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Abstract

Cloud computing systems are splitting compute- and data-intensive jobs into smaller
tasks to execute them in a parallel manner using clusters to improve execution time.
However, such systems at increasing scale are exposed to stragglers, whereby abnor-
mally slow running tasks executing within a job substantially affect job performance
completion. Such stragglers are a direct threat towards attaining fast execution of
data-intensive jobs within cloud computing. Researchers have proposed an assort-
ment of different mechanisms, frameworks, and management techniques to detect
and mitigate stragglers both proactively and reactively. In this paper, we present a
comprehensive review of straggler management techniques within large-scale cloud
data centres. We provide a detailed taxonomy of straggler causes, as well as pro-
posed management and mitigation techniques based on straggler characteristics and
properties. From this systematic review, we outline several outstanding challenges
and potential directions of possible future work for straggler research.
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1 Introduction and motivation

Nowadays, applications spanning various domains including social networks, e-com-
merce sites, and healthcare generate vast quantities of data. The growing velocity and
volume of such data generation has subsequently required the substantial computing
capacity in order to store and process such data effectively [1]. Such large-scale com-
puting systems, encompassing data centre clusters, comprise hundreds and thousands
of individual machines interconnected together that underpin application operation
consumed by both businesses and consumers alike.

A combination of increasing application demand and technological innovations has
resulted in greater system scale in the regions of tens of thousands of servers within
an individual cluster [2]. However, such complexity has subsequently resulted in an
increase in complexity within such systems, manifesting in the form of emergent phe-
nomena whereby system operation exhibits behaviour unforeseen at design time. Such
emergent phenomenon manifesting within large-scale cloud data centres has been
observed to negatively impact application performance. One such phenomenon, known
as the long-tail problem, is characterized by a minor subset of task stragglers that oper-
ate unusually slower in comparison with normal task behaviour within a job. Task
stragglers occur within any highly parallelized system and become even more apparent
for jobs containing many tasks executing across a large number of machines.

Frameworks such as MapReduce, Spark, and Dryad [1, 3, 4] process vast quanti-
ties of data via parallelizing jobs into a smaller subset of tasks and thus make such
applications susceptible to stragglers. For example, within MapReduce, a job can only
complete once all tasks have completed their execution. However, the occurrence of
stragglers results in an atypically long task execution duration, thus degrading the per-
formance of the entire job. The challenge in effectively addressing stragglers is that
their root-cause is not well understood [5] and can be resultant due to various reasons
spanning daemon processes, data skew, failures, resource contention, and energy man-
agement tools [6, 7], manifesting within the application, operating systems (OS), or
physical hardware. This can subsequently lead to subsequent applications that depend
on job outputs to also fail pending on its completion [8, 9].

This has resulted in a growing body of straggler research pertaining to analysing
their underlying causes [9, 10], straggler forecasting [11, 12], and straggler mitigation
techniques [13—16] including speculative execution [17], replication, load balancing,
and scheduling [18]. Each of these works predominantly focuses on a certain subset
phenomenon within a particular context of system operation of application framework.
Thus, straggler research has reached sufficient level of maturity whereby it is worth-
while to appraise the landscape of research within the field, identify cross-cutting chal-
lenges within areas, and evaluate future challenges on the horizon for future generation
computing systems.

1.1 Motivation

The core motivation behind this methodical survey is to conduct a systematic
review of straggler research within large-scale cloud data centres. This systematic
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review encompasses clearly defining and analysing the impact of stragglers, a tax-
onomy of various straggler management techniques for forecasting and mitiga-
tions, as well as identify future directions within the field.

1.2 Article organization

The rest of the article is structured as follows: Sect. 2 presents the background
information for straggler definition as well as straggler management within large-
scale systems. Section 3 presents the taxonomy of straggler causes. Section 4
explores the existing literature for straggler management techniques. Section 5
presents the comparison of straggler management techniques based on the tax-
onomy of straggler causes and outlines the observation, trend analysis, and future
research directions. Finally, Sect. 6 summarizes the article.

2 Background
2.1 Straggler definition and impact

Applications execute within large-scale computing systems such as data centres
and clusters by submitting jobs via a resource manager (YARN, Mesos, Borg,
etc.). In this context, a job is composed of multiple smaller tasks (defined as the
smallest unit of computation observable by the resource manager) [19]. Such
jobs and subsequent tasks are scheduled onto different machines in a parallelized
manner to accelerate job completion and are often divided into phases creating a
direct acyclic graph (DAG) [20]. Application frameworks (such as MapReduce)
attempt to sub-divide jobs so that tasks will approximately complete within the
same timeframe for each phase [21]. This is achieved by providing a subset of
data (known as shards) to each task, and allocating the appropriate resources to
tasks (CPU, memory, etc.). This is calculated via the resource requirement mod-
ule of the resource manager [22].

However, even with such measures in place, within large-scale cloud data cen-
tres a subset of tasks within a job will manifest as stragglers [23, 24]. In this
context, a straggler is defined as task which execute abnormally slow in com-
parison with the average task duration within a job [2]. The phrase ‘abnormally
slow’ is typically identified as any task with a task completion time 50% greater
than the (average) task completion time for a job phase [25, 26]. Slowly execut-
ing tasks (stragglers) affect the performance and completion time of the entire job
[14], increasing resource utilization and performance degradation of applications
at increased scale [27, 28], thus reducing system availability and incurring addi-
tional operational costs [29]. It has been identified from analysis of production
systems at scale [28] that approximately 4—6% of task stragglers negatively affect
over 50% of the overall jobs within the greater system.
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2.2 Straggler management

Due to the impact of long-tail problem within distributed computing systems, there
have been concentrated efforts in order to effectively mitigate their effects. This has
been tackled by the research community via the creation of various straggler man-
agement techniques. In this context, straggler management comprises all mecha-
nisms that have been created in order to mitigate the effects and impact of strag-
gler manifestation. Figure 1 shows the depiction of straggler tasks and non-straggler
tasks.

Such straggler management techniques can be predominantly considered into two
main classes: detection and mitigation [30, 31]. Detection focuses on approaches to
identify straggler manifestation a priori or post-priori job execution within the cloud
data centre, such as offline analytics and online monitoring mechanisms [32, 33] and
an example of straggler detection is NearestFit [1]. Mitigation approaches focus on
avoiding [34] or tolerating (detected) straggler manifestation during job execution
such as scheduling, load balancing, and replication [26, 35, 36]. The examples of
straggler mitigation are Dolly [13], GRASS [14], LATE [16], and Wrangler [15].

2.3 Related surveys and our contributions

To present day, to the best of our knowledge, only two works have conducted a sur-
vey pertaining to straggler research. Umesh and Jitendar [37] discussed an overview
of straggler handling algorithms for MapReduce framework, while Ashwin et al.
[38] reviewed several straggler handling techniques. While these reviews cover spe-
cific cases of stragglers related to specific frameworks and installations, they do not
necessarily provide a comprehensive survey of the straggler causes and straggler
management techniques which exist within the research community. Furthermore,
these works do not discuss in detail the precise root-causes and analysis of straggler
behaviour, which underpin the design of straggler management techniques. There-
fore, this paper attempts to provide a systematic review and taxonomy of straggler
causes and map them directly to straggler management techniques along with trend
analysis.

Task ID

7 Straggler Task

m Non-Straggler Task

Time (ms)

Fig. 1 Depiction of straggler tasks and non-straggler tasks
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3 Taxonomy of straggler causes

As mentioned in Sect. 1, the challenge within this research area is the myriad
of potential causes of straggler manifestation. According to our comprehensive
appraisal of the literature, we have identified eight key causes for straggler occur-
rence that manifest within large-scale cloud data centres. Figure 2 shows the tax-
onomy of straggler causes.

1. Data abstraction Stragglers can occur due to information obfuscation at different
levels of the system. The literature [39-42] has identified that information can
be hidden at two different levels: (i) OS level and (ii) application level. During
the execution of resources, the master node (controller) hides information from
workers (cluster nodes) at OS level. (ii) At application level, the information
regarding platform services and infrastructure services is kept hidden from the
software services.

2. CPU utilization It has been identified that there is a strong correlation between
high system CPU utilization and straggler occurrence [7, 12, 43, 44]. The rea-
son for this occurrence is resource contention. This is further compounded due
to Head-of-Line blocking (HOL blocking), task interference during execution,
busy locks, queue issues, hazard rates of task execution and launching additional
speculative replicas, which requires additional time for execution.

3. Scheduling It has been identified that scheduling and resource allocation decisions
also influence straggler manifestation [45—48]. For job scheduling, stragglers can
occur due to a large number of enqueued jobs within a (machine, master sched-
uler) that are pending for available resources to be revoked (i.e. only a portion
of tasks within a job are able to successfully acquire their necessary resources to
commence execution). Furthermore, straggler may occur due to the poor admis-
sion control mechanisms, which is used to submit the jobs for execution [49]. The
poor admission control mechanism launches multiple tasks together, resulting in
resource exhaustion causing slowdown. Lastly, dynamicity of QoS requirements
at runtime results in an inability to effectively manage the resources which leads
to further the straggler occurrence. In terms of resource scheduling, stragglers
can occur in following situations [49—52]: (1) when resources are allocated to the
jobs in an inefficient manner without available resource optimization, leading to
ineffective scheduling of resources for job execution and (2) sometimes resources
are still in active stage even they are not utilized for execution of jobs, which
consumes more energy and affects the performance of other resources because
some resources need more power to run continuously.

4. Inaccessible local disk Stragglers may occur when a machine hard disk is not
accessible to residing tasks. Such inaccessibility is predominantly caused by [9,
53-59]: (i) increasing backup tasks and (ii) failing to store output. Stragglers
can occur, when it is difficult to find the required task due to the large backlog of
the tasks waiting for execution. Sometimes, an error can occur while storing the
output on the disk, causing a problem when some tasks want to access those data
during execution.
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5. Data skew Straggles can occur due to the data skew, caused by the different data
sizes and time variation in accessing required data [56, 57, 60, 61]. With several
tasks operating on a split version of a very large shared dataset, an uneven distri-
bution of the data amongst these tasks potentially results in some tasks to progress
slowly in comparison with tasks within the same phase (and subsequently delays
the future sub-phases and the entire job). Data non-uniformity can also impact
data access and processing time data, directly affecting the timing delays between
tasks, further increasing the probability of straggler occurrence. Moreover, data
locality for job execution results in lower latencies, while distant data will take
longer to be accessed, incurring additional delays in task completion, again, mani-
festing as a straggler.

6. Resource contention Resource contention occurs when the same resource is
shared by multiple tasks [9, 13, 14, 17, 53-55, 58, 59, 62—69]. Resource conten-
tion occurs due to conflict over task access and oversubscription to a resources
within multi-tenant machines which can be exuberated within different scenarios
including: (1) hardware heterogeneity, (2) poor user code, (3) extra cloning, (4)
ineffective algorithm logic, (5) temporary slowdowns, (6) additional task clones
requiring more resources and (7) resource usage being higher than accepted
threshold value. Hardware heterogeneity is the main reason of resource con-
tention, which occurs due to a mismatch between hardware specification and
specified application constraints (e.g. budget, deadline, etc.) leading to task per-
formance degradation. The source code of scheduling algorithm also affects the
performance of the scaling system due to its coding style in terms of space and
time complexity. Sometimes, poorly written source code schedules resources inef-
ficiently, which can increase resource consumption and unavailability of required
resources to specific jobs [35]. The cloning of tasks is creating a similar of copy
to task to run parallel on another resource for fast execution.

The cloning of tasks needs more resources (increases resource usage), which
can also put tasks of other jobs on hold and when the tasks are waiting for other
resources, then stragglers can occur. An ineffective logic in the resource schedul-
ing algorithm can also lead to an inefficient allocation of resources and increase
resource usage, which leads to resource contention for future tasks. Temporary
slowdown can occur due to inefficient allocation of resources, which needs to
be corrected; otherwise, it will cause straggler occurrence during execution of
resources.

7. Task execution The successful execution of a task is important to avoid strag-
gler occurrence during execution of jobs [10, 28, 70-74]. During job execution,
stragglers can occur due to unhandled requests or ineffective task interference
and task incompatibility management. When a processing request is unhandled
or not fully handled, tasks expecting the results of this request will have to wait
until the full request output is ready, manifesting in straggling tasks. This occurs
due to data dependency and task dependency. If the tasks are not oblivious to the
heterogeneity of the underlying resources of the platform, their incompatibility
(non-synchronization) due to different types of workloads or requirements can
manifest in slower execution and ultimately straggler occurrence.
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8. Faults Faults within software and hardware resulting in to crash-stop and late-
timing failure can cause straggler occurrence in large-scale systems [17, 18, 63,
64, 75, 76]. The main reasons for software-induced faults can be: development,
logic or overflow errors as well as misconfigurations. In terms of hardware, the
main fault occurrence reasons are: physical damage, device failures, daemon
processes, or power-related issues such as effective energy management. Ironi-
cally, fault tolerance and recovery mechanisms can themselves result in straggler
manifestation (for example, checkpointing introduces burst in disk access and
increases resource contention, resulting in a higher system hazard rate).

3.1 Relationship between straggler causes

Based on different types of causes of stragglers in large-scale systems, we have iden-
tified the correlation among them, as described in Table 1. As identified in [28],
stragglers are not resultant of a singular cause, but can potentially be correlated.
For example, data abstraction can occur due to tasks in a queue waiting for exe-
cution. Resource contention is the main reason of stragglers due to the sharing of
resources among different applications, which are running on different nodes, which
further affects the CPU utilization by overloading the resources. Straggler occurs
during scheduling of jobs as well as resources, and the reasons for straggler occur-
rence during resource scheduling can be heterogenous resources, poor user code or
logic error, and too many copies of straggler tasks that are running simultaneously.
The reasons for inaccessible local disk can be large copies of backup tasks and fail-
ing to store required output, which happens due to task interference and its incom-
patibility with other tasks. The other reason can be that requirements are changing
dynamically. Data skew happens due to straggler occurrence at application level due
to data hiding or failing to write data. The other reason can be inefficient allocation
of resources for processing of data, which can increase running time of resource.
The resource contention occurs at OS level, when master node hides the informa-
tion from workers. Further, the overutilization of CPU causes the resource conten-
tion due to increasing speculative copies as well as when the performance of node
degrades. Moreover, poor admission control can also affect the resource utilization
and creates resource contention when the value of required resources is increased
than the available resources. Further, resource contention affects the task execution
due to unavailability of shared resources. Fault occurrences during job execution can
happen due to resource failure and resource misconfiguration [77].

4 Straggler management techniques: current status
Straggler management techniques can be categorized into two broad categories:

straggler detection and straggler mitigation [78]. Each category can be further sub-
divided into specific areas as shown in Fig. 3.

@ Springer



10058

S.S.Gilletal.

Table 1 Correlation among straggler causes

Stragglers causes

Dependent

Data abstraction
1. OS level
2. Application level
CPU utilization
1. Increasing speculative copies
2. Additional time
Scheduling
1. Job scheduling
a. Number of jobs more than available resources
b. Poor admission control mechanism
c. Dynamic requirements
2. Resource scheduling
d. Inefficient resource allocation
e. Idle resources are still active
Inaccessible local disk
1. Increasing backup tasks
2. Failing to store output
Data skew
1. “Uneven data distribution among tasks”
2. “Non-uniform data processing time”
Resource contention
1. Hardware heterogeneity
2. Poor user code
3. Extra cloning
4. Ineffective algorithm logic
5. Temporary slowdowns

6. More number of copies of same task needs more
resources

7. Resource usage is more than threshold value
Task execution

1. Unhandled request

2. Task interference

3. Task incompatibility

Faults

1. Hardware

2. Software

Resource contention (1), resource contention (6),
inaccessible local disk, task execution

Resource contention, faults (1), scheduling (2b),
scheduling (1c)

Resource contention (1), resource contention (2),
resource contention (3), resource contention (4),
faults

Task execution (1), task execution (2), task execu-
tion (3), scheduling (1c)

Inaccessible local disk (2), data abstraction (2),
scheduling (1b)

Data abstraction (1), CPU utilization, inaccessible
local disk (1), data skew (1), task execution,
scheduling (2a)

Resource contention (1), resource contention (2),
scheduling (1a)

Resource contention (6), resource contention (7),
task execution (1), task execution (2)

4.1 Straggler detection techniques

Straggler detection techniques are leveraged in order to identify straggler occur-

rence during job execution.
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[ Straggler Management Techniques ]

Straggler Detection Straggler Mitigation
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Fig. 3 Taxonomy of straggler management techniques

4.1.1 Offline straggler detection

Offline straggler detection technique attempts to identify straggler manifestation
in order to enhance speculative execution via leveraging offline analytics (i.e. ana-
lysing and modelling task execution and progress patterns derived from empirical
data a priori execution).

Coppa and Finocchi [1] identified three different challenges such as straggling
tasks, load unbalancing and data skewness, which affects the performance of
computing systems. To overcome these challenges, authors proposed a profile-
guided progress indicator called NearestFit to gather the required combination of
closest neighbour regression using statistical curve fitting approach. NearestFit
is mainly suitable for long running applications and helps to identify the above
discussed challenges to increase the efficiency of computing systems. Authors
implemented the Nodelterator triangle counting algorithm using homogeneous
clusters in Hadoop to test the capability of NearestFit dynamically in terms run
time and progress.

Ouyang et al. [70] proposed a technique for modelling and ranking node-level
stragglers (MRNLS) in CDCs based on analysing the execution trace log data of
parallel jobs. This was conducted by a graph-based algorithm that is used to parti-
tion the server nodes into small nodes to execute more jobs in parallel. The pro-
posed techniques improve the performance of computing systems by reducing task
stragglers occurrence. Cong et al. [72] proposed a machine learning-based straggler
detection (MLSD) technique using unsupervised clustering method. The proposed
technique effectively manages the resources while executing the jobs and diagnos-
ing the stragglers at runtime. Wei et al. [10] proposed straggler detection approach
(SDA) for data-intensive computing in cloud environment to detect stragglers at
early stage to preserve the efficiency of the CDC. Further, statistical method for out-
lier detection called Turkey is developed to detect straggler at run time because it
starts the speculative execution earlier than the standard deviation method.

4.1.2 Online straggler detection

Online straggler detection technique detects the straggler to improve speculative
execution using online monitoring tools.
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Farshid [79] analysed that map phase of MapReduce (MR) framework takes
longer with the increase in the number of servers, which further affects nega-
tively the execution time of MapReduce job. Moreover, authors designed an ana-
lytical model to identify the impact of stragglers on efficiency of computing sys-
tem using map phase in terms of application, system, and hardware parameters.
Experimental results show that model reduces the execution time during execu-
tion of MapReduce applications. Zaharia et al. [80] proposed a resilient distrib-
uted datasets (RDDs), a distributed memory abstraction, which enables develop-
ers to provide a fault-tolerant module while performing in-memory computations
on a huge number of clusters. RDD uses coarse-grained transformations to offer
controlled form of shared memory to perform different memory-intensive com-
putations in an iterative manner. Further, Spark is used to implement RDDs in a
controlled environment to evaluate its performance.

Wang et al. [17] proposed heuristic algorithm (HA) to search for the best replication
to reduce latency in computing systems. The proposed algorithm is used to implement
the proposed algorithm, and experimental results demonstrate that this is capable of
reducing latency and its impact on cost of execution of workloads. Jeffrey and Sanjay
[54] explored data processing on large clusters (DPRCs) to perform different aspects
such as (1) providing fault tolerance by distributing computations, (2) optimizing net-
work bandwidth by decreasing the quantity of data transferred throughout the network,
and (3) decreasing impact of slow machines and improving fault tolerance. In DPRC
[54], speculative copy of task is executed by MapReduce on another node for increas-
ing job completion time and reducing response time. It is challenging to select the task
for which to execute speculation because it is not trivial to identify the machine or
node, which is running slower than average. To implement DPRC effectively, stragglers
are recognized at the earliest possible stage calculated by progress scores.

Garraghan et al. [28] explored the root-cause of stragglers (RCS) and provided a
method to analyse the root-cause analysis in a massive scale virtualized CDCs to solve
the long-tail challenge effectively. Authors used online analytic agents and offline exe-
cution patterns modelling for straggler detection while monitoring tasks dynamically.
Heecheol et al. [81] proposed secure distributed computing (SDC) approach using
recovery threshold value to efficiently deal with the impact of straggling [82], which
uses polynomial codes on sub-tasks allocated to nodes.

4.2 Straggler mitigation techniques

Straggler mitigation technique comprises all mechanisms and approaches to tolerate or
avoid the impact of straggler manifestation. Such techniques can be further sub-divided
into three sub-categories [68, 83—85]: load balancing based, replication based, and
scheduling based.

4.2.1 Load balancing-based straggler mitigation

Load balancing-based straggler mitigation technique manages the load during miti-

gation of stragglers.
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Ouyang et al. [2] proposed a method to reduce late-timing failure (LTF) and ana-
lyse the root-cause of stragglers in cloud data centres (CDC) such as server failures
or task concurrency and resource contention. Further, this study identified the high
temporal resource contention as a main root-cause of stragglers. Further, the out-
put of experiments demonstrates that this technique maintains the efficiency of the
computing systems while tolerating the system failures effectively. Yanfei et al. [86]
proposed a user transparent task slot management approach called FlexSlot, which
identifies the stragglers automatically and resizes their slots to improve the speed
of execution of task. The approach also balances the usage of resources by auto-
matically changing the number of available slots of nodes to improve its utilization.
Moreover, FlexSlot uses adaptive speculative execution approach to improve mitiga-
tion of skew data.

Neda et al. [71] proposed log-assisted straggler-aware (LASA) I/O scheduler for
high-end computing to mitigate the impact of storage server stragglers. Further, a
scheduling algorithm is proposed to make effective decisions to manage stragglers
at runtime. The output of experiments demonstrate that LASA is performing better
in load balancing while mitigating the storage server stragglers dynamically. Eman
et al. [62] proposed a parallel model for straggler mitigation in distributed spatial
simulation called priority asynchronous parallel (PAP) to exploit data dependencies
of parallel processes to be computed and synchronized based on data priority to the
other workers. Moreover, load balancing and partitioning method are proposed to
balance the workloads among different nodes and help to improve the performance
speedup by a large extent. Haozhao et al. [87] proposed heterogeneity-aware gra-
dient coding (HGC) scheme to execute the jobs in heterogenous environment and
efficiently tolerate the stragglers without degrading the effectiveness of the cloud
services [34]. The output of experiments demonstrates that HGC scheme outper-
forms in computation time.

4.2.2 Replication-based straggler mitigation

Replication-based straggler mitigation technique replicates the adequate number of
tasks during mitigation of stragglers.

Mehmet et al. [8] analysed the trade-off between latency and cost (TLC) using
simple replication or erasure coding for straggler mitigation in executing jobs with
many tasks. Experimental results show that delaying redundancy is not effective in
reducing cost. Further, Mehmet et al. [55] developed a straggler mitigation (SM)
technique using delayed relaunch of tasks, which helps to reduce cost and latency
effectively. Wang et al. [9] proposed an idea of an efficient task replication technique
(TRT) for straggler management to improve the response time in parallel computa-
tions. This technique is implemented in [88] and demonstrates empirically that rep-
licating all operations can result in significant mean and tail latency reduction in
real-world systems including domain name system (DNS) queries, database servers,
and packet forwarding within networks.

Tien-Dat [11, 64] proposed energy-efficient straggler mitigation (EESM) tech-
nique for effective management of big-data applications in the cloud computing
environment to optimize the energy consumption during straggler occurrence.
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Firstly, authors characterize the effect of straggler mitigation on energy efficiency.
Secondly, a straggler detection framework is developed, and they identified that
only 12% of the detected tasks are real stragglers [64]. The usage of huge num-
ber of speculative copies is the main reason for unnecessary energy consumption.
Thirdly, a reservation-based straggler handling approach is proposed to optimize
the energy efficiency by allocating the required resources at runtime effectively.

Wang et al. [89] analysed the trade-off between latency and cost to find out the
best replication technique for straggler management based on following param-
eters: (1) when to perform replication for straggling tasks, (2) number of replicas
to be launched, and (3) is it necessary to destroy the original copy or not. Fur-
ther, a straggler management approach (SMA) is proposed to calculate the value
of latency-based empirical distribution of execution time of task. The output of
experiments demonstrates that this work gives better for two performance param-
eters such as cost and latency. Lei et al. [90] proposed a straggler management
technique called Combination Re-Execution Scheduling Technology (CREST)
for fast speculation of straggler tasks in MapReduce framework, which further
reduces the response time of MapReduce jobs. The re-execution of set of tasks on
set of computing nodes in CREST improves the speed of task execution.

Radheshyam et al. [91] proposed a job-aware scheduling (JAS) technique to
optimize the running time of different jobs by maintaining the harmony among
them, which are executing on the same cluster. JAS technique is implemented
using for MapReduce framework. Further, proposed algorithm selects the most
compatible task with executing task to reduce more execution time. Moreover, a
heuristic-based load balancing technique is developed to avoid the underloading
and overloading of resources. Matei et al. [16] explored the MapReduce frame-
work for straggler management and improved its performance in heterogenous
environment. Further, a resource scheduling algorithm, longest approximate time
to end (LATE) is proposed to improve the robustness in regard to heterogeneity
and improves response time of tasks. LATE scheduling algorithm [80] estimates
the longest approximate time and select the task with the longest approximate
time as straggler tasks and execute its speculative copy on another fast node to
speed up the job completion time. SAMR scheduling technique [18] computes the
completion of tasks at runtime and discovers the straggler task based on execu-
tion time. Historic information of node is used to detect more reliable node in
SAMR and weights of reduce and map stages are updated after completion of
every task.

Farhat et al. [63] proposed a straggler management technique for modelling
and optimization (SMMO) of straggling mappers to show the stochastic behaviour
of mapper nodes and its negative effect on completion time of MapReduce jobs.
Authors identified task inter-arrival time of jobs to map the required nodes of het-
erogenous CDC in an optimized way. The experimental results demonstrate that the
proposed technique reduced the execution time of jobs at runtime. Behrouzi-Far
et al. [92] proposed an efficient straggler replication framework in large-scale par-
allel computing to analyse the performance of the system in terms of latency—cost
trade-off. Further, it identifies the best replication technique based on different cri-
teria such as: (i) number of replicas required, (ii) time to replicate straggling tasks,
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and (iii) determine whether to kill the original task. Finally, performance evaluation
is described that latency and cost are reduced in Google Cluster Trace as compared
to MapReduce.

4.2.3 Scheduling-based straggler mitigation

Scheduling-based straggler mitigation technique schedules the resource for jobs dur-
ing mitigation of stragglers.

Ananthanarayanan et al. [13] explored the straggler mitigation techniques and
identified the impact of reasons of stragglers in latency-sensitive jobs. Further,
authors designed workloads with small number of jobs and performed cloning of
small jobs. It has been identified that the cloning of small jobs uses less resources
but improves the reliability of computing services. Moreover, a system named Dolly
is developed to generate multiple clones of jobs and execute jobs within their speci-
fied budget. Experimental results demonstrate that Dolly sped up jobs by 46% by
using only 5% extra resources.

Ananthanarayanan et al. [14] proposed greedy speculative scheduling and
resource-aware speculative scheduling (GRASS) technique, which uses specula-
tion to mitigate the impact of stragglers in approximation jobs. GRASS uses extra
resources for speculation and improves accuracy for deadline-bound jobs by 47%
and speeds up error-bound jobs by 38%. Aaron et al. [53] addressed the straggler
problem for iterative convergent parallel (ICP) machine learning technique to iden-
tify the behaviour (in terms of delay) of the system during execution of jobs by
injecting the stragglers. Amazon EC2 and Microsoft Azure [93] are used to evaluate
the performance of system in terms of execution time.

Ouyang et al. [25] proposed a straggler management technique (SMT) to find
the task stragglers by calculating threshold value at runtime. Further, this technique
considers important key parameters such as resource utilization, task execution, and
job QoS timing constraints to manage straggler tasks effectively. Neeraja et al. [15]
proposed straggler management technique called Wrangler to proactively avoid the
conditions, which cause stragglers. Wrangler [13] uses interpretable linear model-
ling approach to reduce the resource wastage by eradicating the requirement for rep-
licating tasks. It uses fewer resources to complete the job in a faster way and avoids
the straggler proactively by predicting in advance. A cluster resource utilization-
based statistical learning technique is used for confidence measure to offer reliable
task scheduling by predicting errors in advance. The output of experiments shows
that Wrangler produces improvements in terms of job completion time and resource
utilization as compared to speculative execution.

Quan et al. [18] proposed a self-adaptive MapReduce (SAMR) scheduling tech-
nique for straggler management, which estimates task progress automatically and
adapts to the changing conditions of environment dynamically. SAMR uses MapRe-
duce mechanism to divide jobs into tasks and execute on different available nodes.
SAMR does not create backup tasks for regular tasks. SAMR reduces the execu-
tion time of MapReduce jobs while executing tasks in heterogenous environment.
Enhanced SAMR (ESAMR) [27] uses the k-means clustering algorithm to categorize
the historic data of each node into k-clusters and identifies the straggler task more
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accurately. Furthermore, ESAMR uses weights of reduce and map stages to find the
Time to End on different nodes, which can easily identify the more reliable node.

Ananthanarayanan et al. [27] studied and explored the straggler management
in resource-aware techniques and identified the main causes of stragglers such as
varying bandwidth, network congestion, workload imbalance, and contention of
resources (network, memory, and processor). Furthermore, Mantri [27] is used to
monitor task execution and take a proactive action to sustain the efficiency of the
CDC in the case of resource contention or hardware/software failure [94-96]. It uses
Bing traces to evaluate the performance, and it improves job completion time to a
large extent.

Ouyang et al. [97] proposed a straggler management mechanism (SMM) to
improve the execution efficiency of Internet-ware applications by dynamically cal-
culating the straggler threshold, considering important parameters such as optimal
system resource utilization, task execution progress, and job QoS timing constraints.
Further, YARN architecture is used to implement dynamic straggler threshold to test
the performance of the proposed mechanism and experimental results give the better
outcomes in terms of response time. Yan et al. [98] developed large-scale multime-
dia semantic concept (LMSC) model to improve the scalability of the computing
systems with heterogenous environment. Robust subspace bagging algorithm is used
to improve learning process, and further, a task scheduling algorithm is proposed to
improve the scalability by executing heterogenous tasks. Proposed model is tested
on MapReduce framework, and experimental results demonstrate its superiority.

Figure 4 presents the evolution (2008-2019) of different types of straggler man-
agement techniques along with their focus of study and QoS. Table 2 shows the
comparison of different types of straggler management techniques based on different
parameters.

5 Comparison of straggler management techniques based
on taxonomy

Table 3 shows the comparison of straggler management techniques based on tax-
onomy of straggler causes from Fig. 1 and Table 2.

5.1 Analysis of experimental results: practical use-case

The existing straggler management techniques have been categorized into two cat-
egories, i.e. straggler detection and mitigation techniques. Table 4 shows the analy-
sis of experimental results of straggler detection and mitigation techniques in the
context of different performance parameters. Future researchers can use Table 4 to
validate their research work based on the values of various performance parame-
ters identified from the existing literature. The literature reported that there are four
types of data abstraction levels (OS, application, server, and VM), where straggler
can occur.
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QoS: Computation Time
SDC [19], HGC [37]

FoS: Security
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FoS: CPU Utilization

TLC [7], EESM [15] ‘—

QoS: Cost, Latency, Energy Consumption, Resource Utilization
FlexSlot [23] ‘——|

FosS: Data-intensive Jobs

SDA [28], PAP [31] ‘_

ICP [8], LTF [12], SMT [14] ‘—
QoS: Resource Utilization, Execution Time
MRNLS [24], RCS [25] ‘——[
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GRASS [5], Wrangler [16] ‘—l r QoS: Resource Utilization, Execution Time
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QoS: Response Time
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FosS: Reliability
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QoS: Excecution Time
CREST [19], JAS [20]

FoS: Execution Speed-Up

QoS: Execution Time, Job Completion Time
SAMR [18], MANTRI [22]
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QoS:: Execution Time
LMSC [36]
FoS: Scalability

DPLC [9] ‘—l r QoS: Response Time and Network Bandwidth ‘

LATE [21] ‘J L FoS: Fault Tolerance ‘

Fig. 4 Evolution of straggler management techniques

5.2 Trend analysis

Our systematic review has identified different types of result outcomes for different
categories of straggler management techniques developed from year 2008 to year
2019. The scheduling-based straggler mitigation technique appears prominent across
the years except year 2012. After the scheduling-based techniques, researchers
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18%

focused on replication-based straggler mitigation, during the year 2013 to 2019. The
offline, online, and load-balancing straggler management techniques are less focused
on from year 2008 to year 2019 requiring research to improve the straggler man-
agement in large-scale systems. Researchers focused on scheduling and replication-
based straggler management in years 2018 and 2019. Figure 5 shows the year-wise
publications of straggler management techniques, and it has been clearly depicted
that research from year 2008 to 2016 was highly progressive in this area, declining
after 2017 and 2018 while progressing in 2019.

The literature reports the research related to straggler management is mostly pub-
lished in journals (31%), followed by conferences (28%), transactions (21%), and
book chapters (10%). The rest of the research is published in symposiums, work-
shops, white papers, and PhD thesis. Figure 6 shows the research conducted related
to straggler management at different levels such as Application, Server, OS, VM,
and cooling. Figure 6 clearly shows that most of the research work has been done at
the application level (46%) and followed by VM level (21%). Only 3% of research
work has been done at cooling level.

The literature reports 44% of research work considered between 0 and 100 nodes
for performance evaluation, and only 7% research work considered 1000+ nodes.
There are four different types of studies identified from the literature: real testbed
based (63%), systematic reviews (7%), conceptual models (10%), and simulation
based (20%). Most of the technical research papers (63%) consider real testbeds for
performance evaluation. There are only two reviews [37, 38], which have been done
in this area. Table 5 shows the different research work related to different perfor-
mance parameters identified from Table 4.
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Table 5 Research work related to performance parameters

Performance parameters Study

Number of physical nodes/workers [1,9, 10, 15, 16, 18, 25, 62, 70-72, 79, 80,

Number of virtual nodes/workers 86, 88,90, 91, 97]

Energy consumption [11, 64]

CPU utilization [2, 25,27, 28]

Disk utilization [2]

Data transfer [16, 54, 89]

Memory utilization [25]

Deadline [14]

Execution time [2,8-11, 13-18, 25, 27, 28, 53-55, 62, 64,
70-72, 79-81, 86-89, 97, 98]

Number of tasks [11, 13, 17, 28, 54, 64, 97]

Number of jobs [11, 13-17, 53, 64, 86]

Data size [64]

Latency [8,9, 15,17, 55,72, 79, 88]

Failure prediction accuracy [14, 15]

Number of failures [80]

Average error [1, 8, 14, 55]

Response time [9, 25, 64, 80, 97]

Slowdown/delay [1,15,63,79]

Interval arrival rate [9, 27, 63,79, 88]

Running time [1,9, 11, 13, 15-17, 28, 53, 54, 64, 89, 91]

5.3 Observations

From the trend analysis, it is observable that current related works focus on study-
ing and mitigating specific straggler types, ranging from resource contention to data
skew as shown in Table 2. This appears to be a necessity given the complexities and
management strategies appropriate for each straggler type. The challenge is that it
is possible for straggler manifestation to be correlated in terms of system phenom-
ena, but also management techniques themselves (e.g. use of speculative copies to
address data skew causes increased resource contention).

The important research challenges within the large-scale cloud data centres such
as latency, scalability, energy consumption, and data processing are contributing to
the rise in research in the field of straggler management, which can be solved by
using artificial intelligence techniques. On the other hand, there is a need of real
cloud infrastructure (at least 50 physical nodes) to test the performance of future
straggler management techniques, but it would be very expensive to afford for aca-
demic institutes. To solve this problem, industries such as Facebook, Google, and
Amazon should collaborate with academic institutes to provide required infrastruc-
ture to do real experiments.

This systematic review also identifies various research directions for perspec-
tive researcher scholars, who are working in the field of straggler management for

@ Springer



10082 S.S.Gill etal.

distributed systems and searching for new research challenges to improve the perfor-
mance of cloud services. The straggler management is an evolving field of research
for large-scale systems, and it is quite challenge ring to execute user workloads with-
out occurrence of stragglers. To solve this problem, there is a need to recognize the
reasons of long-tail problem or stragglers and their correlations, which can help to
find out the dependency among stragglers. This study [1] developed straggler man-
agement technique for profile guide more accurately, but accurate predication is dif-
ficult to get if job is very small to gather required profiling data. An efficient data
recovery is achieved in [80], but it has been identified that the memory requirements
do not grow to intolerable levels as the size of dataset is increasing, which further
causes the stragglers. The jobs are increasing with time, but there is need to analyse
the impact of multiple jobs on probability of stragglers [13]. Existing techniques
use historic data to estimate resource requirement [17]. However, there is a need
to develop an online strategy to simultaneously learn the execution time distribu-
tion and launch replicas, instead of estimating time using historical traces. Further,
the replication increases the reliability of execution of jobs, but it consumes more
energy, which is a global challenge to address [8]. The scale-up/down infrastructure
by switching on/off the virtual machines/nodes based on the resource usage of the
cluster to save energy is required [91]. The dependency among tasks during task
execution further effects causes the stragglers because some tasks need to complete
in order to begin others [89]. Existing straggler management techniques are required
to improve to attain to reduce straggler occurrence. By using this systematic review,
causes of straggler can be identified easily. Therefore, an effective straggler manage-
ment technique can be developed to execute the jobs without straggler occurrence
while fulfilling the dynamic requirements of job, which helps to increase the effi-
ciency of large-scale cloud data centres.

5.4 Future research directions

Although a substantial progress has been made in straggler management techniques
for large-scale systems, there are still many pressing issues and challenges in this
field that need to be addressed. Based on existing research, we have identified vari-
ous open issues pending in this area.

5.4.1 Data processing

Data processing in straggler management is an important challenge [54]. It happens
due to the skew in data that the computing system is able to process effectively.
There are two types of problems which reduce the data processing capability of
systems: (1) large variation of data size and (2) non-uniformity of data. These two
reasons degrade the performance of large-scale computing systems. To improve the
straggler management mechanism, there should be less variation as well as less non-
uniformity of data. Tackling this challenge can further improve the processing speed
of computing systems in terms of execution time and latency.
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5.4.2 Heterogeneity

Hardware heterogeneity is the main reason for resource contention, which occurs
due different types of resources (with different configurations, different providers,
etc.) being used, and sometimes some resources are not compatible to execute jobs
in a coordinative manner. There is a need for a single interface, which can provide
a stable platform for interaction of different types of hardware in a collaborative
manner.

5.4.3 Latency

The latency is another important challenge in straggler management of large-scale
systems, which can affect the performance of computing systems. There are differ-
ent types of reasons for latency: (1) non-uniformity of data, (2) resource contention,
(3) poor user code, and (4) extra cloning. To improve the processing of computing
systems, there is the need to make data uniform initially. Further, efficient resource
scheduling algorithms are required, which can reduce resource contention at runtime
and reduce the latency [99]. The extra cloning of tasks to speed up the execution can
increase the latency because there is a requirement for more number of resources
to process more number of copies. There is a need to develop an effective straggler
management technique, which schedules resources and reduces latency at runtime.

5.4.4 Scalability

To improve the performance of computing systems, the systems must be more scal-
able to serve the jobs within their specific deadline without further delay at runt-
ime [100]. The scalability of the computing system can increase the capacity of the
system when the load increases, which can further reduce the problem of occurrence
of stragglers.

5.4.5 Resource sharing

The sharing of resources among different jobs can improve resource utilization, but
it leads to resource contention, which can degrade the performance of large-scale
computing systems [101]. There is a need for an effective resource contention tech-
nique, which can identify the reasons of resource contention and provide the possi-
ble solutions to avoid additional resource over-allocation, ultimately contributing to
straggler occurrence.

5.4.6 Energy management
The literature reports [99-102] that the straggler management techniques create

several copies of the same task to mitigate the effects of stragglers. Copying a task
reserves additional resources such as the disk, memory of CPU time, and increasing
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use of particular resource. As the resource is more continuously used, its energy
consumption rises. Depending on the type of the resource, its performance can
degrade as its energy consumption increases above a certain threshold level.

6 Summary and conclusions

In this paper, we have provided a comprehensive literature review of current strag-
gler research within Computer Science, an important problem which directly debili-
tates the performance of large-scale computing systems. We proposed a taxonomy
of straggler causes as identified from different types of straggler management tech-
niques. Moreover, various straggler management techniques have been reviewed and
classified into two categories: straggler detection and straggler mitigation. The com-
parison of straggler detection and straggler mitigation has been presented in detail,
and the taxonomy mapping-based comparison has been described, and various result
outcomes related to straggler management have been presented. Observations of
interest include the focused nature of straggler causes, and mitigation solutions may
potentially interfere with each other due to correlated root-causes. Hence, there is a
possibility of designing a multi-purpose straggler management technique which pro-
files and acts based on the type of identified straggler.
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