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Abstract
A hierarchical approach for autotuning linear algebra routines on heterogeneous 
platforms is presented. Hierarchy helps to alleviate the difficulties of tuning parallel 
routines for high-performance computing systems. This paper analyzes the applica-
tion of the hierarchical approach at both the hardware and software levels, using 
the basic matrix multiplication and the Strassen multiplication as proof of concept 
on multicore+coprocessor nodes. In this way, the hierarchical approach allows par-
tial delegation of the efficient exploitation of the computing units in the node to the 
underlying direct autotuned matrix multiplication used in the base case.

Keywords  Autotuning · Hybrid programming · Heterogeneous computing · 
Multicore · Manycore

1  Introduction

Today, standard computational nodes include one multicore CPU together with one 
or more coprocessors (typically GPUs and/or Many Integrated Core, e.g., the Intel 
Xeon Phi). The basic computational components of these nodes have different archi-
tectures and computational capacities; therefore, they can be organized/managed 
hierarchically, with the basic computing units (CPU, GPU and MIC) having sepa-
rate memory spaces and communicating with data transfers between them across 
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the memory associated with the CPUs and those of the coprocessors. This heteroge-
neous and hierarchical organization makes the efficient exploitation of routines for 
those nodes difficult and requires techniques for exploiting the underlying heteroge-
neity and hierarchy.

Elsewhere, linear algebra routines are widely used as basic computational ker-
nels in scientific software, and their optimization for today’s standard heterogene-
ous nodes would lead to important improvements when solving scientific problems 
based on highly efficient linear algebra libraries such as MKL [16], PLASMA [19], 
MAGMA [1] and Chameleon [8], whose routines base their optimization in imple-
mentations by blocks or tiles in which the basic kernel is a highly optimized matrix 
multiplication [13]. The matrix multiplication has been widely researched, and there 
are now many highly efficient implementations for today’s systems [14, 15, 17]. As 
with computational systems, the optimization of linear algebra routines has tradi-
tionally been based on a hierarchical schema [6], with a set of basic linear algebra 
routines (BLAS) and higher-level routines (LAPACK) developed by blocks or tiles.

A hierarchical and decentralized schema can be applied for the automatic opti-
mization of linear algebra software for heterogeneous CPU+multicoprocessor 
nodes [7]. This paper analyzes the application of the hierarchical approach to both 
the hardware and the software in multicore+multicoprocessor nodes and uses a tra-
ditional three-loop matrix multiplication and a Strassen multiplication as proof of 
concept.

The rest of the paper is organized as follows. Section 2 makes a brief comparison 
with other hierarchical optimization approaches. The implementations of the par-
allel routines used to illustrate the methodology of hierarchical autotuning for lin-
ear algebra (the traditional and the Strassen matrix multiplications) are presented 
in Sect. 3. Section 4 outlines the general ideas of the hierarchical methodology, and 
Sect.  5 gives some experimental results which show the applicability of the pro-
posal. Section  6 comments on some possible extensions of the methodology, and 
Sect. 7 concludes the paper.

2 � Related work

Traditionally, hierarchical approaches have been applied in the design of general 
software [4], and, particularly, in the design of parallel linear algebra routines [6] 
and also in the theoretical study of its execution time [11]. Recently, they have 
been applied in the development of linear algebra routines for both clusters and dis-
tributed systems. The autotuning process applied to these routines must take into 
account this degree of heterogeneity when searching for the best adjustable param-
eter values [23].

The search for satisfactory values for those adjustable parameters when tuning a 
routine for a hierarchical computational system can be improved in various ways. 
The convex form of the function that represents the execution time [24] or accurate 
theoretical models [5] can be used. An optimization problem of finding the values 
of the parameters which minimize the execution time can be approached through 
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metaheuristic methods (e.g., OpenTuner [2]) or with heuristics tailored for each spe-
cific routine to optimize [10].

Some works exploit heterogeneity to improve this search. When applying Open-
Tuner, the parameters can be grouped hierarchically and the tool can be applied 
incrementally to the parameters at different levels. In [15], the hierarchical organi-
zation of the communication scheme is exploited for the optimization of a parallel 
matrix multiplication.

In [18], a study of each routine is carried out to perform a division of the search 
space of the adjustable parameters, a graph of dependencies is generated, and then, 
independent subspaces composed of the nodes of the graph may be tuned with indi-
vidual search algorithms. In [22], the autotuning process is divided into different 
phases that work with different sets of adjustable parameters: local parameters such 
as loop unrolling, those related to the threads and, finally, those referring to the dis-
tribution of work between nodes.

As far as we know, our proposal is the first to consider a hierarchy in both the 
hardware and software, in a two-dimensional way. Furthermore, the set of param-
eters considered at each level form a black box that is autotuned separately and can 
be reused in the autotuning process at any upper level box, which includes it in the 
hardware or software hierarchy. In addition, variability is an important issue in auto-
tuning [20], and the hierarchical optimization methodology used here allows us to 
intensify the experimentation at different levels depending on the degree of variabil-
ity observed for each routine and for each computing unit, and different optimiza-
tion methods (theoretical, experimental, hybrid) or software (e.g., OpenTuner) can 
be used at different levels depending on how accurate and efficient they prove to be 
for the particular software and hardware.

3 � Parallel implementations of the naive three‑loop multiplication 
and the Strassen method

The basic and the Strassen matrix multiplication are used to show the application 
of the hierarchical autotuning methodology. The development of routines which are 
competitive with efficient implementations of the matrix multiplication is out of the 
scope of this paper.

3.1 � Matrix multiplication

Our implementation of the basic matrix multiplication for multicore+coprocessor 
is heterogeneous. The data are unevenly distributed between the computing units 
(CUs) in the node, and the computations (matrix multiplication) are carried out 
in each CU with optimized routines. The amount of work to assign to each CU is 
obtained taking in consideration their relative speed.

For the matrix multiplication C = �AB + �C , A ∈ Rm×k , B ∈ Rk×n , C ∈ Rm×n , 
matrix A is replicated in all the CUs in the node, and matrix B is scattered in 
adjacent blocks of columns. There are some works on techniques for balancing 
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the workload between the CPU and the coprocessors [12, 24]. If the node com-
prises one multicore CPU and c coprocessors (referenced from 1 to c), the matrix 
multiplication can be expressed as C = �(AB1|⋯ |ABc+1) + �(C1|⋯ |Cc+1) , where 
�ABi + �Ci , with 1 ≤ j ≤ c , is assigned to the coprocessor j, and �ABc+1 + �Cc+1 
to the CPU, with Bi ∈ Rk×ni , 

∑c+1

i=1
ni = n.

In a node with one multicore CPU and c coprocessors, of which g are GPU 
and m MIC ( c = g + m ), our task is to determine the optimum values of ni , 
1 ≤ i ≤ c + 1 . Thus, it depends on the speed of the CUs in the node when running 
the basic matrix multiplication when optimized for the current matrix sizes. We 
use the basic multiplication from MKL [16] for CPU and Xeon Phi and the one 
from cuBLAS [9] for GPU, but the methodology can be applied with other basic 
libraries and for other versions of the matrix multiplication.

When the matrix multiplication is executed on a platform composed of N het-
erogeneous nodes, where node i has a multicore CPU (with pi cores) and ci accel-
erators, the set of adjustable parameters, whose values must be chosen for setting 
the execution of the routine, is:

with ni,j being the number of columns of matrix B mapped to the accelerator j of 
node i ( 1 ≤ i ≤ N , 1 ≤ j ≤ ci ) and ni,cpu the part mapped to the CPU in node i. The 
search space for the best values for these adjustable parameters following a global 
method would be huge. For example, if matrix B is divided into blocks with s con-
secutive columns, the number of possible assignations has an order of 

O

��
N +

∑N

i=1
ci

� n

s

�
 . Alternatively, with a hierarchical approach, the search space 

to decide the distribution between nodes has an order of O
(
N

n

s

)
 , and in each node i 

the order is O
((

1 + ci
) n

s

)
 . If a heuristics method based on the exploration of the 

neighborhood is used to guide the search [10] and the neighbors for a given configu-
ration are those obtained just by transferring a quantity of workload from one ele-

ment to other, the neighborhood has an order of O
��

N +
∑N

i=1
ci

�2
�

 without the 

hierarchical approach, and O
(
N2

)
 and O

((
1 + ci

)2) for the whole platform and the 
nodes with the hierarchical methodology.

Besides, if we take into account the set of adjustable parameters for each basic 
computational element, the search space grows considerably. For instance, when 
using the MKL multiplication, the number of MKL threads influences the execu-
tion time; therefore, the value for this parameter must be considered for CPU and 
Xeon Phi. So, if ti,j represents the number of threads to use in each element j of 
each node i, the set of parameters in Eq. (1) is now

(1)
{n1,1,… , n1,j,… , n1,c1 , n1,cpu,… , ni,1,… , ni,j,… , ni,ci , ni,cpu,… ,

nN,1,… , nN,j,… , nN,cN , nN,cpu},
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3.2 � Strassen multiplication

The Strassen multiplication has a recursive schema in which the basic operations are 
at the same time matrix multiplications, which are carried out with efficient imple-
mentations for the system in hand. It follows the typical divide-and-conquer recur-
sive paradigm. We consider square matrices, and the matrices to be multiplied and 
the resulting matrix are divided into four submatrices of size n

2
×

n

2
 . The routine is 

then called recursively seven times with matrices of this size. Ten additions and sub-
tractions of matrices n

2
×

n

2
 are carried out to form the matrices to be multiplied, and 

the seven resulting matrices are combined with eight operations of the same type 
and size. For submatrices smaller than a base size, the direct heterogeneous multipli-
cation is used.

When the Strassen multiplication is installed directly on a node, the parame-
ters to be selected are those corresponding to the Strassen method (recursion level 
and assignation of the basic multiplications to the CUs of the node), and for each 
basic multiplication the parameters considered depending on the unit to which it is 
assigned (workload for each basic CU, and the number of threads on CPU and Xeon 
Phi, and no parameter for GPU).

4 � Methodology for hierarchical autotuning

An autotuning methodology is used to provide linear algebra routines with auto-
matic optimization capability for heterogeneous nodes. Thus, when the user wants 
to run the routine for a specific problem size, the execution is close to optimum 
in execution time without user intervention. Some decisions which depend on the 
computing units and the routine implementation need to be taken. They correspond 
to parameters (Algorithmic Parameters, AP) which determine the way in which the 
routine is run. The values of the parameters which give the lowest execution time are 
searched for, either theoretically or empirically. In complex computational systems, 
with a large number of CUs, the number of parameters and their possible values can 
be huge, making it impossible to explore exhaustively all the possible values for all 
the parameters (Eq. 2). The hierarchical approach helps to overcome this problem, 
organizing the computational units and/or the routines hierarchically, with smaller 
groups of decisions to take at each level of the hierarchy, and taking these decisions 
at each level using the information from previous levels.

(2)

{n1,1,… , n1,j,… , n1,c1 , n1,cpu,… , ni,1,… , ni,j,… , ni,ci , ni,cpu,… ,

nN,1,… , nN,j,… , nN,cN , nN,cpu,

t1,1,… , t1,j,… , t1,c1 , t1,cpu,… , ti,1,… , ti,j,… , ti,ci , ti,cpu,… ,

tN,1,… , tN,j,… , tN,cN , tN,cpu}
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4.1 � Basis of the autotuning methodology

The hardware dimension is considered here in order to simplify the description of 
the autotuning methodology. The following subsection shows how this proposal is 
applied to a two-dimensional hardware+software hierarchy.

In general, a platform is considered as a computing unit, CU, of the highest level 
made up of a set of computing units of a lower level. Recursively, this approach is 
used for each CU at the successive levels until the basic level is reached. In a node, 
the whole node is considered at the highest level (level 1), and the basic computing 
units (CPU, GPU, MIC or any other accelerator) composing the node are considered 
at the lowest level (level 0). Additionally, the computing units of level l − 1 which 
compose a unit at a level l are connected through links of level l − 1 , which corre-
spond to how the units at level l − 1 communicate data. Those links can be physical 
or logical. For example, the CUs can share the memory and the data can be commu-
nicated through the memory; or they can be nodes in a cluster with an interconnec-
tion network. In our case, the three types of computing units in a node communicate 
with transfers to and from the CPU and the coprocessors.

Given a routine, at each level l of the hierarchy, the search process for the best 
AP values is performed simultaneously in all the CUs of this level, for each problem 
size previously selected and stored in Level_l_Installation_Set by the platform man-
ager. When the installation finishes for level l, the best AP values and the perfor-
mance information obtained for each CU and for each link (bandwidth and latency) 
are stored in Level_l_Performance_Information (Fig.  1). This information is used 
to guide the process at level l + 1 , so reducing the complexity and the time of the 
installation process. As mentioned, the search for the best values of the AP for each 
CU can be made independently, which makes it easier to use different methods for 
searching, for each level and even for each CU. Some possible methods are:

•	 TPM: Theoretical-Practical Modeling In this approach, the working time, Tw , to 
solve the problem of size ni in CUl

i
 is considered to be the maximum execution 

time needed by its CUs of level l − 1 for solving the portion of the problem 
assigned to each of them, ni,j according to the Level_l-1_Performance_Informa-
tion. The execution time for each CU of level l, CUl−1

i,j
 , is the addition of the com-

munication time ( Tc ) for receiving operands and sending results back from/to the 
data source, CUl−1

i,0
 , plus the working time for the solution of that subproblem, 

Tw . So, the theoretical optimum time is represented as 

 With this approach, the installation process for the level l, with l > 0 , does not 
entail additional experimentation, since it is based completely on the information 
from the previous level, Level_l-1_Performance_Information. The only experi-
mentation necessary is that of level 0, to obtain the performance of the CUs and 
the time of the links at that basic level.

(3)Tw(CU
l
i
, ni) = min

APl
i

{
max
CUl−1

i,j

{
Tw(CU

l−1
i,j

, ni,j) + Tc(CU
l−1
i,0

, ni,j)
}}
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•	 EES: Exhaustive Experimental Searching The installation can be executed 
for the routine in CUl

i
 for each subproblem of the sizes collected in Level_l_

Installation_Set for this CU. For each of these sizes, the goal is to find the 
combination of values of the AP (in a range preset by the system manager) of 
that CU, APl

i
 , which provides the lowest execution time.

•	 HES: Heuristic Experimental Searching An exhaustive experimental search 
may be excessively costly, so it can be replaced by another type of experimen-
tal search that includes some kind of heuristics, for example, starting from the 
selection of the APl

i
 values made by the theoretical–practical modeling and 

performing a local experimental search around these values.

Fig. 1   Operation diagram of the autotuning engine for the CU i of level l, CUl

i
 , searching the best values 

for its adjustable parameters, APl

i
 , for each problem size, n

i
 , at Level_l_Installation_Set 
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As described, the information of the CU of the previous level corresponds to the 
black boxes and, therefore, not have to be modified, but is used in the corresponding 
method chosen for CUl

i
 . So, the search space is considerably reduced. In the same 

way, the autotuning work for each CU is isolated and modulated and can be done 
simultaneously for all the units at the same level, using the appropriate method for 
each of them.

4.2 � Methodology for a two‑dimensional hardware+software hierarchy

Like the hardware, the software is also organized in levels, with the basic routines 
at the lowest level, and the routines calling to those basic routines at a higher level. 
Any number of levels can be considered.

We illustrate the methodology with two levels for the hardware (a node as level 
1 and its CUs as level 0) and two levels for the software (the basic matrix mul-
tiplication as level 0 routine and, as an example of level 1 routine, the Strassen 
multiplication).

There are different possibilities when installing a routine of a certain level on a 
computing platform of a particular level. Figure 2 shows the possibilities for various 
levels of routines and platforms. A circle in the figure (labeled SRHP) represents that 
the routine S of level R is installed in platform H of level P. An arrow labeled SRHP-
srhp represents that routine S of level R is installed in platform H of level P using 
the information obtained when the routine s of level r was installed in platform h of 
level p (Level_srhp_Peformance_Information). Only two levels (continuous lines) 
are explained in detail, and some possible extensions (dashed lines) are commented 
on elsewhere. A bottom-up approach is used to show how the methodology works 
starting from the lowest level (S0H0) to the highest level (S1H1):

•	 Level S0H0: The installation of the basic routine in each basic computing unit is 
carried out by searching for the best AP values for the problem sizes previously 

Fig. 2   Possibilities of installation of routines for various levels of software and hardware



9930	 J. Cámara et al.

1 3

stored in Level_S0H0_Installation_Set. Since S0H0 is the lowest level of the 
hierarchy, the search method employed for this level is exhaustive. The values 
of the AP for which the lowest experimental time is obtained are stored together 
with the performance (GFlops) in Level_S0H0_Performance_Information. In 
our example, no parameters are considered for GPU, and only the performance is 
stored. For CPU and MIC, the number of threads is also selected.

•	 Level S0H1: When a routine of level 0, S0, is installed on the node, H1, the 
amount of work to assign to each CU of the node needs to be determined, as well 
as the parameters for each particular CU for the problem size assigned to it. The 
values of these parameters could be selected either by working directly at level 
1 (S0H1) or by the hierarchical approach delegating the selection of the param-
eters at this level to the installation of the previous level (S0H1-s0h0). In order 
to select the best theoretical partition of the work, the hierarchical approach can 
be applied to obtain the information from the previous level (Level_S0H0_Per-
formance_Information) and then perform experiments varying the amount of 
work assigned to each CU (EES or HES method) or use Eq. (3) without experi-
mentation (TPM method).

•	 Level S1H0: The installation of the level 1 routine, S1 (Strassen multiplica-
tion in our example), in a CU of level 0 could be made at the highest level with 
experiments, varying the AP values for both this routine and the basic routine. 
With the hierarchical approach (S1H0-s0h0), only the parameter value of the 
level 1 routine (Strassen recursion level) is searched for, whereas the parameter 
values of the basic routine (number of threads for CPU or MIC) would be taken 
from the information generated by S0H0 (Level_S0H0_Performance_Informa-
tion). In this way, the performance information from a lower level (S0H0) is 
reused for higher levels of hardware (S0H1-s0h0) or software (S1H0-s0h0) 
and could also be reused for other nodes with the same basic CUs or for other 
routines which call to the basic matrix multiplication with sizes and shapes simi-
lar to those used in the installation in S0H0 (Level_S0H0_Installation_Set).

•	 Level S1H1: The installation at the highest level can be made hierarchically in 
three ways:

•	 S1H1-s0h1: The routine S1 uses S0 optimized for the level 1 of the hard-
ware, so the exploitation of the heterogeneity of the system is delegated to S0. 
Only AP values of S1 have to be selected. In our example, the basic matrix 
multiplication optimized for the node is used to perform each multiplication 
in the base case of the Strassen recursion. The distribution of the data to the 
CUs is made inside the basic multiplication. Therefore, the only parameter 
value to be determined is the recursion level of the Strassen method.

•	 S1H1-s0h0: Each basic routine, S0, used in S1 is assigned to a single 
CU of level 0. The decision on how to perform this mapping is a parameter 
whose value must be determined. An exhaustive experimental search (EES 
method) for the best allocation among all the possible ones may not be viable. 
An alternative is to perform a theoretical search based on the performance 
information of each basic CU obtained and saved when S0 has been installed 
at level H0 (TPM method). In the example, each basic multiplication is per-



9931

1 3

Integrating software and hardware hierarchies in an autotuning…

formed in a single CU, with the parameters (number of threads in CPU and 
MIC) stored in S0H0 for the matrix sizes closest to those of the matrices to 
be multiplied. So, the preferred recursion level is selected together with the 
distribution of the basic multiplications between the basic CUs in the node. 
Another alternative is to use dynamic scheduling [3]. The basic matrices are 
distributed among the CUs dynamically, starting with the fastest units, and 
the information from S0H0 can be used to decide the CU in which the basic 
multiplications are assigned. The working distribution with lowest computing 
inactivity gaps is searched for [21].

•	 S1H1-s1h0: This case is similar to S1H1-s0h0, with the only difference 
that now, S0 (the basic multiplication) is replaced by S1 (a Strassen multipli-
cation), for which different values of its AP (recursion level) may have been 
selected for each computing unit when S1 was installed on it with S1H0.

	    The three possibilities can be tested (experimentally or theoretically) to select 
the best of the three configurations: successive basic multiplications which 
exploit the heterogeneity in the node, and sets of basic or Strassen multiplica-
tions assigned to the basic CUs. Each possibility corresponds to a different 
implementation of the Strassen method for the node. Furthermore, the schema 
in Fig. 2 follows the dynamic programming paradigm, with the value for levels 1 
for software and hardware obtained from the optima stored for lower levels.

Table  1 summarizes the AP for levels 0 and 1 of hardware (multicore, GPU and 
MIC as CUs at level 0, and nodes composed of level 0 CUs at level 1) and software 
(basic multiplication at level 0, Strassen multiplication at level 1).

The parameters for the basic matrix multiplication are those in Eq. (2). For the 
Strassen multiplication, the APs are the recursion level and the parallel imple-
mentation of Strassen to be used (s0h1, s0h0 or s1h0). For the two Strassen 

Table 1   Algorithmic parameters, AP, for levels 0 and 1 in the hierarchy (Fig. 2), with the basic matrix 
multiplication as level 0 routine and the Strassen multiplication as an example of level 1 routine

S0H0 S0H1
No. of threads in multicore or MIC ( ti,j in Eq. 2) Work distribution between CUs of H0 ( ni,j in Eq. 2)
S1H0 S1H1
Strassen recursion level Hierarchical implementation scheme:

(a) S1H1-s0h1
   Strassen recursion level

(b) S1H1-s0h0
   Strassen recursion level
   Mapping: basic multiplications to CUs of H0

(c) S1H1-s1h0
   Mapping: Strassen multiplications to CUs of 

H0
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implementations based on simultaneous execution of routines optimized for H0 
(s0h0 or s1h0), an additional parameter would be the mapping of these routines to 
the CUs of level 0.

5 � Experimental results

This section shows some results to illustrate the installation of some linear algebra 
routines using a hierarchical autotuning engine at different levels, as shown in Fig. 2. 
The basic matrix multiplication and the Strassen multiplication are used for software 
levels 0 and 1, and level 1 of hardware corresponds to a hybrid node with a multi-
core CPU and several coprocessors such as GPUs and/or Xeon Phi (placed at level 
0). Experiments have been carried out in four computing nodes:

•	 6c_GTX480: 1 CPU AMD Phenom II X6 1075T (6 cores) and 1 GPU NVIDIA 
GForce GTX 480 Fermi.

•	 24c_K20c: 4 CPU Intel Xeon E7530 (hexa-core) (24 cores) and 1 GPU NVIDIA 
Tesla K20c (Kepler).

•	 12c_2C2075_4GTX590: 2 CPU Intel Xeon E5-2620 (hexa-core) (12 cores), 2 
GPUs NVIDIA Tesla C2075 Fermi and 4 GPUs NVIDIA GeForce GTX 590 
Fermi.

•	 12c_GT640K_2MIC: 2 CPU Intel Xeon E5-2620 (hexa-core) (12 cores), 1 GPU 
NVIDIA GeForce GT 640 Kepler and 2 Intel Xeon Phi 3120A KNC.

MKL was used for the basic multiplications on CPU and Xeon Phi, and cuBLAS 
was used for GPU, but the methodology works in the same way for other basic 
libraries, and the results are similar.

How the hierarchical autotuning works is shown. At the lowest level (S0H0), 
experiments are carried out for each problem size in the Installation_Set and each 
basic CU considered. The sizes in the Installation_Set must be representative of the 
sizes with which the matrix multiplication will be called at higher levels. Hence, 
square and rectangular matrices need to be experimented with. For example, for 
multiplications of size 1000, in the multiplication on a node, matrix B may be par-
titioned in different sizes, and multiplications of sizes 1000 × 1000 × n , for several 
values of n ≤ 1000 , are included in the Installation_Set. When more values of n are 
used, the installation time increases, but the information generated represents the 
behavior of the routine better. Table 2 shows the installation time for the different 

Table 2   Installation time (in s) on each CU, for an Installation_Set with sizes s,  s,  n, with 
s = 1000, 2000, 3000, 4000, 5000, 6000 and n = k

s

50

 , k = 1, 2,… , 50

6c_GTX480 24c_K20c 12c_2C2075_4GTX590 12c_GT640K_2MIC

CPU GTX480 CPU K20 CPU C2075 GTX590 CPU MIC GT640

8491 791 29147 133 9655 183 297 2867 9707 1241
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CUs of each computing node considered for sizes 1000, 2000, 3000, 4000, 5000, 
6000 and 50 intermediate values of n for each size s ( s

50
 , 2 s

50
,… , s ). The total instal-

lation time is the highest of the times in all the CUs (the installation is made in 
parallel). The time is around 9 h, which is affordable because it runs just once, but a 
HES method with guided search can be used to reduce this time [10].

On advancing one level in the hardware, for an installation S0H1-s0h0 the infor-
mation of lower level can be used at least two ways:

•	 At this level, we consider an Installation_Set with square matrices of sizes 
1500, 2500, 3500, 4500, 5500, 6500 and 7500. The workload to assign to each 
CU is decided for each matrix size with the relative performance of each unit 
stored for the closest problem size in the Installation_Set of S0H0 (for exam-
ple, for 1500 the values associated with 1000 are considered). Figure 3 shows, 
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Fig. 3   Workload distribution among the CUs in the four nodes considered for different matrix sizes
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for the four nodes considered, the workload distribution to each CU. The work-
load changes for the different nodes. For large problems, it tends to be propor-
tional to the relative computational capacity of the units, but this is not so for 
smaller problems (especially in 24c_K20c and 12c_GT640K_2MIC), which can 
be closer to the sizes used when the routine is used inside routines of higher 
level. In 12c_2C2075_4GTX590, the fastest GPUs are GPU1 and GPU5, and 
the GPU of 12c_GT640K_2MIC is much slower than the other units, so the 
amount of work assigned to it is residual. No experiments are carried out in the 
installation, for which the information from S0H0 is used, so the installation 
time is very low if the node comprises only a few CUs. For more CUs, this time 
increases. In 12c_GT640K_2MIC, with four units, it is around 0.28 s, and in 
12c_2C2075_4GTX590 with seven CUs, it grows to 126.35 s.

•	 The prediction based only on the performance of the CUs without considering 
transfers (TPM method in S0H0 performing experiments only on the compu-
tation) gives estimations far from the experimental measures. An installation 
with experiments which include transfers produces more accurate predictions 
and consequently facilitates better decisions. One possibility to reuse informa-
tion from level 0 is to experimentally measure the transfer cost between CPU 
and coprocessors and to use accurate models of the execution time including the 
transfers cost [5]. The time is the maximum of the computational plus transfer 
times from all the CUs according to Eq.  (3) (TPM method in S0H0 perform-
ing experiments on computation and communications). Figure  4 compares in 
12c_2C2075_4GTX590 and 12c_GT640K_ 2MIC the prediction with and with-
out transfers. The installation is made at level 0 and 1 with sizes 1000, 2000, 
3000, 4000, 5000 and 6000 (and the corresponding rectangular matrices), and 
square multiplications of sizes 1500, 3500 and 5500 are used for the compari-
son. Without transfers, the number of columns of matrix B assigned to each CU 
is obtained with Eq. (3) with Tc = 0 , and when the transfers are considered, the 
GFlops for each entry of the Installation_Set are obtained with executions for 
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each size and workload distribution in the equation, so the values Tc are consid-
ered. This figure shows, for each test size, the quotient of the execution time with 
respect to the lowest experimental, which is obtained with exhaustive executions 
and varying the workload distribution among CUs. The decisions are better (quo-
tient closer to 1) when the transfers are considered, and improve when the prob-
lem size increases.

When the level of the software increases (S1H0), we consider the Strassen mul-
tiplication in individual CUs. The optimum recursion level is obtained experimen-
tally for the sizes in the Installation_Set on each CPU, GPU and Xeon Phi, and the 
parameters of the basic routine are delegated to the installation in the previous level 
of software (S1H0-s0h0). Figure 5 shows the quotient of the execution time of the 
direct multiplication with respect to that of the Strassen algorithm, when varying 
the recursion level and the number of threads, for matrix sizes 8000 and 12,000, for 
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the nodes 12c_2C2075_4GTX590 and K20c. The quotient for the slowest (GTX590) 
and the fastest (K20c) GPUs are also shown (for GTX590 only size 8000 due to 
memory constraints). According to the figure, due to the higher speed of the GPUs, 
the selected level would be 0 (direct multiplication), whereas for the CPUs the pre-
ferred level for large matrix sizes is 1.

At the highest level of hardware and software, the Strassen multiplication can run with 
successive executions of the basic multiplication using the whole node in the basic case, 
so the only parameter to be selected is the level of recursion, since the workload distri-
bution to the CUs is done in the basic multiplication (S1H1-s0h1). Table 3 shows, for 
different matrix sizes, the configuration with which the lowest execution time is obtained 
as well as the parameters selected. The results are for 12c_2C2075_4GTX590, and the 
use of all the GPUs in the node generates many transfers and a degradation on the per-
formance, so different combinations of CPU and GPUs are considered (CPU+C2075, 
CPU+GTX590, C2075+GTX590, CPU+C2075+GTX590 and CPU+2C2075). The 
lowest times are always obtained with CPU+2C2075, which is the configuration with 
the highest computational capacity. For small matrices, the direct method is preferred, 
but due to memory limitations, Strassen with one recursion level can be used for larger 
matrices. For very large matrices, two levels are required. The workload of the Strassen 
method corresponds to that of the basic multiplication: half the size of the matrix or a 
quarter, for levels 1 and 2. The parameters are autonomously selected by the heterogene-
ous multiplication on the node (S0H1).

6 � Possible extensions

The methodology can be extended in both hardware and software hierarchies 
(dashed lines in Fig. 2).

One possibility of extension in the hardware hierarchy is to use of the concept of 
subnodes (subsets of CUs) inside a node. In this way, each subnode becomes a CU 
of level 1 and the node is at level 2. The handling of the subnode concept introduces 

Table 3   Method with which the lowest execution time is obtained, varying the matrix size on 
12c_2C2075_4GTX590 

The parameter selection in the basic multiplication is shown

Size Best method Parameter selection for basic multiplications

Combination of CUs CPU threads Workload distribution

CPU 1st C2075 2nd C2075

2000 Direct CPU + 2 C2075 7 240 880 880
4000 Direct CPU + 2 C2075 12 880 1520 1600
6000 StrassenL1 CPU + 2 C2075 11 600 1200 1200
8000 StrassenL1 CPU + 2 C2075 12 880 1520 1600
10,000 StrassenL1 CPU + 2 C2075 10 1000 2000 2000
12,000 StrassenL2 CPU + 2 C2075 11 600 1200 1200
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more flexibility to the proposal. When several routines without temporal dependen-
cies are executed, there are two options: to execute one after the other using the node 
as a whole for each one of them, or to manage the node as a set of subnodes where 
simultaneous executions of these routines are mapped.

In the example, we have a S1H2 strategy, in which the Strassen multiplication is 
optimized for the node with dynamic assignation of the basic multiplications to CUs 
of level 1 (subnodes). Figure  6 compares the execution time of the Strassen multi-
plication of level 1 on 12c_2C2075_4GTX590 for different configurations of sub-
nodes: 1 × (12c + 2C2075) , one subnode composed of 12 CPU cores plus 2 C2075; 
2 × (6c + C2075) , two subnodes, each composed of 6 CPU cores plus 1 C2075 card; 
and 2 × (4c + C2075) + 1 × (4c + GTX590) , three subnodes, each with 4 CPU cores, 
two of them with one C2075 and the other with one GTX590. The extension of the hier-
archy in the hardware contributes to lower execution times. Furthermore, the workload 
distribution to the basic CUs of each subnode is decided with information from instal-
lation of the basic multiplication on each subnode. For example, for matrix size 10,000, 
the executions with C2075 distribute 1000 columns of matrix B to the CPU and 4000 
columns to the GPU, and in GTX590 the distribution is 1600 for CPU and 3400 to the 
GPU.

Another possibility of extension in the hardware hierarchy is to treat the whole clus-
ter of nodes as a CU of level 2. A basic matrix multiplication which distributes matrix 
B among the nodes is a level 0 routine running on a level 2 CU (S0H2). Table 4 shows 
the workload distribution in a cluster made up of four nodes connected through Giga-
bit Ethernet. The installation time is short (less than 1 min) thanks to the use of the 

Fig. 6   Execution time with 
different hierarchical con-
figurations of the computational 
node as a group of subnodes, 
varying the matrix size in 
12c_2C2075_4GTX590 with 
two C2075 and one GTX590

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

Matrix Size

E
xe
cu

ti
on

T
im

e
(s
ec
on

ds
)

12c 2C2075 4GTX590

1x(12+2T)
2x(6+T)

2x(4+T)+1x(4+G)

Table 4   Workload distribution of the matrix multiplication in a cluster with four nodes

Size 6c_GTX480 24c_K20c 12c_2C2075_4GTX590 12c_
GT640K_2MIC

1750 350 350 700 350
2750 550 825 1375 0
3750 750 1125 1500 375
4750 950 1425 1900 475
5750 575 1725 2300 1150
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information stored at level 1. The deviation of the performance with respect to the 
lowest experimental (exhaustive experiments varying the workload) is maintained at 
an acceptable level (between 2 and 10%) without user intervention.

Regarding extensions in the software hierarchy, other linear algebra routines 
can be optimized at level 1 using the same information of the installation for 
lower level routines. As an example, we consider an LU factorization by blocks on  
12c_2C2075_4GTX590 (S1H1) which uses the matrix multiplication on each basic 
CU (S0H0). Table 5 shows the workload distribution and the GFlops achieved with 
the four multiplications inside the LU factorization of size 10,000 × 10,000 with a 
block size of 1000. The division shows the number of columns of matrix B dis-
tributed to the CPU and to each GPU. The six GPUs in the node are considered, 
but, due to the high CPU–GPU transfer cost, only three are used. The first and third 
GPUs are GTX590, and the second is a C2075, so more work is assigned to the 
C2075. When the size of the multiplication decreases, the same happens with the 
performance and the number of GPUs selected to work with.

Another aspect of possible extensions to the proposed methodology arises from 
the comparison with existing standard proposals. Figure  7 shows a performance 
comparison of the matrix multiplication routine in a node with a multicore CPU and 
two different GPUs (S0H1) using different approaches:

•	 Peak is obtained for each problem size, n, by adding the performance obtained 
for this size with the MKL multiplication on CPU and the cuBLAS multiplica-
tion on each GPU. It represents the maximum achievable performance with these 
basic libraries, but the actual multiplications are carried out in each CU with 
smaller matrices ( ngpu1 , ngpu2 and ncpu , with n = ngpu1 + ngpu2 + ncpu ) and so the 
experimental results will not be close to this value.

•	 The performance using different searching methods for the AP values (HL, in 
green). HLExh corresponds to an exhaustive search on all the possible values of 
the parameters. The hierarchy is not exploited, and it represents a more realistic 
upper-bound than Peak. Two methods use the information of level 0, performing 
a search on the parameters of level 1 only (S0H1-s0h0): the exhaustive experi-

Table 5   Work division and 
performance of the successive 
matrix multiplications in an LU 
factorization 10,000 × 10,000 
with block size 1000 × 1000 , in 
12c_2C2075_4GTX590 

Matrix multiplication 
n × 1000 × n

Workload distribution Performance

Size CPU,GPU0,GPU1,GPU2 GFlops

9000 1980,1800,3420,1800 236
8000 1920,1600,3040,1440 377
7000 1540,1400,2660,1400 359
6000 1560,960,2280,1200 340
5000 1100,1000,1900,1000 320
4000 800,800,1600,800 292
3000 780,720,1500,0 273
2000 440,520,1040,0 211
1000 480,0,520,0 134
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mental search ( HLEES ) and the heuristic experimental search ( HLHES ) described in 
Sect. 4.1. The total installation time employed for the problem sizes 1000, 2000, ..., 
7000 was more than 3 days for HLExh , around 4 h for HLEES and around 4 min for 
HLHES . So, there is a great reduction in the search time with the hierarchical meth-
odology, mainly when some heuristic is used.

•	 The performance obtained with OpenTuner (OT, in blue) where the search time has 
been limited to the search time of the three HL versions.

It can be observed how the performance obtained with each version of HL versus OT 
limited with the same search time are very similar, but slightly favorable to HL. The 
average loss of OpenTuner with respect to HLExh is 11.2%, and 15.7% with the time 
limits from HLEES and HLHES . The average losses of HLEES and HLHES are 12.8% and 
4.8%, respectively. So, the systematic application of metaheuristics by OpenTuner gives 
slightly better results than those with the exhaustive search of the parameters at level 
1, but a heuristic search on those parameters greatly improves the results with lower 
search times. This leads us to think that the integration of OpenTuner in the hierarchi-
cal approach as one of the possible methods to be used at some levels of the hierarchy 
could be interesting, and that neighborhood-based search methods should be consid-
ered to be included in OpenTuner.

7 � Conclusions and future research

This work presents an autotuning methodology for parallel routines on hetero-
geneous platforms composed of hybrid nodes with a different number and type 
of processing elements (multicore and manycore). A hierarchical bottom-up 
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approach is proposed. The integration of the software and hardware hierarchies 
allows the complexity of this autotuning process to be addressed in a decentral-
ized and modular manner. As proof of concept, the methodology is described 
using the matrix multiplication kernel like basic routine, and the extension to 
higher-level routines is discussed with the Strassen multiplication. The optimiza-
tion of the basic multiplications is performed at the lowest level of the hierarchy 
for the underlying computing system, whereas the combination of those multipli-
cations and their assignation to the computing units is decided at a second level. 
Therefore, the efficient exploitation of the computing units in the node is del-
egated to the underlying direct multiplication in the base case.

The Strassen multiplication is used as a case study to show the viability of the 
hierarchical autotuning methodology, but it can be applied similarly to other lin-
ear algebra routines, like matrix factorizations (LU, QR, Cholesky) implemented 
by blocks, with the most computationally demanding kernel being the matrix 
multiplication. So, the information generated when the basic matrix multiplica-
tion is installed at the different levels of a computing platform can be used for 
several higher-level routines, for which it is necessary to consider installations of 
the basic multiplication with sizes and shapes similar to those used in the routines 
in which it is going to be used. Furthermore, there are other routines of lower 
order which are called inside the higher-level routines. In the Strassen multiplica-
tion, these are additions and subtractions, and in matrix factorizations, they are 
normally non-block factorizations on smaller matrices and solutions of triangu-
lar systems also working on smaller matrices. For a particular routine, a graph 
of dependencies should be developed, and the tasks in the graph assigned to the 
computing units statically or dynamically. Even in linear algebra packages with 
dynamic assignation of tasks, the block or tile sizes need to be selected, so we are 
working on the adaptation of the methodology for libraries with dynamic assigna-
tion (e.g., Chameleon).

The hierarchical structure of the methodology makes it a generic approach. 
The search for appropriate values of the parameters for a problem size can be 
very costly, and so an exhaustive search (experimentation or theoretical estima-
tion for all the possible values of the parameters, or for a representative set of 
values) can be substituted by a smarter search. OpenTuner is a powerful tool for 
parameters selection, and its integration in the hierarchical methodology is being 
considered. In any case, the use of more sophisticated search methods would con-
tribute to reduce the installation time, but they do not change the validity of the 
hierarchical approach.
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