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Abstract
Most modern parallel programs are written with the moldable property. However, 
most existing parallel computing systems treat such parallel programs as rigid jobs 
for scheduling, resulting in two drawbacks. The first is inflexibility and inefficiency 
in processor allocation, leading to resource fragmentation and thus poor perfor-
mance. The second is about usage inconvenience, requiring users to figure out the 
best number of processors for executing a job. As HPC as a service emerges, mold-
able job scheduling has become an important research issue for achieving both high 
performance and user convenience. This paper presents our research work on devel-
oping new processor allocation approaches for moldable job scheduling based on 
two-level resource utilization calculation, preemptive job execution, and dual-crite-
ria iterative improvement. A series of simulation experiments have been conducted 
to evaluate the proposed approaches and compare them to previous methods. The 
experimental results demonstrate significant performance improvement in terms of 
average turnaround time.

Keywords Resource utilization · Processor allocation · Moldable job scheduling · 
HPC as a service

1 Introduction

Parallel jobs, according to their flexibility in parallelism, can be classified into four 
types [1]: (1) rigid, (2) moldable (3) evolving, and (4) malleable. A rigid job can 
only run with a specific number of processors specified by the user upon job submis-
sion. Moldable jobs are flexible in the number of processors to use, but the num-
ber cannot be changed during execution. Malleable and evolving jobs are similar to 
moldable jobs in that they all have the potential to run with different parallelisms in 
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contrast to rigid jobs. However, they are even more flexible, being able to change 
the number of used processors dynamically during execution. While both evolving 
and malleable jobs can change their processor requirements during execution, the 
change is application initiated for evolving jobs, but system initiated for malleable 
jobs [2, 3].

Most modern parallel programs are written with the moldable property. For 
example, the famous benchmark program HPL,1 used for ranking the top 500 
supercomputers in the world,2 has the moldable property, so that it can be used for 
evaluating the performance of various parallel computers of different scales easily 
without modifying its source code. Another example is a dynamic moldable tree 
search (DMTS) framework proposed for solving the Boolean satisfiabilitϕy prob-
lem in [4]. The DMTS framework was designed to run on various parallel com-
puting infrastructures, including clusters, computational grids, and clouds. Several 
MPI (message passing interface) libraries are available for developing moldable 
parallel programs conveniently. However, most existing workload management sys-
tems on parallel computing platforms usually treat such moldable programs as rigid 
jobs when scheduling them. Ignoring parallel jobs’ moldable property results in two 
major drawbacks: inefficient processor allocation and user inconvenience.

Users accessing traditional HPC (high-performance computing) facilities are usu-
ally required to specify the number of processors to use upon job submission. A 
job scheduler on the HPC facility will allocate processors to each job for exclusive 
use according to the specified number of processors. However, if a job requests a 
number of processors larger than currently available, it would have to wait while 
the available processors are kept idle, resulting in both degraded resource utilization 
and enlarged job turnaround time. Usage inconvenience is because users usually do 
not know how to determine a most appropriate number of processors for achiev-
ing the best performance. This is because the turnaround time of a submitted job 
is composed of two parts: waiting time and execution time. Waiting time measures 
the time period between job submission and when the requested processors become 
available. Execution time is the time spent on executing a job with exclusive use of a 
specific number of processors. A user might know how many processors could lead 
to the shortest execution time for his job, but usually has no idea about how long the 
waiting time could be once requesting a specific number of processors, because of 
resource competition among jobs.

A possible solution to overcome the above drawbacks is let the job scheduler to 
determine a most appropriate number of processors for each moldable job. There-
fore, processor allocation for moldable job scheduling is becoming an ever impor-
tant issue as the concept of HPC as a service (HPCaaS) [5] emerges. HPCaaS is 
a new service model aiming to transform traditional high-performance computing 
into a more convenient and accessible practice. Two important concerns of HPCaaS 
are easier access to HPC facilities and efficient parallel job scheduling for good per-
formance [5]. Unlike users of traditional HPC facilities, who usually run parallel 

1 https ://www.netli b.org/bench mark/hpl/.
2 https ://www.top50 0.org/.

https://www.netlib.org/benchmark/hpl/
https://www.top500.org/
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programs developed by themselves, most HPCaaS users might run parallel applica-
tions developed by others as services and do not know their parallelism characteris-
tics well. In such cases, users simply want to get their jobs done as soon as possible 
and do not want to or even have no idea on how to specify an appropriate number of 
processors for the best application performance. On the other hand, the job sched-
uler on the HPCaaS platform would have better knowledge than a user to determine 
the most appropriate number of processors to use, benefiting both overall system 
performance and the specific job’s turnaround time.

This paper presents our research work on developing new processor allocation 
approaches for moldable job scheduling based on iterative processor allocation 
adjustment. Four processor allocation approaches are proposed and evaluated in 
this paper. The first is a utilization-based approach using two-level resource utiliza-
tion calculation. The second is a bounded allocation approach which would limit 
the maximum number of processors that each moldable job could use. The third 
is a preemptive processor allocation approach which can preempt and reschedule 
running jobs to improve overall system performance. Both the second and the third 
approaches were developed for resolving the issue that earlier jobs occupy too many 
resources to allow efficient execution of jobs coming later. The fourth is a dual-cri-
teria approach which can avoid occasional processor allocation pitfalls where high 
resource utilization leads to poor job turnaround time when system workload is at a 
medium or light level.

A series of simulation experiments based on publically available workload data 
have been conducted to evaluate the proposed approaches and compare them to pre-
vious methods [6–8] in the literature. The experimental results demonstrate signifi-
cant performance improvement in terms of average turnaround time. The remainder 
of this paper is organized as follows. Section 2 discusses related works on parallel 
job scheduling. Section  3 presents our processor allocation approaches and com-
pares them with previous methods in [6–8] using illustrative examples. Section  4 
presents the results of performance evaluation. Section 5 concludes this paper and 
discusses possible future research directions.

2  Related work

Parallel job scheduling has long been an important research topic for operating and 
managing high-performance computing platforms efficiently. Most of the earlier 
research works focused on rigid jobs since it is the way traditional workload man-
agement systems on HPC platforms treat submitted parallel jobs. The problem of 
scheduling parallel jobs can be further divided into two critical issues: job sequenc-
ing and processor allocation. Job sequencing determines the execution order of jobs, 
while processor allocation deals with how many and which processors to use for 
each job.

Although for rigid jobs the numbers of processors to use are already specified 
by the submitting users, job schedulers still have to determine the exact portion of 
processors in a system for allocation which might have great influence on subse-
quent jobs and thus the overall system performance on some parallel computers 
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of specific internetworking architecture, e.g., hypercube. Therefore, both job 
sequencing [9, 10] and processor allocation [11, 12] received a lot of research 
attention on earlier hypercube-based parallel computers. However, on recent com-
monly used switch-based parallel computers and cluster systems, processor allo-
cation for rigid jobs has become straightforward and received less research atten-
tion than job sequencing since allocation to different portions of system resources 
has negligible performance impact on jobs.

First-come–first-serve (FCFS) might be the most widely used job sequencing 
policy in practical computing systems because of its simplicity and fairness prop-
erty. With the FCFS policy, a job scheduler allocates processors to the jobs in 
the waiting queue for execution according to their ascending order of submission 
time. The major problem of FCFS is its unnecessary low resource utilization [13]. 
Therefore, many research efforts [1, 13, 14, 15, 16] have been spent on develop-
ing more effective job sequencing mechanisms for scheduling rigid jobs on paral-
lel computers. Backfilling is one of the job sequencing mechanisms receiving a 
lot of research attention [17–22].

In contrast to strict FCFS, backfilling is a flexible and effective strategy that 
tries to make a balance between raising resource utilization and maintaining a 
certain degree of fairness. EASY backfilling is the first well-known backfilling 
method proposed in [15] and widely used in many production parallel systems, 
e.g., ANL/IBM SP system [15] and MAUI scheduler [23]. With the EASY back-
filling mechanism, a job scheduler would grant the first job in the waiting queue 
a reservation of system resources and then allow some subsequent jobs to run 
out of their order in the waiting queue provided that such out-of-order execution 
would not delay the job with reservation. EASY backfilling has several variants 
[24–26] which differ in the order of jobs to be backfilled.

Backfilling mechanisms need the information of job execution time to arrange 
resource reservation and backfilling activities. To adopt backfilling approaches, 
users are usually asked to provide estimated job execution time upon job sub-
mission in practical systems. However, such estimation is hardly to be precise 
since for many jobs the actual execution time could only be known after the fin-
ish of their execution. Wong and Goscinski investigated the influence of inaccu-
rate estimation of job execution time on the performance of the EASY backfilling 
approach [20]. There are also research efforts devoted to improve the accuracy of 
performance prediction of parallel applications [25, 27, 28, 29].

There are also many research works dealing with the problem of scheduling 
rigid jobs with deadlines [30–34]. Earliest deadline first (EDF) has been one of 
the most well-known job sequencing heuristics for scheduling jobs with deadline. 
EDF was adopted to schedule real-time tasks on multicore processors in [35]. 
In [36], EDF was applied to maintain timeliness and data freshness in real-time 
database research. Another popular job sequencing heuristic, called least-laxity-
first (LLF), was used in [32] for scheduling jobs with deadlines in distributed sys-
tems. For scheduling moldable jobs, it is hard to apply the LLF heuristic since the 
required execution time of a moldable job changes with the number of processors 
used, hindering the calculation of an appropriate laxity.
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Job deadline is a crucial issue in real-time systems. Priority-based approaches 
were presented in [30] for scheduling tasks with deadlines. Many scheduling 
approaches for real-time systems concerning deadline were reviewed and compared 
in [37], including EDF, LLF, and rate-monotonic algorithms. Some research works, 
e.g., [31, 38], consider the scheduling issues of tasks with deadline constraints in 
cloud computing environments. The work in [31] presented an adaptive resource 
management policy for handling requests of deadline-bound applications. Pop inves-
tigated the problem of remote scheduling of periodic and sporadic tasks with dead-
line constraints on cloud computing platforms in [38].

As an increasing number of modern parallel applications are designed to have 
the moldable property, moldable job scheduling has received significant research 
attention for the past few years. In [39, 40], Srinivasan et al. proposed an aggressive 
fair-share strategy and a combined moldable scheduling strategy for moldable jobs, 
adopting a profile-based allocation scheme. The strategies keep track of the informa-
tion about all the free-time slots available in current schedule and scan them to find 
the most suitable one for a moldable job at each scheduling activity, considering 
the effects of partition size on the performance of the application. The strategies 
thus need to have the knowledge of job execution time. Our approach in this paper 
also utilizes the knowledge of job execution time and uses a profile-based schedul-
ing mechanism. However, our approach takes into account resource utilization and 
adopts an iterative procedure to make better scheduling decisions.

Cirne and Berman explored the issues of selecting appropriate partition sizes in 
application-level moldable job scheduling [41, 42]. In their work, users would pro-
vide a set of candidate requests for different numbers of processors, and an applica-
tion-level scheduler is used to effectively select the most suitable request based on 
resource availability and workload conditions. Sabin et al. [43] proposed an iterative 
algorithm for moldable job scheduling. Their approach features utilizing jobs’ paral-
lel efficiency characteristics to achieve better schedules. In this paper, our approach 
also takes into consideration jobs’ parallel efficiency information when making pro-
cessor allocation decisions. However, in addition to jobs’ parallel efficiency, our 
approach also considers the effects of resources’ idle time slots on the overall system 
performance using two-level resource utilization calculation. Caniou et al. [44] stud-
ied the benefits of having a middleware able to automatically submit and reallocate 
requests for moldable job execution from one site to another in a grid environment. 
The middleware can automatically tune the number of processors to be used by the 
moldable jobs for shorter turnaround time.

Huang proposed and evaluated four heuristics for allocating processors to mold-
able jobs in [45]. Those heuristics require no prior information of moldable jobs, 
e.g., job execution time, and make the processor allocation decision for each mold-
able job at its start time instead of submission time, i.e., when it becomes the first 
job in the waiting queue. The heuristics utilize only the information about the num-
ber of free processors in the system and the content of waiting queue when mak-
ing processor allocation decisions. A processor allocation approach for moldable job 
scheduling was proposed in [7] for HPCaaS, which takes advantage of job execution 
time information to improve overall system performance by increasing resource uti-
lization. However, the approach in [7] only considers the effects of processors’ idle 
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time slots when estimating resource utilization. On the other hand, in this paper, our 
two-level resource utilization calculation also takes into consideration the effects of 
parallel jobs’ efficiency on resource utilization and thus has potential for producing 
better schedules.

The extreme-ending moldable approach (EEMA) in [6] is similar to the adaptive 
scaling down approach in [45], where if a parallel job requests a number of proces-
sors which at that moment is larger than the number of free processors, instead of 
keeping the job waiting in queue, the scheduler automatically scales the job down 
to use exactly the number of free processors for immediate execution. This approach 
can effectively prevent parallel jobs requesting large numbers of processors from 
unnecessary waiting. However, it does not address the whole issue of idle time slots 
well since it would not scale up parallel jobs requesting small numbers of proces-
sors to fully utilize the available resources. Therefore, our approach with two-level 
resource utilization calculation has potential to achieve better performance than 
EEMA.

Wu et al. proposed a resource allocation scheme, named HRF (highest revenue 
first), for moldable jobs in [8]. They first proposed an indicator called revenue per 
processor (RP), which expresses the revenue of shortening runtime with every allo-
cated processor. Based on this indicator, the HRF scheme always allocates proces-
sors to the job with the highest RP, in order to reduce the average turnaround time of 
all jobs. HRF is similar to our approach in the aspect of allocating more processors 
to jobs of higher parallel efficiency. Moreover, both HRF and our approach decide 
the number of allocated processors at schedule time. By combining the processor 
allocation schemes with different job selection schemes, there could be various 
moldable job scheduling policies as shown in [8]. In HRF, there are two parameters, 
α and threshold, to set before the algorithm can be applied. However, an appropri-
ate setting of these parameters is no easy since it depends on system workload and 
parallel programs’ speedup characteristics as shown in the experiments in [8]. On 
the other hand, our approaches are easier to apply since there are no such kinds of 
parameters to be set manually by system administrators. In addition, the parameter 
threshold in HRF only considers the effects of parallel jobs’ efficiency characteris-
tics, while our approaches also take into consideration the influences of idle time 
slots.

Compared to the huge amount of previous research work on rigid job scheduling 
in the literature, there is still a significant research gap in moldable job scheduling. 
The previous work also shows that processor allocation is a major issue in schedul-
ing moldable jobs, and job execution time information is valuable for making good 
allocation decisions. Table  1 summarizes and compares the characteristics of the 
previous parallel job scheduling approaches discussed in the above.

To accelerate the execution of some high-performance demanding applica-
tions, e.g., training of AI systems, or accommodate various applications of dif-
ferent parallelism characteristics, there is an increasing interest in heterogene-
ous computing systems, e.g., parallel computers equipped with both CPUs and 
GPUs. Applications can conduct heterogeneous computation by exploiting differ-
ent kinds of parallelism on CPUs and GPUs, respectively. However, developing 
parallel applications to exploit both CPUs and GPUs is a much more challenging 
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work than writing parallel programs running on homogeneous CPUs. In addi-
tion, the demand for heterogeneous computation to improve performance is also 
application dependent. Therefore, usually both homogeneous and heterogeneous 
parallel computations for different applications are conducted on a heterogeneous 
computing platform containing both CPUs and GPUs.

Regarding parallel job scheduling, although there is a new need for research 
on GPU scheduling [46, 47] or co-scheduling of both CPUs and GPUs [48, 49], 
scheduling parallel jobs running on homogeneous CPUs is still an important and 
relevant research direction with many challenging issues to explore [50, 51]. In 
this paper, we focus on the processor allocation problem of moldable job schedul-
ing on homogeneous computing systems.

Energy consumption is also an important issue on some computing platforms, 
e.g., embedded systems and cloud computing environments, especially as green 
computing has become a worldwide concern. Therefore, energy-aware schedul-
ing approaches have received a lot of research attention recently [52–54]. How-
ever, our research work in this paper focus on the improvement of execution 

Table 1  Comparison of parallel job scheduling approaches (Y: yes; N: no)

References Job type Deadline 
constrained

Need execution 
time information

Scheduling issues focused

[6] Moldable N N Processor allocation
[44] Moldable N Y Processor allocation
[41] Moldable N Y Processor allocation
[42] Moldable N Y Processor allocation
[45] Moldable N N Processor allocation
[7] Moldable N Y Processor allocation
[13] Rigid N Y Job sequencing
[43] Moldable N Y Processor allocation
[39] Moldable N Y Processor allocation
[40] Moldable N Y Job sequencing and processor allocation
[8] Moldable N Y Processor
[9] Rigid Y Y Job sequencing
[10] Rigid N Y Job sequencing and processor allocation
[11] Rigid N N Processor allocation
[12] Rigid N N Processor allocation
[25] Rigid N Y Job sequencing
[22] Rigid N Y Job sequencing
[35] Rigid Y Y Job sequencing
[30] Rigid Y Y Job sequencing
[31] Rigid Y Y Job sequencing
[32] Rigid Y Y Job sequencing
[33] Rigid Y Y Job sequencing
[34] Rigid Y Y Job sequencing
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performance which is still very important and relevant as shown in [46, 47, 50, 
51].

In addition to effective job scheduling, there are still others issues which would 
affect application execution performance greatly. Application software optimization 
is an important one of them which needs to consider many parameters at compile 
time and runtime. The challenge is to determine an optimal set of parameters in a 
specific parallel computing environment, which is outside the scope of our research 
work in this paper. A systematic review on this topic can be found in [42], which 
focuses on the techniques based on machine learning or meta-heuristics.

3  Processor allocation in moldable job scheduling

This section explores the issues of processor allocation for moldable job scheduling. 
We first discuss three previous methods proposed in [6–8] and then present our four 
processor allocation approaches, followed by illustrative examples demonstrating 
the advantages of our approaches compared to previous methods.

3.1  Improved moldable job scheduling for HPCaaS

The work in [7] first investigates the influence of applications’ speedup characteris-
tics on moldable job scheduling strategies. The authors found that the parallel pol-
icy, i.e., starting as many jobs simultaneously as possible, can achieve better overall 
system performance for most speedup characteristics, e.g., Amdahl’s law [55] and 
Downey’s speedup model [56, 57], while the serial policy, i.e., allowing a job to use 
as many processors as possible, would perform better for the linear speedup model 
[58]. Then, they developed a moldable job scheduling method for parallel applica-
tions whose speedup characteristics conform to Amdahl’s law [55] or Downey’s 
speedup model [56, 57]. The proposed method is based on a hybrid of serial and 
parallel policies, and takes advantage of job execution time information to improve 
the overall system performance.

The moldable job scheduling method in [7] works as follows. It maintains two 
queues for running and waiting jobs, respectively. On each job scheduling activity, it 
first scans the running queue to collect the time instants of expected future processor 
releases resulting from the finishes of running jobs based on the job execution time 
information. Then, it counts the number of jobs in the waiting queue. If the number 
of waiting jobs is less than the number of future processor release events, it simply 
adopts the serial policy and allocates only the first job for execution. On the other 
hand, if the number of waiting jobs is larger than the number of future processor 
release events, it uses the parallel policy to allocate the first n jobs for execution. The 
value of n is calculated by subtracting the number of running jobs from the number 
of waiting jobs. In this way, the proposed moldable scheduling method can improve 
resource utilization and result in shorter average turnaround time of all jobs.

Figure 1 shows an illustrative example schedule produced by the moldable job 
scheduling method in [7], which demonstrates its superiority over the simple parallel 
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policy, i.e., the schedule in Fig. 2. In Fig. 2, the parallel policy tends to run all the 
jobs in queue, tasks I, II, and III, simultaneously after the first running job finishes. 
However, if the waiting queue remains empty till the second running job finishes, 
the released 80 processors will become idle and result in degraded resource utiliza-
tion. The parallel policy also leads to longer execution time for tasks I, II, and III 
in this case. On the other hand, in Fig. 1, task III is not allocated immediately after 
the first running job finishes. Instead, its allocation is delayed until the second run-
ning job finishes. In this way, although the waiting time of task III is increased, all 
three tasks are allocated more processors for execution, compared to Fig. 2, result-
ing in shorter turnaround time in average. The experimental results in [7] show that 
the proposed moldable job scheduling method outperforms previous approaches [39, 
40] significantly.

Fig. 1  Moldable job scheduling method in [7]

Fig. 2  Parallel policy
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3.2  HRF resource allocation scheme

The highest revenue first (HRF) allocation scheme proposed in [8] is based on an 
indicator named RP (revenue per processor) expressing the shortening runtime 
of a job if an extra processor is allocated to it. The RP of a job varies with the 
number of processors already allocated to it. Moreover, since the parallel effi-
ciency of a job is usually not 100% and decreases as the number of used proces-
sors increases, the RP of a job also decreases as more processors are allocated. 
Figure 3 describes a typical relationship between a job’s runtime and the number 
of allocated processors. The RP is about 25 when only one processor is allocated 
to the job, but declines to about two after five processors have been allocated.

Each time the content of the waiting queue changes, the HRF scheme will be 
applied to redetermine the number of allocated processors for each moldable job 
in it. On each scheduling activity, the HRF scheme prepares a certain budget of 
processors and allocates them to all the moldable jobs. The processor budget is 
calculated by multiplying a parameter α to the total number of processors in a 
system. In addition to the processor budget shared by all moldable jobs, each job 
is also imposed an upper limit on the number of processors it can use, controlled 
by another parameter threshold. HRF iterates a loop for α × m times, where m is 
the number of processors in the system. In each iteration, the job with the maxi-
mum RP is found and allocated one more processor. If the number of allocated 
processors of any considered job has reached its upper limit, i.e., (threshold × m), 
it will not be considered in later iterations.

3.3  Extreme‑ending moldable approach (EEMA)

An extreme-ending moldable approach (EEMA) was proposed in [6] for par-
allel job scheduling. EEMA differs from HRF and our approaches in that each 
job is specified a desired number of processors to use upon submission by the 
user although it has the moldable property. Therefore, EEMA treats all jobs as 
rigid initially, trying to allocate the specified number of processors to them, and 
takes advantage of a job’s moldable property only when its desired number of 

Fig. 3  Typical relationship 
between runtime and number of 
processors for a parallel job
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processors is larger than the number of free processors during scheduling. The 
experimental results in [6] show that EEMA can achieve better average turna-
round time than previous rigid job scheduling methods.

The entire algorithm of EEMA is an iterative process inspecting each job in 
the waiting queue. For each job, EEMA first gets information of its desired num-
ber of processors and the number of currently free processors in a system. If cur-
rent number of free processors is enough for the job’s demand, EEMA just allo-
cates the demanded processors to it. Otherwise, EEMA changes its demand to the 
number of currently free processors taking advantage of its moldable property 
and then allocates that number of processors to it.

3.4  Our two‑level utilization‑based processor allocation

Resource utilization has long been known to have great influence on the perfor-
mance of both overall system and individual jobs when dealing with job sched-
uling issues. Therefore, several backfilling approaches for scheduling rigid jobs 
have been developed based on mechanisms increasing resource utilization [17, 
13]. For moldable job scheduling, some previous works also noticed the impor-
tance of resource utilization, e.g., [43].

In this section, we present a new utilization-based processor allocation 
approach for moldable job scheduling, which adopts an iterative procedure to 
gradually improve the performance for jobs in the waiting queue by managing to 
increase resource utilization in the schedule. Each time when a new job is submit-
ted into the system, a rescheduling activity will be triggered, and the utilization-
based processor allocation approach could be applied to determine the processor 
allocations of all jobs in the waiting queue. The resultant schedule is kept in a 
profile structure which records the future start time, expected finish time, and the 
number of processors to use for each job, like the profile mechanism in [17, 13]. 
On the other hand, when a running job finishes, the system will start certain jobs 
for execution according to the schedule recorded in the profile.

The utilization-based processor allocation approach is described in detail in 
Algorithm  1, where MLS() is a procedure like the one in [59] applying sim-
ple FCFS-based list scheduling to update the execution schedule of all the jobs 
according to current processor allocation result and Utilization() calculates the 
resultant resource utilization of the updated schedule. The main structure of the 
algorithm is an iterative procedure repeating until the resultant resource uti-
lization does not keep increasing. In each iteration, the algorithm tries to find 
every time instant when there are still some free processors not utilized well, and 
allocate them in a one-processor-at-a-time manner to those jobs of higher par-
allel efficiency based on their current processor allocations. Finally, a job with 



10223

1 3

Two‑level utilization‑based processor allocation for…

the latest finish time will be chosen to allocate one more processor intention-
ally. Such arrangement would delay the job’s start time, but has the potential for 
reducing the execution time of it and all the jobs starting at the same time with it 
in the original schedule, resulting in a better schedule. Figures 4 and 5 show such 
an example with four tasks running on a parallel system of 128 processors, illus-
trating the execution schedules before and after task 3, i.e., the task with the latest 
finish time, being allocated one more processor, respectively.

Fig. 4  Before one more processor allocated

Fig. 5  After one more processor allocated
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Algorithm 1: Utilization-Based Processor Allocation for Moldable Jobs
Input:

Q // the job waiting queue 
S // current schedule containing all running and waiting jobs except the 

newly submitted one
Output: 

S// updated schedule containing all running and waiting jobs
Variables: npt //number of free processors at time instant t

s_list //a set of jobs starting at a certain time instant
modified //a flag indicating whether the schedule has been altered or not

1: Remove the data for each waiting job in Q from S
2: Initialize each job in Q to use only one processor;
3: S = MLS( );
4: u = Utilization( );
5: do

{
6: modified = false;
7: foreach (time instant t in the S when there are jobs finishing)

{
8: s_list = the jobs starting at time t in S;
9: if (npt > 0 and s_list is not empty)

{
10: while (npt > 0)

{
11:            pick the job in s_list with highest parallel efficiency;
12: increase the number of processors reserved for the job by one;
13: npt --;

}
14: modified = true;
15: S = MLS( );
16: u = Utilization( );
17: break;

}
}

18: if (modified == false)
{

19: pick the job of the latest finish time in S;
20: increase the number of processors reserved for the job by one;
21:     S = MLS( );
22:     u = Utilization( );

}
23: } while (u keeps increasing)

In the above algorithm, the resource utilization of a schedule is calculated by a 
two-level mechanism as defined in the following formula (1), where i stands for each 
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job in the schedule, npi is the number of processors used by job i, ti is the required 
job execution time, and Ei is the parallel efficiency of job i with npi. The required 
job execution time, i.e., ti, could be provided by users or some performance predic-
tion algorithms, which is out of the scope of our research work in this paper. We 
assume the availability of such job execution time information as in most parallel 
job scheduling research [13, 18, 19, 22]. The parallel efficiency of a job running on a 
specific number of processors is defined in formula (2), i.e., dividing the speedup by 
the number of processors used, as in most parallel computing textbooks [58], where 
speedup with n processors is calculated by formula (3), dividing the execution time 
with one processor by the execution time with n processors.

The denominator in formula (1) measures the total resources occupied by the 
schedule in a time–space manner, where np is the total number of processors in the 
parallel system. The total resources occupied are calculated by multiplying np to 
the time period from the earliest start time to the latest finish time in the schedule. 
The numerator in formula (1) measures the actual portion of resources efficiently 
utilized by the jobs in the schedule, calculated by multiplying each job’s execution 
time, number of processors used, and parallel efficiency together, and then summing 
the values of all jobs up. Since formula (1) considers two factors of resource utiliza-
tion, i.e., idle time slots and the parallel efficiency of each job in the schedule, we 
call it a two-level mechanism for calculating resource utilization. Compared to most 
traditional ways for calculating resource utilization, which consider only the effects 
of idle time slots in the schedule, the proposed two-level resource utilization calcula-
tion mechanism is expected to more accurately measure actual resource utilization 
for finding better schedules.

The following presents an example illustrating the superiority of our utilization-
based processor allocation approach over the previous method in [7]. The example 
contains five moldable jobs for scheduling on a 128-processor parallel system. Their 
submission time and required serial execution time are listed in Table  2. In this 
example, Amdahl’s law [55] is used as the speedup model, which can be represented 
by the following speedup formula, where α is the fraction of an application’s paral-
lelizable workload and n is the number of processors used.

Each parallel job has the same α value set to 0.7.

(1)

Utilization =

∑

i ti × npi × Ei

np × (finish time of latest job − earliest start time of running jobs)

(2)E =
S

n

(3)S =
T1

Tn

(4)S(n) =
1

(1 − �) +
�

n
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Figure 6 shows the resultant schedule produced by the method in [7]. Since job 0 
arrives first, it is allocated all 128 processors for execution immediately. Before job 
0 finishes, all the other four jobs have arrived in the waiting queue. Therefore, on 
the finish event of job 0, the method in [7] adopts the parallel policy to start all the 
four jobs simultaneously. Figure 7 shows the schedule produced by our utilization-
based processor allocation approach, where only three jobs, i.e., jobs 1, 2, and 3, 
are started right after the finish of job 0, and job 4 is scheduled to run after job 
2 finishes. Compared to Fig.  6, it is obvious that the schedule in Fig.  7 not only 
allows the four jobs, i.e., 1, 2, 3, and 4, to use more processors for execution, but 
also increases resource utilization between time zero and the finish time of job 1. 
Therefore, the schedule produced by our approach achieves a shorter average job 
turnaround time than the schedule in Fig. 6 produced by the method in [7].

3.5  Bounded processor allocation

Although the proposed utilization-based processor allocation approach in aver-
age can achieve better performance than previous methods, e.g., [7], as illustrated 
in the previous section, we found that in some special scenarios it might lead to 

Table 2  Job information for the 
example

Job ID Submission time Serial execu-
tion time (s)

Job 0 0 74,916
Job 1 68 89,760
Job 2 175 24
Job 3 3097 83,729
Job 4 8535 20,880

Fig. 6  Method in [7] (utilization = 4.069%)
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inappropriate processor allocation and thus longer job turnaround time. The prob-
lem is because it would tend to allocate all free processors to a job if there is only 
such job in the waiting queue. Such processor allocation can maximize resource uti-
lization and shorten the job’s turnaround time. However, in some scenarios, after the 
job has been allocated all free processors and starts, there soon come new job sub-
missions and these subsequent jobs would have to wait for available processors since 
all processors are in use, resulting in longer turnaround time for the subsequent jobs 
and thus longer average turnaround time for all jobs.

For example, in the five-job example in the previous section, job 0 arrives at time 
zero and there are no other jobs in the waiting queue at that moment, so job 0 is allo-
cated all processors for execution. Therefore, subsequent jobs 1, 2, 3, 4 cannot start 
their execution until job 0 finishes and releases the occupied processors, as shown 
in Figs. 6 and 7. To avoid such scenarios, we add a bounded allocation mechanism 
to the utilization-based processor allocation approach, which sets an upper bound 
for the number of processors to be allocated to each job even if there are more free 
processors available. Figure  8 shows the schedule for the same five-job example 
resulted from the new processor allocation approach with bounded allocation. It is 
obvious that the bounded allocation mechanism effectively improves resource uti-
lization and the average turnaround time of the five jobs, compared to Fig.  7. As 
shown in Fig. 8, the bounded allocation mechanism prevents job 0 from consuming 
up all processors at time zero, which allows job 1 to start earlier and thus lead to 
shorter average turnaround time of all the five jobs.

Theoretically, there would be a best value for the upper bound in the bounded 
processor allocation mechanism, which could result in the highest overall system 
performance. However, such a best value is in general workload dependent. There-
fore, the proposed bounded processor allocation mechanism does not specify a fixed 
upper bound in it. In practical use, system administrators could try to find the best 
value by simulation-based analysis of the workload characteristics in the target 
systems.

Fig. 7  Our approach (utilization = 4.109%)
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3.6  Preemptive processor allocation

The bounded allocation mechanism presented in the previous section is a con-
servative approach since it imposes a strict limit on the maximum number 
of processors each job can get. This limitation could bring no benefits or even 
worse performance if there are no new arriving jobs until the running job fin-
ishes, because the unallocated processors are unnecessarily kept idle. This section 
presents a more aggressive approach, called preemptive processor allocation, to 
avoid the potential drawback of the bounded allocation mechanism.

In contrast to the bounded allocation mechanism, this approach allows a job 
to use all free processors for execution when there are no other jobs in the wait-
ing queue. However, if later there are new arriving jobs before the job finishes 
its execution, the scheduler will make a decision between two possible proces-
sor allocation arrangements. This first is to keep the new jobs waiting until the 
running job finishes, and the second choice is to stop the running job and put 
it back to the waiting queue for reallocation and re-execution together with the 
new arriving jobs. The scheduler will determine which one of the two potential 
choices could lead to better average turnaround time of these jobs, and then con-
duct the corresponding processor allocation.

Figure 9 shows the final schedule produced by the utilization-based processor 
allocation approach augmented with preemptive allocation for the same five-job 
example in Table 2. In the final schedule, job 0 runs from time instant 3097 to 
26,762 although it is submitted at time zero. Originally, job 0 starts its execution 
right upon its submission at time zero. However, when jobs 1, 2, and 3 arrive at 
different time instants later, the execution of job 0 is accordingly and restarted 
using less processors in order to allow subsequent jobs to run earlier, which is 
expected to achieve better overall performance of the five jobs. The part of sched-
ule concerning jobs 0, 1, 2, and 3 in Fig.  9 is the rescheduling result after the 
arrival of job 3. That is why job 0 starts at time instant 3097 instead of its sub-
mission time.

Fig. 8  Utilization-based processor allocation with bounded allocation (utilization = 4.27%)



10229

1 3

Two‑level utilization‑based processor allocation for…

Compared to Fig.  7, Fig.  9 shows that preemptive processor allocation, like 
bounded processor allocation, can also overcome the drawback of the original uti-
lization-based processor allocation approach presented in Algorithm 1, since job 0 
would not consume up all free processors finally. Moreover, comparing Figs. 8 and 
9 indicates that preemptive processor allocation can achieve better performance than 
bounded processor allocation, since job 2 could start earlier and resource utiliza-
tion is also improved because of jobs’ higher parallel efficiency resulting from fewer 
allocated processors.

Figures  10 and 11 show the resultant schedules by HRF [8] and EEMA [6], 
respectively, for the same five-job example in Table  2. However, since EEMA 
requires users to specify the numbers of requested processors upon job submission 
as described in Sect. 3.3, we present the requested numbers of processors for the five 
jobs in Table 3. Comparing Figs. 9, 10, and 11 indicates that our utilization-based 
processor allocation approach augmented with preemptive allocation outperforms 
HRF and EEMA significantly. As shown in Fig. 10, since HRF limits the maximum 

Fig. 9  Utilization-based processor allocation and preemptive allocation (utilization = 6.309%)

Fig. 10  HRF (utilization = 4.101%)
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number of processors that a job can use and allocates processors according to the 
total number of processors in a system instead of currently free processors, job 0 
cannot uses all processors at time zero, resulting in 25 unnecessarily idle proces-
sors. Regarding EEMA, since it would allocate just the numbers of processors to 
jobs according to their original requests if free processors are enough, the processor 
allocation results might not lead to good resource utilization and average turnaround 
time as shown in Fig. 11 because of lower parallel efficiency of jobs, compared to 
our approach.

3.7  Dual‑criteria processor allocation

In general, increasing resource utilization is an effective approach to improving per-
formance for moldable job scheduling as shown in the literature and previous sec-
tions. However, we found that in some scenarios higher resource utilization does not 
necessarily lead to shorter average turnaround time. Therefore, we changed line 23 
in Algorithm 1 into a dual-criteria while-loop, so that the iterative processor allo-
cation process would continue only when both increasing resource utilization and 

Fig. 11  EEMA (utilization = 4.269%)

Table 3  Job information of the 
example for HRF and EEMA

Job ID Submission time Serial execu-
tion time (s)

Number of 
requested pro-
cessors

Job 0 0 74,916 64
Job 1 68 89,760 64
Job 2 175 24 1
Job 3 3097 83,729 64
Job 4 8535 20,880 16
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decreasing average turnaround time are true. The resultant dual-criteria utilization-
based processor allocation approach not only achieves shorter average turnaround 
time, but also saves scheduling time because of fewer iterations conducted.

Figure 12 is the schedule produced by the dual-criteria utilization-based proces-
sor allocation approach augmented with preemptive allocation for the same five-job 
example in Table 2. Table 4 compares the processor allocation results after each job 
arrives for the original utilization-based approach, i.e., Figure  9, and dual-criteria 
utilization-based approach, i.e., Figure 12, both augmented with preemptive alloca-
tion. On the arrival of job 2, it would be allocated 64 processors by the original uti-
lization-based approach. On the other hand, it would be allocated only 43 processors 
by the dual-criteria utilization-based approach. Allocating fewer processors to job 

Fig. 12  Dual-criteria utilization-based processor allocation (utilization = 6.309%)

Table 4  Processor allocation 
results after each job arrives

Time instants Original utilization-
based approach

Dual-criteria utiliza-
tion-based approach

Jobs Number of 
processors

Jobs Number of 
processors

Job 0 submission Job 0 128 Job 0 128
Job 1 submission Job 0 128 Job 0 64

Job 1 128 Job 1 64
Job 2 submission Job 0 64 Job 0 43

Job 1 64 Job 1 42
Job 2 64 Job 2 43

Job 3 submission Job 0 43 Job 0 43
Job 1 43 Job 1 42
Job 2 42 Job 3 43
Job 3 42

Job 4 submission Job 4 43 Job 4 43
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2 in the dual-criteria utilization-based approach allows it to start and finish earlier 
before the submission of job 3, and thus prevents it from being killed and resched-
uled when job 3 arrives, which occurs in Fig. 9 where the original utilization-based 
approach is used. Moreover, allocating fewer processors to job 2 also leaves more 
processors for subsequent jobs, resulting in shorter average turnaround time. Com-
paring Figs. 9 and 12 indicates that the dual-criteria utilization-based approach has 
potential to achieve better performance than the original utilization-based approach.

4  Performance evaluation

This section presents the performance results of a series of simulation experiments 
evaluating our two-level utilization-based processor allocation approaches, com-
pared to previous methods in the literature, including the method in [7], highest 
revenue first (HRF) [8], and extreme-ending moldable approach (EEMA) [6]. In 
the experiments, the parameters in HRF [8] were set to α = 0.8 and threshold = 0.9 
because such setting leads to the best performance in [8].

In the experiments, we simulated a 128-processor parallel system processing a 
set of moldable jobs derived from a public workload log on the parallel workload 
archive web site.3 The workload log contains 73,496 records collected on a 128-
node IBM SP2 machine at San Diego Supercomputer Center (SDSC) from May 
1998 to April 2000. After excluding some problematic records based on the com-
pleted field in the log, our simulation experiments used 56,490 job records as the 
input workload. The upper bound in the bounded processor allocation mechanism 
was set to 64, i.e., half of the total processors in the system, as in the example of 
Fig. 8. The speedup of a job with different numbers of processors is calculated using 
Amdahl’s law [55]

Fig. 13  Light workload with uniform α value

3 https ://www.cs.huji.ac.il/labs/paral lel/workl oad/.

https://www.cs.huji.ac.il/labs/parallel/workload/
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Figures 13 and 14 present the experimental results for light and heavy workloads, 
respectively. In both kinds of workloads, each parallel job has the same α value set 
to 0.7. To evaluate the effectiveness of each processor allocation mechanism pre-
sented in Sect.  3, in the simulation experiments our approach has four instances 
representing the original utilization-based processor allocation (UPA) approach 
in Algorithm  1, UPA augmented with bounded allocation, UPA augmented with 
preemptive allocation, and the final integrated dual-criteria UPA augmented with 
preemptive allocation, respectively. As shown in Fig. 13, both our UPA augmented 
with preemptive allocation method and dual-criteria UPA augmented with preemp-
tive allocation method outperform all the three previous methods significantly when 
system workload is light. When confronting heavy workload as shown in Fig. 14, 
the performance results are quite different. Our approaches perform even better 
when system workload is heavy in that all the four UPA-based approaches outper-
form the three previous methods. However, under heavy workload, the approach that 
achieves the best performance is UPA instead of the dual-criteria UPA augmented 
with preemptive allocation method which performs the best in Fig. 13. This perfor-
mance result indicates that resource utilization plays an even more important role in 
improving overall system performance as system workload gets higher.

Since in a real parallel computing environment, parallel jobs usually have dif-
ferent parallelism characteristics, we conducted another series of experiments, as 
shown in Figs. 15 and 16, where parallel jobs might have different ratios of paral-
lelizable workload, i.e., α in Amdahl’s law [55]. We randomly set the jobs’ α values 
between 0.7 and 0.9 in the experiments. The experimental results in Figs. 15 and 16 
show similar performance trends as in Figs. 13 and 14. Our utilization-based proces-
sor allocation approaches can achieve better performance in terms of average turna-
round time than the three previous methods, and UPA leads to the best performance 
when system workload is high.

As described in Sect.  3, both bounded processor allocation and preemptive 
processor allocation were proposed to improve the scheduling decisions when 
there is only one job in the waiting queue. Since such situations are more likely 

Fig. 14  Heavy workload with uniform α value
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to happen under light workload, these two mechanisms led to significant perfor-
mance improvement in the simulation experiments of light workload as shown in 
Figs. 13 and 15. On the other hand, it is rare, if not impossible, that the waiting 
queue contains only one single job under heavy workload. Therefore, bounded 
processor allocation and preemptive processor allocation could bring only negli-
gible performance difference under heavy workload as shown in Figs. 14 and 16.

Fig. 15  Light workload with diverse α values

Fig. 16  Heavy workload with diverse α values

Table 5  Comparison of 
scheduling overhead (seconds)

EEMA HRF Dual-criteria UPA aug-
mented with preemptive 
allocation

Light workload 1.15 4.41 19.77
Heavy workload 1.51 34.62 2612.74
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Our approach has a much more sophisticated decision process and thus would 
incur a significantly larger scheduling overhead than EEMA and HRF. Table 5 com-
pares the scheduling overhead of our approach to EEMA and HRF by showing the 
required computation time for the three approaches to schedule the total 56,490 jobs 
in the experiments presented in Figs. 15 and 16. The data in Table 5 confirm the 
higher scheduling overhead of our approach. However, such overhead pays off in 
the significant reduction in average job turnaround time brought by our approach. 
For example, comparing Table 5 to Figs. 15 and 16, the overhead of scheduling the 
total 56,490 jobs by our approach pays off easily with the average reduction in a 
single job’s turnaround time under light workload, compared to EEMA and HRF. 
Even under heavy workload, the scheduling overhead could pay off with the average 
turnaround time reduction of only two jobs.

5  Conclusions and future work

HPCaaS has become a promising trend for high-performance computing. Molda-
ble job scheduling is an important research issue for realizing HPCaaS since it can 
not only lead to a much easier and convenient access model for HPC facilities, but 
also improve overall system performance. This paper presents our research work 
on developing a new two-level utilization-based processor allocation approach for 
moldable job scheduling. Experimental results show that our approach can achieve 
up to 23% performance improvement in terms of average turnaround time, e.g., Fig-
ure 15, compared to previous scheduling methods in the literature.

Among the methods evaluated in this paper, the improved moldable job sched-
uling for HPCaaS [7], HRF [8], and our approach are pure moldable job schedul-
ing methods which do not require users to specify the number of processors to use 
upon job submission. This is an important feature for user convenience in realiz-
ing HPCaaS. On the other hand, EEMA [6] is an auxiliary moldable job scheduling 
approach, which treats all jobs as rigid initially, trying to allocate the requested num-
bers of processors to them, and takes advantage of a job’s moldable property only 
when its desired number of processors is larger than the number of free processors. 
The experimental results show that only our approach can outperform EEMA [6] 
in all cases. Therefore, our approach is a promising progress toward HPCaaS since 
overall system performance is always the most important concern in high-perfor-
mance computing.

In the future, several research directions are promising to further improve the per-
formance of processor allocation for moldable job scheduling. The first is to develop 
new mechanisms replacing bounded allocation and preemptive allocation. Although 
the experimental results show that preemptive allocation outperforms bounded allo-
cation, they both still result in some degree of resource inefficiency requiring fur-
ther improvement. The second is about gaining insight into the interaction between 
resource utilization and job turnaround time. The experimental results for light and 
heavy workloads, respectively, show very different performance trends among the 
evaluated processor allocation methods. Further studies are also required for devel-
oping more efficient mechanisms controlling the iterative processor allocation 
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process. Finally, despite achieving better schedules, the computation time of the 
proposed approach is significantly longer than previous methods, requiring further 
reduction.

In this paper, we focus on the processor allocation issue of moldable job schedul-
ing. However, to realize the goal of HPCaaS, there are still other issues to be consid-
ered seriously, such as job priority or hardware faults which also have great influence 
on the quality of service (QoS). Fortunately, the processor allocation approaches 
proposed in this paper can blend well with the methods designed for other aspects of 
QoS in HPCaaS environments. For example, they can cooperate with necessary job 
sequencing methods or checkpoint and recovery techniques to provide job priority 
features or fault-tolerant computing environments.
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