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Abstract
Improving the energy efficiency while guaranteeing quality of services (QoS) is one 
of the main challenges of efficient resource management of large-scale data centers. 
Dynamic virtual machine (VM) consolidation is a promising approach that aims to 
reduce the energy consumption by reallocating VMs to hosts dynamically. Previ-
ous works mostly have considered only the current utilization of resources in the 
dynamic VM consolidation procedure, which imposes unnecessary migrations and 
host power mode transitions. Moreover, they select the destinations of VM migra-
tions with conservative approaches to keep the service-level agreements , which is 
not in line with packing VMs on fewer physical hosts. In this paper, we propose 
a regression-based approach that predicts the resource utilization of the VMs and 
hosts based on their historical data and uses the predictions in different problems of 
the whole process. Predicting future utilization provides the opportunity of selecting 
the host with higher utilization for the destination of a VM migration, which leads 
to a better VMs placement from the viewpoint of VM consolidation. Results show 
that our proposed approach reduces the energy consumption of the modeled data 
center by up to 38% compared to other works in the area, guaranteeing the same 
QoS. Moreover, the results show a better scalability than all other approaches. Our 
proposed approach improves the energy efficiency even for the largest simulated 
benchmarks and takes less than 5% time overhead to execute for a data center with 
7600 physical hosts.
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1 Introduction

High energy consumption has become one of the critical issues for today’s data 
centers. High operational cost and environmental effects are two main consequences 
of this usage. According to Koomey’s report [1], estimated annual electricity cost in 
large data centers is about 41% of the data center’s total operating costs. However, 
according to Shehabi’s latest report [2], a potential of 45% reduction in electricity 
usage can be achieved in new generation of sustainable and energy-efficient data 
centers by new resource management approaches.

Virtualization technology in modern data centers [3] provides the opportunity of 
consolidating virtual machines (VM) of the data center dynamically. Dynamic VM 
consolidation techniques utilize live VM migration to pack as many VMs as possi-
ble on one physical host and switch idle hosts to low-power modes to decrease hosts’ 
energy consumption [4]. However, given the variable nature of VMs loads [5, 6], 
and energy and delay overheads associated with VM migrations, dynamic consoli-
dation may degrade the quality of service (QoS) and even increase overall energy 
consumption, if not effectively applied.

Increasing the workload of some VMs may cause the corresponding physical 
hosts to be overloaded, but some other hosts to be underutilized [7]. Dynamic VM 
consolidation helps improve the resource utilization while keeping a satisfactory 
level of QoS. In this regard, several steps are taken to reallocate VMs to the hosts 
effectively. Main problems of this procedure are (1) detecting overloaded hosts, (2) 
selecting migrating VMs of overloaded hosts, (3) detecting underutilized hosts, (4) 
selecting destination hosts for migrations and (5) performing migrations [8]. Pre-
viously published papers in this area have mostly focused on one problem of the 
whole procedure, while in this paper we will focus on the third and fourth ones.

Mostly, past works in this context have taken the current CPU utilization into 
account to decide whether a physical host is overloaded or underutilized [9–12], 
whereas few of them have tried to estimate future utilization or state of the hosts 
and have taken decisions accordingly [13–16]. Noting that the hosts of a data center 
experience dynamic and used dependent workloads, the former approaches may 
cause unnecessary migrations and unnecessary host power mode transitions, which 
finally decrease the efficiency of the dynamic consolidation process.

As mentioned before, consolidation approaches try to pack more VMs on fewer 
physical hosts. Therefore, the hosts with higher CPU utilization seem to be more 
efficient destination candidates for VM migrations. On the other hand, migrating 
more VMs to the hosts with higher CPU utilization increases the probability of 
overutilization, and hence, this approach has not been exploited so far. Therefore, 
concerning QoS requirements, most previous works select destination hosts by other 
methodologies like selecting based on the additional power usages imposed by new 
migrated VM or limiting number of active hosts [9, 13, 17–19], which are not in line 
with packing more VMs on fewer hosts.

Our work tackles the aforementioned challenges of the dynamic consolidation 
procedure. Our proposed approach uses known linear regression method to predict 
future resource utilization of all hosts using their historical data. Considering the 
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accuracy of linear regression for prediction, our approach firstly checks the capacity 
of candidate destinations and then migrates VMs to the hosts with higher resource 
utilization, which leads to a better placement in the view of consolidation. Further-
more, our approach predicts the utilization of all running VMs and selects the host 
with minimum predicted load as underutilized host accordingly.

Our solution is evaluated using real traces from enterprise servers. The proposed 
techniques, as well as our baselines for comparison, have been implemented in the 
CloudSim simulator. The results show that the proposed algorithm improves energy 
efficiency while meeting SLA requirements and keeps its efficiency even for larger 
workload traces while imposing less than 5% computation time overhead (compared 
to used 5-minute time interval).

The remainder of this paper is organized as follows. Section 2 summarizes the 
related work. Then, Sect.   3 introduces the considered problem in this paper. Sec-
tion 4 describes our proposed approaches for the explained problem. Section 4 also 
represents the basic concepts of linear regression method. The experimental setup is 
described and results are provided in Sect.  5. Finally, a summary of our conclusions 
is drawn in Sect. 6.

2  Related work

There has been an extensive research in data center energy efficiency. With the wide 
acceptance of the virtualization technology, most of the previous approaches focus 
on VM consolidation methods as an effective solution to save energy in data centers. 
VM consolidation methods use live VM migration to pack the existing VMs into 
fewer hosts and switch off the idle hosts periodically [9, 11, 13, 14, 20]. In general, 
the problem of dynamic VM consolidation can be split into several subproblems. 
Previous approaches in this regard usually focus on one subproblem of the general 
process.

In some approaches, the VM consolidation is treated as an optimization problem 
and solved by known convex optimization solutions. Wu et al. [11] proposed a tech-
nique based on an improved grouping genetic algorithm (IGGA), which switches 
off idle hosts to save energy. Ashraf et al. [21] proposed a multiobjective ant colony 
system-based algorithm to build VM migration plans, which are used to minimize 
overprovisioning of physical machines (PMs) by consolidating VMs on underuti-
lized PMs. The main bottleneck of this approach is its large computation time over-
head, especially for large-scale data center scenarios.

Beloglazov et al. [9] introduced several dynamic consolidation algorithms which 
work along with power-aware best-fit decreasing (PABFD) algorithm for destina-
tion host selection. The main differences between these algorithms are about their 
overloaded host detection and VM selection methods. In these algorithms, the 
overloaded host detection method is based on the host’s CPU utilization and VM 
selection method is based on the VM’s characteristics. Sercon [10] is another algo-
rithm which minimizes the total number of active hosts together with the number 
of migrations. The key idea of Secron is migrating VMs from least loaded hosts to 
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most loaded ones. Given that the CPU usage of the hosts changes arbitrarily based 
on the users behavior, these approaches fall short in prediction hosts’ utilization.

Fahimeh et al. [13] proposed the linear regression-based CPU usage prediction 
algorithm (LIRCUP) to consolidate VMs dynamically. LIRCUP uses the same meth-
odologies of [9] for different steps of consolidation process. However, it predicts 
hosts’ CPU utilization by linear regression and considers predicted values instead of 
current CPU utilization to detect overloaded hosts, underutilized hosts and destina-
tions of migrations.

Suhib et al. [14] proposed a VM placement algorithm, which determines the set 
of candidates hosts to be the destination of migrating VMs. The proposed approach 
in [14] uses historical data to build probabilistic model that predicts the future host 
state and then selects the host whose future state is normal as the destination of 
a migration. Each host in [14] can be in normal, underutilized or overloaded state 
based on its CPU utilization. EQ-VMC [20] is another VM placement algorithm, 
which uses an improved discrete differential evolution (discrete DE) algorithm to 
search for the global optimization solution for VM placement of migrating VMs. 
This algorithm regards all mappings between VMs and PMs as a population and 
uses heuristic evolutionary approach to obtain optimal VM placement. Wang et al. 
[22] proposed HS and SABFD algorithms to select migrating VMs and destination 
hosts, respectively. Both of these algorithms are based on the current utilization of 
VMs and hosts.

Saeid et al. [15] proposed an adaptive threshold-based algorithm for overloaded 
host detection subproblem of dynamic VM consolidation using dynamic fuzzy 
Q-learning (DFQL) method. The proposed algorithm in [15] learns when a host 
must be considered as an overloaded host with regard to the energy-performance 
trade-off optimization.

Abbas et al. [16] proposed an algorithm considering the trade-off between energy 
consumption and performance. The proposed algorithm in [16] combines the cur-
rent host utilization and the number of its VMs to predict its future utilization. The 
host with minimum predicted CPU utilization is considered as underutilized host. 
This algorithm also uses host utilization and minimum correlation (UMC) method 
to select destination hosts of migrating VMs. Given that the CPU usage of a host can 
be predicted based on its historical data, these approaches fall short in proposing a 
destination host selection method which is in line with consolidating VMs.

Finally, many studies exist that try to improve energy efficiency of a data center. 
To the best of our knowledge, our proposed linear regression-based approach is the 
first work that besides predicting CPU utilization, migrates VMs of underutilized 
hosts to the destinations with maximum predicted utilization, which leads to packing 
as many VMs as possible on fewer hosts while keeping QoS.

3  Problem formulation

Live VM migration provides the opportunity of improving VMs placement over time 
and after the initial VM allocation. This procedure is called dynamic consolidation. 
In contrast to static consolidation which assigns VMs to empty hosts, dynamic VM 
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consolidation allows cloud providers to pack VMs into fewer hosts dynamically and set 
more hosts into low-power modes with time. Thus, dynamic consolidation improves 
energy efficiency through the VM migration as the main control knob.

The first objective of our proposed approaches for dynamic consolidation is increas-
ing energy savings. As this procedure may affect QoS, minimizing service-level agree-
ment (SLA) violation is considered as the second objective. We allocate host CPU 
capacity (measured in million instructions per second, i.e., MIPS) to VMs, up to their 
current requested MIPS. Therefore, two conflicting objectives here are minimizing 
energy consumption and the difference between the requested and allocated MIPS to 
all VMs (which represents SLA violation).

We formulate our problem in Eqs. (2)–(5). Let SH and SV represent the set of hosts 
and VMs of the data center, respectively, with N and M denoting their number of mem-
bers during the time period (t1, t2) . At each time slot t, each VM is running on a host 
that is described by aij(t):

Based on the above explanations, we can formulate the optimization problem for the 
time period (t1, t2) as follows:

            Subject to

The first constraint (3) ensures that each VM is running only on one host, and the set 
of constraints (4) and (5) guarantee that the allocated CPU and memory resources 
from a host to its VMs are not higher than its capacity. Ci

max
 and memi

max
 repre-

sent maximum CPU and memory capacity of host i. Cj

Alloct
 and mem

j

Alloct
 stand for 

allocated MIPS and memory to VM j, at time slot t, respectively. The first and sec-
ond terms of the objective function represent the total energy consumption of the IT 
equipment ( EDC(t1,t2)

 ) and the average SLA violation ( SLAv(t1,t2)
 ) of the data center 

for the time period (t1, t2) . EDC(t1,t2)
 can be defined as:

(1)aij(t) =

{

1 if VM j is assigned to host i, ∀j ∈ SV &∀i ∈ SH
0 otherwise

(2)Min EDC(t1, t2) + SLAv(t1, t2)

(3)
N
∑

i=1

aij(t) = 1 ∀j ∈ SV

(4)
M
∑

j=1

C
j

Alloct
⋅ aij(t) < Ci

max
∀i ∈ SH

(5)
M
∑

j=1

mem
j

Alloct
⋅ aij(t) < memi

max
∀i ∈ SH
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where Pi represents the power consumption of host i during time period (t1, t2).
The SLA violation is defined based on the ‘difference between requested and 

allocated MIPS’ of the VMs. Therefore, the second objective of the resource man-
agement optimization problem is represented as follows:

where Cj

Req
 refers to requested MIPS of VM j and Cj

Alloc
 stands for its allocated MIPS 

during time period (t1, t2).
The nature of the VM allocation problem is NP-hard. Therefore, potentially sub-

optimal solutions are required to obtain reasonable results in as short as possible 
runtime. In this paper, two linear regression-based approaches are proposed, where 
further details are provided in the following sections.

4  Proposed approaches

As previously mentioned, five main steps are taken in VM consolidation algorithms: 
(1) detecting overloaded hosts, (2) selecting migrating VMs of overloaded hosts, (3) 
selecting underutilized hosts, (4) selecting destination hosts for migrations and (5) 
performing migrations. Among these steps, we focus on the third and fourth steps of 
the whole process. Given that the explained problem in Sect. 3 is NP-hard [23], heu-
ristic algorithms are proposed for different steps, to determine reallocation map in a 
reasonable runtime. Therefore, all the explained constraints in the problem formula-
tion have to be guaranteed in all steps of the proposed approaches. In this section, 
we first represent the basic formulation of linear regression and then propose two 
linear regression-based VM consolidation algorithms.

4.1  Linear Regression

Among machine learning techniques, regression is a widely used technique for 
prediction. Linear regression estimates the linear model between independent vari-
ables to a dependent variable. The independent variable is a predictive variable for 
the dependent variable [24]. The linear regression models the relationship between 
independent variable x and dependent variable y by:

where �0 and �1 are the regression coefficients. Each yk is forecasted using its past 
values. For each predicted model yk , the estimation of � coefficients is computed to 
minimize the sum of square error of n past data. The error is the difference between 

(6)EDC(t1,t2)
=

N
∑

i=1

[Pi ⋅ (t2 − t1)]

(7)SLAv(t1,t2)
=

M
∑

j=1

(C
j

Req
− C

j

Alloc
) ⋅ (t2 − t1)

(8)yk = �0 + �1xk
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predicted and actual values. The sum of square error for n past data is defined as 
follows:

where �k represents the difference between the kth predicted ( ŷk ) and actual ( yk ) 
values.

The coefficients are chosen such that the residual sum of squares (RSS) over all past 
data points is minimized [25]. It can be shown that the minimizing values are:

where x and y represent the sample means.

4.2  General VM consolidation procedure

Algorithm 1 reviews the used methods for different steps of dynamic consolidation pro-
cess in this paper. As mentioned before, we propose linear regression-based methods 
for Step 3 and Step 4 of Algorithm 1. For other steps, we use simple methods that have 
been used in the literature.

Algorithm 1, first, detects overloaded hosts using a static threshold heuristic. If the 
CPU utilization exceeds the considered threshold (Ut) of total capacity, the host is 
assumed overloaded. Then, some VMs are selected to be migrated from overloaded 
hosts to resolve their overutilization (Lines 1–7). In this way, a VM with minimum 
requested MIPS is selected for migration and the VMs are chosen to be migrated, while 
overutilization of the host is resolved. Actually, the first and second steps prevent high 
utilization rate for all hosts. In the third step, the destinations for migrating VMs of the 
overutilized hosts are selected using Algorithm 2 (explained in the following subsec-
tions). Finally, the underutilized hosts are selected in Step 4 using Algorithm 3. All 
the VMs of underutilized hosts are migrated in order to switch the underutilized host 
to a low-power mode. The destinations of migrating VMs from underutilized hosts are 
selected with the same method used in Step 3. The following subsections explain the 
proposed algorithms focusing on Steps 3 and 4 of the whole consolidation procedure.

(9)
k=n
∑

k=1

(𝜖k)
2 =

k=n
∑

k=1

(yk − ŷk)
2

(10)�1 =

∑k=n

k=1
(xk − x)(yk − y)

∑k=n

k=1
(xk − x)

(11)�0 = y − �1x
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4.3  Linear regression‑based consolidation algorithms

This section describes the proposed approaches for underutilized and destination 
host selection steps of Algorithm 1. Host CPU utilization has been a key param-
eter in most of the previously presented dynamic consolidation algorithms. This 
parameter is used in different parts of the algorithms to select a better VM place-
ment. Concerning that the VMs of a data center experience dynamic workloads 
and consequently their CPU usage varies arbitrarily over time; the current host 
CPU utilization alone is not an appropriate indication of future utilization. Thus, 
disregarding past data of hosts’ CPU utilization decreases dynamic consolidation 
efficiency resulting in lower energy savings, higher VM migrations and conse-
quently higher SLA violations.

In this section, we present two approaches that use linear regression method 
as a known prediction methodology to predict hosts’ CPU utilization for differ-
ent steps of dynamic consolidation process. One-level linear regression-based 
approach (OLLRBA) uses linear regression method at one level to select the des-
tination hosts of migrations (using Algorithm  2). This algorithm also selects a 
host with the minimum CPU utilization as underutilized host.
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Two-level linear regression-based approach (TLLRBA) uses linear regression 
method at two levels to select both the destination hosts of migrations (using Algo-
rithm 2) and underutilized hosts (using Algorithm 3). We consider both OLLRBA 
and TLLRBA as our proposed approaches in the whole paper.

4.3.1  OLLRBA: one‑level linear regression‑based algorithm

In the third and fourth steps of dynamic consolidation process (Algorithm 1), des-
tination hosts are selected for migrating VMs. Selecting the host with maximum 
CPU utilization as the destination is completely in line with the consolidation goal, 
which is packing as many VMs as possible on fewer hosts (which leads to less active 
hosts and consequently less energy consumption). This approach has not been used 
in most of the previous works in the area. This is because the CPU usage of VMs 
and hosts varies arbitrarily and is user dependent. Thus, selecting the host with max-
imum CPU utilization as the destination host can cause high SLA violations and 
even higher energy consumption.

OLLRBA predicts the hosts utilization based on their past data using linear 
regression and selects the host with maximum predicted CPU utilization as the 
destination host. OLLRBA also selects the host with minimum CPU utilization as 
underutilized host in Step 4 of Algorithm 1.

Algorithm  2 reviews the used procedure in OLLRBA to select the destination 
hosts. This algorithm first predicts the future utilization of all hosts based on their 
current utilization and using their n past training data. In this way, the CPU utiliza-
tion of host i at time slot t + 1 is predicted by:

where �0 and �1 are calculated using n host’s past data by Eqs. 10 and 11, respec-
tively. In fact, the hosts’ past CPU utilization are used as the training data to model 
the relationship between the current and future CPU utilization.

At the second step of Algorithm 2, for each migrating VM, the host with maxi-
mum predicted utilization is selected as the destination host.

Therefore, Algorithm 1 describes OLLRBA if (1) Algorithm 2 is used in Steps 
3 and 4 to select the destination hosts and (2) the host with minimum CPU utiliza-
tion is selected as underutilized host in Step 4. Our simulations results show that 
OLLRBA achieves higher energy savings while keeping SLA (see Sect. 5).

(12)Ui
t+1

= �0 + �1 ∗ Ui
t
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4.3.2  TLLRBA: Two‑level linear regression‑based algorithm

TLLRBA selects the destination hosts with the same methodology as OLLRBA 
approach. The difference between these two approaches is about underutilized 
hosts selection. OLLRBA selects the host with the minimum CPU utilization as 
the underutilized host and continues selecting underutilized hosts until all the 
VMs of selected host can be migrated. As migrating VMs imposes energy and 
delay overheads, selecting inappropriate new VMs placement decreases the effi-
ciency of the consolidation process. Therefore, TLLRBA uses linear regression 
algorithm at two levels. Besides predicting hosts’ CPU utilization (using Eq. 12) 
to select destination hosts, it predicts hosts’ VMs utilization to select underuti-
lized hosts. Similar to the host CPU utilization prediction, the utilization of VM j 
at time slot t + 1 is predicted by:

where �0 and �1 are calculated using n VM’s past data by Eqs. 10 and 11, respec-
tively. After predicting the utilization of all running VMs of all hosts, the host with 
minimum load (based on its VM’s predicted utilization) is selected as underutilized 
host.

Algorithm  3 represents explained procedure of selecting underutilized hosts 
used in TLLRBA. At the first step of this algorithm, all active hosts that are not 
overloaded and are not the destination of migrations are considered as the under-
utilized candidates. Then, the utilization of all the VMs of candidate hosts for 
the next time slot is predicted. Finally, the host with minimum future utilization 
(based on its running VMs) is considered as underutilized. Lines 5–11 of Algo-
rithm 3 are repeated until all VMs of the last selected underutilized host cannot 
be migrated (i.e., there are not host destinations for all of its VMs). As explained 
above, this algorithm is run inside Algorithm 1 in order to select underutilized 
hosts. Therefore, Algorithm 1 describes TLLRBA if (1) Algorithm 2 is used in 
Steps 3 and 4 to select the destination hosts and (2) Algorithm 3 is used to select 
the underutilized hosts in Step 4.

(13)U
j

t+1
= �0 + �1 ∗ U

j

t
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Let N and M represent the number of hosts and the number of VMs of the data 
center, respectively. n is the number of considered training data to predict the future 
utilization. The complexity analysis of TLLRBA and its basic operations are as 
follows:

– Predicting the future utilization of all hosts and VMs based on their past data: 
O(n.N + n.M)

– Detecting overloaded hosts: O(N)
– Selecting migrating VMs: O(N.M)
– Recognizing underutilized hosts: O(N)
– Selecting destination hosts: O(N.M)

The number of training data to predict CPU utilization is a constant value. There-
fore, overall complexity of our proposed algorithm, TLLRBA, is: O(N.M). This 
complexity order is the complexity of most of the algorithms in this area [9, 13]. The 
complexity analysis of OLLRBA is the same, with only one difference. OLLRBA 
does not predict the future utilization of VMs. However, its complexity is the same 
as TLLRBA. Our evaluations show that TLLRBA achieves better VMs placements 
in terms of consolidation and energy savings, compared to OLLRBA (see Sect. 5).

5  Experimental setup and results

This section describes experimental setup used for the simulations of the paper and 
then compares the proposed and compared approaches in terms of energy consumption, 
average SLA violation and computation time. For a fair comparison, all the considered 
approaches are applied at the same 5-minute time interval, and Algorithm 1 has been 
used as the main model of the algorithms. The difference between proposed and com-
pared approaches is in underutilized and destination host selection methods. Indeed, 
compared algorithms use different methods instead of Algorithm 2 and Algorithm 3 
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in their whole process. The name of the first and second compared algorithms indi-
cates the used methods for underutilized and destination host selection. Compared 
approaches are as follows:

– MinUtil-MinPower [9]: This method is the default method implemented in Cloud-
Sim. This method selects the underutilized hosts based on their current CPU utiliza-
tion starting from the host with minimum CPU utilization. Also, for all candidate 
destination hosts, it calculates additional power imposed by hosting the new VM 
and selects the host with minimum additional power consumption.

– MinUtil-MaxUtil: This method selects the underutilized host with the same method 
of MinUtil-MinPower algorithm. It also selects a host with maximum CPU utiliza-
tion among all candidate destination hosts.

– MPABFD [14]: MPABFD is a dynamic consolidation algorithm presented in [14]. 
The destination host selection method in this algorithm is different from OLLRBA. 
Each host in [14] can be in normal, underutilized or overloaded state. MPABFD 
[14] selects the destination host based on two conditions: (1) the host’s utilization 
is less than a defined upper threshold and (2) the predicted future state using recent 
historical data is normal.

– LIRCUP [13]: This algorithm first predicts the CPU utilization of hosts by linear 
regression and then determines the overutilized and underutilized hosts conse-
quently. This algorithm also uses the same method as MinUtil-MinPower to select 
destination hosts of migrating VMs.

5.1  Experimental setup

To evaluate the effectiveness of our solution, we use the known data center simula-
tor, CloudSim [26]. Two types of servers have been simulated in CloudSim: (1) Type 
1: HP ProLiant ML110 G4, and (2) Type 2: HP ProLiant ML110 G5. We consider 
a data center with 800 hosts and a shared storage infrastructure. The half of the data 
center’s hosts are Type 1 and the other half are Type 2. Also, four types of VMs are 
simulated whose characteristics are shown in Table 1. Algorithms are evaluated using 
different real workload traces provided as a part of the CoMon project [27]. In this 
project, CPU utilization has been obtained every 5 minutes from more than a thou-
sand PlanetLab VMs hosted on more than 500 hosts. Five-minute time interval is 
selected to apply dynamic consolidation in our simulation. Indeed, the time interval 
used to apply dynamic consolidation depends on the nature of the applications run-
ning on the data center. We select six days of traces collected during March and April 
2011 of the CoMon project to cover different number of VMs and resource utilization 
patterns (which leads to different CPU utilization means and standard deviations). The 

Table 1  Characteristics of 
defined VMs

Characteristics Type 1 Type 2 Type 3 Type 4

Number of cores 1 1 1 1
MIPS 2500 2000 1000 500
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characteristics of the workload traces are shown in Table 2. The name of each workload 
trace represents the day and month of collecting data.

As mentioned before, consolidation algorithm is applied every 5 minutes, in our 
simulations. CloudSim simulator saves four utilization values during this 5-minute 
time interval, for each host. Therefore, to use the historical data of one last hour as 
the training data, n has been set to 84. To evaluate the accuracy of predicting host 
and VM utilization by linear regression, we have calculated R-squared for the last 
prediction of one host and one VM. R-squared for the considered host and VM is 
0.68 and 0.76, respectively. Moreover, the overfitting test has been done using cross-
validation, for one prediction of one host and one VM. The test exhibited that the 
learned models fit the test data as well as the training data.

5.2  Energy consumption and SLA violation

We begin the evaluation by calculating the energy consumption of the data center for 
the proposed and compared algorithms. To avoid the effect of the initial VM alloca-
tion on the results, we compute the energy for 23 hours of the data center from the 
second hour up to the end of the day. Figure 1 represents the energy consumption of 
the data center running different benchmarks for the proposed and compared algo-
rithms. Figure 1 shows that OLLRBA and TLLRBA approaches achieve minimum 
energy consumption for all traces. Furthermore, the proposed approaches keep their 

Table 2  Characteristics of 
workload traces

Characteristics 03/06 04/12 04/11 04/09 04/03 03/22

Number of VMs 898 1054 1233 1358 1463 1516
CPU Util. Mean (%) 11.44 11.54 11.56 11.12 12.39 9.26
CPU Util. St.dev (%) 16.83 15.15 15.07 15.09 16.55 12.78

Fig. 1  Energy consumption for 23-h operation of the modeled data center
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efficiency even for large workloads. The proposed algorithm TLLRBA improves the 
energy consumption 6–37% for 03/06 benchmark and 6–38% for 03/22 benchmark 
compared to other approaches.

As mentioned before, the first objective of consolidation is increasing energy sav-
ings, which leads to packing more VMs on one host. As this may affect QoS, SLA 
violation is considered as the second parameter to be investigated. Figure 2 repre-
sents the average SLA violation of 23-h operation of the data center. As OLLRBA 
and TLLRBA approaches migrate VMs to the hosts with maximum predicted CPU 
utilizations, they increase SLA violation compared to MinUtil-MinPower and 
MPBABFD [14] approaches, although this increase is less than 1% for all bench-
marks. As we expected, MinUtil-MaxUtil imposes maximum SLA violation. This 
is because MinUtil-MaxUtil migrates VMs to the hosts with maximum current CPU 
utilization.

5.3  Scalability evaluation

The scalability of our proposed approaches compared to other introduced approaches 
is investigated in this section. The largest real traces in terms of the number of VMs 
in PlanetLab consist of 1516 VMs. Therefore, we used the same strategy of [12] 
and combined the available traces to produce larger ones, obtaining synthetic traces 
shown in Table 3.

Figure  3 represents the energy consumption of the data center running syn-
thetic benchmarks for the proposed and compared algorithms. OLLRBA and 
TLLRBA achieve minimum energy consumption for all synthetic traces showing 
the ability of our proposed approaches in keeping their efficiency even for large 
workloads. The proposed algorithm TLLRBA decreases energy consumption by 
6–38%, 6–36% and 5.5–36% compared to other approaches, for synthetic trace 1, 
synthetic trace 2 and synthetic trace 3, respectively. Also, the difference between 

Fig. 2  Average SLA violation of the modeled data center for 23-h operation



10254 K. Haghshenas, S. Mohammadi 

1 3

Table 3  Synthetic workload 
traces

Number of VMs Number of hosts

Synthetic trace 1 3877 4000
Synthetic trace 2 5108 5200
Synthetic trace 3 7522 7600

Fig. 3  Energy consumption for 23-h operation of the modeled data center

Fig. 4  Average SLA violation of the modeled data center for 23-h operation
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the average SLA violation of MinUtil-MinPower (with minimum SLA violation) 
and our proposed approaches remains less than 1% for all three synthetic traces 
(see Fig. 4).

The computation time of the dynamic consolidation algorithms is another 
important parameter, which increases with the size of the data center and its 
workload. Noting that the larger traces have been simulated in this section, we 
investigate the runtime of the proposed and compared algorithms in this section.

Figure 5 represents the runtime of a single run of the introduced algorithms. 
The runtime of MinUtil-MinPower and MinUtil-MaxUtil algorithms is less 
than MPABFD [14], LIRCUP [13], OLLRBA, and TLLRBA algorithms. This is 
because a single parameter (current CPU utilization) is used in different parts of 
MinUtil-MinPower and MinUtil-MaxUtil algorithms, while the MPABFD [14], 
LIRCUP [13], OLLRBA, and TLLRBA algorithms review the hosts’ historical 
data. However, the computational complexity analysis at the end of Sect. 4 shows 
the complexity of our proposed algorithms is the same as the basic algorithms, 
i.e., MinUtil-MinPower and MinUtil-MaxUtil.

Among MPABFD [14], LIRCUP [13], OLLRBA, and TLLRBA algorithms, 
MPABFD [14] imposes much higher computation time (58–71% higher than 
TLLRBA) because it reviews the history of all candidate hosts to calculate the 
probability of moving to all possible host states. Finally, to gain more insight into 
the time overhead of introduced algorithms, MinUtil-MinPower and MinUtil-
MaxUtil impose 0.4–0.7%, OLLRBA imposes 2–4%, TLLRBA and LIRCUP [13] 
impose 2.7–4.6% and MPABFD [14] imposes 4.5–10% overhead in the consid-
ered 5-minute time interval to run synthetic benchmarks.

Fig. 5  Average runtime of each approach for 23-h operation of the modeled data center
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6  Conclusion

In this paper, we proposed an approach to improve energy efficiency of the data 
center’s resources. To achieve this objective, first, a linear regression-based algo-
rithm has been designed to select the appropriate destination hosts for migrating 
VMs (during the dynamic consolidation procedure). Then, the proposed approach 
has been improved to also predict the hosts utilization and select the underuti-
lized hosts accordingly. In the evaluation section, we have considered several pre-
viously presented approaches to compare with our proposed approach. The pro-
posed and compared schemes have been evaluated using CloudSim simulator and 
PlanetLab workload traces in terms of energy consumption, SLA violation and 
computation time. The results show that the proposed approach decreases energy 
consumption when compared to approaches in the current state of the art. This 
improvement comes with some SLA violation. Our proposed approaches cause 
about 1% higher average SLA violation than the basic consolidation schemes; 
however, their imposed SLA violation is less than the violation imposed by SOA 
approach MPABFD [14]. Moreover, our proposed approach keeps its efficiency 
for higher scale benchmarks and data centers, which proves its scalability. As 
future work, we envision to consider memory utilization besides the CPU utiliza-
tion, in designing consolidation algorithm.
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