiency, reliabil-
ity, automation etc. But emerging issues based on application and system manage-
ment still require specific solutions that work at the run-time correctly. The solutions
may be interactions, algorithms and behaviors. These solutions depend on context
and dynamic state-based specification. The final goal of autonomic computing is to
resolve these issues of the applications and system which are based on high-level
policies and context.

From 2001, the autonomic slope started taking contributions from a different
level of IT industries. Autonomic computing has its own importance for providing
a bridge for handling and managing the increasing complexity of IT industry so the
discussion of this solution has become a necessity for making it understandable for
other researchers and developers for enhancement in the autonomic area. This paper
is an attempt to provide better understandability in autonomic computation field.

The paper is divided into the following sections. Introduction section has already
provided an evolution of the autonomic system. The detail of the autonomic com-
puting is provided in Sect. 2. After doing a deep survey in this area, the literature
review is categorized based on areas where autonomic computing has its current and
future impact, which is shown in Sect. 3. Section 4 discusses the areas where auto-
nomic computing has been explored and its scope for development. Finally, Sect. 5
includes a conclusion in brief.

2 � Autonomic computing

As the autonomic computation concept is strongly linked with the human nervous
system which controls minor to major activities of the body in situations such as
unconsciousness, fear, anger, unhealthiness, injury, environmental weather condi-
tions, anxiety, excitement, etc. Though implementation of fully autonomic appli-
cations, software or devices is yet not achieved. The reason may be complexities
in implementing the autonomic concept at the core level. No doubt, the interven-
tion of human in handling complex issues in systems will still be required at some
level. Then, why there is a need for developing autonomic concept? The reason is to
reduce maintenance cost, which includes 40–50% of the total software development
cost. This is a reason which facilitates the IT industries to develop such artificially
intelligent systems which will ultimately decrease the maintenance cost. If the time
shifts to the digital systems, then it is obvious that the complexity to handle such a
system will also increase [9].

The maintenance of the distributed system is quite complex at run time and is
not reliable. The autonomic computing system is one approach which may reduce
the complexity of such a system, and also it is a reliable and effective solution.

391

1 3

A review on architecture and models for autonomic software…

Autonomic computing methodology helps different IT vendors to discuss, compare
and contrast different algorithms to design self-managing system. IBM [2] pro-
vided a referenced architecture of the autonomic system with a self-control loop or
MAPE-K loop shown in Fig. 1, which works as a central processing unit for auto-
nomic management engine (AME) [10, 11].

The author in this paper coined a new term for MAPE-K loop as self-control loop
because it is controlled by the system itself. The entities’ names are also replaced
with the new terms such as detect, think, decide and process. The aim of the auto-
nomic computing system is to reduce the management of the network and increase
the performance by optimizing the developer’s talent in designing the higher-level
products and policies. This may be achieved via distributing the overall manage-
ment work on the autonomic manager, which will initiate self-control loop and work
according to the changes in the system’s environment. The autonomic system is con-
trolled by the loop which is designed to handle the self-abilities of the autonomic
system. There are two types of system: open and closed system. In the case of open-
loop system, the output has no effect on input but closed-loop system output affects
the input. The closed system senses the changes in the system. Similarly, the auto-
nomic system also detects the changes and diagnoses accordingly. The autonomic
computing technique has its importance only because of its self-adapting and self-
managing abilities. The loop handles all the self-functionalities. So considering all
the requirements of the autonomic computing, the loop has been designed in such a
way that each component uses the functionality and performs accordingly.

The autonomic computing loop compares with the human autonomic nervous
system (ANS) due to the similarity in their working. Nervous system monitors body
activities and regulates body temperature, blood pressure, heart bit rate, blood circu-
lation and many more [12]. In the same way, self-control loop also monitors all the
system’s activity, detects the problem, thinks about a solution based on predefined
knowledge, finally decides the plan and executes the plan back to the managed ele-
ment. The loop continues to monitor the activities after executing the plan. If again
problem occurs, then it starts analysis and performs it accordingly. There may be
more than one self-control loop in the autonomic system that performs all the func-
tions. IBM has categorized these loops into four categories based on the properties
of the autonomic system [10]. These categories are a self-configuration loop, self-
healing loop, self-optimization loop and self-protection loop. IBM chose only these
four properties as the core features of the autonomic system. According to IBM,

Fig. 1   Self-control loop

392	 P. Dehraj, A. Sharma

1 3

CHOP incorporates all the remaining features like anticipatory in the self-healing
feature; self-awareness includes in self-configuration and self-optimization.

The reference architecture for the autonomic system was suggested by IBM.
Human body has a nervous system which is connected with the brain, and brain
controls the whole body using neurons connectivity. Similarly, the autonomic sys-
tem has an autonomic agent which works like a brain. Sensors and effectors work as
the connector between autonomic agent and managed element. Figure 2 shows the
architecture;

Using sensors, the autonomic agent gathers the status of the managed element
during continuous monitoring and sends it to the detector. When the detector identi-
fies any exception in the environment of a managed element, the detector reports the
exception to the self-control loop. The self-control loop starts analysis using con-
trol signal. For this analysis, the analyzer uses database knowledge for taking intel-
ligent decision based on prestorage exception results, which are processed back to
the managed element, and if the decision is new for the knowledge database, then
updates will perform onto the database.

2.1 � AC state of the art: from past to present

Before going into detail of the different research aspects of the autonomic comput-
ing, a state of the art of the autonomic computing is provided in brief starting from
the function-oriented approach in the year 1960. A road map for the same is shown
in Fig. 3.

The need for autonomic computing was explained by [13]. The authors provided
an enough reason for the increasing complexity in software systems and need for
autonomic computing era. In their work, the authors provided a graph to show the
downtime: Average Hourly Impact shown in Fig. 4. The data are taken from IT
Performance Engineering and Measurements Strategies: Quantifying Performance
Loss, Meta Group, Standard, CT (October 2000).

The data showed an economic impact of the system failure and downtime. The
reasons for such outages are categorized into four basic data center operations: data-
base, network, system and application. Under these categories, the causes are user
error, lack of automatic processes, log file full, application error, software error from
third party, insufficient bandwidth, applications exceptions, etc. After year 2003, a

Fig. 2   Autonomic referenced architecture

393

1 3

A review on architecture and models for autonomic software…

number of researchers have performed their respective conceptual research in this
area to implement autonomic computing approach in software system. Using the ref-
erence architecture proposed by IBM shown in Fig. 2, different autonomic software
research projects in both academics and industries were developed. The research
projects were developed using a few autonomic properties. The contribution of auto-
nomic properties in research projects is shown below using a pie chart. A detailed
discussion was provided by Salehie and Tahvildari [14]. The list of academics and
industrial research projects is given in Table 1.

Func�on-oriented (F-O)

• The approach came
into existence during
1960s

• So�ware system's
were designed using
func�on

• Supported by all the
programming
languages

• Func�ons were
designed to perform
sinlge task

• Func�ons couldn't be
reused for other
purpose

Object-oriented (O-O)

• The approach came
into existence in
1980's

• So�ware systems'
were designed using
object which is a real
world en�ty

• Objects are
independent and
represent informa�on

• maintenance of such
systems are easy and
objects can be reused

• But objects have no
sense without parent
class or super class
object

Component-oriented (C-O)

• As O-O couldn't
provide full reusability
func�onality, the
so�ware development
move to C-O approach
in the year 1990's

• Components are
stand-alone,
hetergeous,
independent
executable objects
which requires
interface for
communica�on

• Supports reusabilty
and doesn't require
super class

• But while integra�ng
different components,
it is difficult to make
compromises in
component feature

• Also, different
standards make the
so�ware system
complex

Agent-Oriented (A-O)

• A-O came into
existence in early
years of 2000

• A-O is agent based
approach in which
so�ware system is a
collec�on of
interac�ng agents

• Agents are the
encapsulated func�on
in an so�awre
environment

• Agents communicate
at knowldege level
duw to which agents
are able to monitor
the so�ware system
completely of par�ally

• But A-O is not fully
autonomic concept
and it is also a
complex so�ware
systems development
approach

Autonomic Compu�ng
Oriented (AC-O)

• AC-O came into
highlights in the year
2001 by IBM

• This approach was
researched &
developed for
reducing the systems'
complexity of
maintenance

• IBM proposed five
maturity level of AC-O
from basic to fully
autonomic so�ware
systems

• CHOP is the basic
property of AC-O

• For fully autonomic
So�ware system, a
system must possess
CHOP at each level

Fig. 3   Evolution of autonomic computing approach

Fig. 4   Data from IT performance engineering and measurement strategies: Quantifying Performance
Loss, Meta Group, Stamford, CT (October 2000)

394	 P. Dehraj, A. Sharma

1 3

Self-Configura�on
19%

Self-Healing
8%

Self-Op�miza�on
21%Self-Protec�on

9%

Self-Awareness
11%

Context-
Awareness

4%

Openness
17%

An�cipatory
11%

DEVELOPMENT CONTRIBUTION OF AUTONOMIC FEATURES

As autonomic computing is a part of artificial intelligence (AI), AC approach
became the part of every AI-based development. Currently, autonomic computing
concept has become the need of various popular developing research areas of IT
industry such as cloud computing, big data, Internet of Things, green computing and
grid computing. The basic reason behind this is to handle the complexity in the soft-
ware architecture and its workflow. Autonomic computing also helps in providing
run-time solution for a distributed network-based software systems. Cloud comput-
ing and IoT both involve distributed network, and such systems cannot be handled
with the human intervention at run time. The state of the art of autonomic comput-
ing in the current research area is discussed in below points.

In Cloud Computing: Autonomic computing is one of the parameters which
led to the growth of cloud computing. Service-oriented architecture, utility com-
puting and hardware virtualization are the other parameters. The two basic ben-
efits of cloud computing are the easy access to software resources and pay as per
usage. With the development in cloud computing, the complexity of the cloud
architecture and its management has been increased. It was believed that cloud
automation is the solution for handling cloud computing complex infrastructure
[15]. The cloud automation idea has been executed by setting business policies.
The autonomic computing has helped in managing cloud resource optimization,

Table 1   Autonomic computing-based research projects

Autonomic computing-based research projects

Industry-oriented Academic-oriented

SMART, IBM Software Rejuvenation, Duke University
Oceano, IBM eBiquity, University of Baltimore County
Optimal Grid, IBM Autonomia, University of Arizona
AutoAdmin, Microsoft Recovery-Oriented Computing, UC Berkeley/Stanford
N1, Sun AntHill, University of Bologna
The Adaptive Enterprise, HP OceanStore, UC Berkeley

395

1 3

A review on architecture and models for autonomic software…

high data security assurance and effective cost management of cloud infrastruc-
ture. The IT industry has initiated the autonomic computing-based configuration
policies for the system for the automatic system governance. This helped to rely
on the cloud infrastructure for monitoring, executing necessary changes back to
the systems. It has been claimed that autonomic computing is the future of cloud
computing.

Benefits of cloud automation [15]:

•	 Usage: Automation helps in rescheduling the shutdown processes or manages
the long running processes.

•	 Availability: Automated backup for data storage helps in data migration to
another region

•	 Cost: According to the need, the IT industries will automate the purchase task. It
also automates the workload movement between cloud providers.

•	 Performance: For nonhorizontal scaling of workload management, the auto-
mated cloud increases the machine type.

•	 Security: For those who conform to established business policies, the companies
ensure automatic network change or endpoint security from the system.

In Internet of Things (IoT): Internet of Things ecosystem involves Internet protocol
used for connecting devices, network, configuration and control function. Internet
protocol is used for the deployment of IoT ecosystems on different technological
domains. But deployment process involves large number of devices on multiple
technologies which increases infeasibility of manual maintenance and management
of such ecosystem. It was suggested that intelligent and autonomic setup helps in
maintaining IoT ecosystem. Autonomic computing is the technique which mini-
mizes the human intervention in the management of the IoT ecosystem.

In Fig. 5, IoT components and autonomic components interact with each other.
Similar to other autonomic systems, in IoT ecosystem, there are no defined auto-
nomic manager and managed elements. As per the versatility of Internet of Things,
one of the IoT components will be assigned as an autonomic manager of its lower-
level components. The lower-level component is then considered as a managed ele-
ment. Autonomic computing technique in IoT performs the dynamic decision mak-
ing. The decision is taken for the access management, device management, network
management, configuration control function execution and identity management. It
reduces the human intervention, manual management of IoT ecosystem which ulti-
mately helps in providing effective and efficient response to the IoT ecosystem’s
users.

Benefits of IoT Ecosystem with Autonomic Computing:

•	 Self-configuration based: High-level polices help in automating the device con-
figuration and adjusting the network setup.

•	 Self-optimization based: It improves the performance and efficiency of IoT eco-
system.

•	 Self-healing based: It automatically detects, analyzes, diagnoses and repairs the
hardware and software issues.

396	 P. Dehraj, A. Sharma

1 3

•	 Self-protection based: It protects the IoT ecosystem from malicious problems
and sends earlier messages to protect the system from failures.

•	 Self-security based: Without halting the IoT ecosystem, the self-security feature
of autonomic computing helps in initiating high-level policy based corrective
and protective actions onto the IoT environment.

•	 Self-adaption based: This feature helps in continuous monitoring of the IoT eco-
systems and taking dynamic decision to adapt to environmental changes.

In Big Data: Big data is another popular research area where autonomic computing
technique has contributed to the development and management of numerous tasks.
Intrusion detection is one of the most important processes that need to be availa-
ble for data security and privacy. Autonomic computing-based intrusion detection
is now provided in big data. Autonomic intrusion response system (AIRS) is an
approach which was proposed by [17] to reduce the chances of intrusion in the dis-
tributed network system to secure data privacy and security. The approach is based
on self-healing characteristic of autonomic computing. The authors implemented the
autonomic computing with big data approach to demonstrate significant improve-
ment. Their proposal is used to process data from system to detect the large amount
of anomalies and attacks (Fig. 6).

The above architecture is completely based on MAPE-K loop of the autonomic
system which was proposed by IBM. The MAPE-K loop activates the analysis of the
large amount of data to understand the utilization of distributed software resources
to take intelligent decision to meet expected utilization. This process continues to

Fig. 5   Autonomic component system interaction for management using an autonomic scheme [16]

397

1 3

A review on architecture and models for autonomic software…

recognize and detect attack condition by comparing knowledge data stored from pre-
vious suspicious cases. To make knowledge database, the system collects log files,
network traffic, sensor data. Using all the data, the MAPE-K loop takes intelligent
decision to ensure intrusion detection process.

Benefits of Autonomic Computing in Big Data:

•	 It efficiently analyzes the network traffic of distributed system to process large
amount data for optimized resource utilization.

•	 It processes the intrusion detection-based response system to prevent data pri-
vacy and ensure data security.

•	 Map-Reduce-based data processing policy helps in handling large data using par-
allel process.

3 � Literature review: four aspects‑oriented

Though, autonomic is relatively a developing paradigm in computing arena, a lot of
researches in the form of proposing new architecture, metrics, development process,
etc., have been done. The present section conducts an exhaustive and detailed review
on various architectures, autonomic applications, metrics and software development
process. The review consists of papers covering major publisher’s literature work.
The paper provides a brief detail with highlights of the previous research work.

Autonomic computing-based papers discussed autonomic reference architecture
and its features. Many research works also discussed its challenges. This paper is
an attempt to refine their work and brief the research work categorically so that it
will be easy to learn a particular research work objectives and the work done by
the researchers for autonomic computing. Initially, category-based research work is

Fig. 6   Architecture of AIRS [17]

398	 P. Dehraj, A. Sharma

1 3

discussed briefly and then a combined analysis of each category is provided after
each category-based research work.

3.1 � Architecture‑based

The autonomic concept is purely inspired by the human structure and its intelligent
function. After IBM, other researchers have also proposed autonomic computation
architecture similar to IBM’s reference architecture. Khalid et al. [18] in 2009 per-
formed a survey on available autonomic frameworks and classified them as given
below:

•	 Biologically inspired architecture: The concept of autonomic computing is
evolved from the human body which is capable of handling internal and exter-
nal activities by itself. Autonomic concept also requires the same functionality.
Human body has a brain that controls each part and its activities. Similarly, the
autonomic architecture also requires a central control unit like the brain which
handles the system’s activities.

•	 Architecture for large-scale distributed system: For a distributed system, IBM
and Microsoft have developed applications at large scale. SMART and AutoAd-
min are few of them. Both the applications work for controlling the administra-
tor-level functionality automatically for large-scale systems.

•	 Agent-oriented computing paradigm architecture: In the case of autonomic con-
cept, the architecture works in an agent-oriented manner. The autonomic man-
ager acts like an agent which controls unwanted activities of the managed source.
The agent communicates with other units of the system to handle the activities at
run time.

•	 Component-based architecture: Component-based architecture also plays an
important role in grid computing. It provides self-configuration functionality in
the grid architecture-based applications and software.

•	 Technique-based architecture (TBA): This kind of architecture is designed on
the basis of the requirements. Soft computing technique such as artificial intel-
ligence uses TBA. TBA allows systems to learn, examine, plan, replan and then
execute the plan to achieve autonomic goals.

•	 Service-oriented architecture: Few systems that need monitoring and analysis
also require service-oriented architecture to enable the systems to handle man-
agement-based requirements automatically. They are reactive in nature.

•	 Nonautonomic system architecture: Without developing a fully autonomic sys-
tem, the developers are using a concept of injecting some of the autonomic
requirements in the existing system. This will be helpful for the legacy system.
Monitoring and healing are the features that may be implemented in nonauto-
nomic systems. This will reduce the development cost, time and also reform the
system in the working conditions again.

After this, IBM in 2005 presented an autonomic computing-based white paper
explaining the base architecture layer of autonomic computing with some layers

399

1 3

A review on architecture and models for autonomic software…

which are organized based on the IT processes such as Incident, Change and Prob-
lem Management. These managements may lead to the fulfillment of the auto-
nomic capabilities. The following are the layers of the autonomic architecture:

Managed resource: Managed resource or managed element is a part of the auto-
nomic architecture on which the autonomic computing-based control loop works.

Touch point: For the connectivity between MAPE-K loop and managed resource,
sensors and effectors are required which take the input from the managed resource
and feed the output back to the managed resource, respectively.

Autonomic manager: Autonomic manager is a kind of handler which works using
MAPE-K loop to handle the internal and external activities of the managed resource.

Orchestrating autonomic manager: For a single managed resource, one autonomic
manager is sufficient. For more than one managed resource, there is a need for many
autonomic managers, and this will form an orchestrating autonomic manager.

Manual manager: Manual manager is quite different from the autonomic manager in
terms of its management task. In a manual manager, the management is done by an
administrator by setting high-level policies and rules.

In 2005, NASA initiated an autonomous technique-based project named as
ANTS (Autonomous NanoTechnology Swarm). This project involves worker
craft and messenger craft. The worker craft works in a group with the coordinat-
ing ruler to find information for evaluating the asteroids that issue instructions.
The messenger craft sends the gathered information to control room on the earth.
NASA has already implemented the concept of autonomic computing in DS1 and
Mars Pathfinder mission [19]. They want to develop such a system which can
make a decision in a critical situation in real time without sending the signals.
Huebscher and McCann [20] conducted a study of some of the autonomic devel-
opments which included SAS, ASADA, SPS and ANTS along with autonomic
computing.

Garlan and Schmerl [21] suggested an adaption model for the autonomic sys-
tem. The model was tested by changing code in the managed unit. This model
works as an architecture model for resolving issues. The explanation of this
model is provided in their paper at an abstract level. The implementation proce-
dure is shown in their paperwork. Their work laid down the development of self-
healing feature externally in the system.

Wang [22] in their work proposed a rule-based model for autonomic self-adap-
tive systems. They had given a few reasons for using this rule-based approach:

•	 Due to the centralization of the rules-based model, a fine-grain level of con-
sistency may be achieved.

•	 Also, the centralization of rules helps in understanding rules more clearly, and
it will reduce redundancy from the rules.

400	 P. Dehraj, A. Sharma

1 3

For the administrator, the model-based rules can be stored externally for easy
modification by the admin and their execution may be done using if–then condi-
tioning loop action. The authors work shows in their paper using XML representa-
tion of the rules which may be reversed into executable code during run time. This
approach is quite effective for the self-adaptive system.

Kumar and Sharma [23] proposed a vulnerability detection model using auto-
nomic computing technique to reduce vulnerability rate in software. In their work,
the model detects the vulnerability and then takes the appropriate intelligent action
using AC for mitigation. Their approach works as post-processor means; first, the
system is exposed to vulnerable situations and then takes the action.

In the research work, Pena et al. [24] have shown a model-driven approach
(MDA) to model, deploy and manage a self-policy-based system during run-time
process. The authors have provided numbers of deployment solution for self-man-
agement such as structural organization model (SOM), model of reusable autono-
mous and autonomic features (M-RAAF), platform service model (PSM) and
acquaintance organization model (AOM), in a single model-driven architecture. All
these models will run as per requirements defined for each model. To change the
policies at run time, the models will perform its task as defined in Fig. 7 and steps
are:

•	 M-RAAF improves the reusable property as the repository is going to be man-
aged for this.

•	 AOM is used for the role organization based on the interaction existing between
the agents.

•	 SOM is used to structure the agents into hierarchical structure to show social
structure of the agent role.

•	 PSM is the last model used to deploy policy onto a system during run time.

Fig. 7   Summary of MDA approach [24]

401

1 3

A review on architecture and models for autonomic software…

The deployment of policies in a system will start with a transformation of one-
stage model to another next-stage model; for example, a transformation from
M-RAAF to AOM, AOM to SOM and SOM to PSM will be done for applying poli-
cies during running process. It will add new functionalities as per the requirements.

Analysis of the architecture-based related work: From the above research work,
it is concluded that the researchers mainly discussed the architecture-level difficul-
ties, capabilities, development-based requirements and the frameworks on which
autonomic system may be designed. Few researchers have actually tried to design
and develop autonomic architecture such as adaptation model by [21], self-adaptive
model by [22]. Few of them have only suggested an architecture-based design such
as vulnerability detection model proposed by [23]. Besides this, the vulnerability
model only works for detection and mitigation of vulnerability. The model is only
implemented with self-healing feature. The model will not handle any self-configu-
ration-, self-optimization- and self-protection-based issues. Implementation of other
autonomic features will increase the architectural complexity. The model-driven
approach defined by [24] is another architectural-based proposal. The architecture
shown in Fig. 7 defines four different models which are combined in a single MDA.
Deployment of different policies for four different models leads to the complex
architecture structure. Its type of architecture-based software will also affect the per-
formance and efficiency of the software system. Security- and vulnerability-based
self-policy for such systems will be difficult to implement.

This kind of model which is specific to any particular autonomic feature will not
work to handle different types of run-time issues. Also, higher level requirements
are tried to be fulfilled in the proposed models but lower level user’s requirements
such as automatic recovery of deleted files, utility-based activation or deactivation
of particular services must also be fulfilled automatically.

3.2 � Metrics‑based

Salehie and Tahvildari [14] discussed the complexity which is growing exponen-
tially with the development and categorized it broadly into three categories:

1.	 Business domain complexity (BDC): complexity due to business processes,
resources (hardware or software) and organizational setup which is measured in
terms of size and cost, probability of fault occurrence and time.

2.	 System development complexity (SDC): complexity estimated or faced during
the development of software, applications and system comes under SDC. During
the development of each phase, the ease of developing items tells about the level
of complexity of that item. It is also estimated in terms of size and cost.

3.	 System management complexity (SMC): It includes system management process
complexity, security management process complexity and recovery measures-
based complexity and others based on the maintenance of the system.

Based on their studies, the authors did a major identification of the functionalities
and also found a relationship between CHOP and identified complexities.

402	 P. Dehraj, A. Sharma

1 3

•	 Self-configuration has a relation or impact on functionality, maintainability and
portability.

•	 Self-healing has a relation with survivability, availability, reliability and main-
tainability factors.

•	 Self-optimization has a relation with performance.
•	 Self-protection has a relation with maintainability and reliability of the system.
	  Parashar and Hariri [12] explained the origin of autonomic computing (AC)

using the parameters that govern the maintenance using Ashby’s ultra-stable
system for the human brain. Based on this, they identified two properties which
may be taken as the identification marks between the autonomic system and the
human body. The properties are:

•	 After adaption to the internal or external changes, the system must survive.
•	 The system must create a new equilibrium state when the system is thrown out of

its optimal state of equilibrium.

The authors further divided the autonomic architecture workflow into two loops
based on known and unknown environmental behavior:

•	 Local loop: When the system knows its environmental changes, the local loop
handles the changes using its already stored knowledge database. Every param-
eter has its range or limits. If the parameters exceed their limits, then local loop
control passes on to the global loop after updating the changes done during the
local loop control.

•	 Global loop: When the control passes to the global loop, its role started. The
global loop works only for handling the unknown environmental changes which
are not handled by a local loop. It monitors and analyzes the state of environ-
mental changes using some parameters such as performance, security, configu-
ration and protection. Global loop updates the knowledge database based on
the changes for further easy adaptability and better response. If the parameters
exceed their limits, the loop automatically makes new adaption methods which
will be added to the existing database.

The authors further divided the autonomic computation-based future challenges
into four categories:

1.	 Conceptual challenges: for implementing autonomic concept during the software
development process, there is a need for designing statistical models, relational
models and abstraction models for developing relationships among elements.

2.	 Architectural challenges: implementation of autonomic computation technique
including autonomic elements and interaction among the elements during its
architectural designing based on local and global behavior.

3.	 Middleware challenges: there is a need to provide core-level services for auto-
nomic behaviors realization but environment changes are still uncertain like iden-
tification of every aspect, verification, security and privacy, trust-level issues, etc.

4.	 Application challenges: implementation of autonomic behavior through program-
ming, designing frameworks and middleware services.

403

1 3

A review on architecture and models for autonomic software…

Some of the researchers have given attention to the problem of evaluating auto-
nomic computing systems. In one such earliest attempt, Huebscher et al. [11] in
their paper after briefly introducing CHOP properties indicated that there is no set
definition of autonomic systems. They focused on needs for such systems which are
driven by increasing the cost and complexity of today’s IT infrastructure. Authors
have then discussed various software architectures for AC, which is mainly catego-
rized into three categories: multiagent systems, architecture design-based autonomic
system (AS) and hot-swapping components.

The important metrics that may be used for evaluation of AS given by authors are
quality of service, cost, granularity, robustness, degree of autonomy, adaptivity, time
to adapt and reaction time, sensitivity and stabilization.

Authors argued that AS is much more complex than the traditional systems and
hence area of benchmarking and metrics derivation is an interesting one. The authors
identified the metrics for comparing heterogeneous autonomic system (Fig. 8).

To identify heterogeneous autonomic systems, the two approaches were used:
tightly coupled autonomic system and decoupled autonomic system. These
approaches have common concepts. Again both approaches need two kinds of ele-
ments: (1) for the target system functionality implementation and (2) to add a solu-
tion for self-management in the system. These elements describe two-level architec-
ture: interrelationship and intraelement relationship. The first level deals with the
relationships among the elements in a particular manner. The second level describes
the global aspects of the autonomicity, such as overall configuration [11]. Infrastruc-
ture elements provide documentation service: monitor the system and aggregation
of valid information, interconnectivity and negotiation.

Fig. 8   Approach to identify autonomic system [11]

404	 P. Dehraj, A. Sharma

1 3

Brown et al. [25] implemented a practical benchmark for self-healing property
of AS. The process involved introducing disturbances in System Under Test (SUT)
subjected to performance workload just like any real e-commerce application. The
healing capacity of SUT is determined by finding how the system heals and by
measuring healing effectiveness level, i.e.,

•	 How effectively the system heals itself?
•	 How autonomic that healing is?

For the metric, a 90-point question survey was used which follows five-point clas-
sification set by the IBM Autonomic Computing Maturity Model. Authors have also
addressed the various issues that present a challenge to benchmarking area:

1.	 Quantifying autonomic maturity directly.
2.	 Quantifying healing effectiveness to capture broader areas.
3.	 Accounting for incomplete healing.
4.	 Accounting for resources used.
5.	 Unified metrics in the end for all properties.

One good attempt at assessing the quality of AS through autonomicity is done
in [26]. The authors have proposed an approach for measuring the level of autono-
micity (LoA) as this will give autonomic functionality level in a system. They have
presented some functionality, and these functionalities depend on some metrics. All
the functionalities add up to give LoA. The functionalities considered are CHOP
properties, and each one of them has a metric based on which it is measured. The
functionalities considered are CHOP properties, and each one of them has a metric
based on which it is measured:

Self-configuration depends on interoperability, calculated as

where n is the number of self-functionality and I is the actual number of self-func-
tionality presented in the system divided by expected number of self-functionality.

Self-optimization depends on stability metric, calculated by variables such as
current load distribution, CPU utilization, etc.

Self-healing depends on reaction time T, calculated as

where tb is time to work out new configuration and be ready to adapt and ta is time at
which the change occurs in environment.

Self-protection depends on ability to detect any repeat events E calculated as

I =

i
∑

1

niactual

niexpected

T = t
b
− t

a

E = True∀ijif
{

pij
}

t
1
∩
{

pij
}

t
2
= ∅

405

1 3

A review on architecture and models for autonomic software…

where pij is the log of all identified trends and corresponding problems at different
time intervals t1, t2.

For n numbers of self-functionalities, mathematically there will be
∑n

i=0
Cr possi-

ble evaluating combination for LoA. The mathematical calculation is done by imple-
menting the algorithm in C# program. IBM has defined five maturity levels for the
system software [27–29].

Level 1: Basic—all the management will be done manually
Level 2: Managed—Out of four self-controlling functions, analyzing and plan-
ning would be done manually
Level 3: Predictive—only implementation-based decision would be taken manu-
ally by the developer’s team
Level 4: Adaptive—administrator-level work will be to set high-level policies and
generate automatic plans
Level 5: Autonomic—self-managed system policy

To find a fully autonomic level of any software, IBM also proposed two aspects
for evaluating the LoA of any autonomic system [29]:

•	 Functionality: It means how less manual intervention (low, medium and high) is
required in the case of error conditions when the system activates self-configura-
tion, self-optimization and self-healing.

•	 ROM (recovery-oriented measurement): It includes availability, maintainability
and scalability level in the system.

To estimate LoA of an autonomic system, the authors [30] proposed mainte-
nance assessment model (MAM) using which application complexity level (ACL)
was evaluated for some autonomic computing based on live projects using fuzzy
approach. The authors again applied neuro-fuzzy approach to improving the previ-
ous results but the approach applied only one of the major factors which highly con-
tributes to the ACL, i.e., complexity [31, 32].

Many companies have developed autonomic applications and implemented some
of the autonomic features. For the recovery-oriented purpose, Patterson et al. [33]
mentioned in their work about recovery-oriented computing (ROC) application. The
recovery-oriented programming addresses software, hardware and human failures
by providing an effective mechanism for detecting and recovering them. The con-
struction and implementation of ROC system were out of the discussion from their
paper but it laid down a discussion basis where a researcher could think of efficient
architecture and programming model that may solve ROC and provide the maxi-
mum availability for computer systems.

Analysis of the metrics-based related work: Many research works have been done
for proposing metrics-based analysis of autonomic systems with their challenges.
Also identification of some quality factors has been done based on CHOP factors.
The overall quality and autonomicity may be estimated using proposed approaches
but practically, these proposed approaches have not been implemented on any

406	 P. Dehraj, A. Sharma

1 3

autonomic application. The two aspects defined by IBM in [29] have not been used
for measuring autonomicity of the any developed autonomic application by the IBM
itself. The metrics proposed by [26] have also not been implemented for any auto-
nomic applications. The reason may be due to lack of autonomic features in devel-
oped autonomic applications such as recovery-oriented computing application which
only works for system recovery-level computing. IBM defined five maturity levels
to define autonomicity level in each phase. But fully autonomic software systems
have not been developed till now. The developed software systems generally focused
on particular autonomic features, e.g., Gryphon, SMART-DB2, Storage Tank, etc.,
which are also specific to few autonomic features only. So, the review work will
provide a brief about all the autonomic features and its autonomicity level. All the
developed autonomic applications are not fully autonomic in nature.

3.3 � Applications‑based

After IBM, other companies also worked for implementing autonomic computation
technique in their applications. There are many projects under IBM where auto-
nomic properties are either integrated with existing software or being developed
as new software to work with existing systems. Some of their initiatives are listed
Table 2.

Table 2   Autonomic applications

Software Functionality

Gryphon: Pub/Sub (Middleware) Distributes large volumes of data/content in real time to thousands
of clients distributed throughout a large “public” network, such as
a wide-area extranet or intranet that is too large or complex to be
centrally administered to support specific applications [34]

HWLM: Heterogeneous workload
management (Total System)

Allows installations to define business objectives for a clustered
environment. This business policy is expressed in terms that relate
to business goals and importance, rather than the internal controls
used by the operating system [35]

LEO: DB2′s learning optimizer Comprehensive way to repair incorrect statistics and cardinality
estimates from a query execution plan (QEP). By monitoring pre-
viously executed queries, LEO compares the optimizer’s estimates
with actual ones at each step in a QEP and computes adjustments
to cost estimates and statistics that may be used during future
query optimizations [36]

SMART: Self-managing and
resource tuning DB2

Designed to reduce the human intervention needed to run and main-
tain a database [37]

Storage tank Heterogeneous file sharing, policy-based file and storage manage-
ment, high performance and scalability. This technology is cur-
rently used in IBM’s Tivoli’s Storage Manager Product [38]

UFiler Facilitates access and sharing of files that may be geographically
distributed over an entire enterprise or the Internet. It allows
access to files anytime [29] and anywhere, and files are protected
through fine-grained access-control lists [5]

407

1 3

A review on architecture and models for autonomic software…

Analysis of the application-based related work: Application-level studies from
different literature explained the implementation of autonomic features at some
level. All the autonomic applications are not fully autonomic. Few of these works
at the administrative level and some of these are developed for middleware usage.
IBM has designed and implemented a few applications for autonomic workflow. The
applications are only designed and developed for specific autonomic functionality.
For example, learning optimizer (LEO) is used for the query optimizer. Oracle and
Microsoft have also designed their own query optimizer such as oracle query opti-
mizer (OQO) and SQL query optimizer (SQO). The comparison among such auto-
nomic functionalities in different software applications has been performed [39–43]
on different parameters such as configuration manager, index reorganization, per-
formance monitor, query selection, consistency checking, storage management, ser-
viceability utility, maintenance plan, integrity management, database tuning utility,
incremental restore, database recovery. But autonomicity-based quality parameter
has not been used to compare such optimizers empirically. The authors [44] have
performed autonomicity-based empirical analysis of above-mentioned query opti-
mizers using a hybrid approach of fuzzy analytical hierarchy process and a newly
proposed evaluation approach. But the results have not been validated and verified.
The lack of validation and verification is because the research has not been carried
out for such analysis. Metrics can be used for comparing different applications and
software systems for measuring the performance. Performance is one of the major
quality factors used to examine the utility of particular software. Similarly, differ-
ent comparisons can be done after discovering the specific autonomic-based qual-
ity metrics. There is a need to implement lower-level users-based requirements in
the autonomic software and applications so that autonomic concept can be work in
every environment after designing on each level of the system’s architecture.

3.4 � Software development‑based

Pfannemüller et al. [45] integrated a dynamic software product line-based con-
text-aware feature into the database knowledge component of adaptation logic for
improving analysis and planning of reconfiguration-based activities. The purpose of
the adaptation logic component is to reduce the use of case-based specification in
system software.

Sharma et al. [46, 47] in their paper discussed the paradigm shift in software
development due to autonomic computing concept. In their paper, the authors pre-
sented a generic architecture of AS and its life cycle. Both these aspects are crucial
while considering the assessment of such systems. In the architecture, the authors
defined the interactions between the system and its external environment through
three system components:

•	 Negotiation: It is the link between the system and the environment. After nego-
tiating requested services, it communicates its own requirements to other AS in
touch.

408	 P. Dehraj, A. Sharma

1 3

•	 Execution: It is solely responsible for executing the policies resulting in a par-
ticular behavior of a system.

•	 Observation: This component records all the changes and stores them in the
knowledge base.

The autonomic systems’ life cycle has four stages starting with developing the AS
(design and implementation), followed by testing and verification phase; then the
full working stage (installation, configuration, optimization, upgradation, monitor-
ing, problem determination and recovery); the last stage is the end of life cycle of
AS (replacement or uninstall).

Shuaib et al. [48] identified the main characteristics that relate to the quality of
AS from ISO 9126:1998 standards. The authors briefly elaborated these attributes
as:

•	 Functionality: suitability and interoperability.
•	 Efficiency: response time, processing time and throughput.
•	 Portability: adaptability, installability, coexistence and replaceability.

The system which is added with autonomic capabilities will become complex.
The complexity will also be increased with the development of the Internet of
Things (IoT) in autonomic application [49]. IoT itself has complexity to develop
because it involves not only computers and phones (or mobiles) but also the home
systems, e.g., household hardware which required automatic responses using Inter-
net service. This will definitely increase software and hardware complexity. When
such advanced ideas are combined, then handling system’s failures requires a higher
level of recovery-oriented measures (ROM). This kind of recovery measures must
work dynamically with less human intervention.

Availability of system and system’s resources is an important aspect in the field
of computer network and distributed systems. The IT industries have made many
attempts to provide on-time services but due to unidentified loophole in security and
privacy ways, there is always a chance of failure and unavailability of resources.

Oreizy et al. [50] presented their efforts for self-adaptive systems, which is one of
the self-managed properties. Self-adaption means the system automatically adapts
itself according to whether the changes are internal or external. For this, the authors
provided with an Adaption Management and Evolution Management process for the
system which may be developed with a self-adaptive feature. The process involved
two steps: Adaption Management and Evolution Management.

The first step involves monitoring, analysis, planning and then deploying the
changes which are examined during the analysis phase. This step makes the actual
changes to be updated within the knowledge database to make the system adaptable
for similar changes in future. The second step, Evolution Management, handles the
consistency, integrity during the implementation and architectural modeling.

As the autonomic concept is influenced by the human body; it is the best example
of self-adaptable systems. Based on this, Wang and Suda [51] proposed a biologi-
cal network-based architecture for constructing self-adaptive systems. They related
the computation in a system with the human biological system, e.g., bee colony. In

409

1 3

A review on architecture and models for autonomic software…

continuation, they mentioned the architecture, principles and platform for biological
network. The authors used a case study of Aphid system which may be available,
adaptable and scalable. It is also a Web content application. Using the Aphid sys-
tem, the authors tried to validate all the aspects that are scalability, availability and
adaptability.

Sterritt and Hinchey [52] discussed the autonomic vision and need of creating
a self-managed system to handle increasing complexity during and after the devel-
opment of the software system. The cost used for such complex systems is also a
concern for the fulfillment of tomorrow’s needs. In their work, the authors prop-
erly explained the growing needs of autonomic systems, related research work,
technologies developed and used during its growth. The current state of autonomic
research was explained using some real-time examples like NASA sensor network
applications.

For the same discussion, Solomon et al. [53] also mentioned the growing require-
ments of self-computation-based system. Autonomic computation provides a base
for self-optimization approach, i.e., how to optimize resource utilization. Autonomic
computation is similar to real-time systems, and for this, it requires information
for specific parameters using which decision making becomes an easy task. Thus,
mathematical characterization of the validation model is quite crucial. The authors
introduced an adaptable technique for the autonomic computing concept. The iden-
tification of adaptable technique is based on the pseudo-random arrival rate which is
injected in the autonomic system that works as disturbances in the autonomic sys-
tems. Based on the disturbances occurring in the systems, the observations will be
collected which will help in analyzing throughput rate, response rate, CPU load, etc.
Adaptable technique determines the sampling rate, and to extend the Kalman filtra-
tion process, recursive parameter estimation technique (RPE) is used. As a result, an
adaptable system will be designed on which control strategy relies upon. The work-
based experiments and results are shown in their paper.

An autonomic system not only reduces the maintenance but also helps in manag-
ing high-level objectives using policies and rules designed by developers for run-
time management at the administrator level. In their work, Portela and Perdomo [54]
presented a survey on autonomic computing and highlighted one of the autonomic
factors that may detect and correct the unwanted exceptions-based failure. This
property is self-healing which has a great effect on managing internal harms of the
system. This property may be implemented using artificial intelligence.

Kurian and Chelliah [55] observed that though the vision of autonomic com-
puting (AC) is highly ambitious, an objective analysis of autonomic computing
and its growth in the last decade throws more incisive and decisive insights on its
birth deformities and growth pains. Predominantly software-based solutions are
being preferred to make IT infrastructures and platforms adaptive and autonomic
in their offerings, outputs and outlooks. However, the autonomic journey has not
been as promising as originally envisaged by industry leaders and luminaries, and
several reasons are being quoted by professionals and pundits for that gap. Precisely
speaking, there is a kind of slackness in articulating its unique characteristics, and
the enormous potentials in business and IT acceleration. There are not many real-
world applications to popularize the autonomic concept among the development

410	 P. Dehraj, A. Sharma

1 3

community. Though some inroads have been made into infrastructure areas like net-
working, load balancing etc., and very few attempts have been exercised in appli-
cation areas such as enterprise relationship planning (ERP), software configuration
management (SCM) or customer relationship Management (CRM). In this paper,
they would like to dig and dive deeper to extract and explain where the pioneering
and path-breaking autonomic computing stands and explain varied opportunities and
possibilities, which insists hot pursuit of the autonomic idea. A simplistic architec-
ture for deployment of autonomic business applications is introduced, and a sample
implementation in an existing CRM system is described. This should form the basis
of a new start and ubiquitous application of AC concepts for business applications.

De Nicola et al. [56] proposed a very new approach using a language-based
approach to develop an autonomic system. Their work presented the details of the
Service Component Ensemble Language (SCEL), its specific design principles,
syntax and semantic operations. This will help in defining dialect with a sample
example. The SCEL approach helps in designing the autonomic system for various
domains. With the language specification approach, the authors tried to bring differ-
ent programming abstraction in the form of aggregation, their behaviors and knowl-
edge data together according to a specific policy.

Bees swarming technique presents self-optimization and self-adaption behavior.
Nhane and Song [57] used this technique for the autonomic system. The authors
explained the details about the bees swarming technique by exploring the environ-
ment in which bees live and how they get divided into different groups to fulfill their
desired target task. The authors also suggested the improvement from autonomic
manager to bees autonomic manager (BAM) to make this approach generalized
for the self-optimization attribute in the autonomic system. BAM follows the bees
algorithm to identify different roles and their allocation to the different groups of
resources to optimize the complete function and also suggests an Adapt Case Mode-
ling Language for the autonomic system. Using a case study of a computer network,
the authors depicted the usefulness of BAM.

Schneider et al. [58] used a self-healing property of autonomic computation with
the restricted Boltzmann machine (RBM) for proposing a self-healing ability for
their work. RBM is a generative stochastic artificial neural network (ANN) that can
be made capable of learning probability distribution (PD) over a set of inputs. They
also suggested that there is no surety of a system to find an appropriate solution
for the particular exception. The authors used their approach and combined it with
RBM to find out specific problems within the system and by the system only not
by the administrator. The RBM helps in identifying the reasons for the exceptions
occurring in the system, and it also uses a learning algorithm to identify and predict
the effect of exceptions using the past history stored results. The systems that use
RBM will validate the effects and will maintain a separate list of valid data only
based on positive results of the system. In the case of negative response, its effects
are marked as invalid along with their confidence value. The list of potential excep-
tions or faults along with their confidence values is stored in a sorted form. This
sorted list helps in prioritizing self-healing strategies. In their work, the authors also
compared the artificial neural network technique (ANN) with hidden Markov mod-
els (HMMs) based on their performance metrics and respective advantages.

411

1 3

A review on architecture and models for autonomic software…

Analysis of the software development-based related work: The development of
autonomic system will introduce complexity in the overall system’s architecture and
workflow which further leads to management task. The above research work sug-
gested that the development of autonomic system may be managed using agile mod-
eling process, RBM, bees swarming, ANN, BAM and many others. Agile modeling
follows modification easily during any phase of software development life cycle
(SDLC). Bees swarming helps in implementing self-optimized feature, RBM is
combined with ANN for implementing self-healing feature and self-adaptive feature
may be implemented using biological network-based bee colony technique. There is
lot of work done for the software development-based approach, and more research is
required to do highly autonomic software systems.

4 � Challenges towards autonomic computing

Technology-based development not only made the working on system efficient but
has also enhanced the complexity in developing and handling systems for the devel-
opers and testers. The manpower used for management purpose may be reduced
using the autonomous capable systems. But this is not an easy task and it may take
many years of hard work to reach such level of technology with many challenges.
This period of autonomous development has already been started since 2001 after
IBM suggested this solution. From the year 2001, many researchers have high-
lighted the challenges and tried to resolve them. As a result, autonomic applications
have been developed and only a few autonomic features were implemented but fully
developed autonomic application or software is still need long-time discussion, find-
ing and implementation of solutions. Such a solution initially required the identifica-
tion of challenges for autonomic computing, and based on these challenges, some
authors’ works have been discussed under this paper. During studies, the authors
have also identified some future challenges and designed a framework of challenges
at the granular level under the coarse-level aspects of challenges.

With the improvement in the development sector of IT, the requirements of auto-
nomicity in the products also increased to ensure the better quality. For this, the
autonomic-based challenges should be ensured in some areas such as networking,
management, modeling process, security and privacy [59, 60]. Refer to Fig. 9.

The framework presents the coarse to fine granular level of the autonomic-based
challenges [62–64]. All the fine-level aspects require the autonomic concept for the
better quality of service (QoS) [65]. Few challenges such as cloud computing, Inter-
net of Things (IoT) and Big Data are discussed in the paper below.

Dehraj et al. [66] mentioned that the assessment of quality for autonomic sys-
tems needs a few different parameters as self-capable features are implemented in
such systems. For this purpose, the authors gave two parameters (trustworthiness
and autonomicity) that need to be considered for estimating the quality of autonomic
systems. These two factors can be assured in the systems if the development process
incorporates such factors-based test cases and modeling techniques so that better
quality product/ systems will be achieved.

412	 P. Dehraj, A. Sharma

1 3

Due to increased complexity and size, a cloud may have become a big chal-
lenge in current computing scenario. Still, security management for the cloud is
a critical issue. Smith et al. [67] tried to solve the security issue in a cloud by
implementing an exception using the anomaly detection framework. The author
firstly discussed a few data analysis techniques and deviation detection-based
techniques in the system. In their proposed approach, the data transformation
technique will be used for analyzing and handling the diversity in the data. This
results in reducing the dataset by finding the outliers from the diversity data using
a data transformation step. After that, the author applied the feature selection step
to select those data values which shows some relationships and dependencies on
other values. At this stage, the multidimensionality of the datasets will be reduced
to some extent. This will help in better analysis of the data values. The whole
procedure helps in identifying the abnormal behavior of the outlier values auto-
matically. Wu et al. [68] worked in the same direction and designed an intrusion
detection model for the autonomic systems. They used the auction method for
detecting the intrusion at the agent coordination layer which lies between man-
aged resource and autonomic manager. Using sensors and effectors, the method
works efficiently to detect environmental changes. From the identified results, the
auction method will use its technique and allocate resources to achieve high opti-
mization. It will improve intrusion detection accuracy. Resource management is
another challenge that needs to be handled in cloud computing. Autonomic pro-
visioning in resource management tasks helps to improve QoS. Using the self-
optimization feature of AC, resources may be best utilized. Singh et al. [69] pro-
vided a detailed description of the importance of resource management in the
cloud using autonomic computing. The work concluded that automation in cloud
computing helps in selecting resource utilization and resource scheduling algo-
rithm at run time for a particular load-balancing task. Quality may be improved
in terms of energy, cost and time. The authors also highlighted some limitation
related to resource management.

•	 It is difficult to identify the best suitable resource distribution because it
requires finding reasons for the workload.

Fig. 9   Coarse- to fine-level autonomic computing-based aspects [61]

413

1 3

A review on architecture and models for autonomic software…

•	 Different parameters need to be examined for different problems to estimate
quality.

•	 Automatic workload execution should be done to avoid resource under-load-
ing and overloading.

Big data is again a high-priority area where autonomic computing may play
its role in improving analysis of the data. The handling of large data has become
a cumbersome task for the developers. Big data autonomic handler (BGAH)
approach may be implemented using autonomic concept. Berekmeri et al. [70]
worked in the same context and merged autonomic with MapReduce. For improv-
ing performance in big data, the author proposed an algorithm for Big Data
MapReduce. The author used the online feeding process to the MapReduce func-
tion. The author uses two constraints for online feeding: relaxed performance
with two feedback control mechanisms which are used to minimize configuring
of less number of clusters. The second constraint is strict performances which
is used to feed-forward and results in suppressing the effect of a large workload.
SCADA stands for supervisory control and Data Acquisition (SCADA). SCADA
systems are used to control complex systems such as power generation, manufac-
turing plants and transportation networks. Now SCADA has been adopting trends
such as virtualization, wireless communications, analytics and big data. Imple-
mentation of autonomic features in SCADA helps to manage the system itself.
For this purpose, Nazir et al. [71] proposed architecture for SCADA security
along with autonomic features. This type of architecture provides high availabil-
ity of resources and reduces software and hardware failure.

Internet of Things (IoT) is another application area where researchers are finding
solutions for better utility functions at home level. IoT is also facing the problem of
complexity management due to which the developers are now combining IoT with a
cloud so that the management will be done at a modular level. The interconnection
of a large number of systems and resources makes the IoT network quite complex.
Also, IoT suffers from the slow run-time execution environment. When IoT is com-
bined with cloud, it will improve execution time and response faster. One of the
major advantages of cloud computing is to store a large amount of data and also
high computation power. With these advantages, there is also a problem of integrat-
ing final-user context-awareness. Golchay et al. [72] worked for this purpose by pro-
viding a gateway using smartphones between cloud and IoT. The phone acts as an
autonomic enabled entity which reconfigures accordingly environmental changes,
e.g., battery usage, when it is low. This complete network will work to monitor and
provide response dynamically by selecting a suitable solution which acts as a self-
adaption mechanism. Using the cloud, resource management may be done better but
due to less context-awareness in the cloud, it becomes difficult for the users to com-
municate. The author uses the functionality of autonomic computing and applied
some of them in their work. They applied awareness property for monitoring the
activity using listener or event notifier. The listener will send notification step by
step with the change. They also applied coordination mechanism and deployment
which requires adaptive functionality for call redirection and migration using smart-
phones mobility. For this adaptive property, they used disrupted tolerant network

414	 P. Dehraj, A. Sharma

1 3

(DTN) for on-demand deployment services like opportunistic and spontaneous
deployment services.

5 � Conclusion

From the year 1960 to 2001, the self-management technique was not so much
required in the IT industry but after 2001, the requirement of autonomic comput-
ing has raised many advantages which have overcome the weaknesses such as com-
plexity management, security and privacy management and resource management.
Autonomic computing makes the system self-dependent. From all the previous
works discussed in this paper, the majority of the researchers have focused only on
highlighting autonomic concept, its reference architecture, policies and MAPE-K
loop. They have also discussed the importance of autonomic computing in a differ-
ent domain where AC can bring cost-effective and quality results. From the above
studies, the authors have identified a different vision for autonomic computing: the
vision of autonomicity estimation and how the requirement of autonomous features
changes with the change in the internal or external environment of the system dur-
ing run time. According to the authors, with the shift of system development para-
digm from nonautonomous to autonomous, the developers have also tried to develop
a self-adaptable system with the change in the management requirements. These
systems are not considered as fully autonomic as they are not capable of handling
high-level management task automatically. These types of systems were made par-
tially self-adjustable and self-recoverable. They were useful in handling issues at the
lower level. But security- and privacy-based resources require automatic manage-
ment and recovery plans. They need to ensure with an autonomic enabled system at
their usage level. The need for autonomic computing varies with the domain and the
level. If any application or software is designed with autonomic abilities based on
its usage and domain, then their management graph will show improvement. Also,
the testing of such systems will be easier and cost-effective. Our future work will be
to understand the proposed solutions provided by researchers in both academic and
industrial levels and will try to design a general architecture which will be cost- and
quality-effective in all the SDLC phases and also for testing.

References

	 1.	 Horn P (2001) Autonomic computing: IBM’s perspective on the state of information. IBM
	 2.	 Kephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50
	 3.	 SAS home page (2015). https​://www.darpa​.mil/ato/progr​ams/suosa​s.htm. Accessed 9 May 2019
	 4.	 Cobleigh JM, Osterweil LJ, Wise A, Lerner BS (2002) Containment units: a hierarchically compos-

able architecture for adaptive systems. SIGSOFT Softw Eng Notes 27(6):159–165
	 5.	 Garlan D, Schmerl B, Chang J (2001) Using gauges for architecture-based monitoring and adapta-

tion. In: Working Conference on Complex and Dynamic Systems Architecture, Brisbane, Australia
	 6.	 Kaiser G, Gross P, Kc G, Parekh J, Valletto G (2002) An approach to autonomizing legacy systems.

In: Proceedings of the Workshop on Self-Healing, Adaptive and Self-MANaged Systems
	 7.	 Wolf AL, Heimbigner D, Bend JK (2000) Don’t break: using reconfiguration to achieve survivabil-

ity. In: Proceedings of the 3rd Information Survivability Workshop

http://www.darpa.mil/ato/programs/suosas.htm

415

1 3

A review on architecture and models for autonomic software…

	 8.	 Badger L (2004) Self-regenerative systems (SRS) program. Abstract.www.toler​antsy​stems​.org/.
Accessed 13 May 2019

	 9.	 Nami MR, Sharifi M (2007) Autonomic computing: a new approach. In: First Asia International
Conference on Modelling & Simulation (AMS’07). IEEE, pp 352–357

	10.	 IBM Corporation (2005) An architectural blueprint for autonomic computing, 3rd edn
	11.	 McCann JA, Huebscher MC (2004) Evaluation issues in autonomic computing. In: Grid and Coop-

erative Computing Workshops. Springer, pp 597–608
	12.	 Hariri SA (2005) Autonomic computing: an overview. Unconventional programming paradigms.

Springer, Berlin, pp 257–269
	13.	 Ganek AG, Corbi TA (2003) The dawning of the autonomic computing era. IBM Syst J 42(1):5–18
	14.	 Salehie M, Tahvildari L (2005) Autonomic computing: emerging trends and open problems. ACM

SIGSOFT Softw Eng Notes 30(4):1–7
	15.	 Cloud Computing: Why the Future of Cloud lies in autonomics. https​://www.compa​rethe​cloud​.net/

artic​les/why-the-futur​e-of-cloud​-lies-in-auton​omics​/. Accessed on March 2020
	16.	 TahirM, Ashraf QM, Dabbagh M (2019) Towards enabling autonomic computing in IoT ecosystem.

In: 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, Inter-
national Conference on Pervasive Intelligence and Computing, International Conference on Cloud
and Big Data Computing, International Conference on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, pp 646–651

	17.	 Vieira K, Koch FL, Sobral JBM, Westphall CB, de Souza Leão JL (2019) Autonomic Intrusion
detection and response using big data. IEEE Syst J. https​://doi.org/10.1109/JSYST​.2019.29455​55

	18.	 Khalid A, Haye MA, Khan MJ, Shamail S (2009) Survey of frameworks, architectures and tech-
niques in autonomic computing. In: Fifth International Conference on IEEE Explore

	19.	 Muscettola N, Nayak PP, Pell B, Williams BC (1998) Remote agent: to boldly go where no AI sys-
tem has gone before. Artif Intell 103(1–2):5–47

	20.	 Huebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and appli-
cations. ACM Comput Surv 40(3):7

	21.	 Garlan D, Cheng SW, Huang AC, Bradley S, Steenkiste P (2004) Rainbow: architecture-based self-
adaptation with reusable infrastructure. IEEE Comput 37(10):46–54

	22.	 Wang Q (2005) Towards a rule model for self-adaptive software. ACM SIGSOFT Softw Eng Notes
30(1):1–5

	23.	 Kumar M, Sharma A (2017) An integrated framework for software vulnerability detection, analysis
and mitigation: an autonomic system. Sādhanā 42(9):1481–1493

	24.	 Pena J et al (2006) A model-driven architecture approach for modeling, specifying and deploying
policies in autonomous and autonomic systems. In: 2006 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing. IEEE, pp 19–30

	25.	 Brown B, Redlin C (2005) Measuring the effectiveness of self-healing autonomic systems. In: Sec-
ond International Conference on Autonomic Computing (ICAC’05)

	26.	 Eze T, Anthony R, Soper A, Walshaw C (2012) A generic approach towards measuring level of
autonomicity in adaptive systems. Int J Adv Intell Syst 5(3&4):553–566

	27.	 AutonomicComputingToolkit (2015). https​://www.ibm.com/devel​operw​orks/auton​omic/books​/
fpu1m​st.htm. Accessed 1 June 2019

	28.	 About IBM Autonomic Computing (2015). https​://www-03.ibm.com/auton​omic/about​_get_model​
.html. Accessed 1 June 2019

	29.	 www.resea​rch.ibm.com/auton​omic/acade​mic/resea​rch.html (2015). Accessed 1 June 2019
	30.	 Sharma A, Dehraj P (2015) Complexity based maintenance assessment for autonomic agent. In:

WSEAS- Conference, Rome, Italy, pp 7–9
	31.	 Sharma A, Dehraj P (2015) Complexity assessment for autonomic system using neuro-fuzzy

approach. In: CSI- Conference. Springer, Delhi
	32.	 Kumari N, Sunita S (2013) Comparison of ANNs, fuzzy logic and neuro-fuzzy integrated approach

for diagnosis of coronary heart disease: a survey. IJCSMC 2(6):216–224
	33.	 Patterson D, Brown A, Broadwell P, Candea G, Chen M, Cutler J, Enriquez P, Fox A, Kiciman E,

Merzbacher M, Oppenheimer D (2002) Recovery-oriented computing (ROC): motivation, defini-
tion, techniques, and case studies. Technical report UCB//CSD-02–1175, UC Berkeley Computer
Science, pp 1–25.

	34.	 Astley M, Bhola S, Saccone R (1997) The Gryphon project. IBM. www.resea​rch.ibm.com/distr​ibute​
dmess​aging​/gryph​on.html. Accessed 2015

http://www.tolerantsystems.org/
https://www.comparethecloud.net/articles/why-the-future-of-cloud-lies-in-autonomics/.
https://www.comparethecloud.net/articles/why-the-future-of-cloud-lies-in-autonomics/.
https://doi.org/10.1109/JSYST.2019.2945555
http://www.ibm.com/developerworks/autonomic/books/fpu1mst.htm
http://www.ibm.com/developerworks/autonomic/books/fpu1mst.htm
http://www-03.ibm.com/autonomic/about_get_model.html
http://www-03.ibm.com/autonomic/about_get_model.html
http://www.research.ibm.com/autonomic/academic/research.html
http://www.research.ibm.com/distributedmessaging/gryphon.html
http://www.research.ibm.com/distributedmessaging/gryphon.html

416	 P. Dehraj, A. Sharma

1 3

	35.	 Zhang R (2007) Autonomic performance recuperation for service-oriented systems. In: IEEE
International Conference on Services Computing

	36.	 Stillger M, Lohman GM, Markl V (2001) LEO-DB2’s learning optimizer. VLDB 1:19–28
	37.	 Lohman GM, Lightstone SS (2002) SMART: making DB2 (more) autonomic. In: 28th Interna-

tional Conference on Very Large Data Bases
	38.	 Menon J, Pease DA, Reese R, Duyanovich L, Hillsberg B (2003) IBM storage tank—a heteroge-

neous scalable SAN file system. IBM Syst J 42(2):250
	39.	 JangraA, Bishla D, Bhatia K, Priyanka P (2010) Functionality and security analysis of ORA-

CLE, IBM-DB2 & SQL server. Glob J Comput Sci Technol 10(7)
	40.	 Mateen A, Raza B, Hussain T, Awais MM (2008) Autonomic computing in SQL server. In: Sev-

enth IEEE/ACIS International Conference on Computer and Information Science (ICIS 2008).
IEEE, pp 113–118

	41.	 RazaB, Mateen A, Sher M, Awais MM, Hussain T (2010) Autonomic view of query optimizers
in database management systems. In: 2010 Eighth ACIS International Conference on Software
Engineering Research, Management and Applications (SERA). IEEE, pp 3–8

	42.	 Oracle Corporation: Technical Comparison of Oracle database Vs IBM DB2 UDB: Focus on
performance, Oracle White Paper. https​://www.oracl​e.com/techn​etwor​k/datab​ase/datab​ase10​g/
twp-perf-oracl​edb10​gr2vs​ibmdb​2udb-15951​0.pdf. Accessed 15 Sept 2019

	43.	 Herodotou H, Babu S (2010) Xplus: a SQL-tuning-aware query optimizer. Proc VLDB Endow
3(1–2):1149–1160

	44.	 DehrajP Sharma A (2019) An empirical assessment of autonomicity for autonomic query opti-
mizers using F-AHP approach. Appl Soft Comput J 90:106137

	45.	 Pfannemüller M, Krupitzer C, Weckesser M, Becker C (2017) A dynamic software product line
approach for adaptation planning in autonomic computing systems. In: 2017 IEEE International
Conference on Autonomic Computing (ICAC). IEEE, pp 247–254

	46.	 Sharma A, Chauhan S, Grover P (2011) Autonomic computing: paradigm shift for software
development. CSI Commun 35

	47.	 Chauhan S, Sharma A, Grover P (2013) Developing self managing software systems using agile
modeling. ACM SIGSOFT Softw Eng Notes 38(6):1–3

	48.	 Shuaib H, Anthony R, Pelc M (2011) A framework for certifying autonomic computing systems.
In: The Seventh International Conference on Autonomic and Autonomous Systems

	49.	 Holler J, Tsiatsis V, Mulligan C, Karnouskos S, Boyle D (2014) From machine-to-machine to the
Internet of Things: introduction to a new age of intelligence. Academic Press, New York

	50.	 Oreizy P, Gorlick MM, Taylor RN, Heimhigner D, Johnson G, Medvidovic N, Wolf AL (1999)
An architecture-based approach to self-adaptive software. IEEE Intell Syst Appl 14(3):54–62

	51.	 Wang M, Suda T (2001) The bio-networking architecture: a biologically inspired approach to
the design of scalable, adaptive, and survivable/available network applications. In: Proceedings.
2001 Symposium on Applications and the Internet. IEEE

	52.	 Sterritt R, Hinchey M (2005) Tutorial proposal: autonomic computing in real-time systems.
www.artes​.uu.se/event​s/summe​r05/Hinch​ey_tutor​ial.pdf

	53.	 Solomon B, Ionescu D, Litoiu M, Iszlai G, Prostean O (2010) Measurements and identifica-
tion of autonomic computing processes. In: 2010 IEEE International Conference Computational
Intelligence for Measurement Systems and Applications (CIMSA), pp 72–77

	54.	 Portela AER, Perdomo JG (2011) Survey: termites system with self-healing based on autonomic
computing. In 2011 6th Colombian Computing Congress (CCC), pp 1–6

	55.	 Kurian D, Chelliah PR (2012) An autonomic computing architecture for business applications.
In IEEE, Information and Communication Technologies (WICT), 2012 World Congress, pp
442–447

	56.	 De Nicola R, Ferrari G, Loreti M, Pugliese R (2013) A language-based approach to autonomic
computing. Formal methods for components and objects. Springer, Berlin

	57.	 Nhane ALO, Song MAJ (2014) Self-optimization in autonomic computing systems based on
the methodology of bees swarm intelligence. The Steering Committee of the World Congress in
Computer Science, Computer Engineering and Applied Computing (WorldComp)

	58.	 Schneider C, Barker A, Dobson S (2015) Autonomous fault detection in self-healing systems
using restricted boltzmann machines. In: IEEE Conference. arXiv preprint arXiv:1501.01501

	59.	 Manzalini A, Deussen PH, Nechifor S, Mamei M, Minerva R, Moiso C, Zambonelli F (2010)
Self-optimized cognitive network of networks. Comput J 54(2):189–196

https://www.oracle.com/technetwork/database/database10g/twp-perf-oracledb10gr2vsibmdb2udb-159510.pdf
https://www.oracle.com/technetwork/database/database10g/twp-perf-oracledb10gr2vsibmdb2udb-159510.pdf
http://www.artes.uu.se/events/summer05/Hinchey_tutorial.pdf

417

1 3

A review on architecture and models for autonomic software…

	60.	 Raza B, Mateen A, Sher M, Awais MM, Hussain T (2010) Autonomic view of query optimizers in
database management systems. In: 2010 Eighth ACIS International Conference on Software Engi-
neering Research, Management and Applications (SERA). IEEE, pp 3–8

	61.	 Sharma A, Dehraj P (2016) Towards autonomicity: from man to machine and its challenges. In:
CTICON- Conference, Delhi, India, May 27–28

	62.	 Al-Oqily I, Alzboon M, Al-Shemery H, Alsarhan A (2013) Towards autonomic overlay self-load
balancing. In: 2013 10th International Multi-Conference on Systems, Signals & Devices (SSD).
IEEE, pp 1–6

	63.	 Atif Y, Badr Y, Maamar Z (2010) Towards a new-digital learning ecosystem based on autonomic
Web services. In: 2010 4th IEEE International Conference on Digital Ecosystems and Technologies
(DEST). IEEE

	64.	 Alaya MB, Monteil T (2012) Frameself: a generic context-aware autonomic framework for self-
management of distributed systems. In: 2012 IEEE 21st International Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE). IEEE

	65.	 Exposito E, Chassot C, Diaz M (2010) New generation of transport protocols for autonomous sys-
tems. In: 2010 IEEE GLOBECOM Workshops (GC Wkshps). IEEE

	66.	 Dehraj P, Sharma A, Grover PS (2018) Incorporating autonomicity and trustworthiness aspects for
assessing software quality. IJET 7(1.1):421–425

	67.	 Smith D, Guan Q, Fu S (2010) An anomaly detection framework for autonomic management of
compute cloud systems. In: 2010 IEEE 34th Annual Computer Software and Applications Confer-
ence Workshops (COMPSACW). IEEE

	68.	 Wu Q, Zhu L, Cao J, Zheng R (2012) Proactive intrusion detection model based on autonomic com-
puting. In: International Conference on Automatic Control and Artificial Intelligence (ACAI 2012),
IET, pp 1601–1604

	69.	 Singh S, Chana I, Singh M (2017) The journey of QoS-aware autonomic cloud computing. IT Prof
19(2):42–49

	70.	 Berekmeri M, Serrano D, Bouchenak S, Marchand N, Robu B (2016) Feedback autonomic pro-
visioning for guaranteeing performance in mapreduce systems. IEEE Trans Cloud Comput
6(4):1004–1016

	71.	 Nazir S, Patel S, Patel D (2017) Autonomic computing meets SCADA security. In: Proceedings
of 2017 IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing,
ICCI* CC 2017. London South Bank University, pp 498–502

	72.	 Golchay R, Mouël FL, Frénot S, Ponge J (2011) Towards bridging IOT and cloud services: propos-
ing smartphones as mobile and autonomic service gateways. arXiv preprint arXiv:1107.4786

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Pooja Dehraj1 · Arun Sharma1

 *	 Pooja Dehraj
	 poojadehraj2000@gmail.com

	 Arun Sharma
	 arunsharma@igdtuw.ac.in

1	 Indira Gandhi Delhi Technical University for Women, Delhi, India

	A review on architecture and models for autonomic software systems
	Abstract
	1 Introduction
	2 Autonomic computing
	2.1 AC state of the art: from past to present

	3 Literature review: four aspects-oriented
	3.1 Architecture-based
	3.2 Metrics-based
	3.3 Applications-based
	3.4 Software development-based

	4 Challenges towards autonomic computing
	5 Conclusion
	References

