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Abstract
In this paper, we construct a novel algorithm for solving non-smooth composite 
optimization problems. By using inertial technique, we propose a modified proximal 
gradient algorithm with outer perturbations, and under standard mild conditions, 
we obtain strong convergence results for finding a solution of composite optimiza-
tion problem. Based on bounded perturbation resilience, we present our proposed 
algorithm with the superiorization method and apply it to image recovery problem. 
Finally, we provide the numerical experiments to show efficiency of the proposed 
algorithm and comparison with previously known algorithms in signal recovery.
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1  Introduction

Let �0(H) be a class of convex, lower semicontinuous, and proper functions from 
a Hilbert space H to (∞,+∞]. The non-smooth composite optimization problem 
(shortly, NSCOP) is defined by

where � ,� ∈ �0(H) , � is differentiable, � is not necessarily differentiable, and ∇� 
is Lipschitz continuous on H. The NSCOP can be traced back to classical work of 
Bauschke and Combettes [1] and it also has a typical research fields in linear inverse 

(1)min
x∈H

(
�(x) + �(x)

)
,
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problems [2]. This class of optimization problem covers a large number of appli-
cations in applied mathematics, robotics, medical imaging, financial engineering, 
machine learning, signal processing and resource allocation, see e.g. [3–9]. Due to 
recent boom in automations and machine learning, smart iterative algorithms are 
indispensable in the fields of artificial intelligence. This, however, has lead to an 
increase in demand for feasible and faster algorithms in which all the relevant com-
ponents can be evaluated sufficiently quickly and at least time. One of the goals 
in the present paper is to seek to explore a novel and faster algorithm for solving 
NSCOP.

The important and well-known power tool for solving the problem (1) is proxi-
mal gradient algorithm. It is as an analogous tool for non-smooth, constrained, 
large-scale, or distributed versions of Newton’s method for solving unconstrained 
smooth optimization problems of modest size.

Assumption 1  [1]: (The existence of solution of NSCOP)
Let � be the set of all solutions of (1). If �(x) + �(x) ∶= � is coercive, that is,

Then � = Argmin� ≠ �. This means that � has a minimizer over H.

Assumption 2  [1]: (Uniqueness of Solution of Proximal Mappings)
Let � ∈ �0(H), then for each x, the function

In view of this, the proximal operator of � of order 𝜆 > 0 is defined by

The proximal gradient algorithms (shortly, PGA) are used to split the contribu-
tion of the fuctions � and � , in particular, the gradient descent step determined 
by � [10, 11] and the proximal step induced by � [12–14]. PGA is easy to imple-
ment and applicable in problems that involve large or high-dimensional datasets. 
Xu [15] submitted that x∗ is a solution of the NSCOP (1)  if and only if x∗ solves 
the fixed point equation

He then established the weak convergence of PGA as follows:

where 𝜆n > 0 is a step size. Recently, Guo and Cui [16] modified the PGA by using 
viscosity algorithm [17] as follows:

lim‖x‖→∞
�(x) = +∞.

�‖y − x‖2
2

+ �(y)

�
has exactly one minimizer over H.

(2)������(x) ∶= argminy∈H

�‖y − x‖2
2�

+ �(y)

�
, x ∈ H.

(3)x∗ = ������(x
∗ − �∇�(x∗)).

(4)xn+1 = ������(xn − �n∇�(xn)), ∀n ≥ 0,
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where {�n} is a sequence in [0, 1], f ∶ H → H is a � ∈ (0, 1) contractive operator, 
L > 0 a Lipschitz constant of � and e ∶ H → H represents a perturbation operator 
satisfying

They proved that the sequence {xn} generated by (5) converges strongly to a point 
x∗ ∈ � , where x∗ is the unique solution of the variational inequality problem:

under the following conditions: 

	(C1)	 0 < a = infn 𝜆n ≤ 𝜆n <
2

L
 and 

∞�
n=0

‖𝜆n+1 − 𝜆n‖ < ∞;

	(C2)	 {𝛼n} ⊂ (0, 1) and satisfying lim
n→∞

�n = 0;

	(C3)	
∞∑
n=0

�n = ∞ and 
∞�
n=0

‖𝛼n+1 − 𝛼n‖ < ∞.

The superiorization methodology (shortly, SM) was invented by Censor et al. [18] 
in attempt to check computation tractability of certain image recovery algorithms 
with limited computing resources. The SM is a heuristic approach with focus on 
time consumption [19, 20]. The base operation of SM requires that an algorithm 
which generates a convergent sequence of feasible solutions is bounded perturba-
tion resilient, and that superiorization which uses perturbations proactively to get 
superior feasible solutions in the sense that the values of the objective function 
decrease is put in force. The technique is to find a point with a lower cost function 
value than other points through a simple algorithm is called the basic algorithm. 
This basic algorithm is usually pre-checked for perturbation resilience. The SM 
seems to be vast oversimplification, yet it represents a dramatic slight in approach 
to implementation of iterative algorithms. The SM has been investigated and studied 
by many researchers (see e.g. [6, 21–23]). Very recently, Guo and Cui showed that 
the sequence generated by (5) is perturbation resilient and prove strong convergence 
results which is also solution of variational inequality problem (6).

In optimization theory, the technique to increase efficiency of convergence 
rate, Polyak [24] pioneered the use of heavy ball method of the two-order time 
dynamical system which is a two-step iterative method for solving smooth con-
vex minimization problem (i.e. a problem where all the constraints are convex 
functions, and the objective function is a smooth convex function). Later on, the 
development of this method was emphasized and used to increase the perfor-
mance the convergence rate by Nesterov [25] as follows:

(5)xn+1 = �nf (xn) + (1 − �n)�����n�(xn − �n∇�(xn)) + e(xn), ∀n ≥ 0,

∞�
n=0

‖e(xn)‖ < +∞.

(6)⟨x∗ − f (x∗), x − x∗⟩ ≥ 0, ∀x ∈ �,
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where �n ∈ [0, 1) is an extrapolation factor, �n is a positive real sequence and ∇f  is 
the gradient of a smooth convex function f. The method is effective and converges 
faster since the vector (xn − xn−1) acts as an impulsion term and �n serves as a speed 
regulator of the momentum term �n(xn − xn−1) in (7). For more about inertial algo-
rithms, we refer to [26–32] and the references therein.

Inspired and motivated by some contributions of authors mentioned above, 
we study a new method of approximation of solutions of the NSCOP (1) using 
a modified proximal gradient algorithm combined with inertial technique, and 
we then prove its strong convergence theorem of the sequence generated by the 
proposed algorithm under suitable conditions. Further, we verify that the pro-
posed algorithm is of bounded perturbation resilient and apply it to image recov-
ery problem. The effectiveness and the implementation of the proposed algo-
rithm were illustrated by comparing it with previously known algorithms through 
numerical experiments in signal recovery.

The rest of this paper is organized as follows: basic notations, definitions and 
lemmas are recalled in Sect.  2. Our main results are presented in Sect.  3, that 
is, the inertial modified proximal gradient algorithm involving both perturbation 
and superiorization method are presented and some strong convergence results 
are proved. Next, Sect.  4 contains an application and numerical experiments to 
support our study. Finally, the conclusion of this research is given.

2 � Preliminaries

The following notations, definitions and lemmas will play a crucial role in the 
sequel. Let {xn} be a sequence in Hilbert space H and x ∈ H.

(1)	 xn → x means {xn} converges strongly to x; 
(2)	 xn ⇀ x means {xn} converges weekly to x; 
(3)	 A point z is said to be a cluster point of {xn} if there exists a subsequence {xnj} 

which converges weekly to a point z. The set of all cluster points of {xn} is 
denoted by �W (xn).

(4)	 An operator T ∶ H → H is said to be �-averaged if T = (1 − �)I + �S , where 
� ∈ (0, 1) and S ∶ H → H is nonexpansive;

(5)	 A ∶ H → H is said to be v-inverse strongly monotone (v − ism) with v > 0, if 

(6)	 T is nonexpansive if and only if the complement I − T  is 1
2
-ism [33];

(7)	 If T is �-ism, then for 𝛾 > 0, �T  is �
�
-ism;

(7)yn =xn + �n(xn − xn−1),

(8)xn+1 =yn − �n∇f (yn), ∀n ≥ 1,

⟨Ax − Ay, x − y⟩ ≥ ‖Ax − Ay‖2 ∀x, y ∈ H;
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(8)	 T is averaged if and only if the complement I − T  is �-ism for some 𝜈 >
1

2
. 

Indeed, T is �-averaged if and only if I − T  is 1
2�

 -ism, for � ∈ (0, 1);

(9)	 The composite of finitely many averaged operators is averaged. That is, if for each 
i = 1, ...,N, the operator Ti is averaged, then so is the composite operator T1...TN . 
In particular, if T1 is �1-averaged and T2 is �2-averaged, where �1, �2 ∈ (0, 1) , then 
the composite T1T2 is �-averaged, where � = �1 + �2 − �1�2.

Lemma 1  The following results are well known.

	 (i)	 ‖x + y‖2 = ‖x‖2 + 2⟨x, y⟩ + ‖y‖2, ∀ x, y ∈ H;
	 (ii)	 ‖x + y‖2 ≤ ‖x‖2 + 2⟨y, x + y⟩, ∀ x, y ∈ H.

Lemma 2  [15] Let � ∈ �0(H) , 𝜆 > 0 and 𝜇 > 0. Then

Lemma 3  [34] Let � ∈ �0(H) and 𝜆 > 0 . Then the proximal operator ������ is 1
2

-average. In particular, it is nonexpansive:

Lemma 4  [1] Let T ∶ H → H be a nonexpansive mapping with Fix (T) ≠ � . If a 
sequence {xn} in H converges weekly to x and {(I − T)xn} converges strongly to y, 
then (I − T)x = y, where Fix (T) is a fixed point set of T.

Lemma 5  [21] Assume that {an} is a sequence of nonnegative real numbers 
satisfying

where {�n}, {�n}, and {�n} satisfy the conditions:

	 (i)	 {𝛾n} ⊂ [0, 1],
∑∞

n=0
𝛾n = ∞;

	 (ii)	 lim sup
n→∞

�n ≤ 0;

	 (iii)	 �n ≥ 0 and 
∑∞

n=0
𝛽n < ∞ . Then lim

n→∞
an = 0.

3 � Main results

In this section, using the proximal mapping, we demonstrate a prove of a strong con-
vergence theorem for finding a solution of the non-smooth convex composite opti-
mization problem (1).

������(x) = ������

(
�

�
x +

(
1 −

�

�

)
������x

)
.

‖������(x) − ������(y)‖ ≤ ‖x − y‖, ∀x.y ∈ H.

an+1 ≤ (1 − �n)an + �n�n + �n
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Assumption 3 

	 (i)	 f ∶ H → H is a �-contractive operator with � ∈ (0, 1);
	 (ii)	 � ∶ H → (−∞,∞] is proper, lower semicontinuous, convex and ∇� is Lip-

schitz continuous with Lipschitz constant L > 0;
	 (iii)	 � ∶ H → (−∞,∞] is proper, lower semicontinuous and convex;
	 (iv)	 The set � of all solutions of problem 1 is nonempty.

Assumption 4  Suppose {𝜆n} ⊂ (0,
2

L
), {𝜁n} ⊂ [0, 1) and {�n} is a sequence in (0, 1) 

satisfying the following conditions: 

	(B1)	 0 < a = infn 𝜆n ≤ 𝜆n <
2

L
 and 

∑∞

n=0
‖𝜆n+1 − 𝜆n‖ < ∞;

	(B2)	 lim
n→∞

�n = 0, and 
∑∞

n=0
�n = ∞

	(B3)	 lim
n→∞

�n

�n
‖xn − xn−1‖ = 0.

Algorithm  3.1 : Inertial viscosity proximal gradient algorithm with 
perturbation

Initialization: Take arbitrary x0, x1 ∈ H, and set n = 1. Choose sequences {�n} 
and {�n} such that the conditions in Assumption 4 hold.

Step 1: If ‖xn − xn−1‖ = 0. STOP, (xn) is a solution of NSCOP (1). Otherwise, go 
to Step 2.

Step 2: For a given current xn−1 , xn and �n. Compute �n as

Step 3: Compute the next iterate (xn+1) as:

where e ∶ H → H is a perturbation operator satisfying the following condition

Last step: Update n ∶= n + 1 and go to Step1 .
If �n = 0 in Algorithm 3.1, then we obtain the viscosity proximal gradient algo-

rithm with perturbation (5) of Guo and Cui [16].

Definition 1  (Bounded Perturbation Resilience)
Let {xn} be a sequence generated by the algorithm

where A is an algorithmic operator from H into H. Then A is said to be bounded per-
turbation resilient if

�n = xn + �n(xn − xn−1).

xn+1 = �nf (�n) + (1 − �n)�����n�
(
�n − �n∇�(�n)

)
+ e(�n), n ≥ 0.

(9)
∞�
n=0

‖e(𝜃n)‖ < +∞.

{
select abitrary starting point x0 ∈ H,

xn+1 = Axn, n ≥ 0,
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for a bounded vector sequence {vn} and scalar {�n} such that �n ≥ 0 ∀n ≥ 0, and ∑∞

n=0
𝛽n < ∞. This operator A is called the basic algorithm.

Algorithm 3.2: Inertial viscosity proximal gradient algorithm with superiori-
zation method

Initialization: Take arbitrary x0, x1 ∈ H, and set n = 1. Choose sequences {vn} 
and scalar {�n} as in Definition 1. Choose {�n} and {�n} such that the conditions in 
Assumption 4 hold.

Step 1: If ‖xn − xn−1‖ = 0. STOP (xn) is a solution of NSCOP (1). Otherwise, go 
to Step 2.

Step 2: For a given current xn−1 , xn and �n. Compute �n as

Step 3: Compute the next iterate (xn+1) as:

Last step: Update n ∶= n + 1 and go to Step1.

Theorem 1  Assume that Assumption 3 holds. Then the sequence {xn} generated by 
Algorithm 3.1 is bounded.

Proof  Step 1: We prove that �����n�
(
I − �n∇�

)
 is nonexpansive for each n. Since 

∇� is L-Lipschitzian then ∇� is 1
L
-ism which implies that �n∇� is 1

�nL
-ism and by 

(8), the complement 
(
I − �n∇�

)
 is �nL

2
-average as �n ∈ (0,

2

L
). This implies that 

�����n�
 is 1

2
 -averaged. This further implies that the composition �����n�

(
I − �n∇�

)
 

is �nL+2
4

-averaged. Therefore the composition

for each n.
Step 2: We show that

Let x∗ ∈ �, and Tn = �����n�

(
I − �n∇�

)
. From Algorithm 3.1, we compute

lim
n→∞

xn =� implies lim
n→∞

yn = �, for any sequence {yn} in H generated by

{
select abitrary starting pointy0 ∈ H,

yn+1 = A(yn + �nvn) n ≥ 0,

�n = xn + �n(xn − xn−1).

xn+1 = �nf (�n + �nvn) + (1 − �n)�����n�
(
�n + �nvn − �n∇�(�n + �nvn)

)
, n ≥ 0.

�����n�

(
I − �n∇�

)
=

(
2 − �nL

4

)
I +

(
2 + �nL

4

)
T = (1 − �)I + �T is nonexpansive,

(10)‖�n − x∗‖ ≤ ‖xn − x∗‖ + �nM1.
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By condition (B3) in Assumption 4. Then there exists a constant M1 ≥ 0 such that

Step 3: We show that

It follows from Algorithm 3.1, we compute

By mathematical induction, we derive relation (11). Using condition (9), we deduce 
that {xn} is bounded. 	�  ◻

Theorem 2  Assume that Assumption 3 holds. Then the sequence {xn} generated by 
Algorithm 3.1 converges strongly to a point x∗ ∈ �, satisfying

Proof  Step 1: We show that

By using Algorithm 3.1, we get

‖�n − x∗‖ = ‖xn + �n(xn − xn−1) − x∗‖
≤ ‖xn − x∗‖ + �n‖xn − xn−1‖
= ‖xn − x∗‖ + �n

�n

�n
‖xn − xn−1‖.

�n

�n
‖xn − xn−1‖ ≤ M1, ∀n ≥ 0.

(11)‖xn+1 − x∗‖ ≤ max

�
‖x0 − x∗‖, M1 + ‖fx∗ − x∗‖

1 − �

�
+

∞�
n=0

‖e(�n)‖.

‖xn+1 − x∗‖ = ‖�nf (�n) + (1 − �n)Tn(�n) + e(�n) − x∗‖
≤ �n‖f (�n) − x∗‖ + (1 − �n)‖Tn(�n) − x∗‖ + ‖e(�n)‖
≤ �n‖f (�n) − f (x∗)‖ + �n‖f (x∗) − x∗‖ + (1 − �n)‖Tn(�n) − x∗‖ + ‖e(�n)‖
≤ ��n‖�n − x∗‖ + �n‖f (x∗) − x∗‖ + (1 − �n)‖�n − x∗‖ + ‖e(�n)‖
= (1 − �n(1 − �))‖�n − x∗‖ + �n(1 − �)

‖fx∗ − x∗‖
1 − �

+ ‖e(�n)‖

= (1 − �n(1 − �))
�‖xn − x∗‖ + �nM1

�
+ �n(1 − �)

‖fx∗ − x∗‖
1 − �

+ ‖e(�n)‖

= (1 − �n(1 − �))‖xn − x∗‖ + �n(1 − �)
(M1 + ‖fx∗ − x∗‖)

1 − �
+ ‖e(�n)‖

≤ max

�
‖xn − x∗‖, M1 + ‖fx∗ − x∗‖

1 − �

�
+ ‖e(�n)‖.

(12)⟨x∗ − f (x∗), x − x∗⟩ ≥ 0, ∀ x ∈ �.

(13)‖�n − �n−1‖ ≤ ‖xn − xn−1‖ + (�n + �n−1)M1.
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Step 2: We show that

We compute as follows:

Step 3: We show that

It follows from Algorithm 3.1, we compute

Since f is �-contractive, we obtain

‖�n − �n−1‖ = ‖xn + �n(xn − xn−1) − xn−1 − �n−1(xn−1 − xn−2)‖
= ‖xn − xn−1 + �n(xn − xn−1) − �n−1(xn−1 − xn−2)‖
≤ ‖xn − xn−1‖ + �n‖xn − xn−1‖ + �n−1‖xn−1 − xn−2‖
≤ ‖xn − xn−1‖ + �nM1 + �n−1M1

= ‖xn − xn−1‖ + (�n + �n−1)M1.

(14)
‖Tn(𝜃n−1) − Tn−1(𝜃n−1)‖ ≤

∣ 𝜆n − 𝜆n−1 ∣

a
‖𝜃n−1 − Tn−1(𝜃n−1)‖, where a = inf

n∈ℕ
𝜆n > 0.

‖Tn(�n−1) − Tn−1(�n−1)‖
= ‖�����n�

�
�n − �n∇�(�n)

�
− �����n−1�

�
�n−1 − �n−1∇�(�n−1)

�‖
= ‖�����n�

�
�n−1 − �n∇�(�n−1)

�

− �����n�
[
�n

�n−1
(�n−1 − �n−1∇�(�n−1))

+ (1 −
�n

�n−1
)�����n−1�

�
�n−1 − �n−1∇�(�n−1)

�
]‖

≤ ‖(�n−1 − �n∇�(�n−1)) −
�n

�n−1
(�n−1 − �n−1∇�(�n−1))

− (1 −
�n

�n−1
)Tn−1(�n−1)‖

= ∣ 1 −
�n

�n−1
∣ ‖�n−1 − Tn−1(�n−1)‖

≤
∣ �n − �n−1 ∣

a
‖�n−1 − Tn−1(�n−1)‖.

(15)lim
n→∞

‖xn+1 − xn‖ = 0.

‖xn+1 − xn‖ =‖�nf (�n) + (1 − �n)Tn(�n) + e(�n) − �n−1f (�n−1)

− (1 − �n−1)Tn−1(�n−1) − e(�n−1)‖
≤‖�n(f (�n) − f (�n−1)) + (�nf (�n−1) − �n−1f (�n−1))‖
+ ‖(1 − �n)(Tn(�n) − Tn(�n−1))

+ (1 − �n)Tn(�n−1) − (1 − �n−1)Tn−1(�n−1)‖
+ ‖e(�n)‖ + ‖e(�n−1)‖.
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Substituting (14) into (16), we obtain

Substituting (13) into (17), we obtain

where M2 = supn∈ℕ

�
‖f (�n−1)‖ + ‖Tn−1�n−1‖, ‖�n−1‖+‖Tn−1(�n−1)‖a

�
. This implies

Taking �
n
= M

2
(∣ �

n
− �

n−1 ∣ + ∣ �
n
− �

n−1 ∣) + (1 − �
n
(1 − �))(�

n
+ �

n−1)M1
+ ‖e(�

n
)‖+

‖e(�
n−1)‖, �n = �n(1 − �) and �n =

(−1)∣�n−�n−1∣(‖�n−1‖+‖Tn−1(�n−1)‖)
a(1−�)

 in equation (18), we 
have that

Applying Lemma 5 on (19), we deduce that lim
n→∞

‖xn+1 − xn‖ = 0.

(16)

‖xn+1 − xn‖ ≤ ��n‖�n − �n−1‖+ ∣ �n − �n−1 ∣ ‖f (�n−1)‖
+ (1 − �n)‖Tn(�n) − Tn(�n−1)‖ + (1 − �n)‖Tn(�n−1) − Tn−1(�n−1)‖
+ ∣ �n − �n−1 ∣ ‖Tn−1(�n−1)‖ + ‖e(�n)‖ + ‖e(�n−1)‖

≤ ��n‖�n − �n−1‖+ ∣ �n − �n−1 ∣ ‖f (�n−1)‖ + (1 − �n)‖�n − �n−1‖
+ (1 − �n)‖Tn(�n−1) − Tn−1(�n−1)‖+ ∣ �n − �n−1 ∣ ‖Tn−1(�n−1)‖
+ ‖e(�n)‖ + ‖e(�n−1)‖

= (1 − �n(1 − �))‖�n − �n−1‖+ ∣ �n − �n−1 ∣ (‖f (�n−1)‖ + ‖Tn−1(�n−1)‖)
+ (1 − �n)‖Tn(�n−1) − Tn−1(�n−1)‖ + ‖e(�n)‖ + ‖e(�n−1)‖.

(17)

‖xn+1 − xn‖ ≤ (1 − �n(1 − �))‖�n − �n−1‖
+ ∣ �n − �n−1 ∣ (‖f (�n−1)‖ + ‖Tn−1(�n−1)‖)
+ (1 − �n)

∣ �n − �n−1 ∣ ‖�n−1 − Tn−1(�n−1)‖
a

+ ‖e(�n)‖ + ‖e(�n−1)‖

≤ (1 − �n(1 − �))‖�n − �n−1‖ +
∣ �n − �n−1 ∣ (‖�n−1‖ + ‖Tn−1(�n−1)‖)

a

− �n(1 − �)
∣ �n − �n−1 ∣ (‖�n−1‖ + ‖Tn−1(�n−1)‖)

a(1 − �)

+ ∣ �n − �n−1 ∣ (‖f (�n−1)‖ + ‖Tn−1(�n−1)‖) + ‖e(�n)‖ + ‖e(�n−1)‖.

‖xn+1 − xn‖ ≤(1 − �n(1 − �))(‖xn − xn−1‖ + (�n + �n−1)M1)

− �n(1 − �)
∣ �n − �n−1 ∣ (‖�n−1‖ + ‖Tn−1(�n−1)‖)

a(1 − �)

+M2(∣ �n − �n−1 ∣ + ∣ �n − �n−1 ∣) + ‖e(�n)‖ + ‖e(�n−1)‖,

(18)

‖xn+1 − xn‖ ≤(1 − �n(1 − �))‖xn − xn−1‖
+ (−1)�n(1 − �)

∣ �n − �n−1 ∣ (‖�n−1‖ + ‖Tn−1(�n−1)‖)
a(1 − �)

+M2(∣ �n − �n−1 ∣ + ∣ �n − �n−1 ∣) + (1 − �n(1 − �))(�n + �n−1)M1

+ ‖e(�n)‖ + ‖e(�n−1)‖.

(19)‖xn+1 − xn‖ ≤ (1 − �n)‖xn − xn−1‖ + �n�n + �n.
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Step 4: We show that

We apply Lemma 3 to obtain

Letting �nj → � as j → ∞ in (21), we derive (20).
Step 5: We show that

We compute

(20)lim
j→∞

‖Tnj(�nj ) − T(�nj)‖ = 0.

(21)

‖Tnj�nj − T�nj‖
= ‖�����nj�

�
�nj − �nj∇�(�nj )

�
− ������

�
�nj − �∇�(�nj )

�
‖

= ‖�����n�
�

�

�nj

(�nj − �nj∇�(�nj ) + (1 −
�

�nj

)�����nj�

�
�nj − �nj∇�(�nj )

��

− ������

�
�nj − �∇�(�nj )

�
‖

≤ ‖ �

�nj

(�nj − �nj∇�(�nj )

+ (1 −
�

�nj

)�����nj�

�
�nj − �nj∇�(�nj )

�
−
�
�nj − �∇�(�nj )

�
‖

= ‖( �
�nj

− 1)�nj + (1 −
�

�nj

)�����nj�

�
�nj − �nj∇�(�nj )

�
‖

=∣ 1 −
�

�nj

∣ ‖�nj − Tnj�nj‖

≤∣ 1 −
�

�nj

∣ (‖�nj‖ + ‖Tnj�nj‖).

(22)lim
j→∞

‖xnj − Txnj‖ = 0.

(23)

‖xnj − Txnj‖ = ‖xnj − ������

�
xnj − �∇�(xnj )

�
‖

≤ ‖xnj − xnj+1‖ + ‖xnj+1 − ������

�
xnj − �∇�(xnj )

�
‖

= ‖xnj − xnj+1‖ + ‖�nj f (�nj ) − (1 − �nj )Tnj�nj + e(�nj )

− ������

�
�nj − �∇�(�nj )

�
‖

≤ ‖xnj − xnj+1‖ + �nj‖f (�nj ) − T(�nj)‖ + (1 − �nj )‖Tnj (�nj ) − T(�nj)‖
+ ‖e(�nj )‖.
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Since {xn} is bounded, then there exists a subsequence {xnj} such that xnj ⇀ z as 
j → ∞. That is, z is a cluster point of {xn} . Taking limit on both sides of (23) using 
(16), (20) and the hypothesis on {�n}. We obtain (22). Since xnj ⇀ z as j → ∞ and 
(I − T)xnj → 0, then by Lemma  4, we have that (I − T)z = 0 which implies that 
z ∈ �. Hence 𝜔W (xn) ⊂ 𝛺.

Step 6: We show that

To see this, let {�nj} be arbitrary subsequence of {�n} such that

Since {�nj} is bounded, it has a weakly convergent subsequence. Without loss of 
generality, choose {�nj} has the subsequence and assume that �nj ⇀ u ∈ �. Then, by 
our hypothesis, we have

Hence,

Step 7: We show that

It follows from Algorithm 3.1, we compute

Applying Lemma 1, we get

(24)lim sup
n→∞

⟨fx∗ − x∗, �n − x∗⟩ ≤ 0.

lim sup
n→∞

⟨fx∗ − x∗, �n − x∗⟩ = lim
j→∞

⟨fx∗ − x∗, �nj − x∗⟩.

⟨fx∗ − x∗, u − x∗⟩ ≤ 0.

lim sup
n→∞

⟨fx∗ − x∗, �n − x∗⟩ = lim
j→∞

⟨fx∗ − x∗, �nj − x∗⟩ ≤ ⟨fx∗ − x∗, u − x∗⟩ ≤ 0.

(25)lim
n→∞

xn = x∗.

‖xn+1 − x∗‖2 = ‖�nf (�n) − (1 − �n)Tn�n + e(�n) − x∗‖2
≤ ‖�n(f (�n) − x∗) + (1 − �n)(Tn�n − x∗) + e(�n)‖2
≤ ‖�n(f (�n) − x∗) + (1 − �n)(Tn�n − x∗)‖2 + 2⟨�n+1 − x∗,+e(�n)⟩
= ‖�n(f (�n) − x∗) + (1 − �n)(Tn�n − x∗)‖2 + 2‖�n+1 − x∗‖‖e(�n)‖
= ‖�n(f (�n) − fx∗) + (1 − �n)(Tn�n − x∗) + �n(f (x

∗) − x∗)‖2
+ 2‖�n+1 − x∗‖‖e(�n)‖

≤ ‖�n(f (�n) − fx∗) + (1 − �n)(Tn�n − x∗)‖2
+ 2⟨�n(fx∗ − x∗), �n+1 − e(�n) − x∗⟩
+ 2‖�n+1 − x∗‖‖e(�n)‖.
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Substituting (13) into (26) yields

where M3 = supn{2
�
𝛼n‖fx∗ − x∗‖ + ‖𝜃n+1 − x∗‖�} < ∞ . Setting �n = �n(1 − �2), 

�n = M3‖e(�n‖ and �n =
2

1−�2
⟨fx∗ − x∗, �n+1 − x∗⟩ . We have

Hence by Lemma 5, we get lim
n→∞

‖xn − x∗‖ = 0. This completes the proof. 	�  ◻

Theorem 3  Under the same condition of Theorem 2. Let {�n} and {vn} satisfy the 
assumption in Definition 1. Then Algorithm 3.1 is bounded perturbation resilient. 
That is, the sequence generated by Algorithm 3.2 converges strongly to x∗ ∈ �.

Proof  Algorithm 3.2 can be rewritten as

where

We check that 
∑∞

n=0
‖e(𝜃n)‖ < +∞. Applying Lemma 3, we get

(26)

‖xn+1 − x∗‖2 ≤ �n‖f (�n) − fx∗‖2 + (1 − �n)‖Tn�n − x∗‖2
+ 2⟨�n(fx∗ − x∗), �n+1 − e(�n) − x∗⟩ + 2‖�n+1 − x∗‖‖e(�n)‖

≤ �2�n‖�n − x∗‖2 + (1 − �n)‖�n − x∗‖2
+ 2�n⟨fx∗ − x∗, �n+1 − e(�n) − x∗⟩ + 2‖�n+1 − x∗‖‖e(�n)‖

= (1 − �n(1 − �2))‖�n − x∗‖2 + 2�n⟨fx∗ − x∗, �n+1 − x∗⟩
+ 2�n⟨fx∗ − x∗, e(�n)⟩ + 2‖�n+1 − x∗‖‖e(�n)‖

≤ (1 − �n(1 − �2))‖�n − x∗‖2 + 2�n⟨fx∗ − x∗, �n+1 − x∗⟩
+ 2

�
�n‖fx∗ − x∗‖ + ‖�n+1 − x∗‖�‖e(�n)‖

≤ (1 − �n(1 − �2))‖�n − x∗‖2 + 2�n⟨fx∗ − x∗, �n+1 − x∗⟩
+ 2

�
�n‖fx∗ − x∗‖ + ‖�n+1 − x∗‖�‖e(�n)‖.

‖xn+1 − x∗‖2 ≤ (1 − �n(1 − �2))(‖xn − x∗‖ + �nM1)
2 + 2�n⟨fx∗ − x∗, �n+1 − x∗⟩

+ 2
�
�n‖fx∗ − x∗‖ + ‖�n+1 − x∗‖�‖e(�n)‖

≤ (1 − �n(1 − �2))‖xn − x∗‖2 + 2�n⟨fx∗ − x∗, �n+1 − x∗⟩
+M3‖e(�n)‖,

(27)‖xn+1 − x∗‖2 ≤ (1 − �n)‖xn − x∗‖2 + �n�n + �n.

{
�n = xn + �n(xn − xn−1),

xn+1 = �nf (�n) + (1 − �n)�����n�
(
�n − �n∇�(�n)

)
+ e(�n), n ≥ 0,

e(�n) = �n
(
f (�n + �nvn) − f (�n)

)

+ (1 − �n)(�����n�
(
�n + �nvn − �n∇�(�n + �nvn)

)
− �����n�

(
�n − �n∇�(�n)

)
).
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This means that 
∞�
n=0

‖e(𝜃n)‖ < +∞ . Therefore, the conclusion follows from Theo-

rem 2. 	�  ◻

Remark 1  Typically, the inertial scheme speeds up (boosts) the iterative sequence 
towards the solution set. It provides a major advantage over the execution time and 
the number of iterations for large-scale problems.

Remark 2  If �n = 0 in Algorithm 3.2, then we obtain the modified proximal gradient 
algorithm with superiorization method of Guo and Cui [16] as follows:

Remark 3  [28] The condition (B3) is easily satisfied in numerical computation 
because the valued of ||xn − xn−1|| is known before choosing �n . Indeed, the param-
eter �n can be chosen such that 0 ≤ 𝜁n ≤ 𝜁n , where

where {�n} is a positive sequence such that �n = o(�n) and 𝜁n ∈ [0, 𝜏] ⊂ [0, 1).

3.1 � Application to image recovery problems

In this section, we illustrate the relevance of our theorem with a linear inverse prob-
lem called LASSO (Least Absolute Shrinkage and Selection Operator) in com-
pressed sensing (see in [35–38]).

Let A ∶ H → H be a bounded linear operator on a real Hilbert space. The image 
recovery model can be formulated as:

‖e(�n)‖ ≤ �n‖f (�n + �nvn) − f (�n)‖
+ (1 − �n)‖�����n�

�
�n + �nvn − �n∇�(�n + �nvn)

�

− �����n�

�
�n − �n∇�(�n)

�‖
≤ �n�‖(�n + �nvn) − (�n)‖ + (1 − �n)‖

�
�n + �nvn − �n∇�(�n + �nvn)

�

−
�
�n − �n∇�(�n)

�‖
≤ �n‖�nvn‖ + (1 − �n)‖�nvn + �n(∇�(�n) − ∇�(�n + �nvn))‖
≤ �n‖�nvn‖ + (1 − �n)‖�nvn‖ + (1 − �n)�nL‖�n − (�n + �nvn)‖
= (1 + (1 − �n)�nL)‖�nvn‖.

(28)
xn+1 = �nf (xn + �nvn) + (1 − �n)�����n�

(
xn + �nvn − �n∇�(xn + �nvn)

)
, n ≥ 0,

𝜁
n
=

�
min{

𝜏
n

‖x
n
−x

n−1‖ , 𝜏} if x
n
≠ x

n−1,

𝜏, otherwise,

(29)Ax = b + �
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where � is an unknown noise vector, x is an unknown image, and b is the image 
(degraded observation) measurement. Assume problem (29) is consistent, then it 
can be recast as a least-squares problem:

where 𝜇 > 0 is a regularization parameter. We now apply our Theorem 3 to approxi-
mate the solutions of problem (30). Setting �(x) =

1

2
‖Ax − b‖2 , �(x) = �‖x‖ . We 

see that both � and � are convex, lower semi continuous and proper functions 
with ∇�(x) = A∗(Ax − b) for each x ∈ H. Also ∇� is Lipschitz continuous with 
L = ‖A‖2. Indeed, the composite �(x) + �(x) ∶= � is coercive and the subdifferen-
tial of � is

While

The conclusion of our results in Theorem  3 thus applies with suitable standard 
assumption on the sequence parameters.

4 � Numerical experiments

In this section, we present the numerical results of proposed algorithm and compare the 
performance with algorithm (27) of Guo and Cui [16] in signal recovery. For clarity 
sake, we reformulate problem (30) in H = ℝ

N as follows:

where A ∶ ℝ
N
→ ℝ

M (M < N) is a linear and bounded matrix operator and b ∈ ℝ
M 

is the observed or measured data with a noise �. The positive scalar � called the 
regularization parameter and x ∈ ℝ

N is a sparse vector with m nonzero components 
to be recovered. We claim that �(x) =

1

2
‖Ax − b‖2

2
 and �(x) = �‖x‖1 be an indicator 

function with proximal map as

where sk
n
= ���(xk

n
) ⋅max{|xk

n
| − �, 0} for k = 1, 2,… ,N. It is worth noting that the 

subdifferential �� at xn is

(30)min
x∈H

�
1

2
‖Ax − b‖2 + �‖x‖

�
,

�‖.‖(x) =
� x

‖x‖ , x ≠ 0,

B(0, 1), x = 0.

‖∇�(x) − ∇�(y)‖ = ‖A∗(Ax − b) − A∗(Ay − b)‖
= ‖A∗A(x − y)‖
≤ ‖A‖2‖x − y‖ = L‖x − y‖.

(31)min
x∈ℝN

�
1

2
‖Ax − b‖2

2
+ �‖x‖1

�
,

�����‖⋅‖1 (xn) =
�
�����∣⋅∣1

(x1
n
),… , �����∣⋅∣1 (x

k
n
)
�T

= (s1
n
,… , sk

n
)T ,
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Fig. 1   The numerical experiments of Test 1
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Fig. 2   The numerical experiments of Test 2
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Then the bounded sequence {vn} defined by

𝜕𝜑(xn) =

⎧⎪⎨⎪⎩

1, if xn > 0,

[−1, 1], if xn = 0,

−1, if xn < 0.
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Fig. 3   The objective function value versus number of iterations of Test 1 and Test 2, respectively
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Fig. 4   The numerical experiments of Test 3
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and the summarizable positive real sequence �n =
1

5n
 . We set f (x) = x

2
 and control 

parameters �n =
1

n+1
 , �n =

0.3

‖A‖2 , � =
1

L
 . Let � = 0.5 , �n =

1

n2
 for each n and define �n 

as in Remark 3
In experiment 1, the matrix AM×N entries are sampled independently from a nor-

mal distribution of zero mean and unit variance. The observation vector b is gener-
ated from a Gaussian noise with signal-to-noise ratio SNR = 40 . The sparse vector 
x is generated from a uniform distribution in the interval [−2, 2] with m nonzero 

vn =

�
−

dn

‖dn‖ , 0 ≠ dn ∈ ��(xn),

0, 0 ∈ ��(xn),
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Fig. 5   The numerical experiments of Test 4

0 1000 2000 3000 4000
0

20

40

60

80

100

Number of iterations

O
bj

ec
tiv

e 
va

lu
e 

fu
nc

tio
n

Rate of convergence objective function of Test 3

Algorithm 3.2
Guo and Cui Alg.

0 1000 2000 3000 4000
0

20

40

60

80

100

Number of iterations

O
bj

ec
tiv

e 
va

lu
e 

fu
nc

tio
n

Rate of convergence objective function of Test 4

Algorithm 3.2
Guo and Cui Alg.

Fig. 6   The objective function value versus number of iterations of Test 3 and Test 4, respectively
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elements. The initial point x0, x1 is picked randomly. The restoration accuracy is 
measured by the mean square error as En =

1

N
‖xn − x∗‖ < 10−4, where x∗ is the esti-

mated signal of x. The numerical results are reported as follows:
Test 1: Set N = 1024 , M = 512 and m = 10.
 Test 2: Set N = 512 , M = 256 and m = 10.
In experiment 2, the matrix AM×N entries are sampled independently from a 

Gaussian distribution of zero mean and unit variance. The observation vector 
b is generated from a Gaussian noise with signal-to-noise ratio SNR = 50 . The 
vector b is generated from a uniformly distribution in the interval [−2, 2] with m 
nonzero elements. The restoration accuracy is measured by the mean square error 
as En =

1

N
‖xn − x∗‖ < 10−4, where x∗ is the estimated signal of x. The numerical 

results are reported as follows:
Test 3: Set N = 1024 , M = 512 and m = 35.
Test 4: Set N = 512 , M = 256 and m = 35.
From Figs. 1, 2, 4 and 5, it is guarantee that our algorithm can recover the origi-

nal signal faster than Guo and Cui algorithm (28) in the compressed sensing. More-
over, Figs. 3 and 6 report that objective function values generated by Algorithm 3.2 
decrease faster than Guo and Cui algorithm (28) in all of numerical tests.

5 � Conclusions

In this article, we suggest an inertial viscosity proximal gradient algorithm which 
is proved effective to handle a non-smooth composite optimization problem with 
large datasets in real Hilbert spaces. We investigate its convergence and bounded 
perturbation resilience properties. Our results are demonstrated, and its perfor-
mance is compared with Algorithm (28) of Guo and Cui [16] with respect to the 
signal recovery problem. The advantage of our proposed algorithm over some 
previous works is the reduction in the computational cost and the CPU time in 
computing numerical results. Numerical studies show that inertial effects usually 
improve the performance of the iterative sequence in terms of convergence in this 
context.
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