
Vol:.(1234567890)

The Journal of Supercomputing (2020) 76:9922–9941
https://doi.org/10.1007/s11227-020-03235-9

1 3

Integrating software and hardware hierarchies
in an autotuning method for parallel routines
in heterogeneous clusters

Jesús Cámara1 · Javier Cuenca1 · Domingo Giménez2

Published online: 7 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
A hierarchical approach for autotuning linear algebra routines on heterogeneous
platforms is presented. Hierarchy helps to alleviate the difficulties of tuning parallel
routines for high-performance computing systems. This paper analyzes the applica-
tion of the hierarchical approach at both the hardware and software levels, using
the basic matrix multiplication and the Strassen multiplication as proof of concept
on multicore+coprocessor nodes. In this way, the hierarchical approach allows par-
tial delegation of the efficient exploitation of the computing units in the node to the
underlying direct autotuned matrix multiplication used in the base case.

Keywords  Autotuning · Hybrid programming · Heterogeneous computing ·
Multicore · Manycore

1  Introduction

Today, standard computational nodes include one multicore CPU together with one
or more coprocessors (typically GPUs and/or Many Integrated Core, e.g., the Intel
Xeon Phi). The basic computational components of these nodes have different archi-
tectures and computational capacities; therefore, they can be organized/managed
hierarchically, with the basic computing units (CPU, GPU and MIC) having sepa-
rate memory spaces and communicating with data transfers between them across

 *	 Javier Cuenca
	 jcuenca@um.es

	 Jesús Cámara
	 jcamara@um.es

	 Domingo Giménez
	 domingo@um.es

1	 Department of Engineering and Technology of Computers, University of Murcia, Murcia, Spain
2	 Department of Computing and Systems, University of Murcia, Murcia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03235-9&domain=pdf

9923

1 3

Integrating software and hardware hierarchies in an autotuning…

the memory associated with the CPUs and those of the coprocessors. This heteroge-
neous and hierarchical organization makes the efficient exploitation of routines for
those nodes difficult and requires techniques for exploiting the underlying heteroge-
neity and hierarchy.

Elsewhere, linear algebra routines are widely used as basic computational ker-
nels in scientific software, and their optimization for today’s standard heterogene-
ous nodes would lead to important improvements when solving scientific problems
based on highly efficient linear algebra libraries such as MKL [16], PLASMA [19],
MAGMA [1] and Chameleon [8], whose routines base their optimization in imple-
mentations by blocks or tiles in which the basic kernel is a highly optimized matrix
multiplication [13]. The matrix multiplication has been widely researched, and there
are now many highly efficient implementations for today’s systems [14, 15, 17]. As
with computational systems, the optimization of linear algebra routines has tradi-
tionally been based on a hierarchical schema [6], with a set of basic linear algebra
routines (BLAS) and higher-level routines (LAPACK) developed by blocks or tiles.

A hierarchical and decentralized schema can be applied for the automatic opti-
mization of linear algebra software for heterogeneous CPU+multicoprocessor
nodes [7]. This paper analyzes the application of the hierarchical approach to both
the hardware and the software in multicore+multicoprocessor nodes and uses a tra-
ditional three-loop matrix multiplication and a Strassen multiplication as proof of
concept.

The rest of the paper is organized as follows. Section 2 makes a brief comparison
with other hierarchical optimization approaches. The implementations of the par-
allel routines used to illustrate the methodology of hierarchical autotuning for lin-
ear algebra (the traditional and the Strassen matrix multiplications) are presented
in Sect. 3. Section 4 outlines the general ideas of the hierarchical methodology, and
Sect. 5 gives some experimental results which show the applicability of the pro-
posal. Section 6 comments on some possible extensions of the methodology, and
Sect. 7 concludes the paper.

2 � Related work

Traditionally, hierarchical approaches have been applied in the design of general
software [4], and, particularly, in the design of parallel linear algebra routines [6]
and also in the theoretical study of its execution time [11]. Recently, they have
been applied in the development of linear algebra routines for both clusters and dis-
tributed systems. The autotuning process applied to these routines must take into
account this degree of heterogeneity when searching for the best adjustable param-
eter values [23].

The search for satisfactory values for those adjustable parameters when tuning a
routine for a hierarchical computational system can be improved in various ways.
The convex form of the function that represents the execution time [24] or accurate
theoretical models [5] can be used. An optimization problem of finding the values
of the parameters which minimize the execution time can be approached through

9924	 J. Cámara et al.

1 3

metaheuristic methods (e.g., OpenTuner [2]) or with heuristics tailored for each spe-
cific routine to optimize [10].

Some works exploit heterogeneity to improve this search. When applying Open-
Tuner, the parameters can be grouped hierarchically and the tool can be applied
incrementally to the parameters at different levels. In [15], the hierarchical organi-
zation of the communication scheme is exploited for the optimization of a parallel
matrix multiplication.

In [18], a study of each routine is carried out to perform a division of the search
space of the adjustable parameters, a graph of dependencies is generated, and then,
independent subspaces composed of the nodes of the graph may be tuned with indi-
vidual search algorithms. In [22], the autotuning process is divided into different
phases that work with different sets of adjustable parameters: local parameters such
as loop unrolling, those related to the threads and, finally, those referring to the dis-
tribution of work between nodes.

As far as we know, our proposal is the first to consider a hierarchy in both the
hardware and software, in a two-dimensional way. Furthermore, the set of param-
eters considered at each level form a black box that is autotuned separately and can
be reused in the autotuning process at any upper level box, which includes it in the
hardware or software hierarchy. In addition, variability is an important issue in auto-
tuning [20], and the hierarchical optimization methodology used here allows us to
intensify the experimentation at different levels depending on the degree of variabil-
ity observed for each routine and for each computing unit, and different optimiza-
tion methods (theoretical, experimental, hybrid) or software (e.g., OpenTuner) can
be used at different levels depending on how accurate and efficient they prove to be
for the particular software and hardware.

3 � Parallel implementations of the naive three‑loop multiplication
and the Strassen method

The basic and the Strassen matrix multiplication are used to show the application
of the hierarchical autotuning methodology. The development of routines which are
competitive with efficient implementations of the matrix multiplication is out of the
scope of this paper.

3.1 � Matrix multiplication

Our implementation of the basic matrix multiplication for multicore+coprocessor
is heterogeneous. The data are unevenly distributed between the computing units
(CUs) in the node, and the computations (matrix multiplication) are carried out
in each CU with optimized routines. The amount of work to assign to each CU is
obtained taking in consideration their relative speed.

For the matrix multiplication C = �AB + �C , A ∈ Rm×k , B ∈ Rk×n , C ∈ Rm×n ,
matrix A is replicated in all the CUs in the node, and matrix B is scattered in
adjacent blocks of columns. There are some works on techniques for balancing

9925

1 3

Integrating software and hardware hierarchies in an autotuning…

the workload between the CPU and the coprocessors [12, 24]. If the node com-
prises one multicore CPU and c coprocessors (referenced from 1 to c), the matrix
multiplication can be expressed as C = �(AB1|⋯ |ABc+1) + �(C1|⋯ |Cc+1) , where
�ABi + �Ci , with 1 ≤ j ≤ c , is assigned to the coprocessor j, and �ABc+1 + �Cc+1
to the CPU, with Bi ∈ Rk×ni ,

∑c+1

i=1
ni = n.

In a node with one multicore CPU and c coprocessors, of which g are GPU
and m MIC ( c = g + m ), our task is to determine the optimum values of ni ,
1 ≤ i ≤ c + 1 . Thus, it depends on the speed of the CUs in the node when running
the basic matrix multiplication when optimized for the current matrix sizes. We
use the basic multiplication from MKL [16] for CPU and Xeon Phi and the one
from cuBLAS [9] for GPU, but the methodology can be applied with other basic
libraries and for other versions of the matrix multiplication.

When the matrix multiplication is executed on a platform composed of N het-
erogeneous nodes, where node i has a multicore CPU (with pi cores) and ci accel-
erators, the set of adjustable parameters, whose values must be chosen for setting
the execution of the routine, is:

with ni,j being the number of columns of matrix B mapped to the accelerator j of
node i ( 1 ≤ i ≤ N , 1 ≤ j ≤ ci ) and ni,cpu the part mapped to the CPU in node i. The
search space for the best values for these adjustable parameters following a global
method would be huge. For example, if matrix B is divided into blocks with s con-
secutive columns, the number of possible assignations has an order of

O

��
N +

∑N

i=1
ci

� n

s

�
 . Alternatively, with a hierarchical approach, the search space

to decide the distribution between nodes has an order of O
(
N

n

s

)
 , and in each node i

the order is O
((

1 + ci
) n

s

)
 . If a heuristics method based on the exploration of the

neighborhood is used to guide the search [10] and the neighbors for a given configu-
ration are those obtained just by transferring a quantity of workload from one ele-

ment to other, the neighborhood has an order of O
��

N +
∑N

i=1
ci

�2
�

 without the

hierarchical approach, and O
(
N2

)
 and O

((
1 + ci

)2) for the whole platform and the
nodes with the hierarchical methodology.

Besides, if we take into account the set of adjustable parameters for each basic
computational element, the search space grows considerably. For instance, when
using the MKL multiplication, the number of MKL threads influences the execu-
tion time; therefore, the value for this parameter must be considered for CPU and
Xeon Phi. So, if ti,j represents the number of threads to use in each element j of
each node i, the set of parameters in Eq. (1) is now

(1)
{n1,1,… , n1,j,… , n1,c1 , n1,cpu,… , ni,1,… , ni,j,… , ni,ci , ni,cpu,… ,

nN,1,… , nN,j,… , nN,cN , nN,cpu},

9926	 J. Cámara et al.

1 3

3.2 � Strassen multiplication

The Strassen multiplication has a recursive schema in which the basic operations are
at the same time matrix multiplications, which are carried out with efficient imple-
mentations for the system in hand. It follows the typical divide-and-conquer recur-
sive paradigm. We consider square matrices, and the matrices to be multiplied and
the resulting matrix are divided into four submatrices of size n

2
×

n

2
 . The routine is

then called recursively seven times with matrices of this size. Ten additions and sub-
tractions of matrices n

2
×

n

2
 are carried out to form the matrices to be multiplied, and

the seven resulting matrices are combined with eight operations of the same type
and size. For submatrices smaller than a base size, the direct heterogeneous multipli-
cation is used.

When the Strassen multiplication is installed directly on a node, the parame-
ters to be selected are those corresponding to the Strassen method (recursion level
and assignation of the basic multiplications to the CUs of the node), and for each
basic multiplication the parameters considered depending on the unit to which it is
assigned (workload for each basic CU, and the number of threads on CPU and Xeon
Phi, and no parameter for GPU).

4 � Methodology for hierarchical autotuning

An autotuning methodology is used to provide linear algebra routines with auto-
matic optimization capability for heterogeneous nodes. Thus, when the user wants
to run the routine for a specific problem size, the execution is close to optimum
in execution time without user intervention. Some decisions which depend on the
computing units and the routine implementation need to be taken. They correspond
to parameters (Algorithmic Parameters, AP) which determine the way in which the
routine is run. The values of the parameters which give the lowest execution time are
searched for, either theoretically or empirically. In complex computational systems,
with a large number of CUs, the number of parameters and their possible values can
be huge, making it impossible to explore exhaustively all the possible values for all
the parameters (Eq. 2). The hierarchical approach helps to overcome this problem,
organizing the computational units and/or the routines hierarchically, with smaller
groups of decisions to take at each level of the hierarchy, and taking these decisions
at each level using the information from previous levels.

(2)

{n1,1,… , n1,j,… , n1,c1 , n1,cpu,… , ni,1,… , ni,j,… , ni,ci , ni,cpu,… ,

nN,1,… , nN,j,… , nN,cN , nN,cpu,

t1,1,… , t1,j,… , t1,c1 , t1,cpu,… , ti,1,… , ti,j,… , ti,ci , ti,cpu,… ,

tN,1,… , tN,j,… , tN,cN , tN,cpu}

9927

1 3

Integrating software and hardware hierarchies in an autotuning…

4.1 � Basis of the autotuning methodology

The hardware dimension is considered here in order to simplify the description of
the autotuning methodology. The following subsection shows how this proposal is
applied to a two-dimensional hardware+software hierarchy.

In general, a platform is considered as a computing unit, CU, of the highest level
made up of a set of computing units of a lower level. Recursively, this approach is
used for each CU at the successive levels until the basic level is reached. In a node,
the whole node is considered at the highest level (level 1), and the basic computing
units (CPU, GPU, MIC or any other accelerator) composing the node are considered
at the lowest level (level 0). Additionally, the computing units of level l − 1 which
compose a unit at a level l are connected through links of level l − 1 , which corre-
spond to how the units at level l − 1 communicate data. Those links can be physical
or logical. For example, the CUs can share the memory and the data can be commu-
nicated through the memory; or they can be nodes in a cluster with an interconnec-
tion network. In our case, the three types of computing units in a node communicate
with transfers to and from the CPU and the coprocessors.

Given a routine, at each level l of the hierarchy, the search process for the best
AP values is performed simultaneously in all the CUs of this level, for each problem
size previously selected and stored in Level_l_Installation_Set by the platform man-
ager. When the installation finishes for level l, the best AP values and the perfor-
mance information obtained for each CU and for each link (bandwidth and latency)
are stored in Level_l_Performance_Information (Fig. 1). This information is used
to guide the process at level l + 1 , so reducing the complexity and the time of the
installation process. As mentioned, the search for the best values of the AP for each
CU can be made independently, which makes it easier to use different methods for
searching, for each level and even for each CU. Some possible methods are:

•	 TPM: Theoretical-Practical Modeling In this approach, the working time, Tw , to
solve the problem of size ni in CUl

i
 is considered to be the maximum execution

time needed by its CUs of level l − 1 for solving the portion of the problem
assigned to each of them, ni,j according to the Level_l-1_Performance_Informa-
tion. The execution time for each CU of level l, CUl−1

i,j
 , is the addition of the com-

munication time ( Tc ) for receiving operands and sending results back from/to the
data source, CUl−1

i,0
 , plus the working time for the solution of that subproblem,

Tw . So, the theoretical optimum time is represented as

 With this approach, the installation process for the level l, with l > 0 , does not
entail additional experimentation, since it is based completely on the information
from the previous level, Level_l-1_Performance_Information. The only experi-
mentation necessary is that of level 0, to obtain the performance of the CUs and
the time of the links at that basic level.

(3)Tw(CU
l
i
, ni) = min

APl
i

{
max
CUl−1

i,j

{
Tw(CU

l−1
i,j

, ni,j) + Tc(CU
l−1
i,0

, ni,j)
}}

9928	 J. Cámara et al.

1 3

•	 EES: Exhaustive Experimental Searching The installation can be executed
for the routine in CUl

i
 for each subproblem of the sizes collected in Level_l_

Installation_Set for this CU. For each of these sizes, the goal is to find the
combination of values of the AP (in a range preset by the system manager) of
that CU, APl

i
 , which provides the lowest execution time.

•	 HES: Heuristic Experimental Searching An exhaustive experimental search
may be excessively costly, so it can be replaced by another type of experimen-
tal search that includes some kind of heuristics, for example, starting from the
selection of the APl

i
 values made by the theoretical–practical modeling and

performing a local experimental search around these values.

Fig. 1   Operation diagram of the autotuning engine for the CU i of level l, CUl

i
 , searching the best values

for its adjustable parameters, APl

i
 , for each problem size, n

i
 , at Level_l_Installation_Set 

9929

1 3

Integrating software and hardware hierarchies in an autotuning…

As described, the information of the CU of the previous level corresponds to the
black boxes and, therefore, not have to be modified, but is used in the corresponding
method chosen for CUl

i
 . So, the search space is considerably reduced. In the same

way, the autotuning work for each CU is isolated and modulated and can be done
simultaneously for all the units at the same level, using the appropriate method for
each of them.

4.2 � Methodology for a two‑dimensional hardware+software hierarchy

Like the hardware, the software is also organized in levels, with the basic routines
at the lowest level, and the routines calling to those basic routines at a higher level.
Any number of levels can be considered.

We illustrate the methodology with two levels for the hardware (a node as level
1 and its CUs as level 0) and two levels for the software (the basic matrix mul-
tiplication as level 0 routine and, as an example of level 1 routine, the Strassen
multiplication).

There are different possibilities when installing a routine of a certain level on a
computing platform of a particular level. Figure 2 shows the possibilities for various
levels of routines and platforms. A circle in the figure (labeled SRHP) represents that
the routine S of level R is installed in platform H of level P. An arrow labeled SRHP-
srhp represents that routine S of level R is installed in platform H of level P using
the information obtained when the routine s of level r was installed in platform h of
level p (Level_srhp_Peformance_Information). Only two levels (continuous lines)
are explained in detail, and some possible extensions (dashed lines) are commented
on elsewhere. A bottom-up approach is used to show how the methodology works
starting from the lowest level (S0H0) to the highest level (S1H1):

•	 Level S0H0: The installation of the basic routine in each basic computing unit is
carried out by searching for the best AP values for the problem sizes previously

Fig. 2   Possibilities of installation of routines for various levels of software and hardware

9930	 J. Cámara et al.

1 3

stored in Level_S0H0_Installation_Set. Since S0H0 is the lowest level of the
hierarchy, the search method employed for this level is exhaustive. The values
of the AP for which the lowest experimental time is obtained are stored together
with the performance (GFlops) in Level_S0H0_Performance_Information. In
our example, no parameters are considered for GPU, and only the performance is
stored. For CPU and MIC, the number of threads is also selected.

•	 Level S0H1: When a routine of level 0, S0, is installed on the node, H1, the
amount of work to assign to each CU of the node needs to be determined, as well
as the parameters for each particular CU for the problem size assigned to it. The
values of these parameters could be selected either by working directly at level
1 (S0H1) or by the hierarchical approach delegating the selection of the param-
eters at this level to the installation of the previous level (S0H1-s0h0). In order
to select the best theoretical partition of the work, the hierarchical approach can
be applied to obtain the information from the previous level (Level_S0H0_Per-
formance_Information) and then perform experiments varying the amount of
work assigned to each CU (EES or HES method) or use Eq. (3) without experi-
mentation (TPM method).

•	 Level S1H0: The installation of the level 1 routine, S1 (Strassen multiplica-
tion in our example), in a CU of level 0 could be made at the highest level with
experiments, varying the AP values for both this routine and the basic routine.
With the hierarchical approach (S1H0-s0h0), only the parameter value of the
level 1 routine (Strassen recursion level) is searched for, whereas the parameter
values of the basic routine (number of threads for CPU or MIC) would be taken
from the information generated by S0H0 (Level_S0H0_Performance_Informa-
tion). In this way, the performance information from a lower level (S0H0) is
reused for higher levels of hardware (S0H1-s0h0) or software (S1H0-s0h0)
and could also be reused for other nodes with the same basic CUs or for other
routines which call to the basic matrix multiplication with sizes and shapes simi-
lar to those used in the installation in S0H0 (Level_S0H0_Installation_Set).

•	 Level S1H1: The installation at the highest level can be made hierarchically in
three ways:

•	 S1H1-s0h1: The routine S1 uses S0 optimized for the level 1 of the hard-
ware, so the exploitation of the heterogeneity of the system is delegated to S0.
Only AP values of S1 have to be selected. In our example, the basic matrix
multiplication optimized for the node is used to perform each multiplication
in the base case of the Strassen recursion. The distribution of the data to the
CUs is made inside the basic multiplication. Therefore, the only parameter
value to be determined is the recursion level of the Strassen method.

•	 S1H1-s0h0: Each basic routine, S0, used in S1 is assigned to a single
CU of level 0. The decision on how to perform this mapping is a parameter
whose value must be determined. An exhaustive experimental search (EES
method) for the best allocation among all the possible ones may not be viable.
An alternative is to perform a theoretical search based on the performance
information of each basic CU obtained and saved when S0 has been installed
at level H0 (TPM method). In the example, each basic multiplication is per-

9931

1 3

Integrating software and hardware hierarchies in an autotuning…

formed in a single CU, with the parameters (number of threads in CPU and
MIC) stored in S0H0 for the matrix sizes closest to those of the matrices to
be multiplied. So, the preferred recursion level is selected together with the
distribution of the basic multiplications between the basic CUs in the node.
Another alternative is to use dynamic scheduling [3]. The basic matrices are
distributed among the CUs dynamically, starting with the fastest units, and
the information from S0H0 can be used to decide the CU in which the basic
multiplications are assigned. The working distribution with lowest computing
inactivity gaps is searched for [21].

•	 S1H1-s1h0: This case is similar to S1H1-s0h0, with the only difference
that now, S0 (the basic multiplication) is replaced by S1 (a Strassen multipli-
cation), for which different values of its AP (recursion level) may have been
selected for each computing unit when S1 was installed on it with S1H0.

	  The three possibilities can be tested (experimentally or theoretically) to select
the best of the three configurations: successive basic multiplications which
exploit the heterogeneity in the node, and sets of basic or Strassen multiplica-
tions assigned to the basic CUs. Each possibility corresponds to a different
implementation of the Strassen method for the node. Furthermore, the schema
in Fig. 2 follows the dynamic programming paradigm, with the value for levels 1
for software and hardware obtained from the optima stored for lower levels.

Table 1 summarizes the AP for levels 0 and 1 of hardware (multicore, GPU and
MIC as CUs at level 0, and nodes composed of level 0 CUs at level 1) and software
(basic multiplication at level 0, Strassen multiplication at level 1).

The parameters for the basic matrix multiplication are those in Eq. (2). For the
Strassen multiplication, the APs are the recursion level and the parallel imple-
mentation of Strassen to be used (s0h1, s0h0 or s1h0). For the two Strassen

Table 1   Algorithmic parameters, AP, for levels 0 and 1 in the hierarchy (Fig. 2), with the basic matrix
multiplication as level 0 routine and the Strassen multiplication as an example of level 1 routine

S0H0 S0H1
No. of threads in multicore or MIC ( ti,j in Eq. 2) Work distribution between CUs of H0 ( ni,j in Eq. 2)
S1H0 S1H1
Strassen recursion level Hierarchical implementation scheme:

(a) S1H1-s0h1
 Strassen recursion level

(b) S1H1-s0h0
 Strassen recursion level
 Mapping: basic multiplications to CUs of H0

(c) S1H1-s1h0
 Mapping: Strassen multiplications to CUs of

H0

9932	 J. Cámara et al.

1 3

implementations based on simultaneous execution of routines optimized for H0
(s0h0 or s1h0), an additional parameter would be the mapping of these routines to
the CUs of level 0.

5 � Experimental results

This section shows some results to illustrate the installation of some linear algebra
routines using a hierarchical autotuning engine at different levels, as shown in Fig. 2.
The basic matrix multiplication and the Strassen multiplication are used for software
levels 0 and 1, and level 1 of hardware corresponds to a hybrid node with a multi-
core CPU and several coprocessors such as GPUs and/or Xeon Phi (placed at level
0). Experiments have been carried out in four computing nodes:

•	 6c_GTX480: 1 CPU AMD Phenom II X6 1075T (6 cores) and 1 GPU NVIDIA
GForce GTX 480 Fermi.

•	 24c_K20c: 4 CPU Intel Xeon E7530 (hexa-core) (24 cores) and 1 GPU NVIDIA
Tesla K20c (Kepler).

•	 12c_2C2075_4GTX590: 2 CPU Intel Xeon E5-2620 (hexa-core) (12 cores), 2
GPUs NVIDIA Tesla C2075 Fermi and 4 GPUs NVIDIA GeForce GTX 590
Fermi.

•	 12c_GT640K_2MIC: 2 CPU Intel Xeon E5-2620 (hexa-core) (12 cores), 1 GPU
NVIDIA GeForce GT 640 Kepler and 2 Intel Xeon Phi 3120A KNC.

MKL was used for the basic multiplications on CPU and Xeon Phi, and cuBLAS
was used for GPU, but the methodology works in the same way for other basic
libraries, and the results are similar.

How the hierarchical autotuning works is shown. At the lowest level (S0H0),
experiments are carried out for each problem size in the Installation_Set and each
basic CU considered. The sizes in the Installation_Set must be representative of the
sizes with which the matrix multiplication will be called at higher levels. Hence,
square and rectangular matrices need to be experimented with. For example, for
multiplications of size 1000, in the multiplication on a node, matrix B may be par-
titioned in different sizes, and multiplications of sizes 1000 × 1000 × n , for several
values of n ≤ 1000 , are included in the Installation_Set. When more values of n are
used, the installation time increases, but the information generated represents the
behavior of the routine better. Table 2 shows the installation time for the different

Table 2   Installation time (in s) on each CU, for an Installation_Set with sizes s, s, n, with
s = 1000, 2000, 3000, 4000, 5000, 6000 and n = k

s

50

 , k = 1, 2,… , 50

6c_GTX480 24c_K20c 12c_2C2075_4GTX590 12c_GT640K_2MIC

CPU GTX480 CPU K20 CPU C2075 GTX590 CPU MIC GT640

8491 791 29147 133 9655 183 297 2867 9707 1241

9933

1 3

Integrating software and hardware hierarchies in an autotuning…

CUs of each computing node considered for sizes 1000, 2000, 3000, 4000, 5000,
6000 and 50 intermediate values of n for each size s ( s

50
 , 2 s

50
,… , s ). The total instal-

lation time is the highest of the times in all the CUs (the installation is made in
parallel). The time is around 9 h, which is affordable because it runs just once, but a
HES method with guided search can be used to reduce this time [10].

On advancing one level in the hardware, for an installation S0H1-s0h0 the infor-
mation of lower level can be used at least two ways:

•	 At this level, we consider an Installation_Set with square matrices of sizes
1500, 2500, 3500, 4500, 5500, 6500 and 7500. The workload to assign to each
CU is decided for each matrix size with the relative performance of each unit
stored for the closest problem size in the Installation_Set of S0H0 (for exam-
ple, for 1500 the values associated with 1000 are considered). Figure 3 shows,

1500 2500 3500 4500 5500 6500 7500

0

20

40

60

80

100

Matrix Size

P
er
ce
nt
ag
e
of

L
oa
d

6c GTX480

CPU GPU

1500 2500 3500 4500 5500 6500 7500

0

20

40

60

80

100

Matrix Size

P
er
ce
nt
ag
e
of

L
oa
d

24c K20c

CPU GPU

1500 2500 3500 4500 5500 6500 7500

0

20

40

60

80

100

Matrix Size

P
er
ce
nt
ag
e
of

L
oa
d

12c 2C2075 4GTX590

CPU GPU0 GPU1 GPU2
GPU3 GPU4 GPU5

1500 2500 3500 4500 5500 6500 7500

0

20

40

60

80

100

Matrix Size

P
er
ce
nt
ag
e
of

L
oa
d

12c GT640K 2MIC

CPU GPU
MIC0 MIC1

Fig. 3   Workload distribution among the CUs in the four nodes considered for different matrix sizes

9934	 J. Cámara et al.

1 3

for the four nodes considered, the workload distribution to each CU. The work-
load changes for the different nodes. For large problems, it tends to be propor-
tional to the relative computational capacity of the units, but this is not so for
smaller problems (especially in 24c_K20c and 12c_GT640K_2MIC), which can
be closer to the sizes used when the routine is used inside routines of higher
level. In 12c_2C2075_4GTX590, the fastest GPUs are GPU1 and GPU5, and
the GPU of 12c_GT640K_2MIC is much slower than the other units, so the
amount of work assigned to it is residual. No experiments are carried out in the
installation, for which the information from S0H0 is used, so the installation
time is very low if the node comprises only a few CUs. For more CUs, this time
increases. In 12c_GT640K_2MIC, with four units, it is around 0.28 s, and in
12c_2C2075_4GTX590 with seven CUs, it grows to 126.35 s.

•	 The prediction based only on the performance of the CUs without considering
transfers (TPM method in S0H0 performing experiments only on the compu-
tation) gives estimations far from the experimental measures. An installation
with experiments which include transfers produces more accurate predictions
and consequently facilitates better decisions. One possibility to reuse informa-
tion from level 0 is to experimentally measure the transfer cost between CPU
and coprocessors and to use accurate models of the execution time including the
transfers cost [5]. The time is the maximum of the computational plus transfer
times from all the CUs according to Eq. (3) (TPM method in S0H0 perform-
ing experiments on computation and communications). Figure 4 compares in
12c_2C2075_4GTX590 and 12c_GT640K_ 2MIC the prediction with and with-
out transfers. The installation is made at level 0 and 1 with sizes 1000, 2000,
3000, 4000, 5000 and 6000 (and the corresponding rectangular matrices), and
square multiplications of sizes 1500, 3500 and 5500 are used for the compari-
son. Without transfers, the number of columns of matrix B assigned to each CU
is obtained with Eq. (3) with Tc = 0 , and when the transfers are considered, the
GFlops for each entry of the Installation_Set are obtained with executions for

1500 3500 5500
0.5

0.6

0.7

0.8

0.9

1

Matrix Size

Q
uo

ti
en
t

12c 2C2075 4GTX590

Without Transfers
With Transfers

1500 3500 5500
0.5

0.6

0.7

0.8

0.9

1

Matrix Size

Q
uo

ti
en
t

12c GT640K 2MIC

Without Transfers
With Transfers

Fig. 4   Quotient of the execution time with respect to the lowest experimental, with the workload distri-
bution selected depending on whether the transfers are taken into account or not in the execution time
model (Eq. 3)

9935

1 3

Integrating software and hardware hierarchies in an autotuning…

each size and workload distribution in the equation, so the values Tc are consid-
ered. This figure shows, for each test size, the quotient of the execution time with
respect to the lowest experimental, which is obtained with exhaustive executions
and varying the workload distribution among CUs. The decisions are better (quo-
tient closer to 1) when the transfers are considered, and improve when the prob-
lem size increases.

When the level of the software increases (S1H0), we consider the Strassen mul-
tiplication in individual CUs. The optimum recursion level is obtained experimen-
tally for the sizes in the Installation_Set on each CPU, GPU and Xeon Phi, and the
parameters of the basic routine are delegated to the installation in the previous level
of software (S1H0-s0h0). Figure 5 shows the quotient of the execution time of the
direct multiplication with respect to that of the Strassen algorithm, when varying
the recursion level and the number of threads, for matrix sizes 8000 and 12,000, for

1 2 3 4 5 6 7 8 9 10 11 12
0.2

0.4

0.6

0.8

1

1.2

1.4

GTX590 L1

GTX590 L2

No. of Threads

T
im

e
L
ev
el

0
/
T
im

e
L
ev
el

L

12c 2C2075 4GTX590

L1 L2 L3

1 2 3 4 5 6 7 8 9 10 11 12
0.2

0.4

0.6

0.8

1

1.2

1.4

K20c L1

K20c L2

No. of Threads

T
im

e
L
ev
el

0
/
T
im

e
L
ev
el

L

24c K20c

L1 L2 L3

1 2 3 4 5 6 7 8 9 10 11 12
0.2

0.4

0.6

0.8

1

1.2

1.4

No. of Threads

T
im

e
L
ev
el

0
/
T
im

e
L
ev
el

L

12c 2C2075 4GTX590

L1 L2 L3

1 2 3 4 5 6 7 8 9 10 11 12
0.2

0.4

0.6

0.8

1

1.2

1.4

K20c L1

K20c L2

No. of Threads

T
im

e
L
ev
el

0
/
T
im

e
L
ev
el

L

24c K20c

L1 L2 L3

Fig. 5   Quotient of the execution time of the direct multiplication with respect to that of the Strassen’s
algorithm with recursion levels L1, L2 and L3, for matrix sizes 8000 (up) and 12,000 (bottom), in two
nodes, with one GPU on each node

9936	 J. Cámara et al.

1 3

the nodes 12c_2C2075_4GTX590 and K20c. The quotient for the slowest (GTX590)
and the fastest (K20c) GPUs are also shown (for GTX590 only size 8000 due to
memory constraints). According to the figure, due to the higher speed of the GPUs,
the selected level would be 0 (direct multiplication), whereas for the CPUs the pre-
ferred level for large matrix sizes is 1.

At the highest level of hardware and software, the Strassen multiplication can run with
successive executions of the basic multiplication using the whole node in the basic case,
so the only parameter to be selected is the level of recursion, since the workload distri-
bution to the CUs is done in the basic multiplication (S1H1-s0h1). Table 3 shows, for
different matrix sizes, the configuration with which the lowest execution time is obtained
as well as the parameters selected. The results are for 12c_2C2075_4GTX590, and the
use of all the GPUs in the node generates many transfers and a degradation on the per-
formance, so different combinations of CPU and GPUs are considered (CPU+C2075,
CPU+GTX590, C2075+GTX590, CPU+C2075+GTX590 and CPU+2C2075). The
lowest times are always obtained with CPU+2C2075, which is the configuration with
the highest computational capacity. For small matrices, the direct method is preferred,
but due to memory limitations, Strassen with one recursion level can be used for larger
matrices. For very large matrices, two levels are required. The workload of the Strassen
method corresponds to that of the basic multiplication: half the size of the matrix or a
quarter, for levels 1 and 2. The parameters are autonomously selected by the heterogene-
ous multiplication on the node (S0H1).

6 � Possible extensions

The methodology can be extended in both hardware and software hierarchies
(dashed lines in Fig. 2).

One possibility of extension in the hardware hierarchy is to use of the concept of
subnodes (subsets of CUs) inside a node. In this way, each subnode becomes a CU
of level 1 and the node is at level 2. The handling of the subnode concept introduces

Table 3   Method with which the lowest execution time is obtained, varying the matrix size on
12c_2C2075_4GTX590 

The parameter selection in the basic multiplication is shown

Size Best method Parameter selection for basic multiplications

Combination of CUs CPU threads Workload distribution

CPU 1st C2075 2nd C2075

2000 Direct CPU + 2 C2075 7 240 880 880
4000 Direct CPU + 2 C2075 12 880 1520 1600
6000 StrassenL1 CPU + 2 C2075 11 600 1200 1200
8000 StrassenL1 CPU + 2 C2075 12 880 1520 1600
10,000 StrassenL1 CPU + 2 C2075 10 1000 2000 2000
12,000 StrassenL2 CPU + 2 C2075 11 600 1200 1200

9937

1 3

Integrating software and hardware hierarchies in an autotuning…

more flexibility to the proposal. When several routines without temporal dependen-
cies are executed, there are two options: to execute one after the other using the node
as a whole for each one of them, or to manage the node as a set of subnodes where
simultaneous executions of these routines are mapped.

In the example, we have a S1H2 strategy, in which the Strassen multiplication is
optimized for the node with dynamic assignation of the basic multiplications to CUs
of level 1 (subnodes). Figure 6 compares the execution time of the Strassen multi-
plication of level 1 on 12c_2C2075_4GTX590 for different configurations of sub-
nodes: 1 × (12c + 2C2075) , one subnode composed of 12 CPU cores plus 2 C2075;
2 × (6c + C2075) , two subnodes, each composed of 6 CPU cores plus 1 C2075 card;
and 2 × (4c + C2075) + 1 × (4c + GTX590) , three subnodes, each with 4 CPU cores,
two of them with one C2075 and the other with one GTX590. The extension of the hier-
archy in the hardware contributes to lower execution times. Furthermore, the workload
distribution to the basic CUs of each subnode is decided with information from instal-
lation of the basic multiplication on each subnode. For example, for matrix size 10,000,
the executions with C2075 distribute 1000 columns of matrix B to the CPU and 4000
columns to the GPU, and in GTX590 the distribution is 1600 for CPU and 3400 to the
GPU.

Another possibility of extension in the hardware hierarchy is to treat the whole clus-
ter of nodes as a CU of level 2. A basic matrix multiplication which distributes matrix
B among the nodes is a level 0 routine running on a level 2 CU (S0H2). Table 4 shows
the workload distribution in a cluster made up of four nodes connected through Giga-
bit Ethernet. The installation time is short (less than 1 min) thanks to the use of the

Fig. 6   Execution time with
different hierarchical con-
figurations of the computational
node as a group of subnodes,
varying the matrix size in
12c_2C2075_4GTX590 with
two C2075 and one GTX590

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

Matrix Size

E
xe
cu

ti
on

T
im

e
(s
ec
on

ds
)

12c 2C2075 4GTX590

1x(12+2T)
2x(6+T)

2x(4+T)+1x(4+G)

Table 4   Workload distribution of the matrix multiplication in a cluster with four nodes

Size 6c_GTX480 24c_K20c 12c_2C2075_4GTX590 12c_
GT640K_2MIC

1750 350 350 700 350
2750 550 825 1375 0
3750 750 1125 1500 375
4750 950 1425 1900 475
5750 575 1725 2300 1150

9938	 J. Cámara et al.

1 3

information stored at level 1. The deviation of the performance with respect to the
lowest experimental (exhaustive experiments varying the workload) is maintained at
an acceptable level (between 2 and 10%) without user intervention.

Regarding extensions in the software hierarchy, other linear algebra routines
can be optimized at level 1 using the same information of the installation for
lower level routines. As an example, we consider an LU factorization by blocks on
12c_2C2075_4GTX590 (S1H1) which uses the matrix multiplication on each basic
CU (S0H0). Table 5 shows the workload distribution and the GFlops achieved with
the four multiplications inside the LU factorization of size 10,000 × 10,000 with a
block size of 1000. The division shows the number of columns of matrix B dis-
tributed to the CPU and to each GPU. The six GPUs in the node are considered,
but, due to the high CPU–GPU transfer cost, only three are used. The first and third
GPUs are GTX590, and the second is a C2075, so more work is assigned to the
C2075. When the size of the multiplication decreases, the same happens with the
performance and the number of GPUs selected to work with.

Another aspect of possible extensions to the proposed methodology arises from
the comparison with existing standard proposals. Figure 7 shows a performance
comparison of the matrix multiplication routine in a node with a multicore CPU and
two different GPUs (S0H1) using different approaches:

•	 Peak is obtained for each problem size, n, by adding the performance obtained
for this size with the MKL multiplication on CPU and the cuBLAS multiplica-
tion on each GPU. It represents the maximum achievable performance with these
basic libraries, but the actual multiplications are carried out in each CU with
smaller matrices ( ngpu1 , ngpu2 and ncpu , with n = ngpu1 + ngpu2 + ncpu ) and so the
experimental results will not be close to this value.

•	 The performance using different searching methods for the AP values (HL, in
green). HLExh corresponds to an exhaustive search on all the possible values of
the parameters. The hierarchy is not exploited, and it represents a more realistic
upper-bound than Peak. Two methods use the information of level 0, performing
a search on the parameters of level 1 only (S0H1-s0h0): the exhaustive experi-

Table 5   Work division and
performance of the successive
matrix multiplications in an LU
factorization 10,000 × 10,000
with block size 1000 × 1000 , in
12c_2C2075_4GTX590 

Matrix multiplication
n × 1000 × n

Workload distribution Performance

Size CPU,GPU0,GPU1,GPU2 GFlops

9000 1980,1800,3420,1800 236
8000 1920,1600,3040,1440 377
7000 1540,1400,2660,1400 359
6000 1560,960,2280,1200 340
5000 1100,1000,1900,1000 320
4000 800,800,1600,800 292
3000 780,720,1500,0 273
2000 440,520,1040,0 211
1000 480,0,520,0 134

9939

1 3

Integrating software and hardware hierarchies in an autotuning…

mental search ( HLEES ) and the heuristic experimental search ( HLHES ) described in
Sect. 4.1. The total installation time employed for the problem sizes 1000, 2000, ...,
7000 was more than 3 days for HLExh , around 4 h for HLEES and around 4 min for
HLHES . So, there is a great reduction in the search time with the hierarchical meth-
odology, mainly when some heuristic is used.

•	 The performance obtained with OpenTuner (OT, in blue) where the search time has
been limited to the search time of the three HL versions.

It can be observed how the performance obtained with each version of HL versus OT
limited with the same search time are very similar, but slightly favorable to HL. The
average loss of OpenTuner with respect to HLExh is 11.2%, and 15.7% with the time
limits from HLEES and HLHES . The average losses of HLEES and HLHES are 12.8% and
4.8%, respectively. So, the systematic application of metaheuristics by OpenTuner gives
slightly better results than those with the exhaustive search of the parameters at level
1, but a heuristic search on those parameters greatly improves the results with lower
search times. This leads us to think that the integration of OpenTuner in the hierarchi-
cal approach as one of the possible methods to be used at some levels of the hierarchy
could be interesting, and that neighborhood-based search methods should be consid-
ered to be included in OpenTuner.

7 � Conclusions and future research

This work presents an autotuning methodology for parallel routines on hetero-
geneous platforms composed of hybrid nodes with a different number and type
of processing elements (multicore and manycore). A hierarchical bottom-up

1000 2000 3000 4000 5000 6000 70000
50
100
150
200
250
300
350
400
450
500
550
600

Matrix Order

G
flo

p/
s

12c 1GTX590 1C2075

Peak
HLExh OTExh time

HLEES OTEES time

HLHES OTHES time

1000 2000 3000 4000 5000 6000 7000
−5

0

5

10

15

20

25

30

Matrix Order

L
os
s
(i
n
%
)
w
it
h
re
sp
ec
t
to

H
L
E
x
h

12c 1GTX590 1C2075

HLEES OTEES time

HLHES OTHES time

Fig. 7   Matrix multiplication routine in 12c_1GTX590_1C2075. Comparison of the performance
obtained using three searching algorithms of the proposed hierarchical methodology (HL) and Open-
Tuner (OT) with the search time limit employed by each HL version. The results are the mean of ten
executions for each matrix size. On the left, the performance in GFlops. On the right, the loss of perfor-
mance of the methods exploiting the hierarchy and OpenTuner with the corresponding time limit with
respect to the exhaustive search method

9940	 J. Cámara et al.

1 3

approach is proposed. The integration of the software and hardware hierarchies
allows the complexity of this autotuning process to be addressed in a decentral-
ized and modular manner. As proof of concept, the methodology is described
using the matrix multiplication kernel like basic routine, and the extension to
higher-level routines is discussed with the Strassen multiplication. The optimiza-
tion of the basic multiplications is performed at the lowest level of the hierarchy
for the underlying computing system, whereas the combination of those multipli-
cations and their assignation to the computing units is decided at a second level.
Therefore, the efficient exploitation of the computing units in the node is del-
egated to the underlying direct multiplication in the base case.

The Strassen multiplication is used as a case study to show the viability of the
hierarchical autotuning methodology, but it can be applied similarly to other lin-
ear algebra routines, like matrix factorizations (LU, QR, Cholesky) implemented
by blocks, with the most computationally demanding kernel being the matrix
multiplication. So, the information generated when the basic matrix multiplica-
tion is installed at the different levels of a computing platform can be used for
several higher-level routines, for which it is necessary to consider installations of
the basic multiplication with sizes and shapes similar to those used in the routines
in which it is going to be used. Furthermore, there are other routines of lower
order which are called inside the higher-level routines. In the Strassen multiplica-
tion, these are additions and subtractions, and in matrix factorizations, they are
normally non-block factorizations on smaller matrices and solutions of triangu-
lar systems also working on smaller matrices. For a particular routine, a graph
of dependencies should be developed, and the tasks in the graph assigned to the
computing units statically or dynamically. Even in linear algebra packages with
dynamic assignation of tasks, the block or tile sizes need to be selected, so we are
working on the adaptation of the methodology for libraries with dynamic assigna-
tion (e.g., Chameleon).

The hierarchical structure of the methodology makes it a generic approach.
The search for appropriate values of the parameters for a problem size can be
very costly, and so an exhaustive search (experimentation or theoretical estima-
tion for all the possible values of the parameters, or for a representative set of
values) can be substituted by a smarter search. OpenTuner is a powerful tool for
parameters selection, and its integration in the hierarchical methodology is being
considered. In any case, the use of more sophisticated search methods would con-
tribute to reduce the installation time, but they do not change the validity of the
hierarchical approach.

Acknowledgements  This work was supported by the Spanish MCIU and AEI, as well as European Com-
mission FEDER funds, under Grant RTI2018-098156-B-C53.

References

	 1.	 Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek P, Tomov
S (2009) Numerical linear algebra on emerging architectures: the PLASMA and MAGMA pro-
jects. J Phys: Conf Ser 180(1):012037

9941

1 3

Integrating software and hardware hierarchies in an autotuning…

	 2.	 Ansel J, Kamil S, Veeramachaneni K, Ragan-Kelley J, Bosboom J, O’Reilly U-M, Amarasinghe S
(2014) OpenTuner: An extensible framework for program autotuning. In: 23rd International Confer-
ence on Parallel Architectures and Compilation Techniques. Edmonton, Canada, ACM, pp 303–316

	 3.	 Augonnet C, Thibault S, Namyst R, Wacrenier P-A (2011) StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurr Comput: Pract Exp 23(2):187–198

	 4.	 Batory D (1992) The design and implementation of hierarchical software systems with reusable
components. ACM Trans Softw Eng Methodol 1:355–398

	 5.	 Bernabé G, Cuenca J, García L-P, Giménez D (2015) Auto-tuning techniques for linear algebra
routines on hybrid platforms. J Comput Sci 10:299–310

	 6.	 Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra JJ, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK user’s guide. Soci-
ety for Industrial and Applied Mathematics, Philadelphia

	 7.	 Cámara J, Cuenca J, Giménez D (2019) Hierarchical automatic optimization of high and medium
level linear algebra routines. In: 18th International Conference on Computational and Mathemat-
ical Methods in Science and Engineering

	 8.	 Chameleon: Dense linear algebra subroutines for heterogeneous and distributed architectures.
https​://gitla​b.inria​.fr/solve​rstac​k/chame​leon. Accessed Sept 2019

	 9.	 cuBLAS. http://docs.nvidi​a.com/cuda/cubla​s/. Accessed Sept 2019
	10.	 Cuenca J, García L-P, Giménez D, Herrera F-J (2017) Guided installation of basic linear algebra

routines in a cluster with manycore components. Concurr Comput: Pract Exp 29(15):e4112
	11.	 Dackland K, Kågström B (1996) A hierarchical approach for performance analysis of Sca-

LAPACK-based routines using the distributed linear algebra machine. In: Applied Parallel Com-
puting, Industrial Computation and Optimization, Third International Workshop, PARA96. Lyn-
gby, Denmark, pp 186–195

	12.	 Fatica M (2009) Accelerating Linpack with CUDA on heterogenous clusters. In: 2nd Workshop on
General Purpose Processing on Graphics Processing Units. NY, USA, ACM, New York, pp 46–51

	13.	 Golub G, Van Loan CF (2013) Matrix computations, 4th edn. The John Hopkins University
Press, Baltimore

	14.	 Goto K, van de Geijn RA (2008) Anatomy of high-performance matrix multiplication. ACM
Trans Math Softw 34(3):12:1–12:25

	15.	 Hasanov K, Quintin J-N, Lastovetsky AL (2015) Hierarchical approach to optimization of paral-
lel matrix multiplication on large-scale platforms. J Supercomput 71(11):3991–4014

	16.	 Intel MKL. http://softw​are.intel​.com/en-us/intel​-mkl/. Accessed Sept 2019
	17.	 Ohshima S, Kise K, Katagiri T, Yuba T (2007) Parallel processing of matrix multiplication in

a CPU and GPU heterogeneous environment. In: 7th International Conference on High Perfor-
mance Computing for Computational Science. Springer-Verlag, pp 305–318

	18.	 Pfaffe P, Grosser T, Tillmann M (2019) Efficient hierarchical online-autotuning: A case study on
polyhedral accelerator mapping. In: Proceedings of the ACM International Conference on Super-
computing, ICS ’19, New York, USA, ACM, pp 354–366

	19.	 PLASMA. http://icl.cs.utk.edu/plasm​a/. Accessed Sept 2019
	20.	 Porterfield A, Bhalachandra S, Wang W, Fowler R (2016) Variability: a tuning headache. In:

2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp 1069–1072

	21.	 Stanisic L, Thibault S, Legrand A, Videau B, Méhaut J-F (2015) Faithful performance predic-
tion of a dynamic task-based runtime system for heterogeneous multi-core architectures. Concurr
Comput: Pract Exp 27(16):4075–4090

	22.	 Williams S, Oliker L, Carter J, Shalf J (2011) Extracting ultra-scale Lattice Boltzmann perfor-
mance via hierarchical and distributed auto-tuning. In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC ’11, New York,
USA, ACM, pp 1–12

	23.	 Yokota R, Barba L (2012) Hierarchical N-body simulations with autotuning for heterogeneous
systems. Comput Sci Eng 14(3):30–39

	24.	 Zhong Z, Rychkov V, Lastovetsky AL (2015) Data partitioning on multicore and multi-GPU plat-
forms using functional performance models. IEEE Trans Comput 64(9):2506–2518

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://gitlab.inria.fr/solverstack/chameleon
http://docs.nvidia.com/cuda/cublas/
http://software.intel.com/en-us/intel-mkl/
http://icl.cs.utk.edu/plasma/

	Integrating software and hardware hierarchies in an autotuning method for parallel routines in heterogeneous clusters
	Abstract
	1 Introduction
	2 Related work
	3 Parallel implementations of the naive three-loop multiplication and the Strassen method
	3.1 Matrix multiplication
	3.2 Strassen multiplication

	4 Methodology for hierarchical autotuning
	4.1 Basis of the autotuning methodology
	4.2 Methodology for a two-dimensional hardware+software hierarchy

	5 Experimental results
	6 Possible extensions
	7 Conclusions and future research
	Acknowledgements
	References

