
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:133–151
https://doi.org/10.1007/s11227-020-03253-7

1 3

A Spark‑based Apriori algorithm with reduced shuffle overhead

Shashi Raj1 · Dharavath Ramesh2 · Krishan Kumar Sethi2

Published online: 27 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Mining frequent itemset is considered as a core activity to find association rules from
transactional datasets. Among the different well-known approaches to find frequent
itemsets, the Apriori algorithm is the earliest proposed. Many attempts have been
made to adopt the Apriori algorithm for large-scale datasets. But the bottlenecks asso-
ciated with Apriori like/such as repeated scans of the input dataset, generation of all
the candidate itemsets prior to counting their support value, etc., reduce the effective-
ness of Apriori for large-size datasets. When the data size is large, even distributed
and parallel implementations of Apriori using the MapReduce framework does not
perform well. This is due to the iterative nature of the algorithm that incurs high disk
overhead. In each iteration, the input dataset is scanned that resides on disk, causing
the high disk I/O. Apache Spark implementations of Apriori show better performance
due to in-memory processing capabilities. It makes iterative scanning of datasets faster
by keeping it in a memory abstraction called resilient distributed dataset (RDD). An
RDD keeps datasets in the form of key-value pairs spread across the cluster nodes.
RDD operations require these key-value pairs to be redistributed among cluster nodes
in the course of processing. This redistribution or shuffle operation incurs communica-
tion and synchronization overhead. In this manuscript, we propose a novel approach,
namely the Spark-based Apriori algorithm with reduced shuffle overhead (SARSO).
It utilizes the benefits of Spark’s parallel and distributed computing environment, and
it is in-memory processing capabilities. It improves the efficiency further by reducing
the shuffle overhead caused by RDD operations at each iteration. In other words, it
restricts the movement of key-value pairs across the cluster nodes by using a parti-
tioning method and hence reduces the necessary communication and synchronization
overhead incurred by the Spark shuffle operation. Extensive experiments have been
conducted to measure the performance of the SARSO on benchmark datasets and
compared with an existing algorithm. Experimental results show that the SARSO has
better performance in terms of running time and scalability.

Keywords Apache Spark · Apriori algorithm · Large-scale datasets · Shuffle
overhead

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3338-6520
http://orcid.org/0000-0001-9199-1345
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03253-7&domain=pdf

134 S. Raj et al.

1 3

1 Introduction

With the rapid evolution of the internet, a huge volume of data is being produced
in our day-to-day life. These large volumes of data are collected to filter out some
potential values that can further generate useful information and knowledge. Fre-
quent itemset mining algorithms aim to extract certain association or relation among
the items from transactional databases by discovering frequent patterns of itemsets
[1–3]. It further acts as a basis to derive strong association rules. Apriori algorithm
is a widely used classical approach to mine frequent itemsets. It shows good per-
formance when dealing with small datasets. But in the Big Data era, data are too
large in size and unstructured in nature, which makes it difficult to be processed
by traditional data processing methods [4–7]. On the other hand, it faces signifi-
cant challenges, such as limited computing power and memory resources. Many sin-
gle machine variations of the Apriori have been proposed to address its limitations
[8–11]. One of the key concerns in the majority of the algorithms was its require-
ment to have multiple passes over the input data set that resides on disk. Repeated
scanning of the input dataset incurs a huge I/O overhead. It becomes considerable
when it comes to processing large-scale datasets. The partition algorithm [12] tries
to reduce this I/O overhead based on a novel approach. It makes non-overlapping
partitions of the input dataset so that each partition fits well into the main memory.
However, it may suffer from higher time complexity because of the generation of a
larger set of candidate itemsets by different partitions.

Single machine variants of Apriori work well with relatively small datasets, but
when it comes to the processing of large datasets, it demands a parallel and distrib-
uted computing environment. Hadoop-based MapReduce model fulfills many of the
requirements for processing large datasets in a parallel manner by forming a cluster
of computing nodes. Many MapReduce implementations are also proposed to get
better efficiency [13–17]. However, because of the iterative nature of the Apriori, the
MapReduce framework does not perform well for large dataset processing. All the
intermediate results are stored back to the Hadoop Distributed File System (HDFS)
after each iteration. Moreover, the input dataset that is being scanned in each itera-
tion to count the frequency of a candidate itemset also resides on HDFS. The data
access incurs a huge memory and I/O overhead. To overcome the above shortcom-
ing, Apache Spark introduces in-memory processing capabilities to make better use
of cluster memory [18–20]. Instead of writing all the intermediate results to the
HDFS, it writes it to a distributed memory abstraction called resilient distributed
datasets (RDDs). It has been observed in the past research works that implement-
ing frequent itemset mining algorithms on Spark shows better performance than
MapReduce-based implementations [21–23].

Many Spark-based implementations of the Apriori algorithm have been devel-
oped to improve the efficiency further in terms of run time and scalability. YAFIM
is an adaptation of the Apriori algorithm in the Spark framework [21]. It utilizes the
in-memory processing abstraction called RDD to make iterative computations faster.
R-Apriori eliminates the candidate generation step altogether for the second iteration
[22]. Also, it uses bloom filters in place of hash trees to avoid costly comparisons. In

135

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

both the algorithms, it has been observed that the shuffle operation of Spark imposes
a huge overhead in rearranging key-value pairs across the cluster nodes during RDD
transformations. Key-value pairs act as a basic element of Spark’s paired RDD.
Many of the operations on RDDs require these key-value pairs to be redistributed or
shuffled among the cluster nodes. While processing large-scale datasets, the number
of key-value pairs generated would be large. So the shuffling of these huge pairs
would incur communication and synchronization overheads. To handle this, in this
paper, we propose a novel approach named SARSO that shows significant improve-
ment in terms of efficiency by incorporating a solution for the above limitation. A
partitioning technique is used where the whole input dataset is divided into n non-
overlapping partitions.

SARSO works in two phases. In the first phase, the input dataset is scanned to
find all the frequent local itemsets of all possible lengths for each partition using
a local relative threshold. The local relative threshold for a partition is obtained by
dropping the value of the user-supplied global threshold value in the proportion of
its size. Then all these frequent local itemsets produced by each partition are col-
lected at the master node. All the duplicate frequent itemsets from two different
partitions are dropped. These revised locally found frequent itemsets act as global
candidate itemsets with respect to the whole input dataset. In the second phase, the
input dataset is scanned again to generate global frequent itemsets by extracting only
those global candidate itemsets that have support value more than or equal to the
global threshold. Here, we use the concept that a frequent local itemset may or may
not be the frequency with respect to the entire dataset. However, any item set that is
globally frequent must occur as a frequent itemset in at least one of the partitions.

By finding all the k-length local frequent itemsets first, we restrict the shuffling
of key-value pairs in each iteration as required by the Apriori algorithm. Shuffling
of key-value pairs occurs only when global frequent itemsets are being calculated.
Some additional communication overhead is imposed on collecting frequent local
itemsets from different partitions to get global candidate itemset and again broad-
casting it to all the computing nodes. The performance of SARSO is evaluated in
terms of efficiency and scalability for different well-known datasets. The experi-
mental results show that SARSO exhibits better performance in comparison with
YAFIM for lower values of minimum support.

The rest of the paper is organized as follows. Section 2 discusses the related
works. Section 3 gives a brief introduction about the Apriori algorithm and shuffle
operation of the Apache Spark framework. In Sect. 4, the proposed methodology is
discussed in detail. Experimental results are analyzed to measure the performance of
the proposed scheme in comparison with YAFIM in Sect. 5. Section 6 discusses the
conclusion and future scope related to the computation.

2 Related literature

Many versions of the Apriori algorithm have been proposed to process large-scale
datasets with improved efficiency. This was achieved by parallelizing the compu-
tation over a cluster of nodes to make algorithms more suitable for large-scale

136 S. Raj et al.

1 3

datasets. Lin et al. [21] proposed three different versions of MapReduce-based
Apriori algorithm, namely SPC, FPC, and DPC. SPC is an adaptation of the Apri-
ori algorithm on the MapReduce framework. FPC counts the frequency of kth,
(k + 1)th and (k + 2)th itemsets altogether in a single map-reduce phase and hence
reduces the number of MapReduce phases to improve the efficiency. DPC tries to
make a balance between SPC and FPC. It finds a trade-off between reductions in
the number of map-reduce phases and increments in the number of pruned can-
didate itemsets. Moens et al. [22] introduced two different approaches, namely
Dist-Eclat and BigFIM. Dist-Eclat is a MapReduce implementation of the Eclat
algorithm, which uses a simple load balancing scheme for speedup. It requires
a specific encoding of the input dataset. On the other hand, BigFIM focuses on
mining very large-scale datasets. It is a hybrid approach that uses an Apriori vari-
ant with Eclat algorithm of the MapReduce framework.

MRApriori developed by Hammoud et al. [23] iteratively switches between
vertical and horizontal database layouts to mine all frequent itemsets. At each
iteration, the database is partitioned and distributed across mappers for support
counting. Hammoud et al. [24] introduced a parallel MapReduce-based cluster
enabled algorithm that uses a hybrid learning approach to transform the inter-
mediate data communicated among cluster nodes to find the frequent itemsets
quickly. Yu et al. [25] developed a distributed parallel Apriori algorithm (DPA)
that stores metadata in the form of transaction identifiers (TIDs), such that only
a single scan to the database is needed. DPA balances workload among proces-
sors by taking the factor of itemset counts into consideration, hence reducing the
processor idle time. Aouad et al. [26] presented a performance study of a novel
distributed Apriori-like algorithm. The proposed approach was intended to limit
synchronization and communication overheads. It showed that the intermediate
communications among the cluster nodes are computationally inefficient, and the
resultant global pruning step does not constitute enough useful information. Chen
et al. [27] proposed BE-Apriori that uses pruning optimization and transaction
reduction strategy to improve the performance compared to Apriori.

All the algorithms mentioned above are of iterative nature, i.e., they fully scan
the input dataset in each iteration. This repeated scanning incurs a huge I/O over-
head in case of large-scale datasets and consequently shows performance bottleneck.
Because of the iterative nature of the Apriori-based algorithm, even MapReduce
framework does not fit well. Every MapReduce job needs to read the input dataset
and again write the intermediate results back to the HDFS that incurs a huge I/O
overhead. Zhang et al. [28] introduced a distributed algorithm for frequent itemset
mining (DFIMA) that uses a matrix-based pruning approach to reduce the number
of candidate itemsets generated in each iteration. To make iterative with I/O devices
efficient, DFIMA was implemented using the Spark framework.

Qiu et al. [29] proposed Yet Another Frequent Itemset Mining (YAFIM) algo-
rithm that is an adaptation of the Apriori algorithm in the Spark environment. It
utilizes the in-memory processing abstraction called RDD to make iterative com-
putations faster. Comparative performance analysis of YAFIM and MapReduce ver-
sion of the Apriori is done in each iteration on different benchmark datasets. YAFIM
shows a speedup of about 18 × than its MapReduce implementation. Rathee et al.

137

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

[30] proposed R-Apriori that eliminates the candidate generation step altogether
in the second iteration. In general, the number of candidate itemsets generated in
the second round are huge. Removing the traditional candidate generation scheme
improves efficiency by reducing the total number of candidate itemsets generated for
the second iteration. It uses bloom filters in place of hash trees to avoid costly com-
parisons. R-Apriori shows speed up in the performance of the second iteration, spe-
cifically in comparison with YAFIM. Sethi et al. [31] introduced HFIM that utilizes
both vertical and horizontal layouts of the input dataset to deal with memory and
computation overheads. A horizontal layout is used to find the candidate itemsets,
and a vertical layout is used to count the support value for the candidate itemsets.

In most of the Spark-based algorithms, candidate itemsets at each iteration are
generated by master node using frequent itemsets derived in the previous iteration.
Then it is broadcasted to all the slave nodes. MapReduce architecture is used to get
the support of the candidate itemsets and filter out the frequent itemsets. MapRe-
duce is mainly used for parallel processing of large datasets stored in Hadoop clus-
ter. It provides parallelism, data distribution, and fault tolerance. Additionally, none
of the above-mentioned frequent pattern mining algorithms paid attention toward
repeated scanning of input datasets at each iteration that incurs very high disk I/O.
The in-memory processing capabilities of Spark reduce disk overhead significantly
by keeping the input dataset in the form of RDD. However, the total number of input
dataset scans required still remains the same. Moreover, very little attention has
been paid toward communication overhead incurred due to the movement of key-
value pairs to get the support of the candidate itemsets at each iteration. We propose
a Spark-based algorithm called SARSO that improves the efficiency by reducing
shuffle overheads caused by RDD transformations. It is parallel in nature and incurs
minimal communication and synchronization overhead among the processing nodes.
Also, it generates all the frequent itemsets in two scans of the input dataset.

3 Preliminaries

In this section, first, we discuss briefly on the Apriori algorithm and the impact of
shuffle operation on Apache Spark’s efficiency. Then the proposed scheme SARSO
is explained in detail.

3.1 Apriori algorithm

The Apriori algorithm proposed by Agarwal et al. [8] is an iterative two-step process
consisting of join and prune operations. At each iteration, the join step generates a
set of candidate itemsets from the frequent itemsets found at the previous iteration.
Then the prune step is performed to filter out only the potential candidate itemsets
from the candidate itemsets generated in join step using apriori property. Finally,
the input dataset is scanned to count the support of these candidate itemsets. If the
support of a candidate itemset is more than the user-defined threshold value, that
candidate itemset is called a frequent itemset. Here, support value represents the

138 S. Raj et al.

1 3

occurrence frequency of an itemset, i.e., the number of transactions that contain that
itemset. Apriori property says that an itemset is frequent only if all its non-empty
subsets are also frequent. As the name Apriori suggests, it uses prior knowledge. It
finds the k-frequent itemsets based on previously found (k-1) itemsets where k repre-
sents the iteration number and also the length of the itemset.

Algorithm1 depicts the pseudo-code of the Apriori algorithm. In the first iteration,
the input dataset is scanned to find the support of each item. 1-frequent itemsets are
determined by filtering only those items whose support count is equal or more than
a user-specified threshold value called minimum support (line 1). Then k-frequent
itemsets (for k > 1) were found using (k-1) frequent itemsets (line 2). The join step
produces all the possible k-candidate itemsets by joining (k-1)-frequent itemsets
with itself (line 3). The prune step uses apriori property to reduce the number of
candidate itemsets (line 4–5) by filtering out the promising candidates only. Then
the input dataset is scanned again to find the frequency of these promising candidate
itemsets to filter out the k-frequent itemsets (line 6–10). The set of all the k-frequent
itemsets (k ≥ 1) are then returned as the final output (line 12).

3.2 Apache Spark

Apache Spark [18] is an open-source project developed in the AMPLab at UC
Berkeley. It is a framework to process large-scale datasets with parallel and dis-
tributed computing environment and supports in-memory processing capabilities.

139

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

It is written in Scala and provides a variety of programming interfaces such as
Java, Scala, Python, and R for lightning-fast cluster computing. It is an extension
to Hadoop’s MapReduce methodology designed for batch processing. Spark can
process both batch and real-time (streaming) applications efficiently. Apache Spark
is faster than MapReduce and offers low latency due to reduced I/O operations. It
maintains the intermediate results in memory rather than writing it to disk every
time. The main feature of Spark is its in-memory cluster computation using the
abstraction called RDDs. Datasets in the form of RDDs remain logically partitioned
across the cluster nodes and preferably accommodated in the primary memories of
the cluster nodes. As the word resilient suggests RDDs are fault-tolerant, it is an
immutable (read-only) collection of data by which it provides fast and efficient itera-
tive operations. We can create a new RDD either by loading an input dataset in the
spark environment or by applying transformation actions on some existing RDDs.

To understand shuffle operation, imagine that there are five branches of a bank in
a city. All these branches are recording their daily transactions made by the custom-
ers. Suppose the controlling authority of the bank wants to calculate the total num-
ber of transactions recorded by its branches on different dates. The authority will
access the records at different branches and would set the date as a search key. Then,
for every record it would emit a pair < date, 1 >, where date represents the day on
which that transaction was recorded. This pair acts as a key-value pair in Spark. Now
key-value pairs with the same key are summed up to get the result. Since all the key-
value pairs are on the different nodes, key-value pairs with the same key move to the
same node to get the summed up value. This redistribution of data is known as shuf-
fling operation in Spark. Certain operations within Spark needs this redistribution
of data across the partitions of RDD that resides on different nodes so that it can be
grouped differently. This involves the movement of data from one node to another,
i.e., shuffling of key-value pairs. Shuffle operation incurs extra overhead and is lim-
ited by network bandwidth [32]. Operations that can cause shuffle to include reparti-
tion, ByKey, and join operations. The shuffle operation of Spark is a complex and
expensive operation due to the involvement of disk and network I/O.

4 Proposed methodology: SARSO

In this section, we describe the proposed approach SARSO in detail. SARSO is
an improved version of the existing YAFIM algorithm. Spark provides a distrib-
uted and parallel environment with in-memory processing capabilities to enhance
performance. YAFIM is an iterative algorithm where kth iteration is responsible
for finding k-frequent itemsets. It iteratively generates k-frequent itemsets using
(k-1)-frequent itemsets for all k ≥ 1 where k

0
= � . YAFIM uses traditional apriori_

gen function to calculate the k-candidate itemsets based on (k-1)-frequent itemsets.
Then, the Spark’s parallel MapReduce framework is used to count the support of the
k-candidate itemsets and consequently filter out only the frequent itemsets that have
the support value more than the user-specified threshold value.

On the other hand, SARSO executes in two phases. In the first phase, it logically
partitions the input dataset in n non-overlapping partitions of approximately equal

140 S. Raj et al.

1 3

size residing on different computing nodes. All the partitions are processed indepen-
dently and on individual nodes in parallel. First, each processing node generates all
the frequent itemsets of all possible lengths for their local data partition. Since the
size of local data at each node is approximately equal, all the computing nodes will
finish almost simultaneously. Also, at each node, only local data are being processed
to find all the k-length local frequent itemsets. So, there is no communication over-
head imposed on the cluster. The frequent itemsets found local to each node is then
sent to the master node. Master node merges all the frequent itemsets from different
slave nodes and deletes the duplicates. This union set works as the global candidate
itemsets for the second step. Now, the master node broadcasts this union set to all
the slave nodes. In the second phase, frequent itemsets that are globally qualified
are discovered using the global candidate itemsets broadcasted in the first phase.
SARSO also does not use the traditional apriori_gen() function. YAFIM uses this
function to determine the candidate itemsets before the original dataset is scanned
to count their frequency. SARSO rather generates candidates ‘on-the-fly’ when the
transaction is being read from the database. In other words, the generation of candi-
date itemsets and the counting of their support values go simultaneously. The most
interesting feature of the SARSO is that it reduces the shuffle overhead caused by
RDD transformations that rearranges the key-value pairs across the cluster nodes
using the partitioning method.

4.1 Design

SARSO is an enhanced version of the Spark-based Apriori algorithm. It has three
segments to discuss the workflow. Algorithm2 is the main module that finds all the
possible k-frequent itemsets, where k represents the length of the itemset. Algo-
rithm2 uses Algorithm3 to find all the local frequent itemsets of all possible lengths
at each of the processing nodes in a parallel and independent manner. Algorithm2
then merges all the locally found frequent itemsets to generate global candidate
itemsets. Algorithm4 helps Algorithm2 to compute the support values for the global
candidate itemsets and then filter out the global frequent itemsets.

In Algorithm2, input transactional dataset D is loaded from HDFS to a spark
RDD named rdd (line 1). The variable count represents the total number of ele-
ments/transactions in rdd (line 2). Then the absolute global minimum support
globalMinSup is calculated using the count and user-specified relative minimum
support minSup (line 3). Variable globalCI is an accumulator of ListBuffer type ini-
tialized to null (line 4). It collects all the locally found k-frequent itemsets received
from slave nodes and treats them as global candidate itemset. The maxLengthFI
is an integer-type accumulator that records the maximum-length frequent itemset
found by any of the partitions (line 5). We use mapPartitions() function with find-
FreqItemsetsPP() function and a Boolean true value as parameters. Algorithm3, i.e.,
findFreqItemsetsPP(), works on each partition independently. It finds all the frequent
local itemsets of all possible lengths iteratively and appends it to the accumulator
variable globalCI at the master node (line 6). At the end of mapPartitions() function,
globalCI would be localFI1 ∪ localFI2 ∪ localFI3 ∪ …… ∪ localFIn. Then, globalCI

141

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

and maxLengthFI are broadcasted to all the slave nodes. globalCI is going to be
used as global candidate itemsets, and maxLengthFI is the length of the maximum-
length frequent itemsets found at any node (line 7).

The original input dataset is scanned again, and mapPartitions() function is
invoked with countFrequency() method and a boolean literal true as parameters.
Method countFrequency(), i.e., Algorithm4 returns an RDD with < global_can-
didate_itemset, 1 > as key-value pair. Partitioning of the resulting RDD produced
by mapPartitions() remains intact as the partitions of source RDD. This is because
of the true value passed to it. In other words, elements within a partition continue
to reside on the same partition after applying RDD transformation. Now, reduce-
ByKey() method is called the shuffle locally found key-value pairs and reduces them
to merge values for the same keys. The filter() method is used to filter out only those
frequent itemsets that have support count more than globalMinSup. Finally, map()
function is applied to discard the support value and get an RDD globalFI with all
the global k-frequent itemsets for k ≥ 1(line 8).

Algorithm3 generates all the local k-frequent itemsets ‘on-the-fly,’ i.e., generation
of candidate itemset and a count of their support values go simultaneously. It works
on all the partitions in parallel. The findFreqItemsetsPP() is applied to each element
of a partition one by one. First, we find the size of the partition, i.e., the number
of transactions in that partition (line 1). Variable k represents the current iteration
number and also the length of the frequent itemset (line 2). Variables converged and
finalFI and previousFI (lines 3–5) are initialized only once (k = 1). Variable con-
verged is false until all the k-frequent itemsets are found local to a partition. Variable
previousFI indicates frequent itemsets generated in the previous iteration, and finalFI
represents set of all k-frequent itemsets local to a partition. In kth iteration, if the
algorithm has not converged in the previous iteration, we initialize the candidate by
a null (line 6–7). It accumulates all the candidate itemsets for a particular iteration.
The flatMap() function is applied to get a particular transaction of that partition (lines

142 S. Raj et al.

1 3

8–9). Then combinationGenerator() function is called to generate all k-length combi-
nations (itemsets) from the items of each transaction (line 10). These k-length combi-
nations may be one among candidate itemsets for kth iteration. Then apriori property
is used to prune unpromising candidates such that a k-itemset can be discarded if any
of (k-1) length subset is not frequent. After the pruning stage, remaining k-itemsets
are found as potential candidates (lines 11–21). Each candidate itemset is associated
with 1, i.e., < candidate_itemset, 1 > to form a key-value pair. After all the key-value
pairs have been generated for all the transactions in a partition, the variable candidate
contains < candidate_itemset, 1 > pair for all k-candidate itemsets.

143

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

The absolute local minimum support is calculated as partitionSize × minSup.
All the key-value pairs of the candidate RDD are now grouped based on their
keys using groupBy() function. This produces a RDD of < candidate_itemset,
iterable < 1,1,1…..>>. Then mapValues() is used to get the sum of support values
for the same key to produce an RDD of < candidate_itemset, total_support> . This
grouping and counting of support values happen within the partition. Therefore,
shuffling of key-value pairs across the partitions does not occur (lines 25–26).
Then filter() method is invoked to discover the candidate itemsets whose support
is equal or more than minimum local support (= minSup × partition_size). All the
discovered candidate itemsets are k-frequent itemsets and represeted as localFI
(line 27). If localFI for any kth iteration is empty for all the partitions, it means
Algorithm3 has found all the frequent itemsets of all possible lengths. Otherwise,
we go for the next iteration by appending k-frequent itemsets to finalFI that acts
as a repository for frequent itemsets of all lengths for a particular partition (lines
28–33). At the convergence of the Algorithm3, all locally found frequent itemsets
finalFI are appended to the accumulator variable globalCI, and it also updates
maxLengthFI conditionally (lines 35–37). The conditional statement ensures
maxLngthFI to be maximum among all the partitions.

global_ _

Algorithm4 uses the same methodology as used by Algorithm3. It also works
partitionwise and iteratively finds the support value of the global candidate itemsets
at each partition. It takes every transaction of a partition one by one and generates
combinations of different lengths varying from 1 to maxLengthFI (line 1–4). If a
combination found also belongs to globalCI it generates < candidate_itemset, 1 >
as key-value pair (line 5–7), then Algorithm2 uses reducebykey(), filter() and map()
methods to filter out global frequent itemsets. Figure 1 depicts the workflow of the
proposed methodology.

144 S. Raj et al.

1 3

4.2 Discussion

In this section, we analyze the impact of partition and shuffle operation on the exe-
cution time of the SARSO in comparison with YAFIM. SARSO uses a partition-
ing technique to mine frequent itemsets. Figure 1 illustrates the workflow graph for
SARSO. It operates in two phases. In Phase-I, it divides the input dataset into n dis-
tinct partitions. For each partition, all the local candidate itemsets are generated with
their respective support count values. Then, the frequent local itemsets (i.e., itemsets
frequent within the partition) are searched along with their support counts. If the

Master
Node

Master
Node

Slave
Node

Slave
Node

Master
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Phase-I

Phase-II

mapPartitions()

find_local_freqItemset()

write_on_accumulator()

broadcast() and mapPartitions()

reducebykey()

collect_global_freqItemset()

Fig. 1 Workflow of SARSO

145

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

minimum relative support is minSup, then the absolute minimum support for a parti-
tion is minSup × total number of transactions in that partition. Local minimum sup-
port is set lower than the global minimum support depending upon the number of
transactions falling into that partition. Then, we use the concept that frequent local
itemset may or may not be globally frequent. However, any itemset that is probable
to be globally frequent must occur as a frequent itemset in at least one of the parti-
tions. Therefore, all locally found frequent itemsets from different partitions act as
global candidate itemsets for the input dataset as a whole. In Phase-II, all the global
candidate itemsets are shuffled across partitions to merge the support count values
for the same candidate. Then frequent global itemsets are found by discarding those
candidates whose support count value is less than global absolute minimum support.
It can be easily observed that SARSO generates surplus candidate itemsets for each
iteration in comparison with YAFIM. The time required to filter out the frequent
itemsets would be more. This overhead would be overcome by the gain achieved in
terms of reduced shuffle overhead.

Instead of using the map(func) as in YAFIM, SARSO uses mapPartitions(func).
The map(func) applies the user-specified function (func) to every record and returns
one processed record as output. Since the records are being processed in parallel,
there are multiple instances of the applied function in the system working simulta-
neously. However, mapPartitions(func) returns a new RDD by applying a function
(func) to each partition of the RDD. We get iterator as an argument for mapParti-
tions(), through which we can iterate all elements in a partition one by one. Here,
user-specified function func is initialized on per partition basis rather than per ele-
ment basis. Therefore, tasks with high per record overhead perform better with map-
Partitions() than map() due to the high cost of setting up a new task. Like map(),
mapPartitions() have exactly the same partitions as the parent RDD. Also, it can
be noticed that SARSO generates the candidates ‘on-the-fly,’ i.e., for each partition,
candidate generation and the count of its support values go simultaneously when the
input dataset is being scanned.

What should be the partition size and the optimal number of partitions? RDDs are
fault-tolerant datasets that are huge in size and partitioned across the cluster nodes.
Spark partitions RDDs automatically and distributes the partitions across different
nodes. By default, one partition is created for each block of the file in HDFS. A
partition in spark is a logical unit of data. Every partition is stored on a specific node
in the cluster. RDD partitions help Spark to achieve parallelism. Every node in a
Spark cluster contains one or more partitions, and a single partition cannot span over
multiple nodes. The number of partitions in spark is configurable, and having few or
too many partitions is not good. If an RDD has too many partitions, then task sched-
uling may take more time than the actual execution time. In contrast, having very
few partitions is also not beneficial as some of the worker nodes may remain idle,
resulting in less concurrency. This could lead to improper resource utilization and
data skewing, i.e., data might be skewed on a single partition and a specific worker
node might be doing more than other worker nodes. Thus, there is always a trade-off
when it comes to deciding on the number of partitions. In the following section, we
analyze the effect of partition number on the run time of the SARSO algorithm.

146 S. Raj et al.

1 3

5 Performance evaluation

In this section, the performance of SARSO is evaluated in comparison with YAFIM.
YAFIM is the earliest proposed adaptation of the Apriori algorithm in the Apache
Spark environment. To analyze both the algorithms over Spark, we set up a cluster
of four nodes. All the four nodes were having Xeon(R) CPU E3-1225 v5 clocked at
3.30 GHz with four computing cores each. Every node of the cluster was deployed
with the same memory configurations, i.e., 16 GB of RAM and 2 TB of the hard
disk. The computing nodes are installed with Ubuntu 16.04, Hadoop 2.6.0, Spark
1.6.0, JDK 1.8.0, and Scala 2.11.8. Input datasets and frequent output patterns were
stored on the HDFS.

5.1 Datasets

Some benchmark datasets are used in our experiments to evaluate the perfor-
mance of SARSO and YAFIM. All the experiments were performed three times,
and the average is recorded as the final result. Experiments were conducted with six
benchmark datasets with different characteristics. The datasets used for the analy-
sis include mushroom dataset, chess dataset, retail dataset, and synthetic datasets
T1014D100k, T1012D100k, and T2014D100k generated by IBM’s random transac-
tional data generator. Detailed information about the above-mentioned datasets can
be found on the machine learning repository [32–34]. Some of their characteristics
are listed here for convenience in Table 1.

5.2 Execution time analysis

The performance of SARSO and YAFIM was evaluated by conducting exhaus-
tive experiments with the above-mentioned datasets. We measure gains in terms
of speedup and scalability of SARSO in comparison with YAFIM. The number
of nodes in the cluster is kept constant for all the experiments. Run time of both
the algorithms with different datasets for decreasing values of minimum support is
calculated to evaluate the speed-up measures. The speed-up performance of both
the algorithms is illustrated in Fig. 2. The number of partitions of the input dataset

Table 1 Characteristics of the
datasets used for experimental
analysis

Datasets No. of transactions No. of
different
Items

Mushroom 8124 119
Chess 3196 75
T1014D100K 100,000 870
Retail 87,988 16,470
T1012D100K 100,000 1000
T2014D100K 100,000 1000

147

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

is taken as 1 for SARSO-1 and 3 for SARSO-3 in all the experiments. As we can
notice that the execution time increases for all the algorithms as the minimum sup-
port is reduced. This is because of the increase in the total number of frequent and
candidate itemsets generated. We can observe that both YAFIM and SARSO-3 per-
form better than SARSO-1 in all cases. The reason is that SARSO-1 reduces the
communication overhead to the greatest extent, but the parallel processing benefits
are lost. As expected SARSO-3 performs better than YAFIM for low minimum sup-
port values. For higher values of minimum support, YAFIM exhibits better perfor-
mance over SARSO-3. The reason is the overhead incurred in setting up the accu-
mulator variables and merging the accumulated values to drop duplicates. All the
locally found frequent itemsets are collected and merged on the master node that is
going to work as global candidate itemsets. Also, a large number of itemsets were
found locally frequent, but very few of them emerged out as globally frequent. So
the partitioning method does not benefit much due to the setting up of new data
structures and generation of surplus candidate itemsets. As an instance, we can
observe that SARSO-3 performed inadequate than YAFIM for the T10I4D100K
dataset at a higher support value of 1000 transactions (102 s for YAFIM and 152 s
for SARSO-3).

(a) (b) (c)

(d) (e) (f)

3000 2500 2000 1500 1000
0

100

200

300

400

500

600

700

800
 E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Minimum Support
(no. of transactions)

YAFIM
SARSO-3
SARSO-1

2500 2000 1500 1000 500
0

100

200

300

400

500

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Minimum Support
(no. of transactions)

YAFIM
SARSO-3
SARSO-1

1000 750 500 250 100
0

100

200

300

400

500

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Minimum Support
(no. of transactions)

YAFIM
SARSO-3
SARSO-1

1000 800 600 400 200
0

100

200

300

400

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Minimum Support
(no. of transactions)

YAFIM
SARSO-3
SARSO-1

1000 800 600 400 200
0

100

200

300

400

500

600

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Minimum Support
(no. of transactions)

YAFIM
SARSO-3
SARSO-1

1000 800 600 400 200
0

100

200

300

400

500

600

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Minimum Support
(no. of transactions)

YAFIM
SARSO-3
SARSO-1

Fig. 2 Execution time taken by YAFIM and SARSO with 1 partition and 3 partitions. X-axis shows mini-
mum support values, and Y-axis indicates execution time in seconds. a Chess, b mushroom, c retail, d
T10I4D100K, e T10I2D100K, f T20I4D100K

148 S. Raj et al.

1 3

At the lower minimum support values, the least improvement recorded was for
the T1014D100K dataset (210 s for SARSO-3 and 258 s for YAFIM at a minimum
support of 200), and highest improvement recorded was for the chess dataset (292 s
for SARSO-3 and 568 s for YAFIM at a minimum support of 1000). The main rea-
son for this improvement for low support values is due to the restriction of shuffling
of key-value pairs among the cluster nodes, hence reducing the communication and
synchronization overhead to a great extent.

5.3 Scalability performance analysis

The scalability performance of SARSO is measured by replicating the dataset to
enlarge its size. We replicate the datasets to 2, 3, 4, 5, and 6 times to magnify the
data size and measure run time performance. Since SARSO-1 does not perform bet-
ter than YAFIM and SARSO-3 in any of the cases, it is not included in this experi-
ment. As shown in Fig. 3, both the algorithms show nearly the same nature, i.e.,
when the size of the datasets increases, the execution time grows slowly. Since the
shuffling overhead of key-value pairs among the cluster nodes has been reduced to a
great extent, we can observe that SARSO-3 grows flatter than YAFIM.

(a) (b) (c)

(d) (e) (f)

0 1 2 3 4 5 6 7
0

50

100

150

200

250
 E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Replicated times of original data

 YAFIM SARSO-3

0 1 2 3 4 5 6 7
0

25

50

75

100

125

150

175

200

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Replicated times of original data

 YAFIM SARSO-3

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Replicated times of original data

 YAFIM SARSO-3

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Replicated times of original data

 YAFIM SARSO-3

0 1 2 3 4 5 6 7
0

200

400

600

800

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Replicated times of original data

 YAFIM SARSO-3

0 1 2 3 4 5 6 7
0

200

400

600

800

 E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Replicated times of original data

 YAFIM SARSO-3

Fig. 3 Scalability performance evaluation for the experimental datasets with 3 partitions. X-axis repre-
sents replicated times of the original dataset, and Y-axis represents execution time in seconds. a Chess:
Min. Sup. = 90%, b mushroom: Min. Sup. = 30% c Retail: Min. Sup. = 0.18%, d T1014D100K: Min.
Sup. = 0.20%, e T1012D100K: Min. Sup. = 0.20%, f T2014D100K: Min. Sup. = 0.25%

149

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

6 Conclusion and future work

Apriori algorithm is one of the popular algorithms to discover frequent itemsets
from transactional datasets. It further acts as a primary step to find association rules.
It suffers from several drawbacks like repeated scanning of the input dataset, gen-
eration of a huge number of candidates in each iteration, etc. It does not suit well
to large-scale datasets because of the additional requirement of high computation
power to process large datasets efficiently. Large primary memory is also desirable
to keep large input datasets ready for faster execution. Many single machine ver-
sions of the Apriori algorithm have been proposed to improve efficiency. But if the
input dataset is large, it demands a parallel and distributed computing environment.
A variety of algorithms based on apriori are also proposed to improve efficiency
further using the MapReduce framework. However, MapReduce-based implementa-
tions involve iterative computation and impose high disk usage that makes them less
significant for large datasets. Spark versions of Apriori show performance enhance-
ment due to its in-memory processing capabilities. But, very little attention has been
paid toward the overhead caused due to Spark’s RDD operations. Shuffling of key-
value pairs across the cluster nodes during RDD operations consume the cluster
bandwidth and subsequently makes the algorithm slower. In this paper, we proposed
an efficient two-phase partition-based approach named SARSO to mine frequent
itemsets from large-scale datasets. It utilizes the Spark environment efficiently to
reduce shuffle overhead, keeping Apriori as the base algorithm. It improves the effi-
ciency further by reducing the shuffle overhead caused by RDD operations. Here,
the Partition method is used to reduce the necessary shuffle overhead incurred by the
Spark framework. The performance of SARSO is evaluated in terms of efficiency
and scalability for different well-known datasets. The experimental results show that
it exhibits better performance in comparison with YAFIM for lower minimum sup-
port values. This method can be further extended to generate association rules and
to find high utility itemsets for large-scale transactional datasets.

Acknowledgments This work is partially funded by IIT(ISM), Govt. of India, Dhanbad. The authors
would like to express their gratitude and heartiest thanks to the Department of Computer Science & Engi-
neering, Indian Institute of Technology (ISM), Dhanbad, India, for providing their research support.

References

 1. Aggarwal CC (2015) Data mining: the textbook. Springer, Berlin
 2. Aggarwal CC, Bhuiyan MA, Al Hasan M (2014) Frequent pattern mining algorithms: a survey. In:

Frequent pattern mining. Springer, Cham, pp. 19–64
 3. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam
 4. Wu X, Zhu X, Wu GQ, Ding W (2013) Data mining with big data. IEEE Trans Knowl Data Eng

26(1):97–107
 5. Fan W, Bifet A (2013) Mining big data: current status, and forecast to the future. ACM sIGKDD

Explor Newsl 14(2):1–5

150 S. Raj et al.

1 3

 6. Che D, Safran M, Peng Z (2013, April) From big data to big data mining: challenges, issues, and
opportunities. In: International Conference on Database Systems for Advanced Applications.
Springer, Berlin, pp 1–15

 7. Sagiroglu S, Sinanc D (2013, May) Big data: a review. In: 2013 International Conference on Col-
laboration Technologies and Systems (CTS). IEEE, pp 42–47

 8. Agrawal R, Srikant R (1994, September) Fast algorithms for mining association rules. In: Proceed-
ings of the 20th International Conference Very Large Data Bases, VLDB, Vol 1215. pp 487–499

 9. Goswami DN, Anshu C, Raghuvanshi CS (2010) An algorithm for frequent pattern mining based on
apriori. Int J Comput Sci Eng 2(04):942–947

 10. Borgelt C (2003, November) Efficient implementations of apriori and eclat. In: FIMI’03: proceed-
ings of the IEEE ICDM workshop on frequent itemset mining implementations

 11. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM sigmod
record 29(2):1–12

 12. Savasere A, Omiecinski ER, Navathe SB (1995) An efficient algorithm for mining association rules
in large databases. Georgia Institute of Technology, Atlanta

 13. Lin MY, Lee PY, Hsueh SC (2012, February) Apriori-based frequent itemset mining algorithms on
MapReduce. In: Proceedings of the 6th International Conference on Ubiquitous Information Man-
agement and Communication. pp 1–8

 14. Li N, Zeng L, He Q, Shi Z (2012, August) Parallel implementation of apriori algorithm based on
mapreduce. In: 2012 13th ACIS International Conference on Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Computing. IEEE, pp 236–241

 15. Yang XY, Liu Z, Fu Y (2010, June) MapReduce as a programming model for association rules
algorithm on Hadoop. In: The 3rd International Conference on Information Sciences and Interaction
Sciences. IEEE, pp 99–102

 16. Lin X (2014, June) Mr-apriori: Association rules algorithm based on mapreduce. In: 2014 IEEE 5th
international conference on software engineering and service science. IEEE, pp 141–144

 17. Yahya O, Hegazy O, Ezat E (2012) An efficient implementation of Apriori algorithm based on
Hadoop-Mapreduce model. Int J Rev Comput 12

 18. Apache hadoop (2013). https ://hadoo p.apach e.org/. Accessed Mar 2019
 19. Apache Spark: Lightning-fast cluster computing. (2016) The Apache Software Foundation.

Spark1.6.0. https ://spark .apach e.org/. Accessed Mar 2019
 20. Karau H, Konwinski A, Wendell P, Zaharia M (2015) Learning spark: lightning-fast big data analy-

sis. O’Reilly Media Inc., Champaign
 21. Lin MY, Lee PY, Hsueh SC (2012, February) Apriori-based frequent itemset mining algorithms on

MapReduce. In: Proceedings of the 6th International Conference on Ubiquitous Information Man-
agement and Communication. pp 1–8

 22. Moens S, Aksehirli E, Goethals B (2013, October) Frequent itemset mining for big data. In: 2013
IEEE International Conference on Big Data. IEEE, pp 111–118

 23. Hammoud S (2011) MapReduce network enabled algorithms for classification based on association
rules (Doctoral dissertation, Brunel University School of Engineering and Design PhD Theses)

 24. Thabtah F, Hammoud S (2013) Mr-arm: a map-reduce association rule mining framework. Parallel
process lett 23(03):1350012

 25. Yu KM, Zhou J, Hong TP, Zhou JL (2010) A load-balanced distributed parallel mining algorithm.
Expert Syst Appl 37(3):2459–2464

 26. Aouad LM, Le-Khac NA, Kechadi TM (2010) Performance study of distributed apriori-like fre-
quent itemsets mining. Knowl Inf Syst 23(1):55–72

 27. Chen Z, Cai S, Song Q, Zhu C (2011, August) An improved Apriori algorithm based on pruning
optimization and transaction reduction. In: 2011 2nd International Conference on Artificial Intel-
ligence, Management Science and Electronic Commerce (AIMSEC). IEEE, pp 1908–1911

 28. Zhang F, Liu M, Gui F, Shen W, Shami A, Ma Y (2015) A distributed frequent itemset mining algo-
rithm using Spark for Big Data analytics. Clust Comput 18(4):1493–1501

 29. Qiu H, Gu R, Yuan C, Huang Y (2014, May) Yafim: a parallel frequent itemset mining algorithm
with spark. In: 2014 IEEE international parallel & distributed processing symposium workshops.
IEEE, pp 1664–1671

 30. Rathee S, Kaul M, Kashyap A (2015, October). R-Apriori: an efficient apriori based algorithm on
spark. In: Proceedings of the 8th workshop on Ph. D. Workshop in information and knowledge man-
agement. pp 27–34

http://hadoop.apache.org/
http://spark.apache.org/

151

1 3

A Spark-based Apriori algorithm with reduced shuffle overhead

 31. Sethi KK, Ramesh D (2017) HFIM: a Spark-based hybrid frequent itemset mining algorithm for big
data processing. J Supercomput 73(8):3652–3668

 32. RDD Programming Guide (2019, January). https ://spark .apach e.org/docs/lates t/rdd-progr ammin
g-guide .html

 33. IBM’s synthetic datasets generated by IBM’s Quest dataset generator (2019, January). https ://www.
phili ppe-fourn ier-viger .com/spmf/index .php?link=datas ets.php

 34. Datasets for chess, mushroom and retail (2019, January). https ://fimi.ua.ac.be/data/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Shashi Raj1 · Dharavath Ramesh2 · Krishan Kumar Sethi2

 * Dharavath Ramesh
 ramesh.d.in@ieee.org

 Shashi Raj
 shashirajmnnit@gmail.com

 Krishan Kumar Sethi
 kksethi@ieee.org

1 Department of Computer Science and Engineering, Bakhtiyarpur College of Engineering,
Patliputra, Patna, Bihar 800013, India

2 Department of Computer Science and Engineering, Indian Institute of Technology (ISM),
Dhanbad, Jharkhand 826004, India

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://fimi.ua.ac.be/data/
http://orcid.org/0000-0003-3338-6520
http://orcid.org/0000-0001-9199-1345

	A Spark-based Apriori algorithm with reduced shuffle overhead
	Abstract
	1 Introduction
	2 Related literature
	3 Preliminaries
	3.1 Apriori algorithm
	3.2 Apache Spark

	4 Proposed methodology: SARSO
	4.1 Design
	4.2 Discussion

	5 Performance evaluation
	5.1 Datasets
	5.2 Execution time analysis
	5.3 Scalability performance analysis

	6 Conclusion and future work
	Acknowledgments
	References

