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Abstract
Mining frequent itemset is considered as a core activity to find association rules from 
transactional datasets. Among the different well-known approaches to find frequent 
itemsets, the Apriori algorithm is the earliest proposed. Many attempts have been 
made to adopt the Apriori algorithm for large-scale datasets. But the bottlenecks asso-
ciated with Apriori like/such as repeated scans of the input dataset, generation of all 
the candidate itemsets prior to counting their support value, etc., reduce the effective-
ness of Apriori for large-size datasets. When the data size is large, even distributed 
and parallel implementations of Apriori using the MapReduce framework does not 
perform well. This is due to the iterative nature of the algorithm that incurs high disk 
overhead. In each iteration, the input dataset is scanned that resides on disk, causing 
the high disk I/O. Apache Spark implementations of Apriori show better performance 
due to in-memory processing capabilities. It makes iterative scanning of datasets faster 
by keeping it in a memory abstraction called resilient distributed dataset (RDD). An 
RDD keeps datasets in the form of key-value pairs spread across the cluster nodes. 
RDD operations require these key-value pairs to be redistributed among cluster nodes 
in the course of processing. This redistribution or shuffle operation incurs communica-
tion and synchronization overhead. In this manuscript, we propose a novel approach, 
namely the Spark-based Apriori algorithm with reduced shuffle overhead (SARSO). 
It utilizes the benefits of Spark’s parallel and distributed computing environment, and 
it is in-memory processing capabilities. It improves the efficiency further by reducing 
the shuffle overhead caused by RDD operations at each iteration. In other words, it 
restricts the movement of key-value pairs across the cluster nodes by using a parti-
tioning method and hence reduces the necessary communication and synchronization 
overhead incurred by the Spark shuffle operation. Extensive experiments have been 
conducted to measure the performance of the SARSO on benchmark datasets and 
compared with an existing algorithm. Experimental results show that the SARSO has 
better performance in terms of running time and scalability.
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1  Introduction

With the rapid evolution of the internet, a huge volume of data is being produced 
in our day-to-day life. These large volumes of data are collected to filter out some 
potential values that can further generate useful information and knowledge. Fre-
quent itemset mining algorithms aim to extract certain association or relation among 
the items from transactional databases by discovering frequent patterns of itemsets 
[1–3]. It further acts as a basis to derive strong association rules. Apriori algorithm 
is a widely used classical approach to mine frequent itemsets. It shows good per-
formance when dealing with small datasets. But in the Big Data era, data are too 
large in size and unstructured in nature, which makes it difficult to be processed 
by traditional data processing methods [4–7]. On the other hand, it faces signifi-
cant challenges, such as limited computing power and memory resources. Many sin-
gle machine variations of the Apriori have been proposed to address its limitations 
[8–11]. One of the key concerns in the majority of the algorithms was its require-
ment to have multiple passes over the input data set that resides on disk. Repeated 
scanning of the input dataset incurs a huge I/O overhead. It becomes considerable 
when it comes to processing large-scale datasets. The partition algorithm [12] tries 
to reduce this I/O overhead based on a novel approach. It makes non-overlapping 
partitions of the input dataset so that each partition fits well into the main memory. 
However, it may suffer from higher time complexity because of the generation of a 
larger set of candidate itemsets by different partitions.

Single machine variants of Apriori work well with relatively small datasets, but 
when it comes to the processing of large datasets, it demands a parallel and distrib-
uted computing environment. Hadoop-based MapReduce model fulfills many of the 
requirements for processing large datasets in a parallel manner by forming a cluster 
of computing nodes. Many MapReduce implementations are also proposed to get 
better efficiency [13–17]. However, because of the iterative nature of the Apriori, the 
MapReduce framework does not perform well for large dataset processing. All the 
intermediate results are stored back to the Hadoop Distributed File System (HDFS) 
after each iteration. Moreover, the input dataset that is being scanned in each itera-
tion to count the frequency of a candidate itemset also resides on HDFS. The data 
access incurs a huge memory and I/O overhead. To overcome the above shortcom-
ing, Apache Spark introduces in-memory processing capabilities to make better use 
of cluster memory [18–20]. Instead of writing all the intermediate results to the 
HDFS, it writes it to a distributed memory abstraction called resilient distributed 
datasets (RDDs). It has been observed in the past research works that implement-
ing frequent itemset mining algorithms on Spark shows better performance than 
MapReduce-based implementations [21–23].

Many Spark-based implementations of the Apriori algorithm have been devel-
oped to improve the efficiency further in terms of run time and scalability. YAFIM 
is an adaptation of the Apriori algorithm in the Spark framework [21]. It utilizes the 
in-memory processing abstraction called RDD to make iterative computations faster. 
R-Apriori eliminates the candidate generation step altogether for the second iteration 
[22]. Also, it uses bloom filters in place of hash trees to avoid costly comparisons. In 
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both the algorithms, it has been observed that the shuffle operation of Spark imposes 
a huge overhead in rearranging key-value pairs across the cluster nodes during RDD 
transformations. Key-value pairs act as a basic element of Spark’s paired RDD. 
Many of the operations on RDDs require these key-value pairs to be redistributed or 
shuffled among the cluster nodes. While processing large-scale datasets, the number 
of key-value pairs generated would be large. So the shuffling of these huge pairs 
would incur communication and synchronization overheads. To handle this, in this 
paper, we propose a novel approach named SARSO that shows significant improve-
ment in terms of efficiency by incorporating a solution for the above limitation. A 
partitioning technique is used where the whole input dataset is divided into n non-
overlapping partitions.

SARSO works in two phases. In the first phase, the input dataset is scanned to 
find all the frequent local itemsets of all possible lengths for each partition using 
a local relative threshold. The local relative threshold for a partition is obtained by 
dropping the value of the user-supplied global threshold value in the proportion of 
its size. Then all these frequent local itemsets produced by each partition are col-
lected at the master node. All the duplicate frequent itemsets from two different 
partitions are dropped. These revised locally found frequent itemsets act as global 
candidate itemsets with respect to the whole input dataset. In the second phase, the 
input dataset is scanned again to generate global frequent itemsets by extracting only 
those global candidate itemsets that have support value more than or equal to the 
global threshold. Here, we use the concept that a frequent local itemset may or may 
not be the frequency with respect to the entire dataset. However, any item set that is 
globally frequent must occur as a frequent itemset in at least one of the partitions.

By finding all the k-length local frequent itemsets first, we restrict the shuffling 
of key-value pairs in each iteration as required by the Apriori algorithm. Shuffling 
of key-value pairs occurs only when global frequent itemsets are being calculated. 
Some additional communication overhead is imposed on collecting frequent local 
itemsets from different partitions to get global candidate itemset and again broad-
casting it to all the computing nodes. The performance of SARSO is evaluated in 
terms of efficiency and scalability for different well-known datasets. The experi-
mental results show that SARSO exhibits better performance in comparison with 
YAFIM for lower values of minimum support.

The rest of the paper is organized as follows. Section  2 discusses the related 
works. Section 3 gives a brief introduction about the Apriori algorithm and shuffle 
operation of the Apache Spark framework. In Sect. 4, the proposed methodology is 
discussed in detail. Experimental results are analyzed to measure the performance of 
the proposed scheme in comparison with YAFIM in Sect. 5. Section 6 discusses the 
conclusion and future scope related to the computation.

2 � Related literature

Many versions of the Apriori algorithm have been proposed to process large-scale 
datasets with improved efficiency. This was achieved by parallelizing the compu-
tation over a cluster of nodes to make algorithms more suitable for large-scale 
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datasets. Lin et  al. [21] proposed three different versions of MapReduce-based 
Apriori algorithm, namely SPC, FPC, and DPC. SPC is an adaptation of the Apri-
ori algorithm on the MapReduce framework. FPC counts the frequency of kth, 
(k + 1)th and (k + 2)th itemsets altogether in a single map-reduce phase and hence 
reduces the number of MapReduce phases to improve the efficiency. DPC tries to 
make a balance between SPC and FPC. It finds a trade-off between reductions in 
the number of map-reduce phases and increments in the number of pruned can-
didate itemsets. Moens et  al. [22] introduced two different approaches, namely 
Dist-Eclat and BigFIM. Dist-Eclat is a MapReduce implementation of the Eclat 
algorithm, which uses a simple load balancing scheme for speedup. It requires 
a specific encoding of the input dataset. On the other hand, BigFIM focuses on 
mining very large-scale datasets. It is a hybrid approach that uses an Apriori vari-
ant with Eclat algorithm of the MapReduce framework.

MRApriori developed by Hammoud et  al. [23] iteratively switches between 
vertical and horizontal database layouts to mine all frequent itemsets. At each 
iteration, the database is partitioned and distributed across mappers for support 
counting. Hammoud et  al. [24] introduced a parallel MapReduce-based cluster 
enabled algorithm that uses a hybrid learning approach to transform the inter-
mediate data communicated among cluster nodes to find the frequent itemsets 
quickly. Yu et al. [25] developed a distributed parallel Apriori algorithm (DPA) 
that stores metadata in the form of transaction identifiers (TIDs), such that only 
a single scan to the database is needed. DPA balances workload among proces-
sors by taking the factor of itemset counts into consideration, hence reducing the 
processor idle time. Aouad et al. [26] presented a performance study of a novel 
distributed Apriori-like algorithm. The proposed approach was intended to limit 
synchronization and communication overheads. It showed that the intermediate 
communications among the cluster nodes are computationally inefficient, and the 
resultant global pruning step does not constitute enough useful information. Chen 
et  al. [27] proposed BE-Apriori that uses pruning optimization and transaction 
reduction strategy to improve the performance compared to Apriori.

All the algorithms mentioned above are of iterative nature, i.e., they fully scan 
the input dataset in each iteration. This repeated scanning incurs a huge I/O over-
head in case of large-scale datasets and consequently shows performance bottleneck. 
Because of the iterative nature of the Apriori-based algorithm, even MapReduce 
framework does not fit well. Every MapReduce job needs to read the input dataset 
and again write the intermediate results back to the HDFS that incurs a huge I/O 
overhead. Zhang et al. [28] introduced a distributed algorithm for frequent itemset 
mining (DFIMA) that uses a matrix-based pruning approach to reduce the number 
of candidate itemsets generated in each iteration. To make iterative with I/O devices 
efficient, DFIMA was implemented using the Spark framework.

Qiu et  al. [29] proposed Yet Another Frequent Itemset Mining (YAFIM) algo-
rithm that is an adaptation of the Apriori algorithm in the Spark environment. It 
utilizes the in-memory processing abstraction called RDD to make iterative com-
putations faster. Comparative performance analysis of YAFIM and MapReduce ver-
sion of the Apriori is done in each iteration on different benchmark datasets. YAFIM 
shows a speedup of about 18 × than its MapReduce implementation. Rathee et  al. 
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[30] proposed R-Apriori that eliminates the candidate generation step altogether 
in the second iteration. In general, the number of candidate itemsets generated in 
the second round are huge. Removing the traditional candidate generation scheme 
improves efficiency by reducing the total number of candidate itemsets generated for 
the second iteration. It uses bloom filters in place of hash trees to avoid costly com-
parisons. R-Apriori shows speed up in the performance of the second iteration, spe-
cifically in comparison with YAFIM. Sethi et al. [31] introduced HFIM that utilizes 
both vertical and horizontal layouts of the input dataset to deal with memory and 
computation overheads. A horizontal layout is used to find the candidate itemsets, 
and a vertical layout is used to count the support value for the candidate itemsets.

In most of the Spark-based algorithms, candidate itemsets at each iteration are 
generated by master node using frequent itemsets derived in the previous iteration. 
Then it is broadcasted to all the slave nodes. MapReduce architecture is used to get 
the support of the candidate itemsets and filter out the frequent itemsets. MapRe-
duce is mainly used for parallel processing of large datasets stored in Hadoop clus-
ter. It provides parallelism, data distribution, and fault tolerance. Additionally, none 
of the above-mentioned frequent pattern mining algorithms paid attention toward 
repeated scanning of input datasets at each iteration that incurs very high disk I/O. 
The in-memory processing capabilities of Spark reduce disk overhead significantly 
by keeping the input dataset in the form of RDD. However, the total number of input 
dataset scans required still remains the same. Moreover, very little attention has 
been paid toward communication overhead incurred due to the movement of key-
value pairs to get the support of the candidate itemsets at each iteration. We propose 
a Spark-based algorithm called SARSO that improves the efficiency by reducing 
shuffle overheads caused by RDD transformations. It is parallel in nature and incurs 
minimal communication and synchronization overhead among the processing nodes. 
Also, it generates all the frequent itemsets in two scans of the input dataset.

3 � Preliminaries

In this section, first, we discuss briefly on the Apriori algorithm and the impact of 
shuffle operation on Apache Spark’s efficiency. Then the proposed scheme SARSO 
is explained in detail.

3.1 � Apriori algorithm

The Apriori algorithm proposed by Agarwal et al. [8] is an iterative two-step process 
consisting of join and prune operations. At each iteration, the join step generates a 
set of candidate itemsets from the frequent itemsets found at the previous iteration. 
Then the prune step is performed to filter out only the potential candidate itemsets 
from the candidate itemsets generated in join step using apriori property. Finally, 
the input dataset is scanned to count the support of these candidate itemsets. If the 
support of a candidate itemset is more than the user-defined threshold value, that 
candidate itemset is called a frequent itemset. Here, support value represents the 
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occurrence frequency of an itemset, i.e., the number of transactions that contain that 
itemset. Apriori property says that an itemset is frequent only if all its non-empty 
subsets are also frequent. As the name Apriori suggests, it uses prior knowledge. It 
finds the k-frequent itemsets based on previously found (k-1) itemsets where k repre-
sents the iteration number and also the length of the itemset.

Algorithm1 depicts the pseudo-code of the Apriori algorithm. In the first iteration, 
the input dataset is scanned to find the support of each item. 1-frequent itemsets are 
determined by filtering only those items whose support count is equal or more than 
a user-specified threshold value called minimum support (line 1). Then k-frequent 
itemsets (for k > 1) were found using (k-1) frequent itemsets (line 2). The join step 
produces all the possible k-candidate itemsets by joining (k-1)-frequent itemsets 
with itself (line 3). The prune step uses apriori property to reduce the number of 
candidate itemsets (line 4–5) by filtering out the promising candidates only. Then 
the input dataset is scanned again to find the frequency of these promising candidate 
itemsets to filter out the k-frequent itemsets (line 6–10). The set of all the k-frequent 
itemsets (k ≥ 1) are then returned as the final output (line 12).

3.2 � Apache Spark

Apache Spark [18] is an open-source project developed in the AMPLab at UC 
Berkeley. It is a framework to process large-scale datasets with parallel and dis-
tributed computing environment and supports in-memory processing capabilities. 
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It is written in Scala and provides a variety of programming interfaces such as 
Java, Scala, Python, and R for lightning-fast cluster computing. It is an extension 
to Hadoop’s MapReduce methodology designed for batch processing. Spark can 
process both batch and real-time (streaming) applications efficiently. Apache Spark 
is faster than MapReduce and offers low latency due to reduced I/O operations. It 
maintains the intermediate results in memory rather than writing it to disk every 
time. The main feature of Spark is its in-memory cluster computation using the 
abstraction called RDDs. Datasets in the form of RDDs remain logically partitioned 
across the cluster nodes and preferably accommodated in the primary memories of 
the cluster nodes. As the word resilient suggests RDDs are fault-tolerant, it is an 
immutable (read-only) collection of data by which it provides fast and efficient itera-
tive operations. We can create a new RDD either by loading an input dataset in the 
spark environment or by applying transformation actions on some existing RDDs.

To understand shuffle operation, imagine that there are five branches of a bank in 
a city. All these branches are recording their daily transactions made by the custom-
ers. Suppose the controlling authority of the bank wants to calculate the total num-
ber of transactions recorded by its branches on different dates. The authority will 
access the records at different branches and would set the date as a search key. Then, 
for every record it would emit a pair < date, 1 >, where date represents the day on 
which that transaction was recorded. This pair acts as a key-value pair in Spark. Now 
key-value pairs with the same key are summed up to get the result. Since all the key-
value pairs are on the different nodes, key-value pairs with the same key move to the 
same node to get the summed up value. This redistribution of data is known as shuf-
fling operation in Spark. Certain operations within Spark needs this redistribution 
of data across the partitions of RDD that resides on different nodes so that it can be 
grouped differently. This involves the movement of data from one node to another, 
i.e., shuffling of key-value pairs. Shuffle operation incurs extra overhead and is lim-
ited by network bandwidth [32]. Operations that can cause shuffle to include reparti-
tion, ByKey, and join operations. The shuffle operation of Spark is a complex and 
expensive operation due to the involvement of disk and network I/O.

4 � Proposed methodology: SARSO

In this section, we describe the proposed approach SARSO in detail. SARSO is 
an improved version of the existing YAFIM algorithm. Spark provides a distrib-
uted and parallel environment with in-memory processing capabilities to enhance 
performance. YAFIM is an iterative algorithm where kth iteration is responsible 
for finding k-frequent itemsets. It iteratively generates k-frequent itemsets using 
(k-1)-frequent itemsets for all k ≥ 1 where k

0
= � . YAFIM uses traditional apriori_

gen function to calculate the k-candidate itemsets based on (k-1)-frequent itemsets. 
Then, the Spark’s parallel MapReduce framework is used to count the support of the 
k-candidate itemsets and consequently filter out only the frequent itemsets that have 
the support value more than the user-specified threshold value.

On the other hand, SARSO executes in two phases. In the first phase, it logically 
partitions the input dataset in n non-overlapping partitions of approximately equal 
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size residing on different computing nodes. All the partitions are processed indepen-
dently and on individual nodes in parallel. First, each processing node generates all 
the frequent itemsets of all possible lengths for their local data partition. Since the 
size of local data at each node is approximately equal, all the computing nodes will 
finish almost simultaneously. Also, at each node, only local data are being processed 
to find all the k-length local frequent itemsets. So, there is no communication over-
head imposed on the cluster. The frequent itemsets found local to each node is then 
sent to the master node. Master node merges all the frequent itemsets from different 
slave nodes and deletes the duplicates. This union set works as the global candidate 
itemsets for the second step. Now, the master node broadcasts this union set to all 
the slave nodes. In the second phase, frequent itemsets that are globally qualified 
are discovered using the global candidate itemsets broadcasted in the first phase. 
SARSO also does not use the traditional apriori_gen() function. YAFIM uses this 
function to determine the candidate itemsets before the original dataset is scanned 
to count their frequency. SARSO rather generates candidates ‘on-the-fly’ when the 
transaction is being read from the database. In other words, the generation of candi-
date itemsets and the counting of their support values go simultaneously. The most 
interesting feature of the SARSO is that it reduces the shuffle overhead caused by 
RDD transformations that rearranges the key-value pairs across the cluster nodes 
using the partitioning method.

4.1 � Design

SARSO is an enhanced version of the Spark-based Apriori algorithm. It has three 
segments to discuss the workflow. Algorithm2 is the main module that finds all the 
possible k-frequent itemsets, where k represents the length of the itemset. Algo-
rithm2 uses Algorithm3 to find all the local frequent itemsets of all possible lengths 
at each of the processing nodes in a parallel and independent manner. Algorithm2 
then merges all the locally found frequent itemsets to generate global candidate 
itemsets. Algorithm4 helps Algorithm2 to compute the support values for the global 
candidate itemsets and then filter out the global frequent itemsets.

In Algorithm2, input transactional dataset D is loaded from HDFS to a spark 
RDD named rdd (line 1). The variable count represents the total number of ele-
ments/transactions in rdd (line 2). Then the absolute global minimum support 
globalMinSup is calculated using the count and user-specified relative minimum 
support minSup (line 3). Variable globalCI is an accumulator of ListBuffer type ini-
tialized to null (line 4). It collects all the locally found k-frequent itemsets received 
from slave nodes and treats them as global candidate itemset. The maxLengthFI 
is an integer-type accumulator that records the maximum-length frequent itemset 
found by any of the partitions (line 5). We use mapPartitions() function with find-
FreqItemsetsPP() function and a Boolean true value as parameters. Algorithm3, i.e., 
findFreqItemsetsPP(), works on each partition independently. It finds all the frequent 
local itemsets of all possible lengths iteratively and appends it to the accumulator 
variable globalCI at the master node (line 6). At the end of mapPartitions() function, 
globalCI would be localFI1 ∪ localFI2 ∪ localFI3 ∪ …… ∪ localFIn. Then, globalCI 
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and maxLengthFI are broadcasted to all the slave nodes. globalCI is going to be 
used as global candidate itemsets, and maxLengthFI is the length of the maximum-
length frequent itemsets found at any node (line 7).

The original input dataset is scanned again, and mapPartitions() function is 
invoked with countFrequency() method and a boolean literal true as parameters. 
Method countFrequency(), i.e., Algorithm4 returns an RDD with < global_can-
didate_itemset, 1 > as key-value pair. Partitioning of the resulting RDD produced 
by mapPartitions() remains intact as the partitions of source RDD. This is because 
of the true value passed to it. In other words, elements within a partition continue 
to reside on the same partition after applying RDD transformation. Now, reduce-
ByKey() method is called the shuffle locally found key-value pairs and reduces them 
to merge values for the same keys. The filter() method is used to filter out only those 
frequent itemsets that have support count more than globalMinSup. Finally, map() 
function is applied to discard the support value and get an RDD globalFI with all 
the global k-frequent itemsets for k ≥ 1(line 8).

Algorithm3 generates all the local k-frequent itemsets ‘on-the-fly,’ i.e., generation 
of candidate itemset and a count of their support values go simultaneously. It works 
on all the partitions in parallel. The findFreqItemsetsPP() is applied to each element 
of a partition one by one. First, we find the size of the partition, i.e., the number 
of transactions in that partition (line 1). Variable k represents the current iteration 
number and also the length of the frequent itemset (line 2). Variables converged and 
finalFI and previousFI (lines 3–5) are initialized only once (k = 1). Variable con-
verged is false until all the k-frequent itemsets are found local to a partition. Variable 
previousFI indicates frequent itemsets generated in the previous iteration, and finalFI 
represents set of all k-frequent itemsets local to a partition. In kth iteration, if the 
algorithm has not converged in the previous iteration, we initialize the candidate by 
a null (line 6–7). It accumulates all the candidate itemsets for a particular iteration. 
The flatMap() function is applied to get a particular transaction of that partition (lines 
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8–9). Then combinationGenerator() function is called to generate all k-length combi-
nations (itemsets) from the items of each transaction (line 10). These k-length combi-
nations may be one among candidate itemsets for kth iteration. Then apriori property 
is used to prune unpromising candidates such that a k-itemset can be discarded if any 
of (k-1) length subset is not frequent. After the pruning stage, remaining k-itemsets 
are found as potential candidates (lines 11–21). Each candidate itemset is associated 
with 1, i.e., < candidate_itemset, 1 > to form a key-value pair. After all the key-value 
pairs have been generated for all the transactions in a partition, the variable candidate 
contains < candidate_itemset, 1 > pair for all k-candidate itemsets.
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The absolute local minimum support is calculated as partitionSize × minSup. 
All the key-value pairs of the candidate RDD are now grouped based on their 
keys using groupBy() function. This produces a RDD of < candidate_itemset, 
iterable < 1,1,1…..>>. Then mapValues() is used to get the sum of support values 
for the same key to produce an RDD of < candidate_itemset, total_support> . This 
grouping and counting of support values happen within the partition. Therefore, 
shuffling of key-value pairs across the partitions does not occur (lines 25–26). 
Then filter() method is invoked to discover the candidate itemsets whose support 
is equal or more than minimum local support (= minSup × partition_size). All the 
discovered candidate itemsets are k-frequent itemsets and represeted as localFI 
(line 27). If localFI for any kth iteration is empty for all the partitions, it means 
Algorithm3 has found all the frequent itemsets of all possible lengths. Otherwise, 
we go for the next iteration by appending k-frequent itemsets to finalFI that acts 
as a repository for frequent itemsets of all lengths for a particular partition (lines 
28–33). At the convergence of the Algorithm3, all locally found frequent itemsets 
finalFI are appended to the accumulator variable globalCI, and it also updates 
maxLengthFI conditionally (lines 35–37). The conditional statement ensures 
maxLngthFI to be maximum among all the partitions.

global_ _

Algorithm4 uses the same methodology as used by Algorithm3. It also works 
partitionwise and iteratively finds the support value of the global candidate itemsets 
at each partition. It takes every transaction of a partition one by one and generates 
combinations of different lengths varying from 1 to maxLengthFI (line 1–4). If a 
combination found also belongs to globalCI it generates < candidate_itemset, 1 > 
as key-value pair (line 5–7), then Algorithm2 uses reducebykey(), filter() and map() 
methods to filter out global frequent itemsets. Figure 1 depicts the workflow of the 
proposed methodology.
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4.2 � Discussion

In this section, we analyze the impact of partition and shuffle operation on the exe-
cution time of the SARSO in comparison with YAFIM. SARSO uses a partition-
ing technique to mine frequent itemsets. Figure 1 illustrates the workflow graph for 
SARSO. It operates in two phases. In Phase-I, it divides the input dataset into n dis-
tinct partitions. For each partition, all the local candidate itemsets are generated with 
their respective support count values. Then, the frequent local itemsets (i.e., itemsets 
frequent within the partition) are searched along with their support counts. If the 
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minimum relative support is minSup, then the absolute minimum support for a parti-
tion is minSup × total number of transactions in that partition. Local minimum sup-
port is set lower than the global minimum support depending upon the number of 
transactions falling into that partition. Then, we use the concept that frequent local 
itemset may or may not be globally frequent. However, any itemset that is probable 
to be globally frequent must occur as a frequent itemset in at least one of the parti-
tions. Therefore, all locally found frequent itemsets from different partitions act as 
global candidate itemsets for the input dataset as a whole. In Phase-II, all the global 
candidate itemsets are shuffled across partitions to merge the support count values 
for the same candidate. Then frequent global itemsets are found by discarding those 
candidates whose support count value is less than global absolute minimum support. 
It can be easily observed that SARSO generates surplus candidate itemsets for each 
iteration in comparison with YAFIM. The time required to filter out the frequent 
itemsets would be more. This overhead would be overcome by the gain achieved in 
terms of reduced shuffle overhead.

Instead of using the map(func) as in YAFIM, SARSO uses mapPartitions(func). 
The map(func) applies the user-specified function (func) to every record and returns 
one processed record as output. Since the records are being processed in parallel, 
there are multiple instances of the applied function in the system working simulta-
neously. However, mapPartitions(func) returns a new RDD by applying a function 
(func) to each partition of the RDD. We get iterator as an argument for mapParti-
tions(), through which we can iterate all elements in a partition one by one. Here, 
user-specified function func is initialized on per partition basis rather than per ele-
ment basis. Therefore, tasks with high per record overhead perform better with map-
Partitions() than map() due to the high cost of setting up a new task. Like map(), 
mapPartitions() have exactly the same partitions as the parent RDD. Also, it can 
be noticed that SARSO generates the candidates ‘on-the-fly,’ i.e., for each partition, 
candidate generation and the count of its support values go simultaneously when the 
input dataset is being scanned.

What should be the partition size and the optimal number of partitions? RDDs are 
fault-tolerant datasets that are huge in size and partitioned across the cluster nodes. 
Spark partitions RDDs automatically and distributes the partitions across different 
nodes. By default, one partition is created for each block of the file in HDFS. A 
partition in spark is a logical unit of data. Every partition is stored on a specific node 
in the cluster. RDD partitions help Spark to achieve parallelism. Every node in a 
Spark cluster contains one or more partitions, and a single partition cannot span over 
multiple nodes. The number of partitions in spark is configurable, and having few or 
too many partitions is not good. If an RDD has too many partitions, then task sched-
uling may take more time than the actual execution time. In contrast, having very 
few partitions is also not beneficial as some of the worker nodes may remain idle, 
resulting in less concurrency. This could lead to improper resource utilization and 
data skewing, i.e., data might be skewed on a single partition and a specific worker 
node might be doing more than other worker nodes. Thus, there is always a trade-off 
when it comes to deciding on the number of partitions. In the following section, we 
analyze the effect of partition number on the run time of the SARSO algorithm.



146	 S. Raj et al.

1 3

5 � Performance evaluation

In this section, the performance of SARSO is evaluated in comparison with YAFIM. 
YAFIM is the earliest proposed adaptation of the Apriori algorithm in the Apache 
Spark environment. To analyze both the algorithms over Spark, we set up a cluster 
of four nodes. All the four nodes were having Xeon(R) CPU E3-1225 v5 clocked at 
3.30 GHz with four computing cores each. Every node of the cluster was deployed 
with the same memory configurations, i.e., 16 GB of RAM and 2 TB of the hard 
disk. The computing nodes are installed with Ubuntu 16.04, Hadoop 2.6.0, Spark 
1.6.0, JDK 1.8.0, and Scala 2.11.8. Input datasets and frequent output patterns were 
stored on the HDFS.

5.1 � Datasets

Some benchmark datasets are used in our experiments to evaluate the perfor-
mance of SARSO and YAFIM. All the experiments were performed three times, 
and the average is recorded as the final result. Experiments were conducted with six 
benchmark datasets with different characteristics. The datasets used for the analy-
sis include mushroom dataset, chess dataset, retail dataset, and synthetic datasets 
T1014D100k, T1012D100k, and T2014D100k generated by IBM’s random transac-
tional data generator. Detailed information about the above-mentioned datasets can 
be found on the machine learning repository [32–34]. Some of their characteristics 
are listed here for convenience in Table 1.

5.2 � Execution time analysis

The performance of SARSO and YAFIM was evaluated by conducting exhaus-
tive experiments with the above-mentioned datasets. We measure gains in terms 
of speedup and scalability of SARSO in comparison with YAFIM. The number 
of nodes in the cluster is kept constant for all the experiments. Run time of both 
the algorithms with different datasets for decreasing values of minimum support is 
calculated to evaluate the speed-up measures. The speed-up performance of both 
the algorithms is illustrated in Fig. 2. The number of partitions of the input dataset 

Table 1   Characteristics of the 
datasets used for experimental 
analysis

Datasets No. of transactions No. of 
different 
Items

Mushroom 8124 119
Chess 3196 75
T1014D100K 100,000 870
Retail 87,988 16,470
T1012D100K 100,000 1000
T2014D100K 100,000 1000
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is taken as 1 for SARSO-1 and 3 for SARSO-3 in all the experiments. As we can 
notice that the execution time increases for all the algorithms as the minimum sup-
port is reduced. This is because of the increase in the total number of frequent and 
candidate itemsets generated. We can observe that both YAFIM and SARSO-3 per-
form better than SARSO-1 in all cases. The reason is that SARSO-1 reduces the 
communication overhead to the greatest extent, but the parallel processing benefits 
are lost. As expected SARSO-3 performs better than YAFIM for low minimum sup-
port values. For higher values of minimum support, YAFIM exhibits better perfor-
mance over SARSO-3. The reason is the overhead incurred in setting up the accu-
mulator variables and merging the accumulated values to drop duplicates. All the 
locally found frequent itemsets are collected and merged on the master node that is 
going to work as global candidate itemsets. Also, a large number of itemsets were 
found locally frequent, but very few of them emerged out as globally frequent. So 
the partitioning method does not benefit much due to the setting up of new data 
structures and generation of surplus candidate itemsets. As an instance, we can 
observe that SARSO-3 performed inadequate than YAFIM for the T10I4D100K 
dataset at a higher support value of 1000 transactions (102 s for YAFIM and 152 s 
for SARSO-3).
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Fig. 2   Execution time taken by YAFIM and SARSO with 1 partition and 3 partitions. X-axis shows mini-
mum support values, and Y-axis indicates execution time in seconds. a Chess, b mushroom, c retail, d 
T10I4D100K, e T10I2D100K, f T20I4D100K
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At the lower minimum support values, the least improvement recorded was for 
the T1014D100K dataset (210 s for SARSO-3 and 258 s for YAFIM at a minimum 
support of 200), and highest improvement recorded was for the chess dataset (292 s 
for SARSO-3 and 568 s for YAFIM at a minimum support of 1000). The main rea-
son for this improvement for low support values is due to the restriction of shuffling 
of key-value pairs among the cluster nodes, hence reducing the communication and 
synchronization overhead to a great extent.

5.3 � Scalability performance analysis

The scalability performance of SARSO is measured by replicating the dataset to 
enlarge its size. We replicate the datasets to 2, 3, 4, 5, and 6 times to magnify the 
data size and measure run time performance. Since SARSO-1 does not perform bet-
ter than YAFIM and SARSO-3 in any of the cases, it is not included in this experi-
ment. As shown in Fig.  3, both the algorithms show nearly the same nature, i.e., 
when the size of the datasets increases, the execution time grows slowly. Since the 
shuffling overhead of key-value pairs among the cluster nodes has been reduced to a 
great extent, we can observe that SARSO-3 grows flatter than YAFIM.
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Fig. 3   Scalability performance evaluation for the experimental datasets with 3 partitions. X-axis repre-
sents replicated times of the original dataset, and Y-axis represents execution time in seconds. a Chess: 
Min. Sup. = 90%, b mushroom: Min. Sup. = 30% c Retail: Min. Sup. = 0.18%, d T1014D100K: Min. 
Sup. = 0.20%, e T1012D100K: Min. Sup. = 0.20%, f T2014D100K: Min. Sup. = 0.25%
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6 � Conclusion and future work

Apriori algorithm is one of the popular algorithms to discover frequent itemsets 
from transactional datasets. It further acts as a primary step to find association rules. 
It suffers from several drawbacks like repeated scanning of the input dataset, gen-
eration of a huge number of candidates in each iteration, etc. It does not suit well 
to large-scale datasets because of the additional requirement of high computation 
power to process large datasets efficiently. Large primary memory is also desirable 
to keep large input datasets ready for faster execution. Many single machine ver-
sions of the Apriori algorithm have been proposed to improve efficiency. But if the 
input dataset is large, it demands a parallel and distributed computing environment. 
A variety of algorithms based on apriori are also proposed to improve efficiency 
further using the MapReduce framework. However, MapReduce-based implementa-
tions involve iterative computation and impose high disk usage that makes them less 
significant for large datasets. Spark versions of Apriori show performance enhance-
ment due to its in-memory processing capabilities. But, very little attention has been 
paid toward the overhead caused due to Spark’s RDD operations. Shuffling of key-
value pairs across the cluster nodes during RDD operations consume the cluster 
bandwidth and subsequently makes the algorithm slower. In this paper, we proposed 
an efficient two-phase partition-based approach named SARSO to mine frequent 
itemsets from large-scale datasets. It utilizes the Spark environment efficiently to 
reduce shuffle overhead, keeping Apriori as the base algorithm. It improves the effi-
ciency further by reducing the shuffle overhead caused by RDD operations. Here, 
the Partition method is used to reduce the necessary shuffle overhead incurred by the 
Spark framework. The performance of SARSO is evaluated in terms of efficiency 
and scalability for different well-known datasets. The experimental results show that 
it exhibits better performance in comparison with YAFIM for lower minimum sup-
port values. This method can be further extended to generate association rules and 
to find high utility itemsets for large-scale transactional datasets.
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