
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:9827–9853
https://doi.org/10.1007/s11227-020-03225-x

1 3

GPU acceleration of Fitch’s parsimony on protein data: 
from Kepler to Turing

Sergio Santander‑Jiménez1 · Miguel A. Vega‑Rodríguez2 · 
Antonio Zahinos‑Márquez2 · Leonel Sousa1

Published online: 4 March 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The analysis of complex biological datasets beyond DNA scenarios is gaining 
increasing interest in current bioinformatics. Particularly, protein sequence data 
introduce additional complexity layers that impose new challenges from a compu-
tational perspective. This work is aimed at investigating GPU solutions to address 
these issues in a representative algorithm from the phylogenetics field: Fitch’s parsi-
mony. GPU strategies are adopted in accordance with the protein-based formulation 
of the problem, defining an optimized kernel that takes advantage of data parallelism 
at the calculations associated with different amino acids. In order to understand the 
relationship between problem sizes and GPU capabilities, an extensive evaluation on 
a wide range of GPUs is conducted, covering all the recent NVIDIA GPU architec-
tures—from Kepler to Turing. Experimental results on five real-world datasets point 
out the benefits that imply the exploitation of state-of-the-art GPUs, representing a 
fitting approach to address the increasing hardness of protein sequence datasets.

Keywords  Parallel computing · Hardware accelerators · GPU architectures · 
Bioinformatics

 *	 Sergio Santander‑Jiménez 
	 sergio.jimenez@tecnico.ulisboa.pt

	 Miguel A. Vega‑Rodríguez 
	 mavega@unex.es

	 Antonio Zahinos‑Márquez 
	 azahinos@alumnos.unex.es

	 Leonel Sousa 
	 leonel.sousa@ist.utl.pt

1	 INESC‑ID, Instituto Superior Técnico, Universidade de Lisboa, 1000‑029 Lisbon, Portugal
2	 Department of Computer and Communications Technologies, University of Extremadura, 

Avda. de la Universidad s/n, 10003 Cáceres, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03225-x&domain=pdf


9828	 S. Santander‑Jiménez et al.

1 3

1  Introduction

Advances in life sciences have been boosted throughout the years by the proposal 
and application of computational techniques to address biological problems. As 
a result, bioinformatics has become one of the most important and challenging 
areas in the current research context [3]. An especially remarkable issue for bio-
informaticians is the hard-to-tackle computational complexity of these problems. 
More specifically, time-consuming workflows involving analysis, inference, and 
prediction procedures are often required to process biological data. On top of 
that, bioinformatics tasks are governed by complex mathematical models and 
strict statistical validation requirements. It is consequently mandatory the appli-
cation of advanced algorithmic designs that exploit the computing capabilities of 
the underlying hardware to minimize execution time and maximize the through-
put. High-performance computing is progressively playing a key role in solving 
these problems, allowing researchers to take advantage of parallelism to acceler-
ate bioinformatics codes. Multiple works have given account of the soundness of 
these approaches, improving the solution of problems in systems biology, genom-
ics, and other related fields [2].

However, the computationally demanding nature of these problems keeps 
growing due to the increasing explosion of biological data. As an illustration, 
next-generation sequencing [15] has led to datasets whose sizes and dimensions 
exceed in several orders of magnitude the number of cores available in traditional 
parallel architectures. Along with this, there is nowadays special emphasis on 
the analysis of complex data beyond classic DNA scenarios [35]. The study of 
protein data, in particular, has a significant impact on the computational costs 
of these problems, since the consideration of twenty amino acids instead of four 
nucleotides imposes new challenges over the data types, the memory access pat-
terns, and the effective exploitation of functional units.

All these complexity factors give as a result a significant rise in the execution 
time of bioinformatics problems. It is thus required the design and development 
of parallel algorithms aimed at addressing these issues by accurately exploiting 
current accelerator devices, particularly the well-established GPUs [31]. Moreo-
ver, it is mandatory to carry out the validation of parallel designs over a wide 
spread of architectures and problem sizes, in order to understand how the pro-
posed solutions take advantage of the offered computing capabilities and their 
benefits in different evaluation scenarios.

This work is aimed at studying the use of GPUs to improve phylogenetic analy-
ses in protein data. Phylogenetic reconstruction is a key problem in current bioin-
formatics, since it deals with the processing of biological sequences of organisms 
to provide hypotheses about their evolutionary history [42]. We will focus on 
the GPU parallelization of Fitch’s algorithm, which provides an implementation 
of the well-known phylogenetic parsimony function [12]. We will detail a GPU 
design of this function based on CUDA [43], adapting the kernel to the specific 
features of protein sequences. In addition, we will undertake an in-depth analy-
sis of the solution over the different GPU architectures proposed by NVIDIA in 



9829

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

recent years: Kepler, Maxwell, Pascal, Volta, and Turing. Five real-world protein 
datasets (comprising over 600,000 amino acids per sequence) will be employed 
for experimental purposes, discussing the evolution of computing capabilities 
in different problem instances. Furthermore, the relevance of the observed par-
allel results will be validated through comparison with other parallel platforms, 
namely multicore multiprocessor systems and Intel Xeon Phi co-processors. The 
contributions of this work are listed below:

•	 Definition of the first functional GPU design of Fitch’s algorithm for protein 
data, adopting proper data encoding and structures in accordance with the char-
acteristics of protein-based alignments.

•	 Comprehensive analysis of compute performance and execution time on five 
CUDA-enabled GPUs: Tesla K40m, GeForce TITAN X, GeForce TITAN Xp, 
Tesla V100, and GeForce RTX 2080Ti.

•	 Discussion on the impact of problem sizes in the observed parallel results, point-
ing out their relationship with the computing capabilities of the analysed GPU 
devices.

•	 Validation of the GPU solution through comparisons with alternative program-
ming approaches, parallel platforms, and other authors’ tools.

This paper is organized as follows: The next section overviews some of the most 
relevant works on the application of GPU approaches to bioinformatics, with spe-
cial emphasis on the particular case of phylogenetics. Section 3 introduces the basis 
of the problem and explains Fitch’s algorithm, while Sect. 4 details the design and 
implementation of the proposed GPU-based parallel solution. The experimental 
analysis and assessment of parallel performance are conducted in Sect. 5. Finally, 
Sect. 6 highlights the conclusions of this paper and future research directions.

2 � Related work

Parallel computing and the use of GPUs have played a key role in the acceleration 
of bioinformatics codes during the last decade [31]. Among others, it can be high-
lighted the work by Klus et al. [22], who proposed the BarraCUDA method to speed 
up biological sequence alignments with GPUs. By using their GPU approach, sig-
nificant temporal gains were attained while also preserving the solution accuracy 
level of the original serial implementation. Other methods for multiple sequence 
alignment, such as T-Coffee [6] and ClustalW [18], have also benefited from the 
parallel processing features of GPUs. In addition, Ohue et  al. tackled the protein-
protein docking prediction problem by proposing a scalable parallel design, based 
on OpenMPI and CUDA, designated as MEGADOCK [32]. Jünger et al. [20] com-
bined novel filtering methods and massively parallel processing with GPUs to detect 
high-order epistasis interactions among genes. In 2018, Quang et al. [34] proposed 
the application of deep learning techniques on GPUs to efficiently address the motif 
discovery problem, achieving noticeable improvements over the reference tool 
MEME, both in terms of execution time and solution quality.



9830	 S. Santander‑Jiménez et al.

1 3

The development of GPU-based approaches has also gained increasing interest 
as a promising research direction in computational phylogenetics. Martins et  al. 
described in [28] a parallel GPU algorithm to accelerate the computation of phylo-
genetic distances. By optimizing the employed data structures and memory trans-
actions, the proposal led to accelerations up to 243x in comparison with the serial 
version. Other works put special emphasis on the parallelization of the phylogenetic 
likelihood function, especially when integrated into Bayesian analysis frameworks. 
For example, Ling et al. proposed an improved implementation of MrBayes based 
on the exploitation of potential parallelism within likelihood computations, allow-
ing the processing of nucleotides sequences eight times faster [25]. Following this 
research line, Pratas et al. presented alternative implementations for multicore sys-
tems, Cell/BE, and GPUs [33], contributing with balanced and scalable approaches 
to parallelize the computation of partial likelihood arrays in DNA data. Bao et al. 
studied the use of multiple GPUs simultaneously to conduct compute-intensive like-
lihood scoring tasks with different granularity [5]. Under the defined multi-GPU 
approach, speedups up to 278x were attained in a GPU cluster composed of 32 
computing nodes. The proposal from Izquierdo-Carrasco et al. in [19] was oriented 
towards the parallel orchestration of likelihood calculations, proposing a design to 
minimize data transfers between the host and the GPU. Besides CUDA, other paral-
lel programming models for GPU computing like OpenACC have been applied to 
accelerate MrBayes [23]. Similarly, different data partitioning schemes have been 
proposed to maximize the exploitation of GPU threads [26]. In 2019, it was released 
the version 3.0 of the BEAGLE library [4], which includes new implementations 
and parallel strategies to improve likelihood computations in hardware accelerators.

It is also possible to find research works that target the application of GPUs, 
CPUs, and hardware customized accelerators to other well-known phylogenetic 
algorithms and scoring functions. This is the case of the UPGMA method for recon-
structing ultrametric phylogenetic trees [17, 24]. As for the phylogenetic parsimony 
function, we can highlight the parallel designs proposed by Alachiotis and Stamata-
kis for CPU and FPGA platforms [1]. Majumder et al. investigated two representa-
tive network-on-chip architectures, namely mesh and four-way hierarchical star, to 
address the breakpoint parsimony phylogeny problem [27]. The proposed architec-
tures implemented innovative approaches to compute breakpoints in terms of solv-
ing multiple instances of the classic travelling salesman problem. Other alternative 
FPGA designs were proposed by Block and Maruyama, who implemented improved 
approaches for indirect tree length calculations on KINTEX-7 XC7K325T-FF2-900 
[7] and incremental tree optimization on VIRTEX-7 XC7VX690T [8]. Moreover, 
Santander-Jiménez et al. proposed different strategies and implementations for par-
simony computation on heterogeneous [37] and GPU-based [38] systems. How-
ever, these previous approaches do not support protein data, thus being their practi-
cal interest limited to evaluation scenarios involving DNA sequences only. These 
previous works neither investigate the additional complexity issues introduced by 
protein-based formulations, nor shed light on how the problem can benefit from the 
enhanced features of state-of-the-art GPUs. This paper is aimed at addressing these 
questions by (1) introducing, to the best of our knowledge, the first functional GPU 
design of the phylogenetic parsimony function for protein data; and (2) undertaking 



9831

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

an exhaustive, in-depth performance evaluation over the different GPU architectures 
published by NVIDIA in recent years, from Kepler to Turing.

3 � Parsimony formulation

Biological data from natural organisms can be processed to investigate the evolu-
tionary events that led to the current biodiversity. Phylogenetic analyses represent 
the core of this kind of studies, since they allow the reconstruction of evolution-
ary hypotheses from the observed biological evidence [42]. More specifically, 
phylogenetic methods take as input a set of N aligned biological sequences 
S = {S0, S1,… , S

N−1} , comprising M characters per sequence. The state values for 
each character in these sequences are defined in accordance with an alphabet � , 
which corresponds to the amino acid state alphabet in the case of protein-based anal-
yses. Evolutionary hypotheses can then be inferred from this input data, being rep-
resented by means of phylogenetic trees T = (V ,E) , where V refers to the node set 
and E the edge set. V classifies the organisms in the phylogenetic topology into two 
groups: (1) terminal nodes, which represent the organisms from the input alignment; 
and (2) internal nodes, which describe hypothetical ancestral species. The branch-
ing patterns in E establish the proposed relationships among the organisms under 
analysis.

One of the most challenging aspects of the phylogenetic reconstruction problem 
is given by the fact that the number of possible phylogenetic trees grows exponen-
tially with N [35]. More specifically, the size of the phylogenetic tree space is gov-
erned by the double factorial (2N − 5)!! . Therefore, the task of reconstructing phy-
logenetic trees usually requires the application of heuristic optimization under the 
guidance of phylogenetic objective functions. In this work, we are interested in stud-
ying the phylogenetic parsimony function, which quantifies the amount of evolution-
ary change observed in the phylogenetic topology. Parsimony represents one of the 
most well-known objective functions in the field, playing a key role in the execution 
of large-scale phylogenetic studies [9, 29] where likelihood-based measurements are 
difficult to apply. Given a multiple sequence alignment of size N ×M and a candi-
date phylogenetic hypothesis T = (V ,E) , the parsimony function computes an inte-
ger-valued score P(T) that measures the number of mutation events verified between 
related nodes at the sequence level:

where (u, v) ∈ E represents the tree branch connecting the nodes u, v ∈ V  , u
i
, v

i
∈ � 

are the state values at the i-th character for u and v, and C(u
i
, v

i
) is a cost function for 

modelling the emergence of mutation between u
i
 and v

i
 . Particularly, C(u

i
, v

i
) = 1 if 

u
i
≠ v

i
 , and C(u

i
, v

i
) = 0 otherwise. The parsimony criterion is aimed at finding the 

simplest evolutionary hypothesis, thus giving more support to the phylogenetic trees 
that minimize P(T).

(1)P(T) =

M
∑

i=1

∑

(u,v)∈E

C(u
i
, v

i
),



9832	 S. Santander‑Jiménez et al.

1 3

One of the most commonly adopted methodologies to compute P(T) is through 
Fitch’s algorithm [12]. The basic idea lies in the computation, for each charac-
ter ( i = 1 to M), of ancestral state sets F

i
 throughout the phylogenetic topology, 

proceeding from the leaves to the root. Given a terminal node l ∈ V  , F
i
(l) cor-

responds to the state value observed at the i-th character of the associated input 
sequence S

l
 . For an internal node u ∈ V  , F

i
(u) is calculated by processing the 

state sets F
i
(v) and F

i
(w) of its children v,w ∈ V  as follows:

By using the expressions in Eq. 2, it is possible to identify mutation events for deter-
mining the parsimony score of the topology. If F

i
(v) ∩ F

i
(w) ≠ � , it means that the 

state value of the parent node u is inherited by both children v and w. Consequently, 
this evolutionary step does not imply a mutation event. However, if F

i
(v) ∩ F

i
(w) = � 

is observed, it implies that at least one of the children nodes v and w has been sub-
ject to mutation during the evolutionary process. As a mutation has been detected, 
the parsimony score of the topology is increased accordingly. For illustration pur-
poses, examples of P(T) calculations under this procedure are provided in Fig.  1. 
It is worth remarking that Fitch’s algorithm includes a second labelling procedure, 
where final state values for each internal node are computed, starting from the root 

(2)F
i
(u) =

{

F
i
(v) ∩ F

i
(w) if F

i
(v) ∩ F

i
(w) ≠ �,

F
i
(v) ∪ F

i
(w) if F

i
(v) ∩ F

i
(w) = �.

(a) (b)

Fig. 1   Representation of parsimony calculations for two phylogenetic topologies. These examples 
involve protein sequence data from four leaf organisms L0, L1, L2, and L3, where A stands for ala-
nine, L for leucine, V for valine, D for aspartic acid, and N for asparagine. For (a), three empty Fitch 
intersections take place at F3(V)(F3(L0) = V ≠ L = F3(L1)) , F2(U)(F2(V) = L ≠ D = F2(L2)) , and 
F3(R)(F3(U) = V ≠ N = F3(L3)) . For (b), four empty intersections are identified at F2(V) , F3(V) , F2(R) , 
and F3(R) . Parsimony will give preference to the hypothesis described in a, since it shows less evolution-
ary changes than b 



9833

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

node. We are herein interested in the first procedure, which is the one that performs 
the core calculations associated with the parsimony function.

From a computational perspective, there are different complexity factors that jus-
tify the development of parallel approaches to accelerate these computations. First, the 
computational complexity of the algorithm when applied from scratch is O(NM), thus 
depending on both the number of sequences and the number of characters per sequence. 
Although current datasets are complex from both perspectives, sequence lengths tend 
to be several orders of magnitude higher than the number of sequences, playing a more 
important role in the computational costs of the algorithm. On top of that, the consider-
ation of protein data imposes additional issues regarding the codification of sequences, 
since more complex data types are required to encode the 20 basic amino acid states 
as well as ambiguous states and the possible combinations required by the union oper-
ations of the algorithm. Second, it is important to remark that although indirect cal-
culations can be applied to improve parsimony computations in phylogenetic search 
algorithms, significant numbers of full instantiations of the parsimony function are still 
required within those methods aimed at large-scale sequence processing [36, 40]. The 
major role that the targeted function plays in phylogenetic analyses is also stressed by 
the needs of providing bootstrap support to the proposed hypotheses [42], thus being 
required a high number of independent runs to ensure statistical reliability.

Fitch’s parsimony follows the idea that each character is subject to evolutionary 
events individually. Consequently, the calculations for different characters are inde-
pendent and can be performed simultaneously. The parsimony score can then be cal-
culated from partial parsimony scores for each amino acid in the sequences. This algo-
rithm shows intrinsic data parallelism suitable to be exploited by the enhanced parallel 
processing capabilities of modern GPUs.

4 � GPU parsimony design for protein data

This work examines the GPU parallelization of Fitch’s parsimony on protein data. With 
this purpose in mind, we will define a GPU-oriented parallel design based on the well-
established CUDA programming framework [43]. We assume a programming model 
where two main elements, the CPU host and the GPU accelerator, interact with each 
other to undertake the definition and processing of parallel tasks. The host side is in 
charge of specifying, allocating, and initializing the data structures required by these 
tasks, which are offloaded to the GPU for parallel processing purposes. The GPU car-
ries out computations in a data parallel fashion, with each GPU thread processing one 
or several pieces of data in accordance with the operations specified by a kernel. Upon 
termination, the results of the kernel are then transferred from the GPU to the host, car-
rying out post-processing operations if required.

4.1 � GPU memory structures

The key idea in the proposed GPU design lies in the parallel computation of 
amino acid states for each internal node in the phylogenetic topology. Hence, the 



9834	 S. Santander‑Jiménez et al.

1 3

calculations associated with the i-th character are assigned to the i-th GPU thread, 
which updates its local partial parsimony score whenever mutations are detected. In 
order to implement the GPU kernel, three main data structures must be defined and 
allocated accordingly in the GPU memory hierarchy: 

1.	 Phylogenetic topology: instead of using a tree-shaped structure, the phylogeny 
encoding involves an array that codifies information about each internal node. 
The u-th element of this array represents the u-th internal node under a post-order 
tree traversal, storing the number of children of u (by means of a short integer) 
and their identifiers (integers). In these identifiers, the most significant bit is 
reserved and set to: 1, in case the child refers to an internal node; 0, in case the 
child is a terminal node. The reasoning behind this design decision lies in defin-
ing an optimized way to store the position of each node in the topology, as well 
as the indexes to the corresponding amino acid (from the sequences for terminal 
nodes or from the state sets computed by the algorithm for internal nodes). In this 
design, the topology array will be allocated in the GPU constant memory, which 
allows faster read accesses throughout the execution of the kernel.

2.	 Amino acid sequences: the second main structure required by the algorithm 
derives from the input aligned sequences. In the case of DNA sequences, small-
sized data types could be used to store character states, since the four nucleotides 
and their combinations can be encoded with four bits (or five if gaps are codified 
as a separate state). However, in protein-based analyses, a total of 20 baseline 
amino acid states and two ambiguous pairs have to be considered, along with 
their combinations (Fitch’s unions), unknown characters, and gaps. Therefore, 
more complex data types are needed. The proposed design encodes the amino 
acid sequences as a one-dimensional array of N ×M integers, employing the 
hexadecimal values referred in Table 1 for codification purposes. This array fol-
lows a row-major order organization of the sequences with the aim of allowing 
adjacent data accesses within a thread group (warp), thus avoiding operations over 
scattered elements and the consequent impact on memory transfers. Since the 
sequences represent the largest data structure employed by the kernel, this array 
will be stored in the GPU global memory. Figure 2 provides a graphical example 
of the employed topology and sequence encoding.

3.	 Shared reduction space: since each GPU thread will be responsible for computing 
a local partial parsimony score, it is required the integration of parallel reduc-
tion strategies to accumulate the scores computed within a thread block. In our 
design, we have used the reduction algorithm described in [43] (chapter 12.5), 
which employs integer structures located at the GPU shared memory to perform 
these calculations.

4.2 � GPU kernel

Algorithm 1 outlines the GPU kernel designed to conduct Fitch’s computations on 
protein data. Along with the topology and sequence arrays mentioned in the previ-
ous subsection (designated as nodes and sequences, respectively), the kernel uses 



9835

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

two constant values that represent the number of internal nodes in the topology 
(num_inner) and the number of amino acids per sequence (seq_length). The first 
steps in the kernel involve the retrieval of the GPU thread identifier thread_id, and 
the initialization of the local partial parsimony score P(T)

thread_id and the ancestral 
amino acid state sets F

thread_id (lines 1–3 in Algorithm  1). Afterwards, the kernel 
proceeds with the main loop of Fitch’s algorithm, where each component of F

thread_id 
is computed and the P(T)

thread_id is updated accordingly (lines 4–18). More in detail, 
this loop processes the topology array to compute, for each amino acid in paral-
lel, the ancestral state F

thread_id(u) of each internal node u, so that the thread_id-th 

Table 1   Codification of amino acid states for protein sequences

State Hex. value Description State Hex. value Description

A 0x080000 Alanine R 0x040000 Arginine
B 0x030000 Asparagine or Aspartic acid N 0x020000 Asparagine
D 0x010000 Aspartic acid C 0x008000 Cysteine
Z 0x006000 Glutamine or Glutamic acid Q 0x004000 Glutamine
E 0x002000 Glutamic acid G 0x001000 Glycine
H 0x000800 Histidine I 0x000400 Isoleucine
L 0x000200 Leucine K 0x000100 Lysine
M 0x000080 Methionine F 0x000040 Phenylalanine
P 0x000020 Proline S 0x000010 Serine
T 0x000008 Threonine W 0x000004 Tryptophan
Y 0x000002 Tyrosine V 0x000001 Valine
? 0x0FFFFF Unknown character – 0x100000 Gap

Fig. 2   Representation of data structures: phylogenetic tree encoding and protein sequences. The nodes 
array is organized according to a post-order tree traversal to ensure data dependencies, while the 
sequences array follows a row-major order to improve memory accesses within a warp. F

thread_id refers to 
the amino acid states of the internal nodes at the thread_id-th character, calculated during the execution 
of the algorithm



9836	 S. Santander‑Jiménez et al.

1 3

GPU thread will be responsible for conducting Fitch’s operations (and, therefore, 
P(T)

thread_id calculations) for the thread_id-th amino acid. 

The processing of each internal node begins with the initialization of an auxiliary 
variable node_aa, which is aimed at storing the results of Fitch’s operations (line 5). 
The kernel then obtains the number of child nodes (num_children line 6) and carries 
out the reading of the first child state from F

thread_id (most significant bit in the iden-
tifier child_id = 1, that is, a previously processed internal node, lines 9–10) or from 
the sequences (most significant bit = 0, that is, a terminal node, lines 11–12). The 
execution path followed by the threads is the same when encountering this if-else 
condition, as the scheduled warp operates over the same child node. As previously 
stated, the remaining information in the child identifier is used to index the posi-
tion where the child amino acid is located. While F

thread_id is a private structure, the 
thread_id value points to the specific character to be read from the corresponding 
global sequence.

Once retrieved the amino acid state of the current child, Fitch’s intersections are 
conducted with the state value stored in node_aa by using a bitwise AND instruction 
(line 14). Whenever an empty intersection is detected, Fitch’s unions are performed 
through a bitwise OR instruction and P(T)

thread_id is increased (line 15). The algo-
rithm then iterates over the next child node until all of them have been processed. 
The resulting amino acid state for the current internal node is stored in F

thread_id , so 



9837

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

that it can be used when processing its ancestors in the topology. Upon termination 
of these calculations on the whole topology, the parsimony scores for each thread 
block are obtained by applying parallel reduction over the computed P(T)

thread_id 
values (lines 19–21).

4.3 � Host side

Prior to the kernel execution at the GPU side, the CPU host must perform a number 
of operations related to the initialization and transference of the input data. More 
specifically, the host carries out in a first step the allocation of the required GPU 
memory (cudaMalloc), the initialization of the sequences array, and the conver-
sion of the input phylogenetic topologies from the standard Newick code representa-
tion [42] to the proposed topology array encoding. Once the input data are ready, 
the structures can be transferred from the host to the GPU memory (cudaMem-
cpy). Then, the kernel is instantiated and, upon termination, a final reduction step 
is performed by the host to obtain the final P(T) score from the parsimony values 
calculated by each thread block (previously transferred to the host side via cudaM-
emcpy). The implemented host code processes each topology in an iterative way, 
carrying out the previous operations over the different phylogenies available in the 
input of the procedure. Since the sequence alignment is a static structure, which 
maintains the same data for multiple instantiations of the kernel, no additional trans-
fers of this data are needed once the sequence array has been allocated and written 
in the GPU global memory.

Figure 3 provides insight into the execution time profile of the application. While 
the kernel contributes to a 60.75% of the overall execution time, the data transfers 
and operations performed at the host can impose a significant performance penalty 
(representing a time percentage of 39.25%) on real-world protein data scenarios. In 
order to minimize the impact of these operations, we can take advantage of the fact 
that the topology pre-processing and transference tasks can be conducted concur-
rently with previous instantiations of the kernel. CUDA streams are hence imple-
mented to allow such overlap between host and GPU operations, employing the 
corresponding asynchronous functions defined in the programming interface (such 
as cudaMemcpyAsync and cudaMemcpyToSymbolAsync). In this way, the 

Fig. 3   Average time profile of 
the application in Tesla V100, 
where Tkernel refers to the kernel 
execution times, Tcomm the 
communication/data transfer 
times between the host and the 
GPU, and Tothers other operations 
including the initialization of 
data structures, tree topologies, 
and final parsimony reductions 
at the host side



9838	 S. Santander‑Jiménez et al.

1 3

GPU computation of P(T) scores for a phylogeny can be conducted on parallel with 
the initialization and communication of the next one, with the additional advantage 
of potentially allowing concurrent execution of different kernel instantiations.

5 � Experimental results and performance analysis

This section undertakes the experimental assessment of the GPU approach designed 
to conduct parsimony calculations on protein data. First, the experimental method-
ology herein followed is detailed, reporting hardware specifications and the data-
sets used for evaluation purposes. The validation of the CUDA design, in compari-
son with other alternative GPU programming approaches, is conducted afterwards. 
Then, we proceed with the analysis of parallel performance for the GPU architec-
tures under study. Finally, comparisons with different parallel devices and other 
authors’ proposals are presented.

The experiments conducted in this research work involve different real-world 
protein datasets, each one with different characteristics attending to the number of 
sequences and characters per sequence. Thus, the evaluation is performed over a 
range of different, representative problem sizes to understand the implications of the 
proposed design: 

1.	 M9x607784: Aspergillus westerdijkiae protein data, nine sequences containing 
607,784 amino acids per sequence [16].

2.	 M37x29352: Xylona heveae protein data, 37 sequences containing 29,352 amino 
acids per sequence [13].

3.	 M88x2269: Thermophilic fungi protein data, 88 sequences containing 2,269 
amino acids per sequence [30].

4.	 M355x934: Hemiascomycete yeasts protein data, 355 sequences containing 934 
amino acids per sequence [10].

5.	 M720x5873: Bacteria and Archaea protein data, 720 sequences containing 5,873 
amino acids per sequence [44].

Thirty-one independent runs were conducted in each experiment, considering 
2,000 phylogenetic topologies (generated via bootstrapping) in the input of the pro-
cedure. The reasoning behind this number of topologies is given by the fact that it 
represents the number of full instantiations of the parsimony function involved in 
large-scale phylogenetic analyses, e.g. under the Rec-I-DCM3 search method [36]. 
The attained results were tested under the following methodology to provide statisti-
cal support to the comparisons [39]. Normality tests under Kolmogorov–Smirnov 
were first conducted to study if the samples followed a Gaussian distribution. If 
so, Levene’s tests were applied to analyse variance homogeneity. In case the sam-
ples met these two previous requirements, ANOVA tests were used to check for 
statistical significant differences in the comparisons. In the remaining cases, Wil-
coxon–Mann–Whitney tests were applied instead. A confidence level of 95% was 
employed in this statistical analysis.



9839

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

Special emphasis has been put in this work on the evaluation of the GPU design 
on a wide range of CUDA-enabled GPU devices, covering the modern architectures 
from NVIDIA since Kepler. Particularly, we have evaluated five different GPUs: 
Tesla K40m, GeForce TITAN X, GeForce TITAN Xp, Tesla V100, and GeForce 
RTX 2080Ti. Specific details on the compute and memory features of these GPUs 
are provided in Table 2. The hardware setup employed in the experimentation addi-
tionally comprises two Intel Xeon CPU E5-2630v3 processors (16 physical cores, 32 
execution threads) at 2.40 GHz with 80 GB DDR3 RAM, as well as an Intel Xeon 
Phi 7120P (61 cores—60 for computations, 240 execution threads) at 1.33 GHz with 
16 GB GDDR5 ECC RAM. This system is managed under Ubuntu 14.04LTS, with 
the GCC 5.5.0 compiler and the NVIDIA CUDA Toolkit 10.1. As for compilation 
details, we used the -O3 flag for the host side and the -gencode=arch,code 
flags in accordance with the compute capability and architecture of the evaluated 
GPU.

5.1 � Comparing CUDA with alternative programming approaches

The first step in this experimental analysis consists in the validation of the CUDA 
design, in comparison with alternative frameworks for GPU programming. In previ-
ous research [38], we conducted comparisons between CUDA, OpenCL [21], and 
OpenACC [11] for the case of DNA sequence data, pointing out the improvements 
achieved by the CUDA and OpenCL approaches. Since we are herein dealing with 
a new and more complex problem formulation based on protein sequence data, 
it is worth conducting such comparisons to confirm the relevance of the adopted 
approach, also taking into account the enhanced capabilities of state-of-the-art GPU 
architectures.

With this purpose in mind, we have implemented alternative OpenCL and 
OpenACC designs of the protein-based parsimony kernel, using NVIDIA OpenCL 
1.2 and OpenACC PGI 19.04. The median execution times reported by each design 
variant, using the Tesla V100 GPU, are reported in the left side of Table 3. Moreo-
ver, the right side of this table outlines the P values obtained from the statistical test-
ing of time results. Our experiments confirm that the CUDA design represents the 
most satisfying approach for all the considered evaluation scenarios, reporting time 
results in the interval 76.2–780.7 ms. On the other hand, the execution time observed 
under OpenCL and OpenACC is within the ranges 155.0–821.2 ms (OpenCL) and 
110.6–906.6 ms (OpenACC). These results then suggest the improved management 
and exploitation of GPU resources attained by the optimizations introduced by the 
CUDA compiler. As a consequence, the CUDA approach leads to speedups up to 
2.0x and 1.5x over OpenCL and OpenACC, being the observed time improvements 
statistically significant in all the datasets under study (P values < 0.05).

An interesting conclusion that can also be drawn from these results is related 
to the evolution of OpenACC compilers. The comparison of execution times 
in Table  3 points out that OpenACC is able to achieve similar or better results 
than OpenCL in the intermediate datasets. More in detail, OpenACC verifies 
statistically significant improvements in M37x29352 and M88x2269, while the 



9840	 S. Santander‑Jiménez et al.

1 3

Ta
bl

e 
2  

S
pe

ci
fic

at
io

ns
 o

f t
he

 G
PU

s e
m

pl
oy

ed
 in

 th
is

 w
or

k 
(S

M
 =

 st
re

am
in

g 
m

ul
tip

ro
ce

ss
or

)

G
PU

 n
am

e
G

PU
 a

rc
hi

te
ct

ur
e

N
um

be
r o

f 
SM

s
C

U
D

A
 c

or
es

G
lo

ba
l m

em
or

y
G

PU
 c

lo
ck

M
em

or
y 

cl
oc

k
M

em
or

y 
bu

s w
id

th

Te
sl

a 
K

40
m

K
ep

le
r

15
28

80
12

 G
B

74
5 

M
H

z
30

04
 M

H
z

38
4-

bi
t

TI
TA

N
 X

M
ax

w
el

l
24

30
72

12
 G

B
10

76
 M

H
z

35
05

 M
H

z
38

4-
bi

t
TI

TA
N

 X
p

Pa
sc

al
30

38
40

12
 G

B
15

82
 M

H
z

57
05

 M
H

z
38

4-
bi

t
Te

sl
a 

V
10

0
Vo

lta
80

51
20

16
 G

B
13

80
 M

H
z

87
7 

M
H

z
40

96
-b

it
RT

X
 2

08
0T

i
Tu

rin
g

68
43

52
11

 G
B

15
45

 M
H

z
70

00
 M

H
z

35
2-

bi
t



9841

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

differences in M355x934 are not significant (P value = 0.70). These results sug-
gest that the advances in OpenACC compilers and the increasing support to the 
directive-driven approach are allowing this programming model to represent a 
real and competitive alternative for GPU programming. As a reference, the com-
parisons conducted in [38] for DNA data pointed out a more negative scenario for 
OpenACC, which in its 17.4 release was outperformed by OpenCL in all the data-
sets under study. Nevertheless, OpenCL still represents a viable approach when it 
comes to the processing of more complex protein instances, in accordance with 
the results observed for M9x607784 (longest sequence length) and M720x5873 
(highest number of sequences).

It is also worth highlighting the suitability of the proposed approach, based on 
CUDA and NVIDIA GPUs, with regard to OpenCL-based GPU solutions from 
other vendors. In order to illustrate it, Table 4 presents the kernel times reported 
by OpenCL (ROCm 2.7) on an AMD Vega Frontier Edition GPU. This GPU has 
been compared with the alternative architecture from NVIDIA, TITAN Xp, also 
by using OpenCL to ensure fair comparisons under the same programming frame-
work. The results reported in Table 4 give account of the improved OpenCL ker-
nel times reported by the TITAN Xp in all the datasets under evaluation. Taking 
into account that the CUDA version leads to average time improvements of 11.6% 
over OpenCL on TITAN Xp, these results further support the relevance of the 
proposed CUDA-oriented solution.

Table 3   Comparisons of execution time ( Texec , in ms) and statistical evaluation of CUDA, OpenCL, and 
OpenACC in protein data (GPU = Tesla V100)

Bold values refer to the best values observed in the comparisons; italics refer to the second best values

Dataset Texec P values CUDA P values OpenCL

CUDA OpenCL OpenACC​ vs. OpenCL vs. OpenACC​ vs. OpenACC​

M9x607784 120.023 163.354 177.253 2.84E−06 2.84E−06 1.98E−05
M37x29352 76.221 155.029 110.563 2.84E−06 2.84E−06 2.84E−06
M88x2269 115.746 184.009 148.121 2.84E−06 2.84E−06 2.84E−06
M355x934 339.394 401.966 402.294 2.84E−06 2.84E−06 0.699
M720x5873 780.667 821.191 906.622 2.84E−06 2.84E−06 5.67E−06

Table 4   Comparison of 
OpenCL kernel times (2,000 
instantiations, in ms) on 
alternative GPU platforms: 
AMD Vega Frontier Edition and 
NVIDIA TITAN Xp

Bold values refer to the best values observed in the comparisons

Dataset Vega Frontier TITAN Xp

M9x607784 316.492 278.790
M37x29352 114.484 100.866
M88x2269 218.572 161.528
M355x934 849.820 529.034
M720x5873 1528.068 1140.276



9842	 S. Santander‑Jiménez et al.

1 3

5.2 � GPU performance evaluation

A key aspect of this experimental study lies in examining the performance of dif-
ferent generations of GPU devices when dealing with real-world protein data. With 
this purpose in mind, we undertake next the evaluation of the proposed design on 
a range of CUDA-enabled GPUs covering modern NVIDIA architectures, from 
Kepler to the most recent Turing one. Along with the registered execution times, 
a problem-specific performance indicator, named GigaFitch Operations per Second 
(GFOS), has been employed in the analysis. This metric provides a compute per-
formance measurement based on the number of Fitch operations conducted by the 
parsimony scoring function:

where Degree(u) represents the degree of an internal node v ∈ V  , M the number of 
amino acids per sequence, P(T) the parsimony value of the input phylogeny, and t 
the kernel execution time. The expression 

∑

u∈V (Degree(u) − 1) ∗ M accounts for 
the amount of intersection operations, taking into account the presence of poten-
tial polytomies in the processed phylogenetic topology [42]. On the other hand, the 
parsimony score P(T) is equivalent to the number of union operations issued upon 
detection of mutations.

The median execution times and GFOS attained by the considered GPU devices 
are shown in Table  5 (for Tesla K40m, TITAN X, and TITAN Xp) and Table  6 
(Tesla V100 and RTX 2080Ti). Moreover, the P values retrieved from the statis-
tical evaluation of execution times are detailed in Table 7. On analysing Tables 5 
and 6, it can be observed the evolution of computational performance in accordance 
with the characteristics of the input sequences. Particularly, the sequence length is 
the factor that has the most impact on the achieved parallel results. For the case 
of Tesla K40m, the attained performance varies from 2.4 GFOS (in M355x934) to 
30.8 GFOS (M9x607784), being these differences more remarkable as we move to 
more recent GPU architectures. More specifically, median GFOS values of 146.5 
and 112.5 can be achieved by using Tesla V100 and RTX 2080Ti GPUs when 

(3)GFOS =

[(

∑

u∈V

(Degree(u) − 1) ∗ M + P(T)

)

∕t

]

∕109,

Table 5   Performance evaluation: execution times ( Texec in ms) and GigaFitch operations per second 
(GFOS) for Tesla K40, TITAN X, and TITAN Xp

Dataset Tesla K40m TITAN X TITAN Xp

Texec GFOS Texec GFOS Texec GFOS

M9x607784 571.475 30.760 339.576 51.767 249.577 70.434
M37x29352 153.566 30.526 106.457 44.034 104.863 44.704
M88x2269 206.525 4.087 153.017 5.516 149.683 5.639
M355x934 605.612 2.358 513.738 2.779 391.492 3.647
M720x5873 1375.130 12.930 1086.922 16.359 789.379 22.525



9843

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

performing parsimony calculations over protein sequences with more than 600,000 
characters. This dataset represents a scenario in which an intensive exploitation of 
compute resources can be achieved, in comparison with instances like M355x934 
and M88x2269 in which the number of CUDA cores exceeds the length of the com-
prised sequences.

On comparing across different GPUs, it can be verified in first instance the effect 
of the increased number of cores and the improvements in basic arithmetic latencies 
in Maxwell (TITAN X) and Pascal (TITAN Xp) over the baseline Kepler architec-
ture. Table 5 shows how the execution times evolve from 153.6–1375.1 ms (K40m) 
to 106.5–1086.9 ms (TITAN X) and 104.9–789.4 ms (TITAN Xp), thus leading to 
speedups up to 1.7x for TITAN X and 2.3x for TITAN Xp. The comparison between 

Table 6   Performance 
evaluation: execution times 
( Texec in ms) and GigaFitch 
operations per second (GFOS) 
for Tesla V100 and RTX 2080Ti

Bold values refer to the best values observed in the comparisons; 
italics refer to the second best values

Dataset Tesla V100 RTX 2080Ti

Texec GFOS Texec GFOS

M9x607784 120.023 146.462 156.294 112.473
M37x29352 76.221 61.502 70.023 66.946
M88x2269 115.746 7.292 88.518 9.535
M355x934 339.394 4.207 291.458 4.899
M720x5873 780.667 22.776 649.008 27.397

Table 7   Statistical testing of execution times (P values) from the GPU evaluation
M9x607784

GPU device vs. TITAN X vs. TITAN Xp vs. Tesla V100 vs. RTX 2080Ti
Tesla K40m 2.84E–06 2.84E–06 2.84E–06 2.84E–06
TITAN X
TITAN Xp
Tesla V100 2.84E–06

M37x29352

TITAN X 0.116
TITAN Xp
Tesla V100 3.94E–04

M88x2269

TITAN X 0.023
TITAN Xp
Tesla V100 2.84E–06

M355x934

Tesla K40m 2.84E–06 2.84E–06 2.84E–06 2.84E–06

Tesla K40m 5.67E–06 2.84E–06 2.84E–06 2.84E–06

Tesla K40m 2.84E–06 2.84E–06 2.84E–06 2.84E–06
TITAN X
TITAN Xp

2.84E–06 2.84E–06 2.84E–06
2.84E–06 2.84E–06

2.84E–06 2.84E–06
2.84E–06 2.84E–06

2.84E–06 2.84E–06
8.51E–05 8.51E–05

2.84E–06 2.84E–06 2.84E–06
7.07E–05 2.84E–06

Tesla V100 3.40E–05
M720x5873

Tesla K40m 2.84E–06 2.84E–06 2.84E–06 2.84E–06
TITAN X
TITAN Xp

2.84E–06 2.84E–06 2.84E–06
6.63E–03 2.84E–06

Tesla V100 2.84E–06



9844	 S. Santander‑Jiménez et al.

1 3

the two TITAN GPUs also reveals diverging behaviour for different datasets. 
Although TITAN Xp provides more satisfying performance in overall terms, TITAN 
X manages to report closer results in the case of intermediate datasets. In fact, the 
statistical evaluation reveals that the Maxwell and Pascal GPUs obtain statistically 
comparable times in M37x29352, with a P value = 0.12 > 0.05. Nevertheless, the 
computing features of TITAN Xp, e.g. in terms of operational frequencies, play a 
more relevant role when complex alignments, attending to the number of sequences 
and lengths, are considered, in accordance with the results obtained for M9x607784 
(70.4 vs. 51.8 GFOS) and M720x5873 (22.5 vs. 16.4 GFOS).

Moving on to the most recent GPUs, Table 6 shows that the Volta and Turing 
architectures represent a step forward in the processing of complex protein align-
ments. In comparison with the previous GPU generations, both Tesla V100 and 
RTX 2080Ti manage to attain statistically significant improvements in all the data-
sets under study (P values < 0.05, as shown in Table  7). Moreover, our results 
denote how different problem instances can take advantage of the computing capa-
bilities of these two GPUs. In the case of M37x29352, M88x2269, M355x934, and 
M720x5873, the most satisfying performance in the comparison was attained by 
the RTX 2080Ti GPU. That is, protein alignments with low or moderate parallelism 
potential benefit the most from the architectural features of this GPU. On the other 
hand, the dataset with the largest sequence length (M9x607784) represents a more 
fitting scenario for Tesla V100, which attained a GFOS performance improvement 
of 30% over RTX 2080Ti. When dealing with very large amino acid sequences, 
Tesla V100 offers several advantages, not only related to the increased number of 
compute resources (5,120 CUDA cores distributed over 80 streaming multiproces-
sors) but also in terms of memory features. For example, this GPU counts with a 
4096-bit memory bus width that can be useful to improve memory transfers on large 
amounts of data, thus providing enhancements regarding memory bandwidth. These 
features benefit the processing of the referred problem instance, with over 600K 
characters per sequence, for parsimony computations.

A comparison of the mean GFOS from each GPU is represented in Fig.  4. In 
detail, the leading GPUs in the comparison, Tesla V100 and RTX 2080Ti, obtain 
performance improvements of 200.3%/174.3% over Tesla K40m, 101.1%/83.7% 

Fig. 4   Comparison of GFOS from the GPU devices under study (mean values for the different problem 
instances herein evaluated)



9845

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

over TITAN X, and 64.8%/50.6% over TITAN Xp. It is important to remark that 
our results confirm the processing issues that the study of protein data imposes on 
real-world phylogenetic analyses. In the case of DNA sequences [38], a TITAN X 
with Maxwell architecture was enough to achieve satisfying parallel performance in 
the range of 140 GFOS. However, the results herein presented reveal that this GPU 
attains at most 51.8 GFOS when dealing with protein data. Our evaluation shows 
that the adoption of state-of-the-art GPUs represents a fitting solution to handle such 
increased hardness, taking advantage of the advanced computing features of these 
devices.

5.2.1 � Power and energy consumption

When analysing GPU approaches, an important question lies in understanding the 
energy efficiency that can be attained in the considered architectures. With this pur-
pose in mind, Table  8 introduces an analysis of power and energy consumption, 
using for reference purposes the best performing GPUs identified in the performance 
evaluation (Tesla V100 and RTX 2080Ti). The power results presented in this table 
(maximum peak power and average power) have been measured by using the gpow-
erSAMPLER tool from [14].

It can be observed from the results in Table 8 that among the considered mod-
ern GPUs, the Tesla V100 represents a more suitable choice from an energy con-
sumption perspective. More specifically, the average power required by this GPU 
in the analysed protein datasets lies within the interval 47.0W–107.4W. On the 
other hand, the RTX 2080Ti demands increased power requirements (average val-
ues within 66.6W–116.9W) to conduct the experimentation. The difference between 
these two GPUs becomes more noticeable in the dataset with the largest execution 
time requirements (M720x5873), as illustrated in Fig. 5. In fact, this figure depicts 
how the power demanded by the RTX 2080Ti counterbalances the improvement 
attained in execution time for the datasets with low or moderate sequence lengths, 
thus impacting the overall energy results obtained in comparison with Tesla V100 
(up to 75.8 J vs. 51.4 J).

As a consequence, the V100 GPU verifies more satisfying energy results not only 
in its best-case scenario from a time performance perspective (M9x607784), but 

Table 8   Power and energy evaluation: maximum peak power, average power during execution, and total 
energy per dataset for the Tesla V100 and RTX 2080Ti GPUs

Bold values refer to the best values observed in the comparisons

Dataset Max (Power) W Average (Power) W Energy J

Tesla V100 RTX 2080Ti Tesla V100 RTX 2080Ti Tesla V100 RTX 2080Ti

M9x607784 118.269 118.388 107.448 110.054 12.896 17.201
M37x29352 81.437 87.262 72.237 80.045 5.506 5.605
M88x2269 49.896 69.475 47.036 66.588 5.444 5.894
M355x934 53.030 83.910 50.408 79.020 17.108 23.031
M720x5873 68.318 137.746 65.832 116.856 51.393 75.841



9846	 S. Santander‑Jiménez et al.

1 3

also in the remaining problem instances herein examined. The reported time-energy 
tradeoffs can therefore represent a potential discerning factor for the choice of suit-
able GPUs to undertake parsimony calculations in real-world scenarios, according 
to the specifications and desired priorities.

5.3 � Comparison with multiprocessors and other co‑processors

In order to make a relative evaluation of the performance gains attained by the GPU 
design, comparisons with other parallel computing platforms are undertaken. In par-
ticular, we have considered results for the Intel Xeon E5-2630v3 multicore multipro-
cessor system and the Intel Xeon Phi 7120P co-processor. For comparison purposes, 
protein-oriented parsimony kernels for these devices have been developed under 
OpenCL, due to its device heterogeneity support and the significant results observed 
in this kind of platforms [38]. CPU and Xeon Phi kernels have been implemented 
by adopting different strategies to benefit the architectural features of these paral-
lel devices, such as coarse-grained computations (M/NT characters processed per 
thread, where NT is the number of supported execution threads), memory layouts 
(e.g. column-major order in the sequence array), and SIMD support (vector data 
types comprising up to 16 amino acids).

Table  9 introduces the median execution times and GFOS reported by the 
Xeon multiprocessor and the Xeon Phi co-processor, in comparison with the 

Fig. 5   Power consumption for the dataset with the largest execution time (M720x5873)

Table 9   Performance evaluation: comparisons of execution times ( Texec in ms) and GigaFitch opera-
tions per second (GFOS) with multiprocessors (2×Xeon CPU E5-2630v3) and co-processors (Xeon Phi 
7120P)

Bold values refer to the best values observed in the comparisons; italics refer to the second best values

Dataset Intel Xeon CPU Intel Xeon Phi Tesla V100 RTX 2080Ti

Texec GFOS Texec GFOS Texec GFOS Texec GFOS

M9x607784 770.298 22.821 1261.752 13.932 120.023 146.462 156.294 112.473
M37x29352 375.203 12.494 897.223 5.225 76.221 61.502 70.023 66.946
M88x2269 318.684 2.648 437.789 1.928 115.746 7.292 88.518 9.535
M355x934 599.949 2.380 678.083 2.106 339.394 4.207 291.458 4.899
M720x5873 2024.504 8.783 2136.909 8.321 780.667 22.776 649.008 27.397



9847

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

results obtained by the GPU design on Tesla V100 and RTX 2080Ti. Moreover, 
the P values returned by the statistical testing of time samples are provided in 
Table 10. As pointed out in Table 9, the median execution times on the multipro-
cessor platform are within the interval 318.7–2024.5 ms, while the times from the 
Intel Xeon Phi vary from 437.8 to 2136.9 ms. On comparing these two alterna-
tives (Xeon CPU and Xeon Phi), the multiprocessor setup reports better results in 
the datasets M9x607784 and M37x29352 (verifying a compute performance of 
22.8 and 12.5 GFOS), while similar performance is attained in the instance with 
the highest number of sequences, M720x5873.

On the other hand, the GPU alternatives verify the most significant parallel 
results in all the problem sizes herein analysed, with statistically significant time 
improvements as suggested by the P values < 0.05 in Table 10. In order to pro-
vide further insight into this, Table 11 introduces the speedups observed over the 
Xeon CPU, in both serial and parallel multiprocessor versions, and the Xeon Phi. 
Effective accelerations of 6.4x/10.5x (for M9x607784), 5.4x/12.8x (M37x29352), 
3.6x/4.9x (M88x2269), 2.1x/2.3x (M355x934), and 3.1x/3.3x (M720x5873) 
are achieved with regard to the alternative parallel platforms herein considered. 
Finally, the representation of mean GFOS in Fig. 6 gives account of performance 
improvements of 393.1%/668.7% (on Tesla V100) and 350.4%/602.1% (on RTX 

Table 10   Statistical testing of execution times (P values) for the comparisons with multiprocessors and 
co-processors

Dataset P values (Tesla V100) P values(RTX 2080Ti)

vs. Intel Xeon CPU vs. Intel Xeon Phi vs. Intel Xeon CPU vs. Intel Xeon Phi

M9x607784 5.67E−06 5.67E−06 5.67E−06 5.67E−06
M37x29352 5.67E−06 5.67E−06 5.67E−06 5.67E−06
M88x2269 5.67E−06 5.67E−06 5.67E−06 5.67E−06
M355x934 5.67E−06 5.67E−06 5.67E−06 5.67E−06
M720x5873 5.67E−06 5.67E−06 5.67E−06 5.67E−06

Table 11   Performance evaluation: GPU speedups over the serial version, multiprocessors (2×Xeon CPU 
E5-2630v3) and co-processors (Xeon Phi 7120P)

Bold values refer to the best values observed in the comparisons

Dataset Speedup with Tesla V100 Speedup with RTX 2080Ti

Serial Xeon CPU Xeon Phi Serial Xeon CPU Xeon Phi

M9x607784 389.534x 6.418x 10.513x 299.136x 4.929x 8.073x
M37x29352 196.914x 4.923x 11.771x 214.345x 5.358x 12.813x
M88x2269 28.771x 2.753x 3.782x 37.620x 3.600x 4.946x
M355x934 18.595x 1.768x 1.998x 21.653x 2.058x 2.327x
M720x5873 106.173x 2.593x 2.737x 127.712x 3.119x 3.293x



9848	 S. Santander‑Jiménez et al.

1 3

2080Ti), thus suggesting the improved behaviour shown by the GPU devices in 
the considered experimental scenarios.

Different factors must be taken into account to assess the importance of the 
attained speedups. Among them, one particularly interesting point lies in the diverse 
nature of the protein datasets under evaluation. The reported results refer to practi-
cal real-world problem instances, with divergent available parallelism and bounds 
that may not match the characteristics of ideal GPU workloads. Furthermore, pro-
tein alignments and the corresponding data layouts introduce additional complexity 
issues that can affect, in the shape of potential overheads, the intrinsic constraints 
of co-processing architectures (e.g. host–device interactions). Considering the addi-
tional difficulties of these computation scenarios, our results denote the practical, 
performance-wise interest of the proposed GPU designs even in datasets with lim-
ited parallelism, reporting significant speedups over other platforms and parallel 
alternatives.

In order to examine the added value contributed by modern GPUs in this prob-
lem, Table 12 presents comparisons of performance per dollar among the consid-
ered hardware platforms. Columns 2–4 in Table 12 compare GFOS/$ values across 

Fig. 6   Comparison of GFOS with multiprocessors and co-processors (mean values for the different prob-
lem instances herein evaluated)

Table 12   Scaled GFOS per dollar for each hardware platform, using commercial prices from 2019. For 
each dataset, the best performing GPU device is employed for comparison purposes (Tesla V100 for 
M9x607784, RTX 2080Ti for the remaining ones)

Bold values refer to the best values observed in the comparisons; italics refer to the second best values

Dataset 2×Xeon CPU Xeon Phi GPU (V100 or 2080Ti) Observed GFOS/$

(1145.99$) (699.99$) (7276.99$ / 1299.99$) GPU Improvement

GFOS/$ GFOS/$ GFOS/$ vs. Xeon CPU vs. Xeon Phi

M9x607784 1.991 1.990 2.013 1.011x 1.012x
M37x29352 1.090 0.746 5.150 4.725x 6.903x
M88x2269 0.231 0.275 0.733 3.173x 2.665x
M355x934 0.208 0.301 0.377 1.813x 1.252x
M720x5873 0.766 1.189 2.107 2.751x 1.772x



9849

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

devices, while columns 5 and 6 denote the improvement achieved in GFOS/$ when 
using GPUs. According to the attained results, the GPU approaches lead to the most 
satisfying behaviour per invested dollar in overall terms. Focusing first on the data-
set M9x607784, it can be concluded that the performance gains obtained with the 
best GPU (Tesla V100) over the 2 ×Xeon CPU and Xeon Phi alternatives correspond 
to the required monetary investment. On the other hand, if we consider the second 
best performing GPU instead (the commercial RTX 2080Ti), GFOS/$ improve-
ments around 4.4x are accomplished over the Xeon multiprocessor and the Xeon Phi 
co-processor in M9x607784. For the remaining protein datasets, the RTX 2080Ti 
represented the most satisfying alternative, leading to GFOS/$ improvements up to 
4.7x (over CPU) and 6.9x (over Phi). Even in the dataset with the lowest sequence 
length (M355x934), this GPU also reported added value with regard to the other 
devices herein considered.

All in all, these comparisons support the conclusion that the use of accurate GPU 
designs represents a suitable solution to conduct parsimony computations on com-
plex protein alignments. The experimental analysis conducted on different problem 
sizes points out that statistically significant improvements can be achieved, not only 
in the case of problem instances with large data parallelism but also under shorter 
sequence length constraints.

5.4 � Comparison with other approaches

Research works on the acceleration of phylogenetic parsimony and, particularly, 
Fitch’s algorithm have fundamentally focused on adapting its calculations to the par-
ticular case of DNA alignments [1]. Therefore, it can be stated that the approach 
herein presented represents, to the best of our knowledge, the first functional GPU 
parallel design for processing protein sequences. Despite the unavailability of other 
open-source parallel implementations for this type of data, the literature provides 
some proof-of-concept methods that can be employed for comparison purposes. For 
example, Vazquez-Ortiz et al. [41] introduced a benchmark tool that performs 32-bit 
parsimony calculations on simulated data. Although this tool does not have support 

Table 13   Comparisons of execution times ( Texec in ms) and speedups observed over the benchmarking 
tool from Vazquez-Ortiz et al. [41]. ‘Unav.’ refers to executions where the reference tool reported seg-
mentation faults

Bold values refer to the best values observed in the comparisons

Dataset Tesla V100 RTX 2080Ti

Texec [41] Texec (proposal) Speedup Texec [41] Texec (proposal) Speedup

M9x607784 1484.360 120.023 12.367x 1795.936 156.294 11.491x
M37x29352 375.239 76.221 4.923x 359.462 70.023 5.133x
M88x2269 352.168 115.746 3.043x 320.906 88.518 3.625x
M355x934 663.120 339.394 1.954x 613.920 291.458 2.106x
M720x5873 Unav. 780.667 inf Unav. 649.008 inf



9850	 S. Santander‑Jiménez et al.

1 3

for real-world alignments, it can be specified as input parameters the dimensions of 
the problem size to be benchmarked (number of sequences and sequence length).

We have conducted comparisons with this tool by configuring it according to 
the dimensions of the five datasets analysed in this work. Table  13 presents the 
median execution times of the tool, considering 31 independent runs per experi-
ment, on Tesla V100 (column 2 in Table 13) and RTX 2080Ti (column 5). Columns 
3–4 and 6–7 refer to the median execution times of our GPU proposal, along with 
the speedups attained over the benchmarking tool. It can be observed that the GPU 
design proposed in this work leads to improved execution time in all the consid-
ered computing scenarios. In the case of problem sizes governed by large sequences 
lengths, speedups of 12.4x and 11.5x can be effectively attained by using the strate-
gies implemented in our GPU design. As for problem sizes with high number of 
sequences, it is worth pointing out that the reference tool was not able to analyse 
alignments like M720x5873, since it is restricted to a maximum of 512 sequences. 
On the other hand, our proposal successfully undertakes the processing of this kind 
of datasets, thus covering a representative range of problem instances usually tack-
led in real-world biological analyses.

This comparative assessment therefore confirms the improved parallel per-
formance reported by the proposed GPU solution. In conclusion, our results give 
account of the enhanced processing capabilities attained by the combination of effi-
cient design strategies and modern GPU architectures, thus representing a suitable 
approach to address the increasing hardness of protein-based phylogenetic studies.

6 � Conclusions and future research work

The efficient processing of complex biological datasets represents one of the current 
major concerns in applied high-performance computing. Particularly, the considera-
tion of protein sequences has imposed new challenges in the development of parallel 
bioinformatics workflows, due to the hard-to-tackle complexity factors associated 
with this type of biological data. This work has investigated the GPU parallelization 
of the phylogenetic Fitch’s parsimony on protein data scenarios. Keeping in mind 
the computational issues that arise from the use of protein data, strategies to encode 
and perform protein-based parsimony calculations were proposed, accurately map-
ping the required data structures to the GPU memory hierarchy. Under the assump-
tion that each character in the sequences is subject to separate evolutionary events, 
the proposed GPU design operates by assigning the processing of different amino 
acids to different GPU threads. In this way, partial parsimony scores can be calcu-
lated and then combined by applying block-based parallel reductions.

One of the main goals of this research work consisted in examining the behaviour 
of the proposed design on a wide range of CUDA-enabled GPU devices, covering 
the different modern microarchitectures published by NVIDIA. With this purpose 
in mind, we performed an in-depth experimental evaluation on five GPUs, namely 
Tesla K40m (Kepler architecture), TITAN X (Maxwell), TITAN Xp (Pascal), Tesla 
V100 (Volta), and RTX 2080Ti (Turing). Moreover, five real-world protein data-
sets were employed in the experimentation, with the aim of covering representative 



9851

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

problem sizes encountered in current phylogenetic analyses. The validation of 
the CUDA design over other alternatives for GPU programming revealed that the 
CUDA-based approach provided the most satisfying performance in terms of execu-
tion time, yet the advances in directive-based compilers are progressively closing the 
gap with regard to other programming models. Furthermore, the evaluation of time 
and compute performance, for the different GPU devices considered in this work, 
confirmed the challenging nature of the protein-based formulation of the problem, 
being required the use of recent, state-of-the-art GPU architectures to tackle it. The 
evaluation also gave account of the relationship between GPU computational capa-
bilities and problem sizes. More specifically, datasets with long sequence lengths (> 
600,000 amino acids) benefited the most from the advanced architectural features 
of Tesla V100, while the remaining datasets were satisfactorily handled by using 
a commercial RTX 2080Ti (at the expense of higher power consumption require-
ments). Finally, the relevance of the attained results was examined by performing 
comparisons with other parallel platforms and parsimony benchmarking tools. The 
obtained results suggested that GPU computing represents a fitting solution to con-
duct in an efficient way the processing of challenging protein sequence alignments.

Future research is aimed at designing advanced algorithmic strategies to under-
take phylogenetic analyses in compute-hungry, large-scale multiobjective contexts. 
The main idea lies in the integration of different layers of parallelism (distributed 
memory, shared memory devices, and hardware accelerators) to take full advantage 
of the capabilities of current cluster infrastructures. A proposal oriented towards 
computing nodes with homogeneous characteristics will be initially investigated, 
considering different design strategies to minimize idle times and execution depend-
encies among the involved processing components. We will study in a second step 
the definition of load balancing mechanisms to allow efficient exploitation of hetero-
geneous nodes, with different CPUs, GPUs, and other co-processors. In this context, 
a promising direction lies in the evaluation of advanced reconfigurable and adapt-
able architectures, such as the Alveo U Data Center accelerators [45], in complex 
phylogenetic spaces and sequence data. Multi-GPU and multi-accelerator imple-
mentations with different granularity (coarse-grained distribution of independent 
phylogenies and fine-grained concurrent subtree processing) will be investigated in 
the pursuit of maximized performance. Finally, the application of multi-level paral-
lel designs to other bioinformatics problems will be explored.

Acknowledgements  This work was partially funded by the AEI (State Research Agency, Spain) and 
the ERDF (European Regional Development Fund, EU), under the contract TIN2016-76259-P (PRO-
TEIN Project), as well as Portuguese national funds through FCT (Fundação para a Ciência e a Tec-
nologia, Portugal) Projects UIDB/50021/2020 and LISBOA-01-0145-FEDER-031901 (PTDC/CCI-
COM/31901/2017, HiPErBio). Sergio Santander-Jiménez is supported by the Post-Doctoral Fellowship 
from FCT under Grant SFRH/BPD/119220/2016.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of interest.



9852	 S. Santander‑Jiménez et al.

1 3

References

	 1.	 Alachiotis N, Stamatakis A (2011) FPGA acceleration of the phylogenetic parsimony kernel? In: 
Proceedings of FPL 2011. IEEE, pp 417–422

	 2.	 Aluru S, Jammula N (2014) A review of hardware acceleration for computational genomics. IEEE 
Des Test 31(1):19–30

	 3.	 Attwood TK, Pettifer SR, Thorne D (2016) Bioinformatics challenges at the interface of biology and 
computer science: mind the gap. Wiley, Oxford

	 4.	 Ayres DL et  al (2019) BEAGLE 3: improved performance, scaling, and usability for a high-per-
formance computing library for statistical phylogenetics. Syst Biol 68:1052–1061. https​://doi.
org/10.1093/sysbi​o/syz02​0

	 5.	 Bao J, Xia H, Zhou J, Liu X, Wang G (2013) Efficient implementation of MrBayes on multi-GPU. 
Mol Biol Evolut 30(6):1471–1479

	 6.	 Blazewicz J, Frohmberg W, Kierzynka M, Wojciechowski P (2013) G-MSA—a GPU-based, fast 
and accurate algorithm for multiple sequence alignment. J Parallel Distrib Comput 73(1):32–41

	 7.	 Block H, Maruyama T (2014) An FPGA hardware acceleration of the indirect calculation of tree 
lengths method for phylogenetic tree reconstruction. In: Proceedings of FPL 2014. IEEE, pp 1–4

	 8.	 Block H, Maruyama T (2017) An FPGA hardware implementation approach for a phylogenetic tree 
reconstruction algorithm with incremental tree optimization. In: Proceedings of FPL 2017. IEEE, pp 
1–8

	 9.	 Bouktila D, Khalfallah Y, Habachi-Houimli Y, Mezghani-Khemakhem M, Makni M, Makni H 
(2014) Large-scale analysis of NBS domain-encoding resistance gene analogs in triticeae. Genet 
Mol Biol 37(3):598–610

	10.	 Dias PJ, Sá-Correia I (2013) The drug:H+ antiporters of family 2 (DHA2), siderophore transporters 
(ARN) and glutathione:h+antiporters (GEX) have a common evolutionary origin in hemiascomy-
cete yeasts. BMC Genom 14(901):1–22

	11.	 Farber R (2017) Parallel programming with OpenACC, 1st edn. Morgan Kaufmann Publishers, 
Cambridge

	12.	 Fitch W (1972) Toward defining the course of evolution: minimum change for a specific tree topol-
ogy. Syst Zool 20(4):406–416

	13.	 Gazis R et al (2016) The genome of Xylona heveae provides a window into fungal endophytism. 
Fungal Biol 120(1):26–42

	14.	 Guerreiro J, Ilic A, Roma N, Tomás P (2018) GPGPU power modelling for multi-domain voltage-
frequency scaling. In: Proceedings of IEEE HPCA 2018. IEEE, pp 530–538

	15.	 Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation 
sequencing technologies. Nat Rev Genet 17(1):333–351

	16.	 Han X, Chakrabortti A, Zhu J, Liang Z, Li J (2016) Sequencing and functional annotation of the 
whole genome of the filamentous fungus Aspergillus westerdijkiae. BMC Genom 17(633):1–14

	17.	 Hua GJ, Hung CL, Lin CY, Wu FC, Chan YW, Tang CY (2017) MGUPGMA: a fast UPGMA algo-
rithm with multiple graphics processing units using NCCL. Evolut Bioinform 13:1–7

	18.	 Hung CL, Lin YS, Lin CY, Chung YC, Chung YF (2015) CUDA ClustalW: an efficient paral-
lel algorithm for progressive multiple sequence alignment on multi-GPUs. Comput Biol Chem 
58:62–68

	19.	 Izquierdo-Carrasco F, Alachiotis N, Berger S, Flouri T, Pissis SP, Stamatakis A (2013) A generic 
vectorization scheme and a GPU kernel for the phylogenetic likelihood library. In: Proceedings of 
IEEE IPDPS 2013. IEEE, pp 530–538

	20.	 Jünger D, Hundt C, González-Domínguez J, Schmidt B (2017) Speed and accuracy improvement of 
higher-order epistasis detection on CUDA-enabled GPUs. Clust Comput 20(3):1899–1908

	21.	 Kaeli DR, Mistry P, Schaa D, Zhang DP (2015) Heterogeneous computing with OpenCL 2.0. Mor-
gan Kaufmann Publishers, Waltham

	22.	 Klus P et al (2012) BarraCUDA—a fast short read sequence aligner using graphics processing units. 
BMC Res Notes 5(27):1–7

	23.	 Kuan L, Neves J, Pratas F, Tomás P, Sousa L (2014) Accelerating phylogenetic inference on GPUs: 
an OpenACC and CUDA comparison. In: Proceedings of the 2nd International Work-Conference on 
Bioinformatics and Biomedical Engineering, pp 589–600

https://doi.org/10.1093/sysbio/syz020
https://doi.org/10.1093/sysbio/syz020


9853

1 3

GPU acceleration of Fitch’s parsimony on protein data: from…

	24.	 Lin YS, Lin CY, Hung CL, Chung YC, Lee KZ (2015) GPU-UPGMA: high-performance com-
puting for UPGMA algorithm based on graphics processing units. Concurr Comput Pract Exp 
27(13):3403–3414

	25.	 Ling C, Benkrid K, Hamada T (2012) High performance phylogenetic analysis on CUDA-compati-
ble GPUs. ACM SIGARCH Comput Archit News 40(5):52–57

	26.	 Ling C, Gao J, Lu G (2016) Phylogenetic likelihood estimation on GPUs using vertical partitioning 
scheme. In: Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, pp 1210–1217

	27.	 Majumder T, Sarkar S, Pande PP, Kalyanaraman A (2012) NoC-based hardware accelerator for 
breakpoint phylogeny. IEEE Trans Comput 61(6):857–869

	28.	 Martins WS, Rangel TF, Lucas DCS, Ferreira EB, Caceres EN (2012) Phylogenetic distance com-
putation using CUDA. In: de Souto MC, Kann MG (eds) BSB 2012: advances in bioinformatics and 
computational biology, LNCS, vol 7409. Springer, Berlin, pp 168–178

	29.	 Mirande JM (2017) Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of mor-
phological characters in large-scale analyses. Cladistics 33(4):333–350

	30.	 Morgenstern I et  al (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 
116(4):489–502

	31.	 Nobile M, Cazzaniga P, Tangherloni A, Besozzi D (2017) Graphics processing units in bioinformat-
ics, computational biology and systems biology. Brief Bioinform 18(5):870–885

	32.	 Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y (2014) MEGADOCK 4.0: an 
ultra-high-performance protein–protein docking software for heterogeneous supercomputers. Bioin-
formatics 30(22):3281–3283

	33.	 Pratas F, Trancoso P, Sousa L, Stamatakis A, Shi G, Kindratenko V (2012) Fine-grain parallelism 
using multi-core, Cell/BE, and GPU systems. Parallel Comput 38(8):365–390

	34.	 Quang D, Guan Y, Parker SCJ (2018) YAMDA: thousandfold speedup of EM-based motif discovery 
using deep learning libraries and GPU. Bioinformatics 34(20):3578–3580

	35.	 Rokas A (2011) Phylogenetic analysis of protein sequence data using the randomized axelerated 
maximum likelihood (RAxML) program. Curr Protoc Mol Biol 96:19.11.1–19.11.14

	36.	 Roshan UW, Moret BME, Williams TL, Warnow T (2004) Rec-I-DCM3: a fast algorithmic tech-
nique for reconstructing large phylogenetic trees. In: Proceedings of the 3rd IEEE Computational 
Systems Bioinformatics Conference. IEEE, pp 98–109

	37.	 Santander-Jiménez S, Ilic A, Sousa L, Vega-Rodríguez MA (2017) Accelerating the phylogenetic 
parsimony function on heterogeneous systems. Concurr Comput Pract Exp 29(8):1–15

	38.	 Santander-Jiménez S, Vega-Rodríguez MA, Vicente-Viola J, Sousa L (2019) Comparative assess-
ment of GPGPU technologies to accelerate objective functions: a case study on parsimony. J Parallel 
Distrib Comput 126:67–81

	39.	 Sheskin DJ (2011) Handbook of parametric and nonparametric statistical procedures, 5th edn. 
Chapman & Hall/CRC, New York

	40.	 Thomson R, Shaffer H (2010) Sparse supermatrices for phylogenetic inference: taxonomy, align-
ment, rogue taxa, and the phylogeny of living turtles. Syst Biol 59:42–58

	41.	 Vazquez-Ortiz KE, Richer JM, Lesaint D (2016) Strategies for phylogenetic reconstruction—for the 
maximum parsimony problem. In: Proceedings of the 9th International Joint Conference on Bio-
medical Engineering Systems and Technologies (BIOSTEC 2016), pp 226–236

	42.	 Warnow T (2017) Computational phylogenetics: an introduction to designing methods for phylog-
eny estimation. Cambridge University Press, Cambridge

	43.	 Wilt N (2013) The CUDA handbook: a comprehensive guide to GPU programming. Addison Wes-
ley, Pearson

	44.	 Wu D et  al (2009) A phylogeny-driven genomic encyclopedia of bacteria and archaea. Nature 
462(7276):1056–1060

	45.	 Xilinx: breathe new life into your data center with alveo adaptable accelerator cards. White Paper: 
Alveo Accelerator Cards, 1–12 (2018)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	GPU acceleration of Fitch’s parsimony on protein data: from Kepler to Turing
	Abstract
	1 Introduction
	2 Related work
	3 Parsimony formulation
	4 GPU parsimony design for protein data
	4.1 GPU memory structures
	4.2 GPU kernel
	4.3 Host side

	5 Experimental results and performance analysis
	5.1 Comparing CUDA with alternative programming approaches
	5.2 GPU performance evaluation
	5.2.1 Power and energy consumption

	5.3 Comparison with multiprocessors and other co-processors
	5.4 Comparison with other approaches

	6 Conclusions and future research work
	Acknowledgements 
	References




