The Journal of Supercomputing (2020) 76:10050-10089
https://doi.org/10.1007/s11227-020-03241-x

™

Check for
updates

Tails in the cloud: a survey and taxonomy of straggler
management within large-scale cloud data centres

Sukhpal Singh Gill' - Xue Ouyang? - Peter Garraghan®

Published online: 12 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Cloud computing systems are splitting compute- and data-intensive jobs into smaller
tasks to execute them in a parallel manner using clusters to improve execution time.
However, such systems at increasing scale are exposed to stragglers, whereby abnor-
mally slow running tasks executing within a job substantially affect job performance
completion. Such stragglers are a direct threat towards attaining fast execution of
data-intensive jobs within cloud computing. Researchers have proposed an assort-
ment of different mechanisms, frameworks, and management techniques to detect
and mitigate stragglers both proactively and reactively. In this paper, we present a
comprehensive review of straggler management techniques within large-scale cloud
data centres. We provide a detailed taxonomy of straggler causes, as well as pro-
posed management and mitigation techniques based on straggler characteristics and
properties. From this systematic review, we outline several outstanding challenges
and potential directions of possible future work for straggler research.

Keywords Computing - Stragglers - Cloud computing - Straggler management -
Distributed systems - Cloud data centres

P4 Sukhpal Singh Gill
s.s.gill@qmul.ac.uk

Xue Ouyang
ouyangxue(8 @nudt.edu.cn

Peter Garraghan
p.garraghan @lancaster.ac.uk

School of Electronic Engineering and Computer Science, Queen Mary University of London,
London, UK

School of Electronic Sciences, National University of Defense Technology, Changsha, China

School of Computing and Communications, Lancaster University, Lancaster, UK

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03241-x&domain=pdf

Tails in the cloud: a survey and taxonomy of straggler management... 10051

1 Introduction and motivation

Nowadays, applications spanning various domains including social networks, e-com-
merce sites, and healthcare generate vast quantities of data. The growing velocity and
volume of such data generation has subsequently required the substantial computing
capacity in order to store and process such data effectively [1]. Such large-scale com-
puting systems, encompassing data centre clusters, comprise hundreds and thousands
of individual machines interconnected together that underpin application operation
consumed by both businesses and consumers alike.

A combination of increasing application demand and technological innovations has
resulted in greater system scale in the regions of tens of thousands of servers within
an individual cluster [2]. However, such complexity has subsequently resulted in an
increase in complexity within such systems, manifesting in the form of emergent phe-
nomena whereby system operation exhibits behaviour unforeseen at design time. Such
emergent phenomenon manifesting within large-scale cloud data centres has been
observed to negatively impact application performance. One such phenomenon, known
as the long-tail problem, is characterized by a minor subset of task stragglers that oper-
ate unusually slower in comparison with normal task behaviour within a job. Task
stragglers occur within any highly parallelized system and become even more apparent
for jobs containing many tasks executing across a large number of machines.

Frameworks such as MapReduce, Spark, and Dryad [1, 3, 4] process vast quanti-
ties of data via parallelizing jobs into a smaller subset of tasks and thus make such
applications susceptible to stragglers. For example, within MapReduce, a job can only
complete once all tasks have completed their execution. However, the occurrence of
stragglers results in an atypically long task execution duration, thus degrading the per-
formance of the entire job. The challenge in effectively addressing stragglers is that
their root-cause is not well understood [5] and can be resultant due to various reasons
spanning daemon processes, data skew, failures, resource contention, and energy man-
agement tools [6, 7], manifesting within the application, operating systems (OS), or
physical hardware. This can subsequently lead to subsequent applications that depend
on job outputs to also fail pending on its completion [8, 9].

This has resulted in a growing body of straggler research pertaining to analysing
their underlying causes [9, 10], straggler forecasting [11, 12], and straggler mitigation
techniques [13—16] including speculative execution [17], replication, load balancing,
and scheduling [18]. Each of these works predominantly focuses on a certain subset
phenomenon within a particular context of system operation of application framework.
Thus, straggler research has reached sufficient level of maturity whereby it is worth-
while to appraise the landscape of research within the field, identify cross-cutting chal-
lenges within areas, and evaluate future challenges on the horizon for future generation
computing systems.

1.1 Motivation

The core motivation behind this methodical survey is to conduct a systematic
review of straggler research within large-scale cloud data centres. This systematic

@ Springer

10052 S.S.Gilletal.

review encompasses clearly defining and analysing the impact of stragglers, a tax-
onomy of various straggler management techniques for forecasting and mitiga-
tions, as well as identify future directions within the field.

1.2 Article organization

The rest of the article is structured as follows: Sect. 2 presents the background
information for straggler definition as well as straggler management within large-
scale systems. Section 3 presents the taxonomy of straggler causes. Section 4
explores the existing literature for straggler management techniques. Section 5
presents the comparison of straggler management techniques based on the tax-
onomy of straggler causes and outlines the observation, trend analysis, and future
research directions. Finally, Sect. 6 summarizes the article.

2 Background
2.1 Straggler definition and impact

Applications execute within large-scale computing systems such as data centres
and clusters by submitting jobs via a resource manager (YARN, Mesos, Borg,
etc.). In this context, a job is composed of multiple smaller tasks (defined as the
smallest unit of computation observable by the resource manager) [19]. Such
jobs and subsequent tasks are scheduled onto different machines in a parallelized
manner to accelerate job completion and are often divided into phases creating a
direct acyclic graph (DAG) [20]. Application frameworks (such as MapReduce)
attempt to sub-divide jobs so that tasks will approximately complete within the
same timeframe for each phase [21]. This is achieved by providing a subset of
data (known as shards) to each task, and allocating the appropriate resources to
tasks (CPU, memory, etc.). This is calculated via the resource requirement mod-
ule of the resource manager [22].

However, even with such measures in place, within large-scale cloud data cen-
tres a subset of tasks within a job will manifest as stragglers [23, 24]. In this
context, a straggler is defined as task which execute abnormally slow in com-
parison with the average task duration within a job [2]. The phrase ‘abnormally
slow’ is typically identified as any task with a task completion time 50% greater
than the (average) task completion time for a job phase [25, 26]. Slowly execut-
ing tasks (stragglers) affect the performance and completion time of the entire job
[14], increasing resource utilization and performance degradation of applications
at increased scale [27, 28], thus reducing system availability and incurring addi-
tional operational costs [29]. It has been identified from analysis of production
systems at scale [28] that approximately 4—6% of task stragglers negatively affect
over 50% of the overall jobs within the greater system.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10053

2.2 Straggler management

Due to the impact of long-tail problem within distributed computing systems, there
have been concentrated efforts in order to effectively mitigate their effects. This has
been tackled by the research community via the creation of various straggler man-
agement techniques. In this context, straggler management comprises all mecha-
nisms that have been created in order to mitigate the effects and impact of strag-
gler manifestation. Figure 1 shows the depiction of straggler tasks and non-straggler
tasks.

Such straggler management techniques can be predominantly considered into two
main classes: detection and mitigation [30, 31]. Detection focuses on approaches to
identify straggler manifestation a priori or post-priori job execution within the cloud
data centre, such as offline analytics and online monitoring mechanisms [32, 33] and
an example of straggler detection is NearestFit [1]. Mitigation approaches focus on
avoiding [34] or tolerating (detected) straggler manifestation during job execution
such as scheduling, load balancing, and replication [26, 35, 36]. The examples of
straggler mitigation are Dolly [13], GRASS [14], LATE [16], and Wrangler [15].

2.3 Related surveys and our contributions

To present day, to the best of our knowledge, only two works have conducted a sur-
vey pertaining to straggler research. Umesh and Jitendar [37] discussed an overview
of straggler handling algorithms for MapReduce framework, while Ashwin et al.
[38] reviewed several straggler handling techniques. While these reviews cover spe-
cific cases of stragglers related to specific frameworks and installations, they do not
necessarily provide a comprehensive survey of the straggler causes and straggler
management techniques which exist within the research community. Furthermore,
these works do not discuss in detail the precise root-causes and analysis of straggler
behaviour, which underpin the design of straggler management techniques. There-
fore, this paper attempts to provide a systematic review and taxonomy of straggler
causes and map them directly to straggler management techniques along with trend
analysis.

Task ID

7 Straggler Task

m Non-Straggler Task

Time (ms)

Fig. 1 Depiction of straggler tasks and non-straggler tasks

@ Springer

10054 S.S.Gill etal.

3 Taxonomy of straggler causes

As mentioned in Sect. 1, the challenge within this research area is the myriad
of potential causes of straggler manifestation. According to our comprehensive
appraisal of the literature, we have identified eight key causes for straggler occur-
rence that manifest within large-scale cloud data centres. Figure 2 shows the tax-
onomy of straggler causes.

1. Data abstraction Stragglers can occur due to information obfuscation at different
levels of the system. The literature [39-42] has identified that information can
be hidden at two different levels: (i) OS level and (ii) application level. During
the execution of resources, the master node (controller) hides information from
workers (cluster nodes) at OS level. (ii) At application level, the information
regarding platform services and infrastructure services is kept hidden from the
software services.

2. CPU utilization It has been identified that there is a strong correlation between
high system CPU utilization and straggler occurrence [7, 12, 43, 44]. The rea-
son for this occurrence is resource contention. This is further compounded due
to Head-of-Line blocking (HOL blocking), task interference during execution,
busy locks, queue issues, hazard rates of task execution and launching additional
speculative replicas, which requires additional time for execution.

3. Scheduling It has been identified that scheduling and resource allocation decisions
also influence straggler manifestation [45—48]. For job scheduling, stragglers can
occur due to a large number of enqueued jobs within a (machine, master sched-
uler) that are pending for available resources to be revoked (i.e. only a portion
of tasks within a job are able to successfully acquire their necessary resources to
commence execution). Furthermore, straggler may occur due to the poor admis-
sion control mechanisms, which is used to submit the jobs for execution [49]. The
poor admission control mechanism launches multiple tasks together, resulting in
resource exhaustion causing slowdown. Lastly, dynamicity of QoS requirements
at runtime results in an inability to effectively manage the resources which leads
to further the straggler occurrence. In terms of resource scheduling, stragglers
can occur in following situations [49—52]: (1) when resources are allocated to the
jobs in an inefficient manner without available resource optimization, leading to
ineffective scheduling of resources for job execution and (2) sometimes resources
are still in active stage even they are not utilized for execution of jobs, which
consumes more energy and affects the performance of other resources because
some resources need more power to run continuously.

4. Inaccessible local disk Stragglers may occur when a machine hard disk is not
accessible to residing tasks. Such inaccessibility is predominantly caused by [9,
53-59]: (i) increasing backup tasks and (ii) failing to store output. Stragglers
can occur, when it is difficult to find the required task due to the large backlog of
the tasks waiting for execution. Sometimes, an error can occur while storing the
output on the disk, causing a problem when some tasks want to access those data
during execution.

@ Springer

10055

a survey and taxonomy of straggler management...

Tails in the cloud

suamaambayy sueusq

[0U0D) UOISSTWPY 1004

JuoWaINbIY 20408y 2101y | =t

sosned 19[33exns Jo Awouoxe], g b4

MDY IS 218 $22n053Y IAPI

UONEIO[[Y 22an0saY JUARIIAUL

sumopmolg 2307 wyposly. Supory apo) fyouasosaoy
Aavaodway, aamdapouy eaxg 10801 2004 axempiey

asusy sado
20.mosay eaxg Adpinn

Buimpaydg
qor

uiry
518522014 B ULIOJUN-UON

ding 2101 0 payse

2auazapI)uy
ASTL

axemyos

UONNqLISIQ EIEQ UAdUY syse, dmyorg Suyseasouy

1sonboy
ssvmpaey porpuvqu

Suynpayog
aamosay

owiL, [EUOnIPPY

sadop aapenaads Suseaoug

symey H H uonNIIXY Sk, : UOUIIU0Y) IIANOSIY H— MNS BIRQ H H NSIQ [8207] JQL: 1 H H

uoneziinn NdD H H uondensqy ereq g

sasne)) sv[33ens

pringer

As

10056 S.S.Gill etal.

5. Data skew Straggles can occur due to the data skew, caused by the different data
sizes and time variation in accessing required data [56, 57, 60, 61]. With several
tasks operating on a split version of a very large shared dataset, an uneven distri-
bution of the data amongst these tasks potentially results in some tasks to progress
slowly in comparison with tasks within the same phase (and subsequently delays
the future sub-phases and the entire job). Data non-uniformity can also impact
data access and processing time data, directly affecting the timing delays between
tasks, further increasing the probability of straggler occurrence. Moreover, data
locality for job execution results in lower latencies, while distant data will take
longer to be accessed, incurring additional delays in task completion, again, mani-
festing as a straggler.

6. Resource contention Resource contention occurs when the same resource is
shared by multiple tasks [9, 13, 14, 17, 53-55, 58, 59, 62—69]. Resource conten-
tion occurs due to conflict over task access and oversubscription to a resources
within multi-tenant machines which can be exuberated within different scenarios
including: (1) hardware heterogeneity, (2) poor user code, (3) extra cloning, (4)
ineffective algorithm logic, (5) temporary slowdowns, (6) additional task clones
requiring more resources and (7) resource usage being higher than accepted
threshold value. Hardware heterogeneity is the main reason of resource con-
tention, which occurs due to a mismatch between hardware specification and
specified application constraints (e.g. budget, deadline, etc.) leading to task per-
formance degradation. The source code of scheduling algorithm also affects the
performance of the scaling system due to its coding style in terms of space and
time complexity. Sometimes, poorly written source code schedules resources inef-
ficiently, which can increase resource consumption and unavailability of required
resources to specific jobs [35]. The cloning of tasks is creating a similar of copy
to task to run parallel on another resource for fast execution.

The cloning of tasks needs more resources (increases resource usage), which
can also put tasks of other jobs on hold and when the tasks are waiting for other
resources, then stragglers can occur. An ineffective logic in the resource schedul-
ing algorithm can also lead to an inefficient allocation of resources and increase
resource usage, which leads to resource contention for future tasks. Temporary
slowdown can occur due to inefficient allocation of resources, which needs to
be corrected; otherwise, it will cause straggler occurrence during execution of
resources.

7. Task execution The successful execution of a task is important to avoid strag-
gler occurrence during execution of jobs [10, 28, 70-74]. During job execution,
stragglers can occur due to unhandled requests or ineffective task interference
and task incompatibility management. When a processing request is unhandled
or not fully handled, tasks expecting the results of this request will have to wait
until the full request output is ready, manifesting in straggling tasks. This occurs
due to data dependency and task dependency. If the tasks are not oblivious to the
heterogeneity of the underlying resources of the platform, their incompatibility
(non-synchronization) due to different types of workloads or requirements can
manifest in slower execution and ultimately straggler occurrence.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10057

8. Faults Faults within software and hardware resulting in to crash-stop and late-
timing failure can cause straggler occurrence in large-scale systems [17, 18, 63,
64, 75, 76]. The main reasons for software-induced faults can be: development,
logic or overflow errors as well as misconfigurations. In terms of hardware, the
main fault occurrence reasons are: physical damage, device failures, daemon
processes, or power-related issues such as effective energy management. Ironi-
cally, fault tolerance and recovery mechanisms can themselves result in straggler
manifestation (for example, checkpointing introduces burst in disk access and
increases resource contention, resulting in a higher system hazard rate).

3.1 Relationship between straggler causes

Based on different types of causes of stragglers in large-scale systems, we have iden-
tified the correlation among them, as described in Table 1. As identified in [28],
stragglers are not resultant of a singular cause, but can potentially be correlated.
For example, data abstraction can occur due to tasks in a queue waiting for exe-
cution. Resource contention is the main reason of stragglers due to the sharing of
resources among different applications, which are running on different nodes, which
further affects the CPU utilization by overloading the resources. Straggler occurs
during scheduling of jobs as well as resources, and the reasons for straggler occur-
rence during resource scheduling can be heterogenous resources, poor user code or
logic error, and too many copies of straggler tasks that are running simultaneously.
The reasons for inaccessible local disk can be large copies of backup tasks and fail-
ing to store required output, which happens due to task interference and its incom-
patibility with other tasks. The other reason can be that requirements are changing
dynamically. Data skew happens due to straggler occurrence at application level due
to data hiding or failing to write data. The other reason can be inefficient allocation
of resources for processing of data, which can increase running time of resource.
The resource contention occurs at OS level, when master node hides the informa-
tion from workers. Further, the overutilization of CPU causes the resource conten-
tion due to increasing speculative copies as well as when the performance of node
degrades. Moreover, poor admission control can also affect the resource utilization
and creates resource contention when the value of required resources is increased
than the available resources. Further, resource contention affects the task execution
due to unavailability of shared resources. Fault occurrences during job execution can
happen due to resource failure and resource misconfiguration [77].

4 Straggler management techniques: current status
Straggler management techniques can be categorized into two broad categories:

straggler detection and straggler mitigation [78]. Each category can be further sub-
divided into specific areas as shown in Fig. 3.

@ Springer

10058

S.S.Gilletal.

Table 1 Correlation among straggler causes

Stragglers causes

Dependent

Data abstraction
1. OS level
2. Application level
CPU utilization
1. Increasing speculative copies
2. Additional time
Scheduling
1. Job scheduling
a. Number of jobs more than available resources
b. Poor admission control mechanism
c. Dynamic requirements
2. Resource scheduling
d. Inefficient resource allocation
e. Idle resources are still active
Inaccessible local disk
1. Increasing backup tasks
2. Failing to store output
Data skew
1. “Uneven data distribution among tasks”
2. “Non-uniform data processing time”
Resource contention
1. Hardware heterogeneity
2. Poor user code
3. Extra cloning
4. Ineffective algorithm logic
5. Temporary slowdowns

6. More number of copies of same task needs more
resources

7. Resource usage is more than threshold value
Task execution

1. Unhandled request

2. Task interference

3. Task incompatibility

Faults

1. Hardware

2. Software

Resource contention (1), resource contention (6),
inaccessible local disk, task execution

Resource contention, faults (1), scheduling (2b),
scheduling (1c)

Resource contention (1), resource contention (2),
resource contention (3), resource contention (4),
faults

Task execution (1), task execution (2), task execu-
tion (3), scheduling (1c)

Inaccessible local disk (2), data abstraction (2),
scheduling (1b)

Data abstraction (1), CPU utilization, inaccessible
local disk (1), data skew (1), task execution,
scheduling (2a)

Resource contention (1), resource contention (2),
scheduling (1a)

Resource contention (6), resource contention (7),
task execution (1), task execution (2)

4.1 Straggler detection techniques

Straggler detection techniques are leveraged in order to identify straggler occur-

rence during job execution.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10059

[Straggler Management Techniques]

Straggler Detection Straggler Mitigation

[omm] [o ENErees

Fig. 3 Taxonomy of straggler management techniques

4.1.1 Offline straggler detection

Offline straggler detection technique attempts to identify straggler manifestation
in order to enhance speculative execution via leveraging offline analytics (i.e. ana-
lysing and modelling task execution and progress patterns derived from empirical
data a priori execution).

Coppa and Finocchi [1] identified three different challenges such as straggling
tasks, load unbalancing and data skewness, which affects the performance of
computing systems. To overcome these challenges, authors proposed a profile-
guided progress indicator called NearestFit to gather the required combination of
closest neighbour regression using statistical curve fitting approach. NearestFit
is mainly suitable for long running applications and helps to identify the above
discussed challenges to increase the efficiency of computing systems. Authors
implemented the Nodelterator triangle counting algorithm using homogeneous
clusters in Hadoop to test the capability of NearestFit dynamically in terms run
time and progress.

Ouyang et al. [70] proposed a technique for modelling and ranking node-level
stragglers (MRNLS) in CDCs based on analysing the execution trace log data of
parallel jobs. This was conducted by a graph-based algorithm that is used to parti-
tion the server nodes into small nodes to execute more jobs in parallel. The pro-
posed techniques improve the performance of computing systems by reducing task
stragglers occurrence. Cong et al. [72] proposed a machine learning-based straggler
detection (MLSD) technique using unsupervised clustering method. The proposed
technique effectively manages the resources while executing the jobs and diagnos-
ing the stragglers at runtime. Wei et al. [10] proposed straggler detection approach
(SDA) for data-intensive computing in cloud environment to detect stragglers at
early stage to preserve the efficiency of the CDC. Further, statistical method for out-
lier detection called Turkey is developed to detect straggler at run time because it
starts the speculative execution earlier than the standard deviation method.

4.1.2 Online straggler detection

Online straggler detection technique detects the straggler to improve speculative
execution using online monitoring tools.

@ Springer

10060 S.S.Gill etal.

Farshid [79] analysed that map phase of MapReduce (MR) framework takes
longer with the increase in the number of servers, which further affects nega-
tively the execution time of MapReduce job. Moreover, authors designed an ana-
lytical model to identify the impact of stragglers on efficiency of computing sys-
tem using map phase in terms of application, system, and hardware parameters.
Experimental results show that model reduces the execution time during execu-
tion of MapReduce applications. Zaharia et al. [80] proposed a resilient distrib-
uted datasets (RDDs), a distributed memory abstraction, which enables develop-
ers to provide a fault-tolerant module while performing in-memory computations
on a huge number of clusters. RDD uses coarse-grained transformations to offer
controlled form of shared memory to perform different memory-intensive com-
putations in an iterative manner. Further, Spark is used to implement RDDs in a
controlled environment to evaluate its performance.

Wang et al. [17] proposed heuristic algorithm (HA) to search for the best replication
to reduce latency in computing systems. The proposed algorithm is used to implement
the proposed algorithm, and experimental results demonstrate that this is capable of
reducing latency and its impact on cost of execution of workloads. Jeffrey and Sanjay
[54] explored data processing on large clusters (DPRCs) to perform different aspects
such as (1) providing fault tolerance by distributing computations, (2) optimizing net-
work bandwidth by decreasing the quantity of data transferred throughout the network,
and (3) decreasing impact of slow machines and improving fault tolerance. In DPRC
[54], speculative copy of task is executed by MapReduce on another node for increas-
ing job completion time and reducing response time. It is challenging to select the task
for which to execute speculation because it is not trivial to identify the machine or
node, which is running slower than average. To implement DPRC effectively, stragglers
are recognized at the earliest possible stage calculated by progress scores.

Garraghan et al. [28] explored the root-cause of stragglers (RCS) and provided a
method to analyse the root-cause analysis in a massive scale virtualized CDCs to solve
the long-tail challenge effectively. Authors used online analytic agents and offline exe-
cution patterns modelling for straggler detection while monitoring tasks dynamically.
Heecheol et al. [81] proposed secure distributed computing (SDC) approach using
recovery threshold value to efficiently deal with the impact of straggling [82], which
uses polynomial codes on sub-tasks allocated to nodes.

4.2 Straggler mitigation techniques

Straggler mitigation technique comprises all mechanisms and approaches to tolerate or
avoid the impact of straggler manifestation. Such techniques can be further sub-divided
into three sub-categories [68, 83—85]: load balancing based, replication based, and
scheduling based.

4.2.1 Load balancing-based straggler mitigation

Load balancing-based straggler mitigation technique manages the load during miti-

gation of stragglers.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10061

Ouyang et al. [2] proposed a method to reduce late-timing failure (LTF) and ana-
lyse the root-cause of stragglers in cloud data centres (CDC) such as server failures
or task concurrency and resource contention. Further, this study identified the high
temporal resource contention as a main root-cause of stragglers. Further, the out-
put of experiments demonstrates that this technique maintains the efficiency of the
computing systems while tolerating the system failures effectively. Yanfei et al. [86]
proposed a user transparent task slot management approach called FlexSlot, which
identifies the stragglers automatically and resizes their slots to improve the speed
of execution of task. The approach also balances the usage of resources by auto-
matically changing the number of available slots of nodes to improve its utilization.
Moreover, FlexSlot uses adaptive speculative execution approach to improve mitiga-
tion of skew data.

Neda et al. [71] proposed log-assisted straggler-aware (LASA) I/O scheduler for
high-end computing to mitigate the impact of storage server stragglers. Further, a
scheduling algorithm is proposed to make effective decisions to manage stragglers
at runtime. The output of experiments demonstrate that LASA is performing better
in load balancing while mitigating the storage server stragglers dynamically. Eman
et al. [62] proposed a parallel model for straggler mitigation in distributed spatial
simulation called priority asynchronous parallel (PAP) to exploit data dependencies
of parallel processes to be computed and synchronized based on data priority to the
other workers. Moreover, load balancing and partitioning method are proposed to
balance the workloads among different nodes and help to improve the performance
speedup by a large extent. Haozhao et al. [87] proposed heterogeneity-aware gra-
dient coding (HGC) scheme to execute the jobs in heterogenous environment and
efficiently tolerate the stragglers without degrading the effectiveness of the cloud
services [34]. The output of experiments demonstrates that HGC scheme outper-
forms in computation time.

4.2.2 Replication-based straggler mitigation

Replication-based straggler mitigation technique replicates the adequate number of
tasks during mitigation of stragglers.

Mehmet et al. [8] analysed the trade-off between latency and cost (TLC) using
simple replication or erasure coding for straggler mitigation in executing jobs with
many tasks. Experimental results show that delaying redundancy is not effective in
reducing cost. Further, Mehmet et al. [55] developed a straggler mitigation (SM)
technique using delayed relaunch of tasks, which helps to reduce cost and latency
effectively. Wang et al. [9] proposed an idea of an efficient task replication technique
(TRT) for straggler management to improve the response time in parallel computa-
tions. This technique is implemented in [88] and demonstrates empirically that rep-
licating all operations can result in significant mean and tail latency reduction in
real-world systems including domain name system (DNS) queries, database servers,
and packet forwarding within networks.

Tien-Dat [11, 64] proposed energy-efficient straggler mitigation (EESM) tech-
nique for effective management of big-data applications in the cloud computing
environment to optimize the energy consumption during straggler occurrence.

@ Springer

10062 S.S.Gill etal.

Firstly, authors characterize the effect of straggler mitigation on energy efficiency.
Secondly, a straggler detection framework is developed, and they identified that
only 12% of the detected tasks are real stragglers [64]. The usage of huge num-
ber of speculative copies is the main reason for unnecessary energy consumption.
Thirdly, a reservation-based straggler handling approach is proposed to optimize
the energy efficiency by allocating the required resources at runtime effectively.

Wang et al. [89] analysed the trade-off between latency and cost to find out the
best replication technique for straggler management based on following param-
eters: (1) when to perform replication for straggling tasks, (2) number of replicas
to be launched, and (3) is it necessary to destroy the original copy or not. Fur-
ther, a straggler management approach (SMA) is proposed to calculate the value
of latency-based empirical distribution of execution time of task. The output of
experiments demonstrates that this work gives better for two performance param-
eters such as cost and latency. Lei et al. [90] proposed a straggler management
technique called Combination Re-Execution Scheduling Technology (CREST)
for fast speculation of straggler tasks in MapReduce framework, which further
reduces the response time of MapReduce jobs. The re-execution of set of tasks on
set of computing nodes in CREST improves the speed of task execution.

Radheshyam et al. [91] proposed a job-aware scheduling (JAS) technique to
optimize the running time of different jobs by maintaining the harmony among
them, which are executing on the same cluster. JAS technique is implemented
using for MapReduce framework. Further, proposed algorithm selects the most
compatible task with executing task to reduce more execution time. Moreover, a
heuristic-based load balancing technique is developed to avoid the underloading
and overloading of resources. Matei et al. [16] explored the MapReduce frame-
work for straggler management and improved its performance in heterogenous
environment. Further, a resource scheduling algorithm, longest approximate time
to end (LATE) is proposed to improve the robustness in regard to heterogeneity
and improves response time of tasks. LATE scheduling algorithm [80] estimates
the longest approximate time and select the task with the longest approximate
time as straggler tasks and execute its speculative copy on another fast node to
speed up the job completion time. SAMR scheduling technique [18] computes the
completion of tasks at runtime and discovers the straggler task based on execu-
tion time. Historic information of node is used to detect more reliable node in
SAMR and weights of reduce and map stages are updated after completion of
every task.

Farhat et al. [63] proposed a straggler management technique for modelling
and optimization (SMMO) of straggling mappers to show the stochastic behaviour
of mapper nodes and its negative effect on completion time of MapReduce jobs.
Authors identified task inter-arrival time of jobs to map the required nodes of het-
erogenous CDC in an optimized way. The experimental results demonstrate that the
proposed technique reduced the execution time of jobs at runtime. Behrouzi-Far
et al. [92] proposed an efficient straggler replication framework in large-scale par-
allel computing to analyse the performance of the system in terms of latency—cost
trade-off. Further, it identifies the best replication technique based on different cri-
teria such as: (i) number of replicas required, (ii) time to replicate straggling tasks,

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10063

and (iii) determine whether to kill the original task. Finally, performance evaluation
is described that latency and cost are reduced in Google Cluster Trace as compared
to MapReduce.

4.2.3 Scheduling-based straggler mitigation

Scheduling-based straggler mitigation technique schedules the resource for jobs dur-
ing mitigation of stragglers.

Ananthanarayanan et al. [13] explored the straggler mitigation techniques and
identified the impact of reasons of stragglers in latency-sensitive jobs. Further,
authors designed workloads with small number of jobs and performed cloning of
small jobs. It has been identified that the cloning of small jobs uses less resources
but improves the reliability of computing services. Moreover, a system named Dolly
is developed to generate multiple clones of jobs and execute jobs within their speci-
fied budget. Experimental results demonstrate that Dolly sped up jobs by 46% by
using only 5% extra resources.

Ananthanarayanan et al. [14] proposed greedy speculative scheduling and
resource-aware speculative scheduling (GRASS) technique, which uses specula-
tion to mitigate the impact of stragglers in approximation jobs. GRASS uses extra
resources for speculation and improves accuracy for deadline-bound jobs by 47%
and speeds up error-bound jobs by 38%. Aaron et al. [53] addressed the straggler
problem for iterative convergent parallel (ICP) machine learning technique to iden-
tify the behaviour (in terms of delay) of the system during execution of jobs by
injecting the stragglers. Amazon EC2 and Microsoft Azure [93] are used to evaluate
the performance of system in terms of execution time.

Ouyang et al. [25] proposed a straggler management technique (SMT) to find
the task stragglers by calculating threshold value at runtime. Further, this technique
considers important key parameters such as resource utilization, task execution, and
job QoS timing constraints to manage straggler tasks effectively. Neeraja et al. [15]
proposed straggler management technique called Wrangler to proactively avoid the
conditions, which cause stragglers. Wrangler [13] uses interpretable linear model-
ling approach to reduce the resource wastage by eradicating the requirement for rep-
licating tasks. It uses fewer resources to complete the job in a faster way and avoids
the straggler proactively by predicting in advance. A cluster resource utilization-
based statistical learning technique is used for confidence measure to offer reliable
task scheduling by predicting errors in advance. The output of experiments shows
that Wrangler produces improvements in terms of job completion time and resource
utilization as compared to speculative execution.

Quan et al. [18] proposed a self-adaptive MapReduce (SAMR) scheduling tech-
nique for straggler management, which estimates task progress automatically and
adapts to the changing conditions of environment dynamically. SAMR uses MapRe-
duce mechanism to divide jobs into tasks and execute on different available nodes.
SAMR does not create backup tasks for regular tasks. SAMR reduces the execu-
tion time of MapReduce jobs while executing tasks in heterogenous environment.
Enhanced SAMR (ESAMR) [27] uses the k-means clustering algorithm to categorize
the historic data of each node into k-clusters and identifies the straggler task more

@ Springer

10064 S.S.Gill etal.

accurately. Furthermore, ESAMR uses weights of reduce and map stages to find the
Time to End on different nodes, which can easily identify the more reliable node.

Ananthanarayanan et al. [27] studied and explored the straggler management
in resource-aware techniques and identified the main causes of stragglers such as
varying bandwidth, network congestion, workload imbalance, and contention of
resources (network, memory, and processor). Furthermore, Mantri [27] is used to
monitor task execution and take a proactive action to sustain the efficiency of the
CDC in the case of resource contention or hardware/software failure [94-96]. It uses
Bing traces to evaluate the performance, and it improves job completion time to a
large extent.

Ouyang et al. [97] proposed a straggler management mechanism (SMM) to
improve the execution efficiency of Internet-ware applications by dynamically cal-
culating the straggler threshold, considering important parameters such as optimal
system resource utilization, task execution progress, and job QoS timing constraints.
Further, YARN architecture is used to implement dynamic straggler threshold to test
the performance of the proposed mechanism and experimental results give the better
outcomes in terms of response time. Yan et al. [98] developed large-scale multime-
dia semantic concept (LMSC) model to improve the scalability of the computing
systems with heterogenous environment. Robust subspace bagging algorithm is used
to improve learning process, and further, a task scheduling algorithm is proposed to
improve the scalability by executing heterogenous tasks. Proposed model is tested
on MapReduce framework, and experimental results demonstrate its superiority.

Figure 4 presents the evolution (2008-2019) of different types of straggler man-
agement techniques along with their focus of study and QoS. Table 2 shows the
comparison of different types of straggler management techniques based on different
parameters.

5 Comparison of straggler management techniques based
on taxonomy

Table 3 shows the comparison of straggler management techniques based on tax-
onomy of straggler causes from Fig. 1 and Table 2.

5.1 Analysis of experimental results: practical use-case

The existing straggler management techniques have been categorized into two cat-
egories, i.e. straggler detection and mitigation techniques. Table 4 shows the analy-
sis of experimental results of straggler detection and mitigation techniques in the
context of different performance parameters. Future researchers can use Table 4 to
validate their research work based on the values of various performance parame-
ters identified from the existing literature. The literature reported that there are four
types of data abstraction levels (OS, application, server, and VM), where straggler
can occur.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10065

QoS: Computation Time
SDC [19], HGC [37]

FoS: Security

0S: Cost, Latency, Response Time
SAMR [18] ’—[2 ——

FoS: CPU Utilization

TLC [7], EESM [15] ‘—

QoS: Cost, Latency, Energy Consumption, Resource Utilization
FlexSlot [23] ‘——|

FosS: Data-intensive Jobs

SDA [28], PAP [31] ‘_

ICP [8], LTF [12], SMT [14] ‘—
QoS: Resource Utilization, Execution Time
MRNLS [24], RCS [25] ‘——[
FoS: Resource Contention, Server Failures, Task Straggler Occurrence

LASA [26], MLSD [27] ‘_

NearestFit [1], MR [2] ‘—l d QoS: Running Time, Latency, Cost, Execution Time ‘
HA [6], SMA [17] ‘ FoS: Homogenous Clusters ‘
GRASS [5], Wrangler [16] ‘—l r QoS: Resource Utilization, Execution Time
SMMO [32] ‘J L FoS: Accuracy, Completion time
QoS: Response Time
Dolly [4], TRT [11] ’—
FosS: Reliability

QoS: Fault Rate
RDD [3] ’—

FoS: Fault Tolerance

QoS: Excecution Time
CREST [19], JAS [20]

FoS: Execution Speed-Up

QoS: Execution Time, Job Completion Time
SAMR [18], MANTRI [22]

FoS: Resource Contention

QoS:: Execution Time
LMSC [36]
FoS: Scalability

DPLC [9] ‘—l r QoS: Response Time and Network Bandwidth ‘

LATE [21] ‘J L FoS: Fault Tolerance ‘

Fig. 4 Evolution of straggler management techniques

5.2 Trend analysis

Our systematic review has identified different types of result outcomes for different
categories of straggler management techniques developed from year 2008 to year
2019. The scheduling-based straggler mitigation technique appears prominent across
the years except year 2012. After the scheduling-based techniques, researchers

@ Springer

S.S.Gilletal.

10066

qof Aue jo ysey

Mau e urnpayos

UM Yse) Suruunt

® Sunenoads jo
joedwr ay) ySropn

QoueBYd

19[38ens quru

-13)9p 0} papaau
SISATeuR QATSURIXY "7

uonezrundo

Iojy paxmboar sazis

%8¢

sqol 10119 %/ 4

Koeranooe qof
qurppeap seroxdwy

NdD B0 %g

saoen

POIN Surg pue jooqade vy 29 o1y doopey pue yredg

$aden

A[snoaue)

-[nWIS S92INOSAI

(d10W 10) OM)

Sursn yse} 0}

spea Adoo aAn
-e[noads Surumedsg

$90IN0SAI
pareys pue ejep
JjeIpauLIajul
10} UOTIUIUOD

uonezIn NdO

uon

[v1]

qol snoua3owoy ‘1 ‘dnpaads qol %9t ySig Surg pue jooqade] oid doopeH 9sneo sQUO[O BIXH -UQJUOD J0INOSIY [e1]
SosBAIOUI
9z1s Joselep oy
se MoI3 syuow K19A0091 (s1eak 7) s30[suornoensqe 3ut
-ormbar K1owoN BIep IO MO erpadyIm 41 1 o1d Sredg -Teys ejep Jo Yoe] UONEZINN AIOWSA [08]
Qonpaydey
uonndAXI Jo aseyd depy
0 awy Jo uon own uon (gD ¢€) 1°S oy Y sdefrono 103re]
-BUITISO 9JeINdORU] -NO9xd pazrumndQ Y3t ele(uno) pIop By doopey aseyd ogynys st own Aefog [6L]
uon uonduwnsse
-o1paid 9jeInooe ssa1301d reaury
urejqo oj ejep woij uonorpaid
Surpyoxd ySnous uon sq[onIe woij Iej syse) IS
JO9[[00 0) d[qeun -ezrundo oyoid vIpadiyIp Sumuuns mofs jo Blep “YSe) [ed0]
910ys oo} st qol e J] ur AoeInooe JySIH MO ATYIIR g0 05 old doopey sown YoO[o-[[epm -Uou ‘SYSe} MO[S [1]
sa3uaqreyo uadQ SILIOIA Keroq jasereq odAy, JUSWUOIIAUY asne) 2d£)y 19133ens JI0M

sonbruyo9) Juowoeseuew 19[33ens Jo uostredwo) g d|qel

pringer

As

10067

Tails in the cloud: a survey and taxonomy of straggler management...

A310u9 d10WK
SOWINSUOd INq
‘SOUIYORW MO[S JO
joeduwir oy) onpar

Suroueeq
pro[uonezI

J[qIssaooRUI SN}
‘QuIyORW PI[TR)
JO YSIp [BOO[UO
pa103s st ndino
9snedaq dInyrey

UO PAINIIX

0} pasn 2q ued uon -ndo ‘Kyreso] eyep -01 9Ie SYse) JSIp
-NOJXA JUBPUNPIY ‘Q0URIS[0} J[NE] MO 1810831977 9[S000) By doopey dew pajordwio) [OO[9[qISSEOORUT [#6]
souIyoRw
PaIsIP[oR[q-UoU
UO SINOJ0 U3YJO
(syuowr (Ay1Anoe punoid
[P W Q0T Pim -9Bq B [pim uon
Xiew osreds -UQIUO0D 90INOSAT peaIy)
Sur owrn Y 81-49 08+) 2INZY 1JOSOIOIA 0} 9np) SUMOP I[IOM JO UMOP
-PBOJIOAO 90INOSY UONNIIXS PAINPAY Y3ty 19sBIEp XIJION old puegDguozewy -mo[s Arerodwa], -MO[S JUSISUBIL], [e6]
Kouaye| Sunoaye
JNOYIIM PadNPaI Kouayer Kouayer
9q ued Aouep puB JS0O UdIMIAq saseaour Kouep Kouep
-Unpal Jo 9139 JJo-9peq) pIsAeuy yStH eye(q 2ov1], 9[3000) N VN -unpai Sutke[oq -unpai Suike[aq [8]
S0E1)
[eorI0)sIy Sursn
Jo peajsur ‘eorjdar
youne[0} uonnqry ($90IN0SAI (porpesp)
-SIp oW UOTNOIXD Sunndwoo Surreys 90In0SaI
ures 0) A391eNS JO 1500 pue 0} onp uon own
auruo dofoad@ Adudje] paonpay,, yS1H el 29oei], 9[3000 =N doopeH -uQJu0d 92IN0SIY asuodsar 1o31e| [L1]
sa3u9qreyo uado SILIOI Keroq jesereq adAy, JUSWIUOIIAUY asne) adA) 19133eng JI0M

(ponunuoo) zs|qey

pringer

As

S.S.Gilletal.

10068

Koex

-nooe ndino ayy
19y1any aaoxduwr
0} A[oandepe
payoune| 2q ued

Kouaroyje

(3sing
pnop) ‘yunod
-pIopy) uoned

a3esn

K310u9 pasearour
‘syse} paje[noads
Kuewr y)im 1500

UonUIUOd
201n0sa1 ‘uon

sa1dod aane[noadg K31ou0 paroxduy PoN -11ddy eonpayden o1g doopeH QoInosar a3re] -dwnsuoo A3xoug [$9 ‘17]
SpeopIom
poyzour [se) paoue[equIl
pasodoud jo uon pue ‘sainjre;j
-ezrundo 1oy)Ing JSIp opou
10 uonouny own uonord sooEI) ‘$90IN0SAT Pareys uonezinn
1500 ® uS1sop 0], -wod qof paaoiduy ySig Surg 1JOSOIdNN N adds Jo uonuuo) Kiowow pue NJD [szl
jsonbaz pod
9l POPEOJISA0 0} 1080 J00d pue
anp s1 Aouaroyjaur sainjrey Surwn uone3ai33e peoy uon
Surpuey 1sonboy -a1e[peONpay MO VN o1 doopey -ylom paoue[equ[) -USJUOD IJINOSIY [2]
uonepei3op
douewrIo)rad 0} JSIp
speo[syse) dewr wolj [y peo|
aAne[noads Sur Kouep 0] Papasu dwn
-youney 10} K31 -unpai Suisn Joel], 9[S000) “OI YSIp [Tews own
-[edo] ejep Suriou3| Kouaye] paonpay ySig pue J00qaoe] o1d eapuesse) oyoedy Juneoo[ur Aoudje| osuodsar 1317 [88 ‘6]
PEO[90IN0SAI Kouoje[pue sso[
J0J QW) UOTINIAXD JIoM SOsNEd W)
[opow A[9jeInooe Kouaye| uonodwod yse)
0] QOUAPIAD [€D 500 ‘Kouep WNWIUTW 910Joq uonezImn
-tndwe Jo paaN -unpoI paonpay] yStH eye(Qoe1, 9[S000n o1d doopey syse) Surgouneoy NdD AR [sq]
sa3u9qreyo uado SILIOI Keroq jesereq adAy, JUSWIUOIIAUY asne) adA) 19133eng JI0M

(ponunuoo) zs|qey

pringer

As

10069

Tails in the cloud: a survey and taxonomy of straggler management...

sqof Suruuni-0o
WOIJ 90UAIAJIIUT
souewiojrad
‘owm Sursseooxd

yse) dew aane|
-noads ® jo own

VNA g5 0§
WOoIj JuUSWIs

uornepei3op
Souewiojrad 0)
pe9| Aewn yse)
dew oanje[noads
Suryouney

10§ K)1eoo]

uon
-no9x9 yse) dew

BJEp UWLIOJIUN-UON SUIUUNI paonpay] Quas oyroadg vy doopey eyep Surrous| aane[noads ySrygy [06]
uonepei3op
Souewiojrad
QI0ADS 0] Pea[
Kews sysey dew peayIoA0
aAne[noads Sur (310§ pue JUNod Y31y ur Sunnsax
-youne| 10§ KJ1[e00] owrn -pIOA\) UOTIED uoneordor yse)
eJep Jo SuLIoUS] UOINOAXd PIONPAY -11ddy sonpoydey old doopey jo Iequnu Jo3Ie| uoneordar yse], [81]
(s12yjo 0)
Jorid 9)91dwos 0y aun
Pa3u SYSB) QWOS) uonnoaxa Adoo
soroudpuadop yse) MU UBY) 1)I0YS
KJNuapI ‘SI0AIRS 9q 0} A[oy1] 2100
snoauaSoIsley ystuy 03 Adoo [eu
uo palsa) 9q pasoxdur ore Qoel], -13110 JOJ popasu
ueo onbruyos], 1500 pue Koudje| 19)8n[D) 9[3000) oid doopey Jwin feuonIppy Kerap yse) Suo [68]
sonsIe)s
a3esn 201n0sa1 jJo
19)SN[O & UI 39S JOAO pauyap
apou Jod eyep 3ur swn uond[dwod soexn doopey sproysaiy)
-uren Suramdes 1oy qol ‘uonezimn BIOPNO[D PIXT PaadXa uon
juads owm 9onpay 90IN0SAI pasoduwuy ‘600C Joogaoe,J o1d doopey SUONIPUOD [B007] -UUOD 9OINOSAY [s1]
sa3u9qreyo uado SILIOI jesereq adAy, JUSWIUOIIAUY asne) adA) 19133eng JI0M

(ponunuoo) zs|qey

pringer

As

S.S.Gilletal.

10070

NAVA Ul jusw
-a8rueRW 90IN0SAI

10§ padofoaap
9q ued yoeoxdde
UuonNIAXI UoT)

oum uonardwod
qof psonpar ‘uory

sqof Suruuni-0d
WOIJ QOUIISFISIUT
Qouewio)rod
‘own Surssaooxd
BJEp WLIOJIUN-UOU
‘syse) Suowre
uonnqrusip

(uonezinn
NdD) uonuauod

-e[noads aandepy -e3nmu mays eleq POIN sooe1) erpadnyip oid doopey BJEP USAUN) Qo1nosar Y31y [98]
(ndD ‘Arowaw
“J[I0M)dU) UoT)
-U2JU0D 90INOSAT
pue doue[RqUIT
JSIp MO[S peorom
[)Im 9pou & 0) ‘uonsaguod
ske[op uon own uonod Po[NPaYOS SYSB) JIOMIQU “YIPIM
-edruNWWod 193u0 -wod qol pasoxduy POIN sooel) Surg o1g doopeH QAISUIUI-YSIJ -pueq Surkiep [L2]
uonsneyxo
90In0saI 0) 3ur JUSUWIUOIIAUD
-peo[payoung| SNOQURS0IAJoY
SIONIOM UIMIQq o) asuodsar S90BI) 00YBL 3q Aew syse) ur uonepeisop
QoUB[RQUII PROYIOA yse) pasoxduy MO puE J00qaoeJ old ¢Ddpuedoopey oane[noads Auepy QOUBWLIOJId] [o1]
K31ou0
9onpar 0 93esn
90INOSAI UO Paseq
SOpOU JO SOUIYIBWI UOISIOAUOD OJPIA sjuowaIInbax
[ema1a goyuo Sur UNODPIOA JUQIYIP J1oYy) syse}
-yams £q 13S0 own ‘Surmerogom 03 anp AyIqr uaMIaq UoT)
umop/dn-g[eog UOIINJIXS Paonpay MO ‘do13 “10seI9], =N doopeH -jedwoout yseJ, -BZIUOIYOUAS ON [16]
sa3u9qreyo uado SILIOI Keroq jesereq adAy, JUSWIUOIIAUY asne) adA) 19133eng JI0M

(ponunuoo) zs|qey

pringer

As

10071

Tails in the cloud: a survey and taxonomy of straggler management...

(s
BIRD pUR ySe)

aun
uonedwoos qof
90Npal Jou S0P
sy[se) I9[33ens

[eo0[-uou ‘3°9) sisougerp U0 UonNIIXd Quin uon
UONNOXA sk} MO[S I9[3Tens awnuny MO VN By Joje[nuurg aAneoads oje 7 -oidwos qol ySry [o11]
uonnqrusip
[9qe[padue[equl
19)Sn[O pue opou 9Jen)suowap
1samofs 1od Aq 0) pajoadxe
UOTJEOYTIUPT I9[3 uono9lep ore s1o[38ens Joue
-Sens pourer3-oury 19[33ens swnuny MO Joel], 9[3000) oy yredg uo sjasereq -[equI peOPIOAN [zL]
SWIA)SAS 9y
[orrered Sunsixe
ojur Surnpayos S90EI) plIoM
0/1 pasodoxd K[reorwueukp -[ea1 uo paseq SIIOM
Suneisaur Jo SI9[33ens JOAIOS pajerouagd speoy ua9M}aq 90UE s10[33ens
ad£y0jo1d dojanaq a3e10)s AeSNIN MOT SIom ONRYIUAS oy Joje[nuIIg -[equT pEOPIOA I9AI9S 93eI0)S [12]
uoTnOIP
aInre} JuagI[oIul
10J SQ0BI} WAISAS
SN09U23010)aY dJe[swnuni
-91109-55010 0} Sut Je Syse) 19[3
-UIE9[QUIYOBWI BIA -Sens pajoolep Kyrouad uon
sIsA[eue asned-100y pue paIoIIUOIA MO doel], 9[Soon o1g dddS -0I0)9Y AIempIeH -UQUOD 90INOSIY [82]
UONEOYIIUIPT [9AJ] QWINUNT W)SAS
-opou ‘uone3nIu Je SJ0[s o[qe[IeAr
19133ens aroxdur Q0udI pue syse) 19[3 uonnodAXI
ued wyrode -Ind00 19[33ens -Sens uoamieq qof Surmp s19[3
QIEME-00UBULIOLIO] Jse) poonpay MO Qoe1], o[S000n) By doopey uoOIR[A1IOD JO OB -Sens [oAd[seL [oL]
sa3u9qreyo uado SILIOI Keroq jesereq adAy, JUSWIUOIIAUY asne) adA) 19133eng JI0M

(ponunuoo) zs|qey

pringer

As

S.S.Gilletal.

10072

9%,0G UBY) SSI AN[BA) SUBIW MO[PUE ‘9()§ PUEB ()G UM} IN[BA 3} SUBSW (PIA)) WNIPIW ‘94()§ UBY) IOW ST IN[A Y} sueaw yS1y ‘9Anjoeal ‘eay ‘aanoeord ‘oig

S90INOSAI own uonord Kyrouad uon
Jo Surpeo[roAQ -w0d qol paonpay yStiH VN eoy JOJR[NWIS -OI9)AY AIeMPIRH -UQ)UOD A0INOSIY [L8]
sqol Jo uonnooxe
193xe] ST Anqe Kyouad Surmp s19[3
Kerop uonendwo) -[eoS paaoxduy POIN QoeI], 9[3000) oid doopeH -01939y 21EMpIEH -3ens [oAd[-yse], [86]
Surnpayos ysey
WOIJ POAOWIAI pUe
paynuapi s)nejy w1 UOIINIIX sooeI) Kyouad uon
QIem)Jos/aTempIeH qol paonpay ySiH jooqaoe, ‘Surg eoy doope -019)oy AIempIRH -UQJUOD I0INOSIY [€9]
sdnyjoeq SoNu9d BIEp
PSBAIOUT Y)IM PNOTO UT SISYIOM ssoo01d
Pajeroosse peay dnpoads aouewr josejep u99M)9q QoUR [o[rexed jo saro
-IOA0 90In0saI Y31y -10j1od paroxduy ySig dejyreanguado oid SLIVIAS -[equI PROIOM -uapuadop vleqg [29]
paads y1om)cu
puE JWN[OA YSIP
Surpnjour ‘uonez
-1mn AJowow pue soz1§ eyep ndur
NdD puokaq uon aun K1onb oAt U2AdUN IO Peo| uon
-ounj 15090 e uIso 9suodsar pasoiduy PO JUNOJPIOA\ 1I0S o1g ddds -Hom paduerequi -ezimn NdD YSTH [L6]
sKe[op uorne) syse) SIONIOM WOIJ
-ndwoo pue skefop -qQns U0 10950 eyep ndur opry 0) uoneIsnyqo
uoneorunwwio)) Sur3Sens paonpay] POIN VN By VN SIuEm 9pou I9)SejN uonoensqe eje([18]
sa3u9qreyo uado SILIOI Keroq jesereq adAy, JUSWIUOIIAUY asne) adA) 19133eng JI0M

(ponunuoo) zs|qey

pringer

As

10073

Tails in the cloud: a survey and taxonomy of straggler management...

[9A9]
VN VN 9p09 Iesn 100d VN VN VN VN VN uonesrddy [z
Kyouagore syse) dnyoeq [oA9]
SlempIeH VN -9y alempleyq VN Sursearouy VN VN own [euonippy uoneorddy [88 ‘6]
olempleH VN Sutuopd enxy VN VN VN VN own [euonippy VN (sl
uonedo[e
20Ud o1301 wyL uonnqrysIp mdjno syuowaInbar 0IN0SAI
VN -IQJIOUL YSB], -O3[B 9AIIOAU] BJEp UAQU[) QI0)S 0] P[Ie] orweuAq JUAIOLOU] VN VN [#5]
SUMOPMOIS
arempIeH VN Aretoduwia, VN VN VN VN VN 193] SO [eg]
own Sur
Amqr SUMOPMOIS -ssa001d eyEp
orempiey -jedwoour yseJ, Krerodwag, ULIOJTUN-UON VN VN VN VN VN [8]
wn Jur
Jsonbaz o130] Wiyt -sso001d e1Rp ndino [01nu0d QATIOR [[1S 19A9]
VN po[pueyu) -0S[e QANOIYU] WIOJIUN-UON 9I0)S 0] Po[Ie] UOISSIWIPE J0OJ S90INOSAI J[P] VN uoneorddy [L1]
Jsonbaz Kyoudgor uonnqLysIp [01nuod QATIOR [[1S sa1dod aane|
QIeM1JOS po[pueyu) -1oy drempreyq BIEP USASUN) VN UOISSTWPE 1004 S90INOSAI [P -Noads pasearou] VN [¥11
olempleH VN Suruopo enxyg VN VN VN [°9A9 SO [e1]
Aqr uonnqrisip ndino Juowaanbar [9A9]
VN -tedwoour ysej, Suruopd enxyg BJEP UAU() 210)s 0) pa[re] 921nosa1 Y31 $90IN0S31 [P] VN uonedrddy [08]
QU Kyouagore juowaInbax
aIEM1JOS -IoJIoJuI ySe], -9y dIempIleH VN VN 90INOSaI QIO VN own [euonippy VN l6L]
uoneoo[e
Qoud uonnqrisip sysey dnyoeq 90IN0SaI
VN -IoJIo)uI Yse], Suruoro enxyg BIEP UdAU[) pasearou] VN JuRIOLJou] VN [9A9] SO [1]
Q[Npayos
9[npayds qof 90IN0SNY
uonud) YSIp [00]
sjhe] UONMNOAXd YSBL, -UOD 90INOSIY MYS Bl 9[qIssadoeu] Surnpayog ‘mn gD uonoensqe eje(JIOM

sosned J9[33ens Jo Awouoxe) uo paseq sonbruyse) Juswageuew 19[33ens Jo uosuredwo) € ajqel

pringer

As

S.S.Gilletal.

10074

90U
olempleH -~IoJIouL ySB], VN VN VN VN VN ouwmn [euonippy VN (oLl
uonedo[e
uonnqrysip syse dnyoeq sjuowaImbal 90IN0SAX
arem1jos VN BIEp USAOUN Sursearouy orweukq JUSIOTJoU] VN VN [98]
Aiqr SUMOPMOIS [9A9]
aremprey -jedwoour yseJ, Krerodwag, VN VN VN VN VN uonedrddy [L2]
sardoo
mdino [onuod QAnR[NOAds
VN VN sordoo ordnmp VN 2I0]S 0] po[le] UOISSIWPE 1004 VN Sursearouy [9A9] SO [91]
Apqr
VN -tedwoour ysep, - sardoo opdniny VN VN VN YN VN 19491 SO lrel
arem Qi Jur sardoo
-1JOs pue -ssa001d ejEp QAnR[NOAds
ArempIeH VN Suruoro enxg ULIOJTUN-UON VN VN VN Sursearouy [9A9] SO [06]
jsonbaz syse) dnyoeq juswaInbax JATIOR [[1IS Qe [9A9]
pa[pueyun Suruoro enxyg VN Sursearou] 90INOSAI QIO S90IN0SAI J[PT VN uoneorddy [811]
2IemJos VN VN VN VN VN ouwn [euonippy VN [68]
a3esn
2IeMmJos VN 9dInosalenxy VN VN VN VN VN VN [c1l
uonnqrisip sjuowaImbar
VN VN serdoo spdnny BlEp UaASU) VN orwreukq VN VN [9A9TSO [¥9 ‘111
sardod
jsonbaz o130] Wiy syse) dnyjoeq sjuawraIinbax QATIOR [[1S aAne[moads
remMpIeH pa[pueyu) -0Se ATIO”oUL VN Sursearouy orweukq S90IN0SAI J[PT Sursearouy VN [sz]
Q[NpaYyos
9[npayds qof 90INOSY
uonud) YSIp [890]
S)neq UoONNOAXd JSe], -UOD A0INOSIY Ms vle J[qrssedoru] Surnpayog ‘mn gD uonoensqe eleq YIOM

(ponunuoo) ¢ s|qey

pringer

As

10075

Tails in the cloud: a survey and taxonomy of straggler management...

Kyouagdore mdjno [onuod
ArempIeH VN -1oy arempreyq VN 9I01S 0) Pa[le UOISSIWPE I00J VN own [euonippy [9A9T SO [86]
own Sur
Aqr Kyouagore -sso001d ejep syse) dnyoeq juowarnbax [9A9]
orempiey -jedwoour yse], -1oy dIeMpIeH ULIOJTUN-UON Sursearou] 90INOSAI QIO VN own [euonippy uoneorddy [¢9]
owm 3ur uonedo[e
0ud SUMOPMOIS -ss9o01d eyep ndjno [onuod 90IN0SaI
VN -I9JIO)UI YSB], Areodwa], WLIOJTUN-UON 9I0JS 0) PI[Ie] UOISSIWPR JOOJ JUAIOLOU] VN VN [29]
uoneoo[e sordoo
o130] W)L uonnqrisip juswaIbal 90IN0sal aaneoads [9A9]
orem)jos VN -0S[e eAnoogou] BIEP USAQU() VN 90InOSaI QIO JUSIOLJoU] Sursearouy uoneorddy [L6]
Amqr
VN -Jedwoour gy, 9pod 1asn 1004 VN VN VN VN VN [249] SO [18]
sardod
Kyoudgor sjuowraInbax QAnR[NOAdS
rempIeH VN -1oy aremprey VN VN orweukq VN Sursearou] [9A9T SO [o1]
wn Sur sardod
jsonbaz -ssao01d ejep ndino [onuod JATIOR [1)S QI Janemoads [9A9] SO
VN pa[pueyun Suruoro enxyg WIOJIUN-UON ~ 9I0)S 0] PI[Ie,] UOISSTWpE J00] S90IN0SAI J[PT Sursearou] pue uoneorddy [zL]
Qoud syse) dnyjoeq JuawaInbax QAT)OR [[11S dIe
QIEM1JOS -IoJIo)UI YSe], VN VN Sursearou] Q0INOSAI AIOIA $90IN0SAI J[PT VN VN [12]
Kyouagore
SlempleH VN -9y arempley VN VN VN VN VN VN [8zl
9[npayos
9[npayds qof 90INOSY
uonud) YSIp [890]
S)neq UoONNOAXd JSe], -UOD A0INOSIY Ms vle J[qrssedoru] Surnpayog ‘mn gD uonoensqe eleq YIOM

(ponunuoo) ¢ s|qey

pringer

As

S.S.Gilletal.

9rqeordde jou yN

uorneoo[e
Kyouagore sjuawraIinbax Q0In0SaX [9A9]
VN VN -9y arempley VN VN orureukq Jusroyyau] VN uoneonddy [£8]
9[npayos
9[npayos qof 901N0SAY
uonua} SIp [800]
S)neq UoONNOAXd JSe], -UOD A0INOSIY Ms vle J[qrssedoru] Surnpayog ‘mn gD uonoensqe eleq YIOM
(ponunuod) € a)qey

10076

pringer

As

10077

Tails in the cloud: a survey and taxonomy of straggler management...

VN S 0L—01 VN VN /N 1°CS VN VN VN L8 WA [91]
VN VN VN VN VN VN VN VN 4! uonednddy [16]
81 VN VN VN VN VN VN VN 001 WA [06]
VN S 0€€-01T VN VN VN VN VN VN 81 uonedr[ddy [811]
VN VN VN VN S/FIN L8'C VN VN VN VN uonedrddy [68]
VN S0L0 VN VN VN VN VN VN 001-0S uonedrddy [s1]
PEV6SLT S TS—TI VN VN VN VN VN [401 81—F1 VN uoneorddy [¥9 11l
VN 0011-001 VN %BSET-LT VN VN %BSET-LT VN 08-0¢ uoneorddy [zl
VN STI-0 VN VN VN VN VN VN 0o1-1 SI19AI0S [88 ‘6]
VN VN VN VN %08 < %08 < VN 09 uonednddy [2]
VN S QI1-0S VN VN VN VN VN VN VN uoneorddy [ss]
S 001-0 VN VN VN VN VN VN 06 IOAIOS [e¢]
VN SOI1-0S VN VN VN VN VN VN VN uoneorddy sonbiugoa) [8]
%0S—0€ %0T—C VN VN VN VN VN VN WA voneSnIm [#1]
61 S GE—0 VN VN VN %09 < VN VN 8% WA 19[35eng [e1]
VN VN VN VN VN VN VN 000°C1 1oA10S [zL]
6L8°€ET'T w H1-01 VN %06 VN VN %08 < VN VN uoneonddy [8z]
0S6°TST w01 VN VN VN VN %08 < VN VN uoneorddy [o1]
VN $ 00€-0S VN VN VN %0¥ < VN VN 43 I0AT0S [oL]
16€€ S $€9-0 VN VN S/gIN Y070 VN VN VN VN 19A10S [¥¢]
887-00% VN VN VN VN %T8 < UMY 06 VN SO [L1]
VN S ¥81-0 VN VN VN VN VN VN 001-S¢ uoneonddy (o8]
sanbruyoo)
VN S 0001-6°0 VN BIL< VN VN VN VN 00Z-0¥ REIREN uonoaRp [6L]
VN VN VN VN VN VN %19< VN €8 uoneonddy 19735eng [1]
i uonezinn uon uon uondwns SINIOM/SIPOU
syse) JO JIaquinN uonnooxy aurpea KIOWQN I9Jsuen el -ezZImn YsIq -ezimn NdD -uod A31oug Jo equnN
QAJ[UOT.
1X31U0D) .oﬁ.“mn_m _Smm adAy, Apms

sanbruyo9) uoneINIW pue uoNINAP IS[33ens Jo s)nsal [ejuswIadxa Jo sisA[euy d|qel

pringer

& s

S.S.Gilletal.

10078

sonbruyoa)
uone3nu
VN qo-1 VN VN VN VN VN VN VN 00S-1 WA 1[33eng ler]
VN VN VN VN VN VN %BT6'TY VN VN LT¥ IoAIS [cL
sw Q0S|
w Og skep] VN %9 VN VN VN —00CT VN 6.8 uoneoddy [szl
VN skep 6 VN VN VN VN VN VN VN €p0¢ uoneorddy lo1]
VN VN VN VN VN VN VN VN VN VN RETREN loLl
VN S 00010 VN VN VN VN VN VN 4L 87ze £TH'6T IoAIDS [+5]
VN S €0 VN VN VN VN S8+ VN L101 SO [L1]
S99-L'T VN VN VN VN 611-1 VN VN 4L 1-99 001 VN uoneorddy sonbuugoa) [08]
VN VN /[0E-01 ST-S0 VN VN VN $6-69 a0 €1 VN 1ARS yonoaep l6L]
VN w 0g—0 VN %S1-S %S—S'T VN VN VN VN 0$1-0§ uoneorddy 1o[33eng [1]
Koevinooe
own QeI [eALLIE Kepop 10119 sanyrey uonorpaid sqol
owm asuodsay Suruuny [BAISJU] /UMOPMO[S a3eronay JO IaqunN. amyre] Koude| az1s ey JO JaqunN.
JAJ[UOT.
1X2IU0D) .umbﬁmnm _ﬁmm odAy, Apms
VN $61-0 VN VN VN VN %07 < VN 8—8 uoneonddy [L8]
VN VN VN VN VN VN VN VN 91 SO [86]
VN VN VN VN VN %SS < VN VN VN REYSEN [€9]
VN S 08-S VN VN VN VN VN VN 08 uoneorddy [29]
000°01-00S S 68-¢ VN VN S/ T1 VN VN VN o WA [L6]
VN $ 002-0C VN VN VN VN VN VN 00€ uoneonddy (1]
VN S 00€—0 VN VN VN VN VN UMY 09 43 WA [98]
VN S 00€—0 VN VN VN VN %08-0C VN VN 19A10S [LT]
Qi uonezinn uon uon uondwns SINIOM/SIpOU
SYSe) Jo IoquInN uonnoaxy durpea KIOWQN I9Jsuen el -eZI[In Ysiq -ezInn NdD -uo0d AS1oug Jo JoaqunN.
QAJ[UOL
1Xa1U0D .omh_mnm _ﬁmm adAy, Apms

(ponunuoo) t 3|qey

pringer

f's

10079

Tails in the cloud: a survey and taxonomy of straggler management...

s9ynuIw w ¢puodas 1ad sysanbar Jo requinu s/bax (puodss 1ad s1Aq eSO S/GIA LIn0Y AL O[] UMY SIAQ BTIS gO) (SPUODISI[[IW SW SPUOIIS S I[QR[IBAR JOU YN

S 0S VN VN Sy %T> VN VN VN VN VN uonedddy (L8]
VN VN VN VN VN VN %0L—09 VN VN VN SO [86]
VN VN s/bargz—o S 6—F %9-¢ VN VN VN VN VN JoAIOg [£9]
VN VN VN VN VN 86—C8 VN VN VN VN uonedrddy [29]
S €1T0€1 VN VN VN VN VN VN VN VN VN WA [L6]
VN VN VN VN VN VN YN VN VN VN uopeorddy 192
VN VN VN VN %6L VN VN VN a9 051 VN WA [98]
VN VN s/ba10g-0c VN VN VN VN VN VN VN IoATRS [L7]
VN SST0 VN VN VN VN VN VN a0 0¢ VN WA [o1]
VN S GTI-0 VN %I1 VN 16-0S YN VN a4\ 9 Ge-0 uoneorddy [16]
VN VN VN VN VN VN VN VN VN VN WA [06]
VN VN VN VN VN VN VN VN VN VN uoneorddy [81]
SW 00ZS
s 8l S 00910 VN VN VN VN VN —0SLI VN VN uonedddy [68]
VN skep 6 VN %¥817-CT0 VN VN %$8-0C VN VN vL6'Tc uonedrddy [s1]
VN S 0¥I-L VN VN VN VN %09-0t VN a9 0C SeL1 uoneorddy [+9 ‘111
sw 0801-089 VN VN S+ %E—T VN VN VN a9 9'%C VN uonedddy [szl
S 00011 VN s/barzi—o VN VN VN VN S 1-0 VN 00L SIOAIOS [88 ‘6l
VN VN VN sg VN 9 VN VN VN uopeonddy [c]
VN VN VN VN %SEST VN %0L $0091-09 VN VN uonedrddy [ssl
VN STES VN VN VN VN VN VN VN VN 1oA19S [es]
VN VN VN VN %S EST VN VN S 0TI-0 VN VN uoneorddy [8]
VN VN VN VN %0€—S VN %TS—0T VN 00S-0S WA [¥1]
Koeinooe
owmn QeI [eALLIER Kepop 10119 sanyey uonorpaid sqol
our asuodsay Suruuny [BAIOIU] /UMOPMO[S a3eroay Jo JoquinN| amyre] Koudje| azZIs vy JO JoqunN.
QAJ[UOL
1X2IU0D .ombﬂgm _Smn.w odAy, Apms

(ponunuoo) t 3|qey

pringer

& s

10080 S.S.Gill etal.

Fig.5 Publications of straggler 14
management techniques 12 A
2 10 4
2
& 8
S 6
3
£ 2]
2z
0 —

Fig. 6 Straggler-type breakdown

in the literature A
21% Application
46% Server
(0]
12% VM
= Cooling
18%

focused on replication-based straggler mitigation, during the year 2013 to 2019. The
offline, online, and load-balancing straggler management techniques are less focused
on from year 2008 to year 2019 requiring research to improve the straggler man-
agement in large-scale systems. Researchers focused on scheduling and replication-
based straggler management in years 2018 and 2019. Figure 5 shows the year-wise
publications of straggler management techniques, and it has been clearly depicted
that research from year 2008 to 2016 was highly progressive in this area, declining
after 2017 and 2018 while progressing in 2019.

The literature reports the research related to straggler management is mostly pub-
lished in journals (31%), followed by conferences (28%), transactions (21%), and
book chapters (10%). The rest of the research is published in symposiums, work-
shops, white papers, and PhD thesis. Figure 6 shows the research conducted related
to straggler management at different levels such as Application, Server, OS, VM,
and cooling. Figure 6 clearly shows that most of the research work has been done at
the application level (46%) and followed by VM level (21%). Only 3% of research
work has been done at cooling level.

The literature reports 44% of research work considered between 0 and 100 nodes
for performance evaluation, and only 7% research work considered 1000+ nodes.
There are four different types of studies identified from the literature: real testbed
based (63%), systematic reviews (7%), conceptual models (10%), and simulation
based (20%). Most of the technical research papers (63%) consider real testbeds for
performance evaluation. There are only two reviews [37, 38], which have been done
in this area. Table 5 shows the different research work related to different perfor-
mance parameters identified from Table 4.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10081

Table 5 Research work related to performance parameters

Performance parameters Study

Number of physical nodes/workers [1,9, 10, 15, 16, 18, 25, 62, 70-72, 79, 80,

Number of virtual nodes/workers 86, 88,90, 91, 97]

Energy consumption [11, 64]

CPU utilization [2, 25,27, 28]

Disk utilization [2]

Data transfer [16, 54, 89]

Memory utilization [25]

Deadline [14]

Execution time [2,8-11, 13-18, 25, 27, 28, 53-55, 62, 64,
70-72, 79-81, 86-89, 97, 98]

Number of tasks [11, 13, 17, 28, 54, 64, 97]

Number of jobs [11, 13-17, 53, 64, 86]

Data size [64]

Latency [8,9, 15,17, 55,72, 79, 88]

Failure prediction accuracy [14, 15]

Number of failures [80]

Average error [1, 8, 14, 55]

Response time [9, 25, 64, 80, 97]

Slowdown/delay [1,15,63,79]

Interval arrival rate [9, 27, 63,79, 88]

Running time [1,9, 11, 13, 15-17, 28, 53, 54, 64, 89, 91]

5.3 Observations

From the trend analysis, it is observable that current related works focus on study-
ing and mitigating specific straggler types, ranging from resource contention to data
skew as shown in Table 2. This appears to be a necessity given the complexities and
management strategies appropriate for each straggler type. The challenge is that it
is possible for straggler manifestation to be correlated in terms of system phenom-
ena, but also management techniques themselves (e.g. use of speculative copies to
address data skew causes increased resource contention).

The important research challenges within the large-scale cloud data centres such
as latency, scalability, energy consumption, and data processing are contributing to
the rise in research in the field of straggler management, which can be solved by
using artificial intelligence techniques. On the other hand, there is a need of real
cloud infrastructure (at least 50 physical nodes) to test the performance of future
straggler management techniques, but it would be very expensive to afford for aca-
demic institutes. To solve this problem, industries such as Facebook, Google, and
Amazon should collaborate with academic institutes to provide required infrastruc-
ture to do real experiments.

This systematic review also identifies various research directions for perspec-
tive researcher scholars, who are working in the field of straggler management for

@ Springer

10082 S.S.Gill etal.

distributed systems and searching for new research challenges to improve the perfor-
mance of cloud services. The straggler management is an evolving field of research
for large-scale systems, and it is quite challenge ring to execute user workloads with-
out occurrence of stragglers. To solve this problem, there is a need to recognize the
reasons of long-tail problem or stragglers and their correlations, which can help to
find out the dependency among stragglers. This study [1] developed straggler man-
agement technique for profile guide more accurately, but accurate predication is dif-
ficult to get if job is very small to gather required profiling data. An efficient data
recovery is achieved in [80], but it has been identified that the memory requirements
do not grow to intolerable levels as the size of dataset is increasing, which further
causes the stragglers. The jobs are increasing with time, but there is need to analyse
the impact of multiple jobs on probability of stragglers [13]. Existing techniques
use historic data to estimate resource requirement [17]. However, there is a need
to develop an online strategy to simultaneously learn the execution time distribu-
tion and launch replicas, instead of estimating time using historical traces. Further,
the replication increases the reliability of execution of jobs, but it consumes more
energy, which is a global challenge to address [8]. The scale-up/down infrastructure
by switching on/off the virtual machines/nodes based on the resource usage of the
cluster to save energy is required [91]. The dependency among tasks during task
execution further effects causes the stragglers because some tasks need to complete
in order to begin others [89]. Existing straggler management techniques are required
to improve to attain to reduce straggler occurrence. By using this systematic review,
causes of straggler can be identified easily. Therefore, an effective straggler manage-
ment technique can be developed to execute the jobs without straggler occurrence
while fulfilling the dynamic requirements of job, which helps to increase the effi-
ciency of large-scale cloud data centres.

5.4 Future research directions

Although a substantial progress has been made in straggler management techniques
for large-scale systems, there are still many pressing issues and challenges in this
field that need to be addressed. Based on existing research, we have identified vari-
ous open issues pending in this area.

5.4.1 Data processing

Data processing in straggler management is an important challenge [54]. It happens
due to the skew in data that the computing system is able to process effectively.
There are two types of problems which reduce the data processing capability of
systems: (1) large variation of data size and (2) non-uniformity of data. These two
reasons degrade the performance of large-scale computing systems. To improve the
straggler management mechanism, there should be less variation as well as less non-
uniformity of data. Tackling this challenge can further improve the processing speed
of computing systems in terms of execution time and latency.

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10083

5.4.2 Heterogeneity

Hardware heterogeneity is the main reason for resource contention, which occurs
due different types of resources (with different configurations, different providers,
etc.) being used, and sometimes some resources are not compatible to execute jobs
in a coordinative manner. There is a need for a single interface, which can provide
a stable platform for interaction of different types of hardware in a collaborative
manner.

5.4.3 Latency

The latency is another important challenge in straggler management of large-scale
systems, which can affect the performance of computing systems. There are differ-
ent types of reasons for latency: (1) non-uniformity of data, (2) resource contention,
(3) poor user code, and (4) extra cloning. To improve the processing of computing
systems, there is the need to make data uniform initially. Further, efficient resource
scheduling algorithms are required, which can reduce resource contention at runtime
and reduce the latency [99]. The extra cloning of tasks to speed up the execution can
increase the latency because there is a requirement for more number of resources
to process more number of copies. There is a need to develop an effective straggler
management technique, which schedules resources and reduces latency at runtime.

5.4.4 Scalability

To improve the performance of computing systems, the systems must be more scal-
able to serve the jobs within their specific deadline without further delay at runt-
ime [100]. The scalability of the computing system can increase the capacity of the
system when the load increases, which can further reduce the problem of occurrence
of stragglers.

5.4.5 Resource sharing

The sharing of resources among different jobs can improve resource utilization, but
it leads to resource contention, which can degrade the performance of large-scale
computing systems [101]. There is a need for an effective resource contention tech-
nique, which can identify the reasons of resource contention and provide the possi-
ble solutions to avoid additional resource over-allocation, ultimately contributing to
straggler occurrence.

5.4.6 Energy management
The literature reports [99-102] that the straggler management techniques create

several copies of the same task to mitigate the effects of stragglers. Copying a task
reserves additional resources such as the disk, memory of CPU time, and increasing

@ Springer

10084 S.S.Gill etal.

use of particular resource. As the resource is more continuously used, its energy
consumption rises. Depending on the type of the resource, its performance can
degrade as its energy consumption increases above a certain threshold level.

6 Summary and conclusions

In this paper, we have provided a comprehensive literature review of current strag-
gler research within Computer Science, an important problem which directly debili-
tates the performance of large-scale computing systems. We proposed a taxonomy
of straggler causes as identified from different types of straggler management tech-
niques. Moreover, various straggler management techniques have been reviewed and
classified into two categories: straggler detection and straggler mitigation. The com-
parison of straggler detection and straggler mitigation has been presented in detail,
and the taxonomy mapping-based comparison has been described, and various result
outcomes related to straggler management have been presented. Observations of
interest include the focused nature of straggler causes, and mitigation solutions may
potentially interfere with each other due to correlated root-causes. Hence, there is a
possibility of designing a multi-purpose straggler management technique which pro-
files and acts based on the type of identified straggler.

Acknowledgements This work is supported by the Engineering and Physical Sciences Research Council
(EPSRC) (EP/P031617/1). We would like to thank Damian Borowiec and Shreshth Tuli for their valuable
comments, useful suggestions, and discussion to improve the quality of the paper. We would like to thank
the Editor-in-Chief and anonymous reviewers for their valuable suggestions to help and improve paper.

References

1. Coppa E, Finocchi I (2015) On data skewness, stragglers, and MapReduce progress indicators. In:
Proceedings of the Sixth ACM Symposium on Cloud Computing. ACM, pp 139-152

2. Ouyang X, Garraghan P, Yang R, Townend P, Xu J (2016) Reducing late-timing failure at scale:
Straggler root-cause analysis in cloud datacenters. In: Fast Abstracts in the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. DSN

3. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X et al (2016) Apache spark: a
unified engine for big data processing. Commun ACM 59(11):56-65

4. Tsard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed data-parallel programs
from sequential building blocks. In: ACM SIGOPS Operating Systems Review, vol 41, no 3. ACM,
pp 59-72

5. Gill SS, Chana I, Singh M, Buyya R (2019) RADAR: self-configuring and self-healing in resource
management for enhancing quality of cloud services. Concurr Comput Pract Exp 31(1):e4834

6. Dean J, Barroso LA (2013) The tail at scale. Commun ACM 56(2):74-80

7. Shen H, Li C (2018) Zeno: a straggler diagnosis system for distributed computing using machine
learning. In: International Conference on High Performance Computing. Springer, Cham, pp
144-162

8. Aktas MF, Peng P, Soljanin E (2017) Effective straggler mitigation: which clones should attack and
when? ACM SIGMETRICS Perform Eval Rev 45(2):12-14

9. Wang D, Joshi G, Wornell G (2014) Efficient task replication for fast response times in parallel
computation. ACM SIGMETRICS Perform Eval Rev 42(1):599-600

@ Springer

Tails in the cloud: a survey and taxonomy of straggler management... 10085

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Dai W, Ibrahim I, Bassiouni M (2017) An improved straggler identification scheme for data-
intensive computing on cloud platforms. In: 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud). IEEE, pp 211-216

Phan T-D (2017) Energy-efficient straggler mitigation for big data applications on the clouds.
Ph.D. dissertation, ENS Rennes

Ozfatura E, Giindiiz D, Ulukus S (2018) Speeding up distributed gradient descent by utilizing
non-persistent stragglers. arXiv preprint arXiv:1808.02240

Ananthanarayanan G, Ghodsi A, Shenker S, Stoica I (2013) Effective straggler mitigation:
attack of the clones. NSDI 13:185-198

Ananthanarayanan G, Hung MCC, Ren X, Stoica I, Wierman A, Yu M (2014) GRASS: trim-
ming stragglers in approximation analytics. In: 11th USENIX symposium on networked sys-
tems design and implementation (NSDI 14), pp. 289-302

Yadwadkar NJ, Ananthanarayanan G, Katz R (2014) Wrangler: predictable and faster jobs using
fewer resources. In: Proceedings of the ACM Symposium on Cloud Computing. ACM, pp 1-14
Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica I (2008) Improving MapReduce perfor-
mance in heterogeneous environments. Osdi 8(4):7

Wang D, Joshi G, Wornell G (2015) Using straggler replication to reduce latency in large-scale
parallel computing. ACM SIGMETRICS Perform Eval Rev 43(3):7-11

Chen Q, Zhang D, Guo M, Deng Q, Guo S (2010) Samr: a self-adaptive MapReduce schedul-
ing algorithm in heterogeneous environment. In: 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT). IEEE, pp 2736-2743

Gill SS, Garraghan P, Stankovski V, Casale G, Thulasiram RK, Ghosh SK, Ramamohanarao K,
Buyya R (2019) Holistic resource management for sustainable and reliable cloud computing: an
innovative solution to global challenge. J Syst Softw 155:104-129

Lama P, Wang S, Zhou X, Cheng D (2018) Performance isolation of data-intensive scale-out
applications in a multi-tenant cloud. In: 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE, pp 85-94

Zhou H, Li Y, Yang H, Jia J, Li W (2018) BigRoots: an effective approach for root-cause analy-
sis of stragglers in big data system. IEEE Access 6:41966-41977

Gill SS, Buyya R (2018) A taxonomy and future directions for sustainable cloud computing:
360 degree view. ACM Comput Surv (CSUR) 51(5):104

Mitsuzuka K, Koibuchi M, Amano H, Matsutani H (2018) Proxy responses by FPGA-based
switch for MapReduce stragglers. IEICE Trans Inf Syst 101(9):2258-2268

Ouyang X, Wang C, Jie X (2019) Mitigating stragglers to avoid QoS violation for time-critical
applications through dynamic server blacklisting. Future Gener Comput Syst 101:831-842
Ouyang X, Garraghan P, McKee D, Townend P, Xu J (2016) Straggler detection in parallel
computing systems through dynamic threshold calculation. In 2016 IEEE 30th International
Conference on Advanced Information Networking and Applications (AINA). IEEE, pp 414-421
Phan T-D, Pallez G, Ibrahim S, Raghavan P (2019) A new framework for evaluating strag-
gler detection mechanisms in MapReduce. ACM Trans Model Perform Eval Comput Syst
(TOMPECS) 4(3):14

Ananthanarayanan G, Kandula S, Greenberg AG, Stoica I, Yi L, Saha B, Harris E (2010) Rein-
ing in the outliers in map-reduce clusters using Mantri. Osdi 10(1):24

Garraghan P, Ouyang X, Yang R, McKee D, Xu J (2016) Straggler root-cause and impact analy-
sis for massive-scale virtualized cloud datacenters. IEEE Trans Serv Comput

Gill SS, Tuli S, Xu M, Singh I, Singh KV, Lindsay D, Tuli S et al (2019) Transformative effects
of IoT, blockchain and artificial intelligence on cloud computing: evolution, vision, trends and
open challenges. Internet of Things 8:100118

Hamandawana P, Mativenga R, Kwon SJ, Chung TS (2019) EPPADS: an enhanced phase-based
performance-aware dynamic scheduler for high job execution performance in large scale clus-
ters. In: International Conference on Database Systems for Advanced Applications. Springer,
Cham, pp 140-156

Ren X, Ananthanarayanan G, Wierman A, Yu M (2015) Hopper: decentralized speculation-
aware cluster scheduling at scale. In: ACM SIGCOMM Computer Communication Review, vol
45, n0 4. ACM, pp 379-392

Krishna LS, Natarajan LP (2019) Distributed inference with straggler mitigation. Ph.D. disser-
tation, Indian institute of technology Hyderabad

@ Springer

http://arxiv.org/abs/1808.02240

10086

S.S.Gilletal.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

Huang X, Li C, Luo Y (2019) Optimized speculative execution strategy for different workload lev-
els in heterogeneous spark cluster. In: Proceedings of the 2019 4th International Conference on Big
Data and Computing. ACM, pp 6-10

Tandon R, Lei Q, Dimakis AG, Karampatziakis N (2017) Gradient coding: avoiding stragglers in
distributed learning. In: International Conference on Machine Learning, pp 3368-3376

Ouyang X, Wang C, Yang R, Yang G, Townend P, Xu J (2017) ML-NA: a machine learning based
node performance analyzer utilizing straggler statistics. In: 2017 IEEE 23rd International Confer-
ence on Parallel and Distributed Systems (ICPADS). IEEE, pp 73-80

Panda B, Srinivasan D, Ke H, Gupta K, Khot V, Gunawi HS (2019) {IASO}: a fail-slow detection
and mitigation framework for distributed storage services. In: 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), pp 47-62

Kumar U, Kumar J (2014) A comprehensive review of straggler handling algorithms for MapRe-
duce framework. Int J Grid Distrib Comput 7(4):139-148

Bhandare A et al (2016) Review and analysis of straggler handling techniques. Int J Comput Sci Inf
Technol 7(5):2270

Eppstein D, Goodrich MT (2007) Space-efficient straggler identification in round-trip data streams
via Newton’s identities and invertible bloom filters. In: Workshop on Algorithms and Data Struc-
tures. Springer, Berlin, pp 637-648

Ouyang X, Garraghan P, McKee D, Townend P, Xu J (2016) Straggler detection in parallel com-
puting systems through dynamic threshold calculation. In: 2016 IEEE 30th International Confer-
ence on Advanced Information Networking and Applications (AINA). IEEE, pp 414421

Singh S, Chana I (2016) Cloud resource provisioning: survey, status and future research direc-
tions. Knowl Inf Syst 49(3):1005-1069

Benavides Z, Gupta R, Zhang X (2016) Parallel execution profiles. In: Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and Distributed Computing. ACM,
pp 215-218

Eppstein D, Goodrich MT (2011) Straggler identification in round-trip data streams via Newton’s
identities and invertible Bloom filters. IEEE Trans Knowl Data Eng 23(2):297-306

Yu Z, Li M, Yang X, Zhao H, Li X (2015) Taming non-local stragglers using efficient prefetching
in MapReduce. In: 2015 IEEE international conference on cluster computing. IEEE, pp 52-61
Singh S, Chana I (2016) QoS-aware autonomic resource management in cloud computing: a sys-
tematic review. ACM Comput Surv 48(3):46

Harlap A, Cui H, Dai W, Wei J, Ganger GR, Gibbons PB, Gibson GA, Xing EP (2016) Addressing
the straggler problem for iterative convergent parallel ML. In: Proceedings of the seventh acm sym-
posium on cloud computing (SoCC ’16). Association for computing machinery, New York, NY,
USA, pp 98-111. https://doi.org/10.1145/2987550.2987554

Ouyang X, Zhou H, Clement S, Townend P, Xu J (2017) Mitigate data skew caused stragglers
through ImKP partition in MapReduce. In: 2017 IEEE 36th International Performance Computing
and Communications Conference (IPCCC). IEEE, pp 1-8

Martha VS, Zhao W, Xu X (2013) h-MapReduce: a framework for workload balancing in MapRe-
duce. In: 2013 IEEE 27th International Conference on Advanced Information Networking and
Applications (AINA). IEEE, pp 637-644

Huang SW, Huang TC, Lyu SR, Shieh CK, Chou YS (2011) Improving speculative execution per-
formance with coworker for cloud computing. In: 2011 IEEE 17th International Conference on
Parallel and Distributed Systems. IEEE, pp 1004—1009

Lin J (2009) The curse of zipf and limits to parallelization: a look at the stragglers problem in
MapReduce. In: 7th Workshop on Large-Scale Distributed Systems for Information Retrieval, vol
1. ACM, Boston, pp 57-62

Zhou AC, Phan TD, Ibrahim S, He B (2018) Energy-efficient speculative execution using advanced
reservation for heterogeneous clusters. In: Proceedings of the 47th International Conference on
Parallel Processing. ACM, p 8

Wang Z, Gao L, Gu Y, Bao Y, Yu G (2017) FSP: towards flexible synchronous parallel framework
for expectation-maximization based algorithms on cloud. In: Proceedings of the 2017 Symposium
on Cloud Computing. ACM, pp 1-14

Harlap A, Cui H, Dai W, Wei J, Ganger GR, Gibbons PB, Gibson GA, Xing EP (2016) Addressing
the straggler problem for iterative convergent parallel ML. In: Proceedings of the Seventh ACM
Symposium on Cloud Computing. ACM, pp 98-111

@ Springer

https://doi.org/10.1145/2987550.2987554

Tails in the cloud: a survey and taxonomy of straggler management... 10087

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun
ACM 51(1):107-113

Aktas MF, Peng P, Soljanin E (2018). Straggler mitigation by delayed relaunch of tasks. ACM
SIGMETRICS Perform Eval Rev 45(3):224-231

Yu Q, Ali M, Avestimehr AS (2018) Straggler mitigation in distributed matrix multiplication:
fundamental limits and optimal coding. In: 2018 IEEE International Symposium on Information
Theory (ISIT). IEEE, pp 2022-2026

Baharav T, Lee K, Ocal O, Ramchandran K (2018) Straggler-proofing massive-scale distributed
matrix multiplication with d-dimensional product codes. In: 2018 IEEE International Symposium
on Information Theory (ISIT). IEEE, pp 1993-1997

Xu M, Alamro S, Lan T, Subramaniam S (2017) Optimizing speculative execution of deadline-
sensitive jobs in cloud. ACM SIGMETRICS Perform Eval Rev 45(1):17-18

Haddadpour F, Yang Y, Chaudhari M, Cadambe VR, Grover P (2018) Straggler-resilient and com-
munication-efficient distributed iterative linear solver. arXiv preprint arXiv:1806.06140

Zhao X, Kang K, Sun Y, Song Y, Xu M, Pan T (2013) Insight and reduction of MapReduce strag-
glers in heterogeneous environment. In: 2013 IEEE International Conference on Cluster Comput-
ing (CLUSTER). IEEE, pp 1-8

Isaacs KE, Gamblin T, Bhatele A, Bremer PT, Schulz M, Hamann B (2014) Extracting logical
structure and identifying stragglers in parallel execution traces. In: ACM SIGPLAN Notices, vol
49, no 8. ACM, pp 397-398

Bin Khunayn E, Karunasekera S, Xie H, Ramamohanarao K (2017) Exploiting data dependency
to mitigate stragglers in distributed spatial simulation. In: Proceedings of the 25th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems. ACM, p 43
Farhat F, Tootaghaj DZ, Sivasubramaniam A, Kandemir MT, Das CR (2014) Modeling and opti-
mization of straggling mappers. Technical report, Technical Report CSE-14-006, Pennsylvania
State University

Phan TD, Ibrahim S, Zhou AC, Aupy G, Antoniu G (2017) Energy-driven straggler mitigation in
MapReduce. In: European Conference on Parallel Processing. Springer, Cham, pp 385-398

Yang E, Kang DK, Youn CH (2019) BOA: batch orchestration algorithm for straggler mitigation of
distributed DL training in heterogeneous GPU cluster. J Supercomput 76:1-21

Jiang J, Cui B, Zhang C, Yu L (2017) Heterogeneity-aware distributed parameter servers. In: Pro-
ceedings of the 2017 ACM International Conference on Management of Data. ACM, pp 463-478
Patgiri R, Das R. (2018) rTuner: a performance enhancement of MapReduce job. In: Proceedings
of the 10th International Conference on Computer Modeling and Simulation. ACM, pp 176-183
Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I (2013) Discretized streams: Fault-tolerant
streaming computation at scale. In: Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles. ACM, pp 423-438

Yu Q, Maddah-Ali MA, Avestimehr AS (2020) Straggler mitigation in distributed matrix multipli-
cation: fundamental limits and optimal coding. IEEE Trans Inf Theory 66(3):1920-1933

Ouyang X, Garraghan P, Wang C, Townend P, Xu J (2016) An approach for modeling and rank-
ing node-level stragglers in cloud datacenters. In: 2016 IEEE International Conference on Services
Computing (SCC). IEEE, pp 673-680

Tavakoli N, Dai D, Chen Y (2016) Log-assisted straggler-aware I/O scheduler for high-end com-
puting. In: 2016 45th International Conference on Parallel Processing Workshops (ICPPW). IEEE,
pp 181-189

Li C, Shen H, Huang T (2016) Learning to diagnose stragglers in distributed computing. In: 2016
9th Workshop on Many-Task Computing on Clouds, Grids, and Supercomputers (MTAGS). IEEE,
pp 1-6

Khunayn EB, Karunasekera S, Xie H, Ramamohanarao K (2017) Straggler mitigation for distrib-
uted behavioral simulation. In: 2017 IEEE 37th International Conference on Distributed Comput-
ing Systems (ICDCS). IEEE, pp 2638-2641

Paik M (2010) Stragglers of the herd get eaten: security concerns for GSM mobile banking appli-
cations. In: Proceedings of the Eleventh Workshop on Mobile Computing Systems & Applications.
ACM, pp 54-59

Malewicz G, Dvorsky M, Colohan CB, Thomson DP, Levenberg JL (2013) System and method
for limiting the impact of stragglers in large-scale parallel data processing. U.S. Patent 8,510,538,
issued 13 Aug 2013

@ Springer

http://arxiv.org/abs/1806.06140

10088

S.S.Gilletal.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

94.

9s.

96.

97.

Karakus C, Sun Y, Diggavi S, Yin W (2018) Redundancy techniques for straggler mitigation in
distributed optimization and learning. arXiv preprint arXiv:1803.05397

Garraghan P, Yang R, Wen Z, Romanovsky A, Jie X, Buyya R, Ranjan R (2018) Emergent failures:
rethinking cloud reliability at scale. IEEE Cloud Comput 5(5):12-21

Li S, Kalan SM, Avestimehr AS, Soltanolkotabi M (2018) Near-optimal straggler mitigation for
distributed gradient methods. In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) IEEE, pp 857-866

Farhat F (2015) Stochastic modeling and optimization of stragglers in MapReduce framework.
Thesis, The Pennsylvania State University

Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I
(2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.
In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementa-
tion. USENIX Association, pp 2-2

Yang H, Lee J (2019) Secure distributed computing with straggling servers using polynomial
codes. IEEE Trans Inf Forensics Secur 14(1):141-150

Mallick A, Chaudhari M, Joshi G. Rateless codes for straggler mitigation in distributed computing.
https://www.andrew.cmu.edu/user/gaurij/18-847F-Lectures/rateless_codes_2018.pdf. Accessed 10
July 2019

Chen C, Weng Q, Wang W, Li B, Li B (2018) Fast distributed deep learning via worker-adaptive
batch sizing. In: Proceedings of the ACM Symposium on Cloud Computing. ACM, pp 521-521
Kapoor R, Porter G, Tewari M, Voelker GM, Vahdat A (2012) Chronos: predictable low latency
for data center applications. In: Proceedings of the Third ACM Symposium on Cloud Computing.
ACM, p9

Lindsay D, Gill SS, Garraghan P (2019) PRISM: an experiment framework for straggler analytics
in containerized clusters. In: Proceedings of the 5th International Workshop on Container Tech-
nologies and Container Clouds, pp 13-18

Guo Y, Rao J, Jiang C, Zhou X (2017) Moving Hadoop into the cloud with flexible slot manage-
ment and speculative execution. IEEE Trans Parallel Distrib Syst 3:798-812

Wang H, Guo S, Tang B, Li R, Li C (2019) Heterogeneity-aware gradient coding for straggler tol-
erance. arXiv preprint arXiv:1901.09339

Vulimiri A, Godfrey PB, Mittal R, Sherry J, Ratnasamy S, Shenker S (2013) Low latency via
redundancy. In: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies. ACM, pp 283-294

Wang D, Joshi G, Wornell G (2015) Efficient straggler replication in large-scale parallel comput-
ing. arXiv preprint arXiv:1503.03128

Lei L, Wo T, Hu C (2011) CREST: towards fast speculation of straggler tasks in MapReduce. In:
2011 IEEE 8th International Conference on e-Business Engineering (ICEBE). IEEE, pp 311-316
Nanduri R, Maheshwari N, Reddyraja A, Varma V (2011) Job aware scheduling algorithm for
MapReduce framework. In: 2011 Third IEEE International Conference on Coud Computing Tech-
nology and Science. IEEE, pp 724-729

Behrouzi-Far A, Soljanin E (2018) On the effect of task-to-worker assignment in distributed com-
puting systems with stragglers. In: 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, pp 560-566

. CiparJ, Ho Q, Kim JK, Lee S, Ganger GR, Gibson G, Keeton K, Xing E (2013) Solving the strag-

gler problem with bounded staleness. Presented as part of the 14th Workshop on Hot Topics in
Operating Systems

Chen F, Wu S, Jin H, Yao Y, Liu Z, Gu L, Zhou Y (2017) Lever: towards low-latency batched
stream processing by pre-scheduling. In: Proceedings of the 2017 Symposium on Cloud Comput-
ing. ACM, pp 643-643

Misra PA, Borge MF, Goiri i, Lebeck AR, Zwaenepoel W, Bianchini R (2019) Managing tail
latency in datacenter-scale file systems under production constraints. In: Proceedings of the Four-
teenth EuroSys Conference 2019. ACM, p 17

Qureshi NM, Siddiqui IF, Abbas A, Bashir AK, Choi K, Kim J, Shin DR (2019) Dynamic con-
tainer-based resource management framework of spark ecosystem. In: 2019 21st International Con-
ference on Advanced Communication Technology (ICACT). IEEE, pp 522-526

Ouyang X, Garraghan P, Primas B, McKee D, Townend P, Jie X (2018) Adaptive speculation
for efficient internetware application execution in clouds. ACM Trans Internet Technol (TOIT)
18(2):15

@ Springer

http://arxiv.org/abs/1803.05397
https://www.andrew.cmu.edu/user/gaurij/18%e2%80%93847F-Lectures/rateless_codes_2018.pdf
http://arxiv.org/abs/1901.09339
http://arxiv.org/abs/1503.03128

Tails in the cloud: a survey and taxonomy of straggler management... 10089

98.

99.

100.

101.

102.

Yan R, Fleury MO, Merler M, Natsev A, Smith JR (2009) Large-scale multimedia semantic con-
cept modeling using robust subspace bagging and MapReduce. In: Proceedings of the First ACM
‘Workshop on Large-Scale Multimedia Retrieval and Mining. ACM, pp 35-42

Singh S, Chana I (2016) A survey on resource scheduling in cloud computing: issues and chal-
lenges. J Grid Comput 14(2):217-264

Zheng P, Lee BC (2018) Hound: causal learning for datacenter-scale straggler diagnosis. Proc
ACM Meas Anal Comput Syst 2(1):17

Tavakoli N, Dai D, Chen Y (2019) Client-side straggler-aware I/O scheduler for object-based paral-
lel file systems. Parallel Comput 82:3—18

Fuerst C, Schmid S, Suresh L, Costa P (2015) Kraken: towards elastic performance guarantees in
multi-tenant data centers. ACM SIGMETRICS Perform Eval Rev 43(1):433-434

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

	Tails in the cloud: a survey and taxonomy of straggler management within large-scale cloud data centres
	Abstract
	1 Introduction and motivation
	1.1 Motivation
	1.2 Article organization

	2 Background
	2.1 Straggler definition and impact
	2.2 Straggler management
	2.3 Related surveys and our contributions

	3 Taxonomy of straggler causes
	3.1 Relationship between straggler causes

	4 Straggler management techniques: current status
	4.1 Straggler detection techniques
	4.1.1 Offline straggler detection
	4.1.2 Online straggler detection

	4.2 Straggler mitigation techniques
	4.2.1 Load balancing-based straggler mitigation
	4.2.2 Replication-based straggler mitigation
	4.2.3 Scheduling-based straggler mitigation

	5 Comparison of straggler management techniques based on taxonomy
	5.1 Analysis of experimental results: practical use-case
	5.2 Trend analysis
	5.3 Observations
	5.4 Future research directions
	5.4.1 Data processing
	5.4.2 Heterogeneity
	5.4.3 Latency
	5.4.4 Scalability
	5.4.5 Resource sharing
	5.4.6 Energy management

	6 Summary and conclusions
	Acknowledgements
	References

