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Abstract
We propose that clusters interconnected with network topologies having minimal 
mean path length will increase their processing speeds. We approach our heuris-
tic by constructing clusters of up to 32 nodes having torus, ring, Chvatal, Wagner, 
Bidiakis and optimal topology for minimal mean path length and by simulating the 
performance of 256 nodes clusters with the same network topologies. The opti-
mal (or near-optimal) low-latency network topologies are found by minimizing the 
mean path length of regular graphs. The selected topologies are benchmarked using 
ping-pong messaging, the MPI collective communications and the standard paral-
lel applications including effective bandwidth, FFTE, Graph 500 and NAS parallel 
benchmarks. We established strong correlations between the clusters’ performances 
and the network topologies, especially the mean path lengths, for a wide range of 
applications. In communication-intensive benchmarks, optimal graphs enabled net-
work topologies with multifold performance enhancement in comparison with main-
stream graphs. It is striking that mere adjustment of the network topology suffices to 
reclaim performance from the same computing hardware.

Keywords  Network topology · Graph theory · Latency · Benchmarks

1  Introduction

The ever increasing processing speeds of supercomputers—culminating at IBM 
Summit [6] with its peak speed of 201 PFlops and 2,414,592 cores—brings exascale 
era within reach by systems and applications developers. For achieving the mile-
stone of exascale computing, the developers must reduce power consumption and 
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increase processing speeds by means of, e.g., design of power-efficient processors 
(and other components) capable of delivering higher local performance and design 
of networks capable of delivering low-latency and high-bandwidth communications. 
Those goals have been incrementally achieved, e.g., the ratio of performance to 
power consumption of IBM Summit is greater than that of TaihuLight; IBM Sum-
mit’s faster processing speed is reached with a smaller number of cores; comparison 
of June 2018 and November 2018 Top 500 lists [6] shows Sierra machine surpass-
ing TaihuLight with a new High-Performance Linpack (HPL) result. Performance 
increase, however, cannot rely only on raising individual processors clock speed 
because of the power wall of the Moore’s law  [60]. Consequently, the number of 
interconnected processors will keep increasing along with the impact of network 
topologies on the supercomputers’ sustained (maintained average) processing speed, 
a deed raising the necessity of providing architects with consistent tools for the dis-
covery and design of optimal networks. To attend that, theoretical insights [30, 64] 
for describing, designing, analyzing and optimizing the next-generation interconnec-
tion networks to increase global processing speeds of supercomputers may become a 
major tool for the HPC community.

In this manuscript, we approach the problem of enhancing a cluster’s perfor-
mance using symmetric minimal latency network topologies supported by a new 
framework for designing regular graphs of degree k with rotational symmetry 
and minimal mean path length. The graphs support the network topologies of the 
directly connected clusters that we benchmarked. The optimal graphs enabled build-
ing a cluster which may outperforms a torus of the same degree by a factor of up to 
3. Our graphs of degree 3 can achieve the same performance of the torus of degree 
4—a clear reduction in hardware costs, engineering complexity, and power con-
sumption. Our results showing the favorable impact of optimal graphs on a cluster’s 
performance open a new avenue of theoretical and experimental research for super-
computer architects. Related work is discussed in Sect. 2, and Sect. 3 presents our 
algorithm for designing a network topology and the cluster that we used on our anal-
ysis. Section 4 presents and examines graph properties supporting different clusters 
designs and their benchmark results. Concluding remarks are presented in Sect. 5.

2 � Related work

We present a discussion on the potential use of our approach and on how it com-
plements existing technologies for network topologies for supercomputers and data 
centers. Despite active theoretical investigations on network design for clusters [52, 
54], the use of advanced topologies in actual machines has not been a priority since 
the early days of parallel computing [43] because of potential engineering complica-
tions and lack of a measure of performance gains. Network topologies are the main 
elements affecting supercomputer interconnection network performance, and for 
decades, meshes [28], tori of 3D through 6D [8–10, 18, 25, 44, 66], hypercubes of 
various dimensions [32, 40, 42], fat trees [37, 51, 53] and off-the-shelf Ethernet or 
adapted InfiniBand [45] switched fabrics have been the mainstream network subsys-
tems. Mesh topologies which are based on lattice graphs, tori resulting from graph 
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product of rings and hypercubes as binary n-cubes represent the direct interconnec-
tion network  [28], while fat trees (folded Clos) belong to multistage indirect net-
works which consist of multiple layers of switches [28, 51].

In general, the system architecture aims at providing maximal connectivity, scal-
able performance, minimal engineering complexity and least monetary cost [30]. An 
ideal network of a fixed node degree must satisfy performance requirements includ-
ing small network diameter, broad bisection width, simple symmetric topology, 
engineering feasibility, and modular, expandable design  [30]. For example, mesh 
topology has low node degree and engineering complexity, but its large network 
diameter and average distance dampen node-to-node communications; fat tree by 
its multi-level switches realizes the maximum bisection width but with large diam-
eter; the torus and its derivative k-ary n-cube [26] have lower node degree, relatively 
smaller diameter and average distance. Hybrid 6D mesh/torus TOFU interconnect 
is incorporated in K computer [9], while modified 3D torus with combined 2-node 
is designed to form the Cray Gemini interconnect  [10], upgrading from the tradi-
tional 3D torus topology as in Cray SeaStar [18, 66], IBM Blue Gene/L [8] and Blue 
Gene/P [44], and 5D torus is applied in IBM Blue Gene/Q [44]. Other variants of 
torus such as the SRT [46] and RDT [75] networks, variant of k-ary n-cube such as 
the Express Cubes [27] and interlaced bypass torus (iBT) [76, 77] use the technique 
of adding bypass links. Modifications of fat tree [38, 41] have also been carried out 
to reduce its complexity and cost. Recently, high-radix hierarchical topologies such 
as Dragonfly [48] on which Aries interconnect [33] is based have been studied and 
implemented. Slim Fly [16] among the high-radix topologies also proposed to mini-
mize mean path length but is limited by the fixed combination of its radixes and 
sizes. However, a classification of the graphs enabling minimal mean path length is 
only on its infancy [7, 39]. To the best of our knowledge, there are only a few net-
work topologies aiming at minimizing mean path length that have been thoroughly 
researched and even less have been deployed and benchmarked in supercomputers 
architecture.

On the other hand, use of data centers for cloud computing has been rapidly 
increasing and challenges architects to build machines of which the amounts of 
processing nodes, memory and switches grow steadily while keeping the machine 
operational. That poses scalability and fault detection, along with maximal bisec-
tion bandwidth, as key features of data center networks (DCNs). Instead of reaching 
that by addition of switch layers, recent advances propose the use of optical net-
works of switches to replace top-of-rack aggregation switches [55]. That approach 
may be complemented by ours by constructing optimal networks of switches with 
reduced latency. In that case, there will be two optimization procedures, for mini-
mizing mean path length (MPL) and labeling pairs of communicating optical chan-
nels, which will enable the small network of switches to perform optimally under 
constraint of a finite numbers of ports. Symmetry of our optimal network topolo-
gies enables low levels of engineering complexity, as exemplified by our prototype 
machines.
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3 � Discovery of optimal network topologies and cluster description

We aim to investigate the increase in the processing speeds of a cluster by optimiz-
ing its average latency accordingly with its network topology. Hence, we propose a 
new algorithm to discover minimal MPL symmetric graphs to support optimal low-
latency network topologies for clusters and test experimentally our proposition on a 
directly connected cluster.

3.1 � Discovery of optimal network topologies

To obtain optimal network topologies, we search for N-vertex degree-k regular 
graphs, denoted by (N, k), with minimal mean path length (MPL). Cerf et al. [23] 
first calculated the lower bound of MPL for any regular graph and discovered small 
degree-3 graphs with up to 24 vertices whose MPL is minimal [24]. Additionally, it 
was proved that the diameters of such optimal graphs are also minimal. The exhaus-
tive computer search of an optimal graph of fixed size and degree is computationally 
expensive, e.g., the number of non-isomorphic 32-vertex degree-3 regular graphs, 
labeled as (32,3), is ∼ 1013 [21]. Thus, heuristic methods have been developed using 
greedy local search [49], simulated annealing [68], or theoretical graph product and 
construction [59] for reduced search duration.

For the graphs reported in this manuscript, we implemented the graph parallel 
exhaustive search using the enumeration algorithms snarkhunter [19, 20] and gen-
reg  [58], with built-in split option for parallelization and girth (the length of the 
smallest cycle in the graph) option as constraint. Optimal graphs having large 
girths [24] help reduce the search space, e.g., a reduction from ∼ 1013 non-isomor-
phic (32,3) regular graphs (with no girth constraint) to ∼ 105 by a constraint of girth 
7  [21]. This method was used for finding the (32,3)-Optimal graph. However, the 
exhaustive search of graphs with more vertices or higher degree has astronomical 
duration even under girth constraint.

To find larger optimal graphs with higher degree, we used random iteration of 
Hamiltonian graphs (i.e., graphs having a closed cycle that visits each node only 
once called Hamiltonian cycle) [17] with rotational symmetry. By this method, we 
have discovered the (32,4)-Optimal graph. It is worth mentioning that the final lay-
out of the (32,3)-Optimal graph is also 90◦ rotationally symmetric after the MPL 
optimization search. For each optimal graph, we reorder the vertices on the ring 
according to its different Hamiltonian cycles and look for more rotational symme-
tries among these isomorphic layouts. The coloring of the edges helps to visualize 
this symmetric design. Fixing such symmetric structure is also one way to reduce 
the search space, which we also apply to the optimization of larger-scale topologies.

3.2 � Cluster description

To perform our experiments, we constructed a switchless Beowulf cluster named 
“Taishan” that has up to 32 nodes (Fig.  1). Each node has eight communication 
ports, with two of them used for cluster management and storage. Hence, we can 



9562	 Y. Deng et al.

1 3

evaluate performances of clusters with network topologies supported by graphs of 
degrees 2 to 6 and benchmark the impact of network topology on processing speeds. 
Because of hardware homogeneity, we conclude that our results on the impact of 
network topology remain valid when cutting edge technology is used.

Because of budget limits, we use a low-end hardware to build a functional pro-
totype suited for investigating the impact of the network topology on the cluster’s 
processing speeds. Moreover, we use such a configuration to focus on the role of the 
network on the cluster’s performance while expecting to minimize additional influ-
ences. Each node of Taishan has 1 Intel Celeron 1037U dual-core processor (1.80 
GHz, 2M Cache), 1 × 8 GB DDR3 SODIMM (1600 MHz, 1.35V), 128 GB SSD 
and eight Intel 82583V Gigabit Ethernet controllers (PCIe v.1.1, 2.5 GT/s). We use 
CentOS Linux 6.7 (kernel 2.6.32) as operational system and NFS for sharing files 
through one of the ports that is connected to a 48-port Gigabit Ethernet switch. Pro-
cesses communicate directly through node’s ports interconnected accordingly with 
the supporting graph adjacency rules. We use GCC version 4.4.7 and MPICH 3.2 
for compiling and running our parallel programs. Static routing is used accordingly 
with Floyd’s algorithm [34] to ensure the shortest path length and lowest congestion.

4 � Analysis of graph properties and cluster benchmarks

4.1 � Comparative analysis of optimal network topologies

In order to evaluate the effects of the optimal network topologies on the cluster 
performance, we have designed several network topologies using regular graphs 

Fig. 1   Taishan Beowulf cluster
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(N, k) with N = 16, 32 and k = 2, 3, 4 . The topologies of the benchmarked clusters 
of 16 nodes are ring (R), Wagner (W) [17], Bidiakis (B) [72], 4 × 4 torus (T) (4D 
hypercube) and two optimal graphs (O) re-discovered by our parallel exhaustive 
search. The 32 vertices clusters used the ring, Wagner, Bidiakis, 4 × 8 torus, Chvatal 
(C)  [17] and the two optimal graphs obtained by our parallel exhaustive and ran-
dom search. The adjacency matrices of all the benchmarked topologies are included 
in additional Online Resource. We also compute the bisection width (BW) of each 
topology using the KaHIP program, which efficiently achieves a balanced partition 
of a graph [65]. We refer to each cluster as (N, k) − X , where X is the 1st letter of, 
or the name of the supporting graph. The evaluated network topologies and respec-
tive graph properties are presented in Table 1, while Fig. 2 shows the graphs (left) 
and their corresponding latency versus hop distance plots (right) obtained by actual 
ping-pong messaging tests. In all graphs of Fig.  2, the solid black disks denote 
average values for the latency and hop distance, while the error bars’ lengths are 
obtained from the standard deviation. The dashed black line indicates the fit of the 
ping-pong latency, denoted by T, as a linear function of the hop distance h, namely 
T = T0 + � ⋅ h where T0 is the network initiating time and � is the slope. We denote 
the Pearson correlation coefficient [36] between the ping-pong latency and the hop 
distance by � and compute it as

where Ti,j and hi,j are the ping-pong latency and the hop distance between nodes i 
and j. The average ping-pong latency and average hop distance (MPL) are given by, 
respectively,

while their corresponding standard deviations are given by

Table 1 shows the diameters (D), mean path length (MPL) and bisection width 
(BW) of the graphs supporting the benchmarked networks. Properties of optimal 
graphs are emphasized with bold fonts. For all (N,  k) graphs, the optimal topol-
ogy has minimal MPL and D and maximal BW. Hence, we expect that the opti-
mal graphs will support a network topology of low latency, because of shorter MPL 
and D (see ping-pong test results in Fig. 2), and high throughput, because of larger 
BW  [28]. Indeed, results present in the next section lead to similar conclusions 
despite the influence of communication patterns, internal algorithms, message sizes, 
memory access, and routing.

� =

∑N

i,j=1
(Ti,j − ⟨T⟩)(hi,j − ⟨h⟩)
N(N − 1) �T �h

, i ≠ j,

⟨T⟩ =
∑N

i,j=1
Ti,j

N(N − 1)
, and ⟨h⟩ =

∑N

i,j=1
hi,j

N(N − 1)
, i ≠ j,

�T =

�∑N

i,j=1
(Ti,j − ⟨T⟩)2

N(N − 1)
, and �h =

�∑N

i,j=1
(hi,j − ⟨h⟩)2

N(N − 1)
, i ≠ j.
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(a)

(b)

(c)

(d)

Fig. 2   Benchmarked topologies (left) and their node-to-node ping-pong latency versus hop distance 
(right)
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(e)

(f)

(g)

(h)

Fig. 2   (continued)
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(i)

(j)

(k)

(l)

Fig. 2   (continued)
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4.2 � Benchmark results and analysis

The following representative benchmark programs were used to evaluate the clus-
ter’s performance: custom ping-pong and MPI collective communications; effective 
bandwidth (b_eff) [1, 50]; FFTE [2, 70]; Graph 500 [3, 61]; and the NAS Parallel 
Benchmarks (NPB) [5, 12]. Ping-pong tests report runtime and, for each topology, 
produce a node-to-node latency matrix used to show correlation with supporting 
graph’s hop distances (Fig. 2). Here, benchmark runtime refers to the elapsed wall 
clock time for a benchmark to be completed. The evaluation of remaining bench-
marks is done by means of the ratio of the sustained processing speed of a given 
topology to that of the ring of the same size. Since the effective bandwidth and 
Graph 500 benchmarks report average speed S while the other benchmarks report 
average runtime T, the performance ratio of each topology to its corresponding ring 
is S∕Sring or equivalently Tring∕T  . The values of S and T are averages obtained after 
multiple executions of each benchmark. In particular, for ping-pong, MPI collec-
tive communications, effective bandwidth and Graph 500, the calculation method 
of average runtime or speed is specified in their respective sections. Our analysis 
generates scatter plots of the performance ratio at y-axis versus the topology’s MPL 
at x-axis for each benchmark, as shown in Figs. 3, 4, 5, 6, 7, 8 and 9. Error bars are 
calculated by repeated experiments (except ping-pong and effective bandwidth). Red 

(m)

Fig. 2   (continued)

Table 1   Graph properties of benchmarked topologies

Topology D MPL BW Topology D MPL BW

(16,4)-Optimal 3 1.75 12 (32,4)-Optimal 3 2.35 16
(32,4)-Chvatal 4 2.55 8

(16,4)-Torus 4 2.13 8 (32,4)-Torus 6 3.10 8
(16,3)-Optimal 3 2.20 6 (32,3)-Optimal 4 2.94 10
(16,3)-Bidiakis 5 2.53 4 (32,3)-Bidiakis 9 4.06 4
(16,3)-Wagner 4 2.60 4 (32,3)-Wagner 8 4.61 4
(16,2)-Ring 8 4.27 2 (32,2)-Ring 16 8.26 2
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(or blue) points indicate the data for degree-3 (or 4) clusters. Different data points’ 
symbols represent different sub-tests of one application.

4.2.1 � Ping‑pong test

The routing algorithm and communication properties of the cluster in comparison 
with the supporting graph path lengths are evaluated by means of the ping-pong test 
designed using MPI_Send and MPI_Recv, with message sizes ranging from 1 byte 
to 213 bytes (8 KB). Latency is measured as the average round-trip time for a mes-
sage to travel between source and destination over multiple runs. We select 1 KB as 
the message size to output the corresponding node-to-node latency in the form of a 
matrix. The Pearson correlation and linear regression between node-to-node latency 
and hop distance were calculated for each topology as in Fig. 2, while performance 
ratios of average latency between all pairs of nodes for each topology are plotted in 
Fig. 3.

Figure 2 shows that the Pearson correlation coefficients ( � ) between ping-pong 
latency and hop distance under the shortest-path routing are all greater than 0.977. 
Such a strong correlation is reflected on the approximately linear dependence 
between node-to-node latency in the network and graph’s distance (hop) as indicated 
by the dashed line. Notice that besides (32,2)-Ring the fitting equations describing 
the linear relation are very similar, independently of the cluster’s sizes and topolo-
gies, the average of which being T = 107.17 + 121.15h . (Because of the high diam-
eter of (32,2)-Ring, message traverse and serialization start to affect the latency for 
long-distance transfer.) Moreover, performance of ping-pong for different topologies 
is strongly inversely proportional to their MPL as shown in Fig. 3. Those results also 
hold for larger messages of sizes up to 8 KB.

Fig. 3   Performance ratios on ping-pong tests
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Fig. 4   Performance ratios on collective communications

(a)

(b)

(c)
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(d)

Fig. 4   (continued)

Fig. 5   Performance ratios on effective bandwidth

Fig. 6   Performance ratios on 1D FFTE
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4.2.2 � Collective communications

Collective communications benchmarks test the performance of MPI_Bcast, MPI_
Reduce (with reduce operation MPI_SUM), MPI_Scatter and MPI_Alltoall. We 
choose unit messages of 1 MB and 32 MB under the constraint of 8 GB RAM avail-
able per node. On each node, the transfer message sizes are either equal to the unit 
message sizes or the unit sizes multiplied by the number of nodes, depending on 
whether it is the root node and on the MPI collective function.

MPI_Bcast, MPI_Reduce and MPI_Scatter were run multiple times with all 
nodes being root multiple times. Then, we average the runtime over all root nodes 
and then over all tests. The runtime of each test is the maximum elapsed wall clock 
time on all nodes. For MPI_Alltoall, we conduct the test multiple times and average 
the runtime over all tests. The runtime of each test is the average elapsed wall clock 
time on all nodes.

The performance ratios to ring are plotted in Fig. 4. Collective communications 
are influenced by MPL, BW, traffic pattern, MPI internal algorithm, message size 
and memory access. For example, Wagner topology has greater MPL but shorter 
diameter than Bidiakis, while they have the same bisection width (Table  1). The 
shorter diameter of Wagner graph is especially pronounced in the 1 MB message 
MPI_Bcast (Fig.  4a) which leads to a 17% and 11% performance gain, respec-
tively, for (16,3)- and (32,3)-Wagner over Bidiakis. However, for larger messages 
and other MPI collective functions with similar traffic pattern such as MPI_Scat-
ter (Fig. 4c), MPL becomes a more dominant factor and Bidiakis outperforms or at 
least performs equally as Wagner with slight fluctuation. Static shortest-path routing 
also affects the performance of collective communications. For example, torus has 
relatively low performance in MPI collective functions with large message, except 
MPI_Reduce (Fig. 4b). The low performance when transferring large message may 

Fig. 7   Performance ratios on Graph 500
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Fig. 8   Performance ratios on NPB

(a)

(b)

(c)
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be caused by network congestion due to static routing, especially for torus, while the 
internal algorithm of MPI_Reduce overcomes such congestion.

4.2.3 � Effective bandwidth

Effective bandwidth (b_eff, version 3.6.0.1) [1] measures the accumulated network 
bandwidth by means of multiple communication patterns (ordered naturally and ran-
domly) with messages of 21 sizes ranging from 1 byte to 1/128 of memory per pro-
cessor, 64 MB in Taishan. It uses MPI_Sendrecv, MPI_Alltoallv and non-blocking 
MPI_Irecv and MPI_Isend with MPI_Waitall. The output is the average bandwidth 
over ring and random patterns and 21 message sizes after taking the maximum 
bandwidth of the three MPI methods in each measurement [50].

(d)

(e)

Fig. 8   (continued)
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The performance ratios to ring are plotted in Fig.  5. A strong impact of MPL 
on b_eff benchmark is shown, though traffic patterns, message sizes and MPI meth-
ods may also affect performance. Indeed, (16,4)- and (32,4)-Optimal have the high-
est effective bandwidths, 686.51 MB/s (and 1066.80 MB/s), a performance gain of 
38% (and 68%) over (16,3)- and (32,3)-Wagner. Indeed, we can consider that per-
formance of b_eff has an inversely proportional relation to MPL if we neglect the 
torus because the static shortest-path routing causes congestion in collective MPI 
functions.

4.2.4 � FFTE

We benchmarked the version 6.0 of the parallel FFTE [2, 70] from the HPC Chal-
lenge  [4, 56], which in cache-based processors  [69] has data transpositions as its 
main bottleneck because of all-to-all communications. We perform the parallel 1D 
FFTE routine with transform array lengths ranging from 210 to 227 , limited by local 
8 GB RAM. Then, we select 221 and 227 as the transform array lengths (equal to 32 
MB and 2 GB in total transform array sizes).

Figure 6 shows the performance plots of 1D FFTE. Transforming larger arrays 
stresses the network such that 1D FFTE performs with almost linear dependence 
of MPL. When transforming 2 GB array in 1D FFTE, (16,4)- and (32,4)-Optimal 
topologies have top performance ratios of 1.85 and 2.31 to ring, a gain of 51% and 
74% over (16,3)- and (32,3)-Wagner. For arrays < 32 MB, the performances are 
almost uniform for all network topologies.

4.2.5 � Graph 500

The Graph 500 (version 3.0.0) [3, 61] tests large-scale graph algorithms, where mul-
tiple breadth-first search (BFS) and single-source shortest path (SSSP) computations 
are performed on an extremely large undirected graph generated and distributed in 
the beginning of the test. Graph 500 evaluates data-intensive performance in super-
computers reporting the mean TEPS (traversed edges per second). The best choice 
for test scale limited by local RAM was 27, generating an initial unweighted graph 
of 24 GB for BFS and an initial weighted graph of 40 GB for SSSP.

Figure 7 shows the performance of Graph 500 benchmark. A strong inversely pro-
portional relation to MPL is exhibited, despite fluctuations on torus (because of con-
gestion), Bidiakis and (32,4)-Chvatal. The relatively high diameter of Bidiakis com-
pared with Wagner and relatively low bisection width of (32,4)-Chvatal compared 
with (32,3)-Optimal topology (Table 1) weaken their performances as well. How-
ever, MPL keeps playing a major role on Graph 500 with (16,4)- and (32,4)-Optimal 
having top performances of, respectively, 3.05/2.71 and 5.41/4.75 for BFS/SSSP, a 
gain of 90%/71% and 278%/271% over (16,3)- and (32,3)-Wagner.

4.2.6 � NAS parallel benchmarks (NPB)

The NAS Parallel Benchmarks (NPB version 3.3.1 on MPI)  [5, 12] contain a set 
of programs derived from computational fluid dynamics (CFD) applications, with 
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built-in runtime reporting. We run integer sort (IS), conjugate gradient method (CG) 
for approximating the smallest eigenvalue, multi-grid solver (MG) for 3D Poisson 
PDE, FFT solver (FT) for 3D PDE NPB kernels, and lower–upper (LU) Gauss–Sei-
del solver pseudo-application [57]. IS uses intensive data communication, while also 
testing random memory access and integer computation speed; CG tests unstruc-
tured long-distance communication and irregular memory access; MG tests highly 
structured short- and long-distance communication with intensive memory access; 
FT tests long-distance all-to-all communication  [5, 12, 13]. For each benchmark, 
we choose the standard problem sizes: Class A, B and C because of local memory 
constraints.

The performance ratios to ring for Classes A and C are shown in Fig. 8. Note that 
traffic patterns, internal algorithms, problem sizes, memory access and static shortest-
path routing, apart from MPL and BW, affect the performance of NPB. The perfor-
mances of CG (Fig. 8b) and MG (Fig. 8c) are similar to MPI_Reduce (Fig. 4b), in 
which torus shows relatively high performance. In these benchmarks, the static routing 
for torus does not cause congestion with internal algorithms and memory access ben-
efitting the torus. LU (Fig. 8e) shows a nearly uniform performance over all bench-
marked topologies, a result attributable to its limited parallelism [12], i.e., low com-
munication-to-computation ratio. However, NPB performance exhibits weak, or even 
strong, dependence on MPL as in IS (Fig. 8a) and FT (Fig. 8d) resembling, respec-
tively, Graph 500 (Fig. 7) and 1D FFTE with 2 GB array size (Fig. 6), as expected 
for benchmarks requiring heavy global communication. IS and FT Class A/C problem 
sizes are 223∕227 resulting in, respectively, 32 MB/512 MB total integer array sizes 
and 128 MB/2 GB transform array sizes. In IS Cass A/C, (16,4)- and (32,4)-Optimal 
topologies have top performance ratios of 2.70/2.89 and 3.89/4.32, respectively, a gain 
of 79%/93% and 153%/202% over (16,3)- and (32,3)-Wagner. In FT Class A/C, (16,4)- 
and (32,4)-Optimal topologies have top performance ratios of 2.70/2.89 and 3.89/4.32, 
respectively, a gain of 79%/93% and 153%/202% over (16,3)- and (32,3)-Wagner. In 
FT Class A/C, the optimal graphs, 1.72/1.66 and 2.31/2.35, outperform both Wagner 
graphs with a gain of 26%/40% and 56%/81%, respectively.

4.3 � Large‑scale topology optimization and simulation analysis

4.3.1 � Comparative analysis of larger‑scale near‑optimal network topologies

We obtain the near-optimal topologies of 256 nodes and degrees 3, 4, 6, 8 using ran-
dom iteration of Hamiltonian graphs with rotational symmetry. The near-optimal 
topologies are compared with topologies of the same size and degrees: ring, Wagner, 
Bidiakis, 16 × 16 torus (4D hypercube), 4 × 8 × 8 torus and 4 × 4 × 4 × 4 torus (8D 
hypercube), as shown in Table 2. For the near-optimal topologies, we also calculate 
their gaps of diameter and MPL compared to the theoretical lower bounds, respec-
tively. Figures of the near-optimal topologies are listed in the Appendix. The adjacency 
matrices of all the simulated topologies are included in additional Online Resource.

Table 2 shows that the near-optimal topologies have the smallest diameter (D), 
MPL and highest bisection width (BW) among the topologies of the same sizes and 



9576	 Y. Deng et al.

1 3

degrees. Properties of near-optimal graphs are emphasized with bold fonts. For the 
gaps of D and MPL of near-optimal topologies, the diameter gap is within 1 and 
MPL gap is within 2% compared to the theoretical lower bounds. This shows our 
optimization method is effective on the large scale. The current optimization runt-
ime is 96 h, and one may further extend the runtime or improve the method to obtain 
better near-optimal topologies.

4.3.2 � Simulation results and analysis

We simulate larger-scale topologies on the platform SimGrid (version 3.21)  [22]. 
SimGrid provides versatile, accurate and scalable simulation of distributed applica-
tions, especially with SMPI API that enables simulation of unmodified MPI appli-
cations [22]. We configure SimGrid to approximate the settings and ping-pong test 
results of Taishan cluster, with dual-core CPU per host, 8 Gflops processing speed 
per core, gigabit bandwidth and 30 μs latency per link. Static shortest-path routing 
is implemented with full routing table calculated using the same algorithm as for 
the benchmarking cluster. We run the simulations on the SeaWulf cluster at Stony 
Brook University.

We select the benchmarks that largely depend on global communication: MPI_
Alltoall, effective bandwidth, 1D FFTE, Graph 500 and NPB IS and FT. Because of 
the limited 128 GB RAM of SeaWulf nodes and long simulation runtime for large-
scale topologies, we reduce the problem sizes for some benchmarks, namely 64 KB 
and 512 KB as the unit message sizes for MPI_Alltoall, 1 MB maximum message 
size for effective bandwidth and Class S and A for NPB IS. For Graph 500, due to 
implementation issues with SimGrid, we use a previous version 2.1.4 that only con-
tains BFS test and reduce the test scale to 12.

The simulation performance ratios to ring are plotted in Fig.  9 for topologies 
of 256 nodes, with log scale on MPL. The near-optimal topologies are labeled as 
(N, k) − N and gold (or cyan) points indicate the data for degree-6 (or 8) clusters.

Table 2   Graph properties of simulated topologies

a The D and MPL of near-optimal topologies are written as the sum of the theoretical lower bounds and 
the difference to final values

Topology Da MPLa BW

(256,8)-Near-optimal 3 + 1 2.72 + 0.03 298
(256,8)-Torus 8 4.02 128
(256,6)-Near-optimal 4 + 0 3.11 + 0.06 192
(256,6)-Torus 10 5.02 64
(256,4)-Near-optimal 5 + 1 4.09 + 0.05 92
(256,4)-Torus 16 8.03 32
(256,3)-Near-optimal 7 + 1 5.59 + 0.08 46
(256,3)-Bidiakis 65 25.09 4
(256,3)-Wanger 64 32.62 4
(256,2)-Ring 128 64.25 2
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Fig. 9   Performance ratios on simulated MPI_Alltoall, effective bandwidth, 1D FFTE, Graph 500 BFS 
and NPB

(a) (b)

(c) (d)

(e) (f)
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The simulation results reveal that for large-scale topologies, (256, k)-Near-opti-
mal with low MPL has mostly prominent performance increase over other topolo-
gies with the same degree. Despite fluctuations in Graph 500 BFS (Fig.  9d) and 
NPB IS (Fig. 9e) due to limited problem sizes and thus less intensive communica-
tion, all the simulation performances show a strongly inversely proportional rela-
tion with respect to MPL. The performance gain of (256,8)-Near-optimal over 
(256,3)-Wagner is above 1000% in MPI_Alltoall (Fig. 9a), 1D FFTE (Fig. 9c) and 
NPB FT (Fig. 9f). Again, tori show low performance partially due to network con-
gestion caused by static shortest-path routing.

5 � Discussion and conclusion

In this manuscript, we examine our hypothesis on increasing a cluster’s sustained 
processing speed by interconnecting its nodes with a minimal MPL network topol-
ogy. That is done experimentally in small clusters supported by optimal symmet-
ric regular graphs generating advanced network topologies. We build clusters of the 
same size with multiple topologies, namely torus, Wagner, Bidiakis, Chvatal and 
ring, to run a basic set of benchmarks. Our results show that the optimal network 
topologies, in general, deliver the highest performance. We also perform simula-
tions of larger clusters that confirm our observations. Moreover, our results attest 
to the effectiveness and importance of the mathematically driven design of network 
topologies.

The minimum MPL graphs were constructed using our parallel enumeration 
algorithm with girth restrictions and random iteration on Hamiltonian graphs that 
generated a reduced search space by imposition of symmetry requirements. These 
methods are general, being applied well for the search of small and large (near) 
optimal network topologies. Hence, one may employ our algorithm for generating 
advanced network topologies for clusters of enhanced performance and provide par-
allel computers architects with an additional rationale to enhance those machine’s 
performance.

Our results running high communication-to-computation ratio applications, 
namely MPI_Alltoall-based tests, effective bandwidth, 1D FFTE, Graph 500, and 
NPB IS and FT, indicate the strong influence of MPL on the clusters’ performance. 
This proves the importance of network topologies with optimized MPL for speed-
ing up processing and encourages designing clusters using (near) optimal symmet-
ric regular graphs. Our results are also useful for architects designing switched net-
works, the communicating circuitry of multicore processors or DCN topologies. The 
(near) optimal graphs obtained with our algorithms can provide reduced communi-
cation times for any type of network since there is no assumption on the properties 
of the nodes. Architects interested on larger-scale clusters would still benefit from 
our methods as the (near) optimal graphs can be combined by graph product [29] or 
integrated as base graphs into hierarchical networks [47, 63, 67] to construct scal-
able network topologies of reduced latency and compete with other multistage net-
works like fat tree [31].
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Optimal symmetric network topologies of minimal MPL are also important for 
ensuring engineering feasibility as demonstrated by the construction of our clus-
ter Taishan. It enables optimal use of the available hardware while adding mini-
mal costs: the time and energy for computational search of the optimal topology 
for a regular graph of a given size and node degree. Hence, further development 
of mathematical tools for minimizing the computer search time or, in an ideal sce-
nario, finding optimal graphs by analytic calculations would be welcome. Currently, 
the parallel exhaustive search for (32,3)-Optimal graph without girth constraint goes 
through ∼ 1013 graphs and took about one week on thousands of Sunway BlueLight 
cores  [74]. That amount of time is greatly reduced if we consider the symmetries 
and obtain near-optimal graphs as done for the 256-node graphs. Such improvement 
on the optimization method may lead to the discovery of larger-scale (near) optimal 
graphs in combination with graph product  [59], hierarchical construction  [14, 15] 
and other graph design and optimization techniques [62, 73].

The linear relation between the distance and latency matrices for, respectively, 
the graph and the networks demonstrates the strength of our mathematically driven 
design as an additional layer for a supercomputer’s optimization. Tables  1 and  2 
show the properties of the networks that we have evaluated in our work, and also the 
symmetric (near) optimal graphs having minimized diameters and maximized bisec-
tion widths. Those two quantities also help in enhancing the cluster’s performance 
as is widely known by supercomputer and DCN architects. Hence, our approach 
enables the concomitant optimization of three parameters.

A seminal model for latency in a computer’s network considers its dependence 
on: its components technology determining both the time of message processing 
in a single router, tR , and the velocity of package propagation through intercon-
nects, v; the network topology determining the average hop distance, H, average 
cable distance, � , and bandwidth, b, that depends on node degree and packaging 
constraints (Section  3.3.2 of  [28]). The latency of a message can be written as 
T = HtR + �∕v + L∕b , where L is the message length. Since the performance of the 
components is a fixed parameter given by financial, energetic and technological con-
straints, latency reduction can be achieved by increasing node’s degree and reduc-
ing average hop and cable distances. The linear relation between the latency and 
hop distance for the ping-pong test is contrast with the non-trivial dependence on 
MPL when more complex benchmarks are executed. Hence, a more complex theo-
retical work [11, 28, 35, 39, 57, 71] is necessary for understanding the dependence 
of a cluster’s performance on its network topology and prevalent applications and to 
establish general principles to be used by supercomputer architects.
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Appendix: Simulated large‑scale near‑optimal topology figures

See Fig. 10.
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