
Vol:.(1234567890)

The Journal of Supercomputing (2020) 76:9168–9188
https://doi.org/10.1007/s11227-020-03206-0

1 3

NestMSA: a new multiple sequence alignment algorithm

Mohammed Kayed1  · Ahmed A. Elngar1 

Published online: 19 February 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Multiple sequence alignment (MSA) is a core problem in many applications. Vari-
ous optimization algorithms such as genetic algorithm and particle swarm optimiza-
tion (PSO) have been used to solve this problem, where all of them are adapted to 
work in the bioinformatics domain. This paper defines the MSA problem, suggests a 
novel MSA algorithm called ‘NestMSA’ and evaluates it in two domains: Web data 
extraction and removing different URLs with similar text (DUST). The suggested 
algorithm is inspired by the PSO optimization algorithm. It is not a generalization 
of a two-sequence alignment algorithm as it processes all the sequences at the same 
time. Therefore, it looks globally at the same time on all sequences. Different from 
other PSO-based alignment algorithms, swarm particles in the proposed NestMSA 
algorithm are nested inside the sequences and communicated together to align them. 
Therefore, global maximum is guaranteed in our algorithm. Furthermore, this work 
suggests a new objective function which both maximizes the number of matched 
characters and minimizes the number of gaps inserted in the sequences. The running 
time complexity and the efficiency of NestMSA are addressed in this paper. The 
experiments show an encouraging result as it outperforms the two approaches DCA 
and TEX in the Web data extraction domain (95% and 96% of recall and precision, 
respectively). Furthermore, it gives a high-performance result in the DUST domain 
(95%, 93% and 92% of recall, precision and SPS score, respectively).

Keywords Web mining · Particle swarm optimization · Sequence alignment

 * Ahmed A. Elngar 
 elngar_@yahoo.co.uk

 Mohammed Kayed 
 mskayed@gmail.com

1 Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt

https://orcid.org/0000-0001-8430-1000
http://orcid.org/0000-0001-6124-7152
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03206-0&domain=pdf


9169

1 3

NestMSA: a new multiple sequence alignment algorithm  

1 Introduction

Sequence (string) alignment is a common and a core problem in many fields such 
as information extraction, removing DUST, bioinformatics, NLP, financial data 
analysis and others. Aligning of characters in multiple data sequences is a chal-
lenge because these characters have many variations. The first variation is called 
missed characters/patterns, in which a character (a pattern of different consecu-
tive characters) may be missed (has no occurrences) in a sequence. Gaps (referred 
by—in this paper) are inserted among the sequence characters in place of these 
missed characters. In the second variation, called repetitive characters/patterns, 
a character (a pattern) may have more than one occurrence in a sequence. The 
third variation is called multi-order characters/patterns. Characters (patterns) in 
this variation may have multiple ordering in different sequences. The fourth and 
last variation is the existence of what are called disjunctive (mutative) characters, 
in which a character (a pattern) in a sequence may appear as an alternative to 
another character (pattern) in some other different sequences. Multiple sequence 
alignment aims to arrange sequences of characters in order to recognize missed 
(gaps), repetitive, multi-order and disjunctive (mutative) characters.

Many research algorithms have been proposed to solve the MSA problem, 
although it is still of great necessity for different reasons. First, some proposed 
algorithms solve the multiple sequence alignment problem as a generalization of 
the pair-wise alignment problem (i.e., align the sequences two by two until finally 
cover the whole sequences). The results of these pair-wise alignment methods 
usually are affected by the order of the sequences to be aligned and will not be 
applicable to unseen sequences. Second, many recent MSA algorithms use opti-
mization models such as particle swarm optimization (PSO), although global 
maximum alignment is not guaranteed as they consider the whole sequences as 
a solution (a particle) and then try to modify each particle (inserting gaps in the 
sequences) step by step until reaching a best local solution of this particle. The 
global best solution is then gained by tracking the local best solutions for all 
working particles. Third, to the best of our knowledge, all of these algorithms are 
adapted to work in the bioinformatics domain (e.g., DNA, RNA or Protein align-
ment) [1], although MSA is a core for other domains such as Web data extrac-
tion and removing DUST. Thus, MSA is still demanded to be addressed in such 
domains. In the field of Web data extraction, data to be extracted are embedded in 
the Document Object Model (DOM) tree of a Web page. Tree alignment is used 
to solve the data extraction problem (Depta [2] and FiVaTech [3]). For simplicity, 
tree alignment is usually solved by converting the multiple tree alignment prob-
lem into the multiple sequence alignment. In the field of detecting and removing 
duplicate Web pages without fetching their contents (DUST), Web pages URLs 
get tokenized into tokens and then are aligned to generate a set of normalization 
rules (regular expressions). Later, these expressions are used by search engines to 
avoid crawling duplicate URLs [4, 5].

In this paper, the multiple sequence alignment problem is defined and a new 
alignment algorithm called ‘NestMSA’ is proposed to solve this problem. Our 



9170 M. Kayed, A. A. Elngar 

1 3

proposed algorithm tries to handle the above-mentioned variations: missed pat-
terns, repetitive patterns, multi-order patterns and disjunctive patterns. Similar 
to the peer matrix alignment algorithm (a heuristic-based one) in [6], our pro-
posed algorithm processes multiple sequences and aligns all of them at the same 
time. It is not a generalization of a two-sequence alignment algorithm. Therefore, 
NestMSA has a global view for the whole sequences to be aligned. NestMSA is 
inspired by the particle swarm optimization algorithm. Different from other PSO-
based MSA algorithms, swarm particles in the proposed algorithm are nested/
reside inside the sequences and they are communicated together to align these 
sequences step by step. In other words, a particle in NestMSA corresponds to 
a character inside the sequences, while a particle in other PSO-based alignment 
algorithms corresponds to the whole sequences to be aligned. Another contribu-
tion in this paper is that a new objective function which tries to both maximize 
the number of matched characters and minimize the number of gaps inserted is 
provided. Therefore, global maximum is guaranteed in the proposed algorithm. 
Furthermore, different from most optimization-based MSA algorithms, the pro-
posed algorithm will be evaluated and addressed in the two different domains: 
Web data extraction and removing DUST.

The rest of the paper is organized as follows. Section 2 presents related works. 
Section  3 introduces the particle swarm optimization algorithm, while the MSA 
problem is formulated in Sect. 4. The proposed PSO-based algorithm with a sim-
ple example is presented in Sect. 5. The experimental study is described in Sect. 6. 
Finally, our work is concluded in Sect. 7.

2  Related works

Multiple sequence alignment has been solved by using many approaches in different 
fields [7–9]. In the bioinformatics domain, there are four main different approaches. 
The first approach is an exact approach in which dynamic programming is used to 
align two sequences. It converts the MSA problem into the problem of finding the 
shortest path in a weighted direct acyclic graph. Dynamic programming gives good 
alignment results for two sequences. When extended to multiple sequence align-
ment, the algorithm showed poor results as the lengths and the number of sequences 
increased. In the second approach, called a progressive approach, the algorithm first 
finds the most similar sequences and then incrementally aligns the other sequences to 
the initial alignment. An example of this approach is CLUSTAL X (an updated ver-
sion of CLUSTAL W, which is also an extension of a previous version CLUSTAL) 
[10]. The third approach is a consistency-based approach. It considers that an opti-
mum alignment occurred when optimal pair-wise alignments have been reached. A 
common example is T-COFFEE [11]. It uses a library of pair-wise alignments from 
the sequences to be aligned, then it finds both the best global and the local align-
ments. After that, it gets a final alignment which has the highest level of consistency 
within the library. The last approach is called an iterative approach. The alignment 
algorithm in the iterative approach begins with a generated initial alignment, and 
then it refines the alignment until no more improvement could be obtained. GA and 



9171

1 3

NestMSA: a new multiple sequence alignment algorithm  

PSO are the most common algorithms used for this iterative approach. Our proposed 
algorithm is an iterative PSO-based method.

Many approaches in the bioinformatics domain adapt PSO algorithm to solve the 
MSA problem in which the objective is to maximize a scoring function among the 
sequences to be aligned. Examples of such approaches are [12–14]. They consider 
a particle in the swarm as a set of multiple sequences to be aligned. A particle is 
represented as a set of vectors, where each vector holds positions of the gaps in a 
sequence to be aligned. The scoring function used to keep track of the global best 
particle position is based on the alignment score of each pair of sequences. The 
alignment score between two sequences is the summation of the scores assigned 
to match each pair of symbols in these two sequences. The only difference among 
these approaches is the way that the particles are initialized. The former approach 
initializes the particles randomly, while the latter one generates the initial particles 
using the solution obtained from ClustalX algorithm [10]. There are two main dif-
ferences between such PSO-based algorithms and our proposed algorithm. First, to 
the best of our knowledge, all PSO-based algorithms are adapted and addressed in 
the bioinformatics domain. Second, a particle in all of the PSO-based algorithms 
corresponds to a whole peer matrix with gaps added among the sequences, while a 
particle in our proposed algorithm corresponds to just a symbol in a matrix row as 
we shall discuss later.

MSA is not addressed and tested in the Web data extraction domain, although 
most of the proposed approaches in this domain are solved by using MSA. Some 
of these approaches are OLERA [15], RoadRunner [16], DEPTA [2], VIPER [17], 
FiVaTech [3], AFIS [18], TEX [19] and DCA [20]. Wrappers (extraction rules) that 
are used to extract data from Web pages in OLERA are constructed by acquiring a 
rough example from the user. It applied the two main techniques: pattern mining and 
string alignment. OLERA considered the problem of multiple string alignment as a 
generalization of two-string alignment. RoadRunner assumed that the input pages 
are similar and each one is a sequence of tokens. Extraction rules are recognized by 
aligning two pages (sequences), and then the alignment result is compared with a 
third page (sequence). DEPTA identified data record boundaries by using string edit 
distance. After that, attributes in these records are identified using partial tree align-
ment. ViPER recognized and ranked data records with respect to the users visual 
perception of the input Web page. It handled missed and multi-valued data by using 
the edit distance after applying the tandem repeats algorithm. String alignment in 
VIPER is based on the global matching and the text content. To simplify the multi-
ple alignment problem, it used a divide-and-conquer approach. AFIS formulated the 
problem of data extraction as alignment of Document Object Model (DOM) Trees 
leaf nodes. AFIS is an unsupervised approach which deduces schema of detail pages 
that include all product information to be extracted. It applied divide-and-conquer 
and longest increasing sequence (LIS) algorithms to mine landmarks from input. 
Finally, FiVaTech is an unsupervised page-level data extraction approach. It applied 
the three techniques: tree matching, tree alignment and pattern mining, to solve the 
data extraction problem. First, FiVaTech merged all input DOM trees into a sin-
gle tree (pattern tree), which is then used to detect the template and the schema of 
the site. To merge multiple trees, the tree alignment problem is converted into the 



9172 M. Kayed, A. A. Elngar 

1 3

multiple string alignment problem. FiVaTech is used in this work to collect a dataset 
which consists of peer matrixes to be aligned.

To the best of our knowledge, the only two MSA algorithms that are suggested 
and addressed in the field of Web data extraction are TEX and DCA (that is why 
both have been chosen in our experiment to be compared with our proposed one). 
Although the two methods use MSA, the methodologies of the two algorithms are 
different. TEX is an unsupervised information extraction approach that tried to iden-
tify a Web site template (shared patterns) and then removed this template from the 
input site pages. Different from DCA and FiVaTech, TEX did not use the pages 
DOM trees, rather it considered each input page as a sequence of tokens. Given a set 
of multiple sequences/pages S = {T1, T2,… , Tn} , where n ≥ 2 as input, TEX tried to 
separate the template used to generate these pages from the data to be extracted. In 
order to achieve that, TEX used a simple multiple string alignment which is based 
on a searching algorithm that looks for shared patterns. It iteratively searched for 
a shared pattern of sizes max,max−1,… , min , in order (min and max values are 
calculated experimentally). If a shared pattern is found, TEX expanded the set S by 
replacing each sequence Ti with three other sequences: prefix, separator and suffix of 
the detected pattern in the sequence Ti , and so on until no shared patterns are found.

In DCA [20], Oviliani and Chang emphasized the necessity to have a high-perfor-
mance multiple string alignment algorithm to solve the Web data extraction problem 
(from singleton Web pages). Given more than one DOM tree as input, each sequence 
of leaf nodes in a DOM tree is added as a row in a matrix which is finally aligned in 
two phases: a template mining phase and an alignment phase. Leaf nodes are clas-
sified into one of the three categories: mandatory template, optional template and 
mandatory data. The first two, parts of the Web site template, are used as landmarks 
to achieve the alignment process, while the last one corresponds to the data to be 
extracted. In the template mining phase, a divide-and-conquer approach is applied to 
recursively detect landmarks (mandatory templates) via longest increasing sequence 
(LIS). Further, optional templates are detected and merged across segments to 
remove false-positive mandatory templates. In the alignment phase, non-template 
leaf nodes are aligned to generate a consistent output for multi-order attribute-value 
pairs and merge similar/disjunctive columns to generate the output matrix.

Detecting and removing DUST is another domain which is recently solved by 
MSA algorithms [4]. Rodrigues et al. have suggested an approach called DUSTER, 
which aligns multiple URLs with duplicated content. It then uses the alignment 
results to construct high-quality, general and precise normalization rules. The 
derived rules could be used by a web crawler to avoid fetching DUST. To align a set 
of multiple URLs, they used the progressive alignment strategy which is a generali-
zation of pair-wise sequence alignment.

3  Particles swarm optimization

Given a fitness function that describes a problem to be optimized, classical opti-
mization algorithms use the first derivative of this fitness function to get the 
optima on a given constrained surface. Recently, many optimization algorithms 



9173

1 3

NestMSA: a new multiple sequence alignment algorithm  

have been suggested to solve the problem without calculating the derivative 
which is very difficult, especially for discontinuous optimization spaces. Exam-
ples of such algorithms are: GA [21, 22] and PSO [23–25]. Particle swarm opti-
mization is a stochastic search algorithm and an alternative solution to the nonlin-
ear optimization problem. The algorithm has been inspired by the social behavior 
of animals such as bird flocking, fish schooling and so on. It was introduced in 
1995 by Kennedy and Eberhart. In PSO, the population (swarm) consists of a set 
of particles (solutions). The PSO algorithm works as follows. Initially, particles 
in the swarm are distributed randomly in the search space in such a way that each 
particle pi; (1 ≤ i ≤ m) has an initial position xi(t◦) and moves toward a randomly 
chosen direction. Each particle keeps track of its best previous position ℑi and a 
global best position g which is shared by all other particles. After each particle 
has moved to a new position, iteratively it improves its new position by flying 
toward both its best position and the global best position. PSO will be terminated 
when the maximum number of iterations (calculated based on some stop criteria) 
has been reached. Considering maximization problems, the particle best position 
and the global best position are calculated based on an objective (fitness) func-
tion f (x); x ∈ RN ; where N is the dimension of the search space. The local best 
position ℑi of the particle pi and the global best g of all particles at the iteration 
number t + 1 are defined, respectively, as:

The position xi of the particle pi is updated using the following formula:

The velocity vi of the particle pi at iteration t + 1 is calculated by:

where 

(i) The term ��i(t) is called an inertia component which prevents drastic change in 
the direction of the particle.

(ii) The term c1r1(t)[ℑ∗
i
(t) is called a cognitive component which directs the particle 

to fly toward its previous best position.
(iii) The term c2r2(t)[g(t) − xi(t)] is called a social component which directs the par-

ticle to fly toward the best position found by the particles neighborhood (the 
global best).

(iv) The constant � is called an inertia weight.
(v) The two constants c1 and c2 are positive constants that accelerate the cognitive 

component and the social component, respectively.

(1)ℑi(t + 1) =

{
ℑi(t), if f (xi(t + 1)) ≤ f (ℑi(t))

xi(t + 1), if f (xi(t + 1)) > f (ℑi(t))

(2)

g(t + 1) = ℑ
∗
i
(t + 1); such that f (ℑ∗

i
(t + 1)) = max

{i=1,…,m}
{ℑi(t + 1)} and m ≥ 1

(3)xi(t + 1) = xi(t) + �i(t + 1)

(4)�i(t + 1) = ��i(t) + c1r1(t)[ℑ
∗
i
(t) − xi(t)] + c2r2(t)[g(t) − xi(t)]



9174 M. Kayed, A. A. Elngar 

1 3

4  MSA problem formulation

Given a finite set A of arbitrary symbols (called an Alphabet set), a sequence Si 
of length ni is defined as a series of ordered symbols taken from the alphabet A 
(i.e., Si = {s1i, s2i,… , snii} , where ni = |Si| . The jth symbol in the sequence Si is 
denoted by sji (j = 1, , ni) . We define the term multi-sequence matrix or simply 
called peer matrix as follows.

Definition 1 (Peer matrix) Given a set of c sequences T = S1, S2,… , Sc taken from 
the alphabet A , where the sequence Si has a length ni(i = 1,… , c) , a peer matrix M 
is defined as the matrix whose columns are the sequences S1, S2,… , Sc.

That is:

Multiple sequence alignment is now defined as follows.

Definition 2 (Multiple sequence alignment) Given a peer matrix M formed from 
multiple sequences taken from the alphabet set A , multiple sequence alignment 
is the problem of finding a matrix M′ (called an aligned matrix) from the original 
matrix M such that:

where M′ is taken from a new alphabet A� = A
⋃
{—} and it has all of the following 

constraints: 

1. The sequences (columns) S�
1
, S�

2
,… , S�

c
 of M′ are defined over the new alphabet 

A′.
2. The sequences S�

1
, S�

2
,… , S�

c
 of M′ have the same length n = max{|S�

i
|;i = 1,… , c}.

3. S�
i
(i = 1,… , c) reverts to the original Si by removing all the inserted gap charac-

ters.
4. For each row r in the matrix M′ , there exists at least one symbol s′

ri
 which is not a 

gap; i.e., s′
ri
≠ ‘—.’ This means that it is not possible to have a row in the matrix 

M′ that only has gaps.
5. Number of matched characters (symbols) in each row of M′ is maximized.
6. Number of gaps inserted in the matrix M′ is minimized.

M =

⎡⎢⎢⎢⎣

s11 s12 … s1c
s21 s22 … s2c
… … … …

sn11 sn22 … sncc

⎤⎥⎥⎥⎦

M� =

⎡⎢⎢⎢⎣

s�
11

s�
12

… s�
1c

s�
21

s�
22

… s�
2c

… … … …

s�
n11

s�
n22

… s�
ncc

⎤⎥⎥⎥⎦



9175

1 3

NestMSA: a new multiple sequence alignment algorithm  

In the multiple sequence alignment of DNA sequences, the alphabet A is 
A,C, T ,G . Similarly, the RNA alphabet is A,C,U,G , while the alphabet for 
protein MSA is A,C,D,E,F,G,H, I,K, L,M,N,P,Q,R, S, T ,V ,W, Y . In 
the NLP domain, the alphabet is a set of all tokens/words defined by the lan-
guage. In the domain of detecting and removing DUST, the alphabet is a set of 
URL tokens that have been described by the EBNF-based grammar [4] (e.g., 
the URL http://domain/story?id=num is tokenized to have the following 11 
tokens:{<http>,< ∶ >,<∕>,<∕>,<domain>,<∕>,<story>,<?>,<id>,< = >,<num>} . 
Finally, for the Web data extraction problem, the alphabet is a set of identifiers (sym-
bols) where each one corresponds to a subtree (a leaf node) from a Web page DOM 
tree that includes some data to be extracted. Matched/similar subtrees (leaf nodes) 
take the same identifier (symbol) where similarities could be measured by using 
tree-edit distance, visual features comparison, or any other measurement way. This 
means, for the last two domains, removing DUST and Web data extraction, the peer 
matrix contains sequences of symbols/characters that correspond to URL tokens or 
subtrees from the DOM tree, respectively.

Figure  2a shows a simple example of four sequences alignment problem. The 
matrix to be aligned M consists of the four sequences: S1 = {a, b, c, b, c, d, e,m} , 
S2 = {a, c, b, c, f , g} , S3 = {a, b, c, h, i,m, n} and S4 = {a, b, c, b, c, j, k,m} of lengths 
8, 6, 7 and 8, respectively. The matrix M has 8 rows (indexed at the left hand side 
1–8). Multiple sequence alignment of the matrix M is the problem of finding a 
matrix such as M′ shown in Fig. 2b in which: 

1. Gaps (‘—’) are inserted among the symbols of the sequences in M.
2. All sequences in M′ have the same length (9).
3. Each sequence in M′ reverts to its original one in M by removing all the gaps 

inserted in this sequence.
4. There is no row in M′; which only has the gap character.
5. Number of matched characters (symbols) in M′ is maximized.
6. Number of gaps inserted to the matrix is minimized.

After the alignment has been completed, missed values, repetitive patterns and dis-
junctive patterns could be identified in the aligned matrix. For example, the aligned 
matrix M′ in Fig. 2b shows that the symbol ‘a’ is mandatory/required in all the four 
sequences, the pattern of two symbols {}b’, }c’} is repetitive and has a missing sym-
bol ‘b,’ the four patterns {}d’, }e’} , {}f ’, }g’} , {}h’, }i’} and {}j’, }k’} are disjunc-
tive, and finally the two symbols ‘m’ and ‘n’ are missed.

5  The proposed algorithm: NestMSA

Given a peer matrix M that is constructed from a set of sequences 
T = {S1, S2,… , Sc} as defined above, NestMSA adapts the behavior of PSO to 
align M and get an aligned matrix such as M′ shown in Fig. 2b. Different from 
all other PSO-based multiple sequence alignment works, NestMSA is iteratively 



9176 M. Kayed, A. A. Elngar 

1 3

applied to align each row in the matrix. After all rows are aligned, the alignment 
problem is then solved and the aligned matrix such as M′ is obtained. As shown 
in Fig. 1, for each row r in the matrix M , particles in our algorithm will be ini-
tially distributed (nested) over the row r . Then, these particles start flying down to 
decide which one shall be moved (replaced by gaps). The particle with the global 
best (if there) shall be moved down (as the particles are distributed over the whole 
row symbols, so the global best solution is guaranteed). Number of swarm parti-
cles m in the row r is less than or equal to number of columns (sequences) c (i.e., 
m ≤ c ) as each particle psi will work with one symbol si(i = 1,… ,m) in the row, 
and at the same time, the row may have more than one occurrence of this symbol. 
That is, all occurrences of the symbol si in the row r are carried by a particle psi . 
So, position xsi(r) of the particle psi is defined by using the row r that contains the 
symbol si as well as locations of the symbol si in the different columns (indexes of 
the columns that contain si ) in the row r. That is:

Fig. 1  Particles ps (for all symbols in a row r ) nested at the row to align it

Fig. 2  A multiple sequence alignment example



9177

1 3

NestMSA: a new multiple sequence alignment algorithm  

where i1 is the index of the first occurrence of si in the row r , i2 is the index of 
the second occurrence of si in r , and so on. After the m swarm particles � have 
been nested at row r , they iteratively fly down (row by row at each iteration), keep 
track and share the global best position which could be used to decide which parti-
cle (symbol) should be moved to align the row. Again, this process is repeated until 
either one particle (symbol) only remains at the row or none of the particles can fly. 
If one particle only remains at the row, it is considered as an aligned row. If all of 
the particles cannot fly, we consider the symbols associated with these particles as 
disjunctive. A symbol will move down to align the row r based on the global best 
position g of the m particles in the swarm at the row r . Figure 3 shows our proposed 
algorithm (NestMSA_RowAlignment(r , M )) which is iteratively called to align the 
row r in the matrix M . It is important to note that, in this section, we use the term 
move to make an actual modification in the matrix to be aligned, while the term fly 
shall be used to decide which particle to move (without any actual modification in 
the matrix). The algorithm is working as follows.

The algorithm starts by initializing the swarm population and creates a set of m 
particles (line 1) as discussed above. If the swarm has only one particle (i.e., there 
are different occurrences of only one symbol), the row is considered as aligned and 

(5)xsi(r) = [r, i1, i2,…]

Fig. 3  The proposed algorithm (NestMSA_RowAlignment) to align a row r



9178 M. Kayed, A. A. Elngar 

1 3

the algorithm is terminated (lines 2–3; no particle will be moved). Otherwise, the 
algorithm does the following to decide which particle to move. For each particle psi 
( i = 1,… ,m ) in the swarm (lines 5–17), the particle position xsi(r) is identified as in 
Eq. 5 and the particle’s best position is initialized by the value xsi(r) (lines 5–7). This 
means that the initial position of the particle will be at row r (i.e., t

◦
= r ). Each par-

ticle will iteratively fly one step down until stop criteria become true. The position 
of the particle at each iteration t ( t = r + 1,… , r + l ) is defined as:

The number of iterations l is called the flying span. This means that the particle psi 
will fly carrying the symbol si down in the same column (i.e., only the row will be 
changed when the particle fly down, while indexes of the columns that contain the 
symbol are not changed). The flying span l is calculated using a combination of one 
or more of the following stop criteria: 

 (i) The flying span (the number of iterations) l is a fixed number. In our experi-
ment, we calculate this fixed value by subtracting the longest sequence (that 
does not contain the particle symbol si ) length and the row value r , as the 
particle does not fly alone. This means the particle psi will fly down until no 
other symbols are shown in the row.

 (ii) For each fly of the particle psi , the objective function at the new position 
( t = r + 1,… , r + l ) does not increase for a fixed value of l . Experimentally, 
we set the value of l as 5.

 (iii) Particle psi flies to a new position xsi(t) = [t, i1, i2,…]; t = r + 1,… , r + l , and 
stops when the symbol si appears in the row t at some different indexes j (in 
other words, there is a column of index j ∉ {i1, i2,…} in the matrix at row 
t  which has the symbol si ). This means the particle psi at indexes i1, i2,… is 
flying until it finds the symbol si down in a row at an index j ≠ ik ; k = 1, 2,… , 
otherwise the stop criteria ii and i are applied, in order.

At each iteration t ( ranged from r to r + l ), the particle position is modified by 
increasing the row number by 1 (lines 9–10). The objective function at the next row 
(will be discussed later) is updated (line 11) after the particle symbol is flying down 
to row t (i.e., after the matrix has been virtually modified). Then, the value of the 
new objective function will be used to calculate both the particle best position ℑi 
(lines 12–13) as in Eq. 1 and the global best position for all particles as in Eq. 2 
(lines 14–15). The global best position was initialized before the particles start fly-
ing. This initial global best value is called g

◦
 in the algorithm (line 4). After the 

global best position g = [t�, i1, i2,…] is tracked/shared by all particles, it is returned 
by the algorithm (line 22). Hence, all occurrences (indexed by i1, i2,… ) of the sym-
bol with this global best position will be moved down a distance equal to ( t� − r ) in 
the matrix M . At the same time, each gap added to the matrix is replaced by—. If 
the global best position does not change (i.e., g = g

◦
 ), the algorithm is terminated 

after recognizing all the different symbols si ; i = 1,… ,m in the row r as disjunctive/
mutative (lines 18–21; no particle will be moved).

(6)xsi(t) = [t, i1, i2,…]; where t = r + 1,… , r + l



9179

1 3

NestMSA: a new multiple sequence alignment algorithm  

As discussed above, the proposed algorithm adapts the particle swarm optimiza-
tion as follows. First, it simply considers the particles initial positions as the row 
to be aligned. Second, the velocity of the particle at iteration t + 1 will improve the 
particle position at iteration t + 1 by just changing the row value t in the particle 
position xs(t) = [t, i1, i2,…] at iteration t . This means that the flying directions of the 
particles depend only on the inertia component and ignored both the cognitive com-
ponents and the social component.

To analyze the algorithm that aligns a row r of m different symbols, we consider 
the number of comparisons between two symbols as the cost measure to deter-
mine the running time. Updating the objective function at line 11 in Fig. 3 requires 
(c − 1) × (k − r) comparisons (see Eq. 8 in the next subsection), where c and k are 
the number of columns (sequences) and the longest sequence length, respectively. 
The inner loop (lines 8–16 in the figure) stops after l iterations (flying span) which 
is calculated based on the three criteria mentioned above. So, the inner loop requires 
l × (c − 1) × (k − r) comparisons. This will be repeated (the outer loop—lines 5–17) 
for each different symbol (particle) in r (i.e., the outer loop has m iterations). Experi-
mentally, as mentioned above, the flying span l based on the three criteria applied in 
the algorithm is less than 5. Therefore, the running time complexity of the algorithm 
is O(m × c × k).

5.1  Particle objective function

Before we go further in this subsection to discuss how to calculate the objective 
function of a particle ps at position xs(t) = [t, i1, i2,…] in a matrix M , we introduce 
some important definitions.

Definition 3 (Aligned row) Given a matrix M as discussed in Sect.  4, a row r is 
called an aligned row if it only contains different occurrences of the same symbol s.

Definition 4 (Full row) An aligned row r is called full if no gaps (—) are added in 
the row r . That is, the number of occurrences of the symbol in the row is equal to the 
number of columns in the matrix.

Definition 5 (Row weight) Weight of the row r is calculated as:

where �1 , �2 and �3 are the penalties of the row if it is not aligned, aligned and full, 
respectively. Experimentally, as we shall mention later, we chose the values for these 
penalties as: �1 = 0.25 (for the non-aligned row), �2 = 0.5 (for the aligned row) and 
�3 = 1 (for a full aligned row), although other values could be more suitable for 
other experiments. For example, when evaluating the proposed MSA algorithm in 

(7)�(r) =

⎧
⎪⎨⎪⎩

�1 ×
x

c
; if r is not aligned

�2 ×
ns

c
; if r is aligned

�3; if r is Full



9180 M. Kayed, A. A. Elngar 

1 3

the field of Web data extraction, we used a higher value of �3 ( �3 = 2 ) if the sym-
bol in a full aligned row corresponds to a leaf node in the DOM tree which is a 
part of the Web page template (not classified as data to be extracted). The value 
ns is the number of occurrences of the symbol s in the aligned row r , and c is the 
total number of columns in the matrix M ( c > 1 ). The value x is calculated for the 
non-aligned row r as follows. The value of x is equal to zero if every symbol in 
the row r occurred at most once, otherwise x is equal to the max number of occur-
rences (matches) of some symbol in r . The proposed algorithm is a single objective 
optimization problem. The objective function f  of the particle ps at position xs(r) 
in the matrix M is calculated based on the accumulated weights of all rows from r 
to the last row ( 

∑k

j=r
�(j) ). Also, as discussed in Sect. 4, the objective function has 

a converse relationship with the number of gaps Gaps(r) added to the matrix from 
row r to the last row, and a positive relationship with the number of aligned rows 
A(r) in M from the row r to the last row ( k ). Finally, we define a row context value 
C(r) as the maximum number of matched characters (symbols) in the current row 
r ( C(r) ≥ 1 ). The objective function f  should be increased when C(r) is increased. 
Therefore, the objective function is formulated as follows.

5.2  An illustrative example

To clarify our proposed algorithm in Fig. 3, it will be applied to solve the alignment 
problem on the fictional matrix M shown in Fig. 2a. To align the first row ( r = 1 ), 
the algorithm NestMSA_RowAlignment will create a swarm � that includes only 
one particle pa as the row has only one symbol a . So, it returns null because the row 
is already aligned (lines 2–3 in Fig. 3). To align the second row ( r = 2 ), a swarm � 
that contains the two particles pb and pc is created as the row has two symbols ( b 
and c ). To decide which symbol to move to align this row, each of the two particles 
will fly down in the matrix iteratively and the global best position will be tracked 
and calculated. Based on this calculated global best position, the algorithm will 
decide which particle (symbol) to move in order to align the row. Sometimes, the 
algorithm is called more than one time to align the row. The initial global best posi-
tion at the second row is g

◦
= xb(2) = [2, 1, 3, 4] where the symbol ‘b’ has occurred 

at indexes 1, 3 and 4 at the row. Objective function (Eq. 8) at the initial position g
◦
 is 

calculated as:
f (g

◦
) =

1×3

1+0
× 0.875 = 2.625,

w h e r e ∑8

j=2
�(j) = 0.25 ×

3

4
+ 0.25 ×

3

4
+ 0.25 ×

2

4
+ 0.25 ×

2

4
+ 0 + 0 + 0.5 ×

2

4
= 0.875  , 

A(2) = 1 (as there is only one aligned row, the eighth row, in the range from row 2 
to row 8) and Gaps(2) = 0 (as no gaps added to the rows from 2 to 8 till now). Also, 
the row context value is C(r) = 3 , because the symbol ‘b’ has a maximal occurrence 
value (3 occurrences in the second row). Now, either of the two particles pb or pc is 

(8)f (xs(r)) =
A(r) × C(r)

1 + Gaps(r)
×

k∑
j=r

�(j)



9181

1 3

NestMSA: a new multiple sequence alignment algorithm  

flying down if a global best position g is found such that f (g) > f (g
◦
) = 2.625 , oth-

erwise no flying is done.
To decide which symbol to move in the second row, the first particle will start fly-

ing and it stops after 1 iteration at t = 3 (applying the third stop criterion iii dis-
cussed above). Figure 4a shows the matrix M after flying the particle pb to the third 
row. At that time, the particle new position is xb(3) = [3, 1, 2, 3, 4] , the objective 
function f (xb(2)) after the particle flying is f (xb(2)) =

4×1

1+3
× 2.625 = 2.625 , and so 

the particle’s best and the global best positions will not be changed as the objective 
function when the particle pb is flying down is the same as the objective function at 
its initial position (i.e., f (g) = f (g

◦
) = 2.625 . Note that the algorithm will use a copy 

of the matrix M to be modified when particles are flying and calculate the global 
best position without changing the original matrix.

Fig. 4  Snapshots of the matrix M shown in Fig. 1a during the alignment process



9182 M. Kayed, A. A. Elngar 

1 3

For the second particle pc in the swarm, it also flies and stops after 1 iteration. 
Figure 4b shows the matrix M after the particle pc flies to the third row. At that 
time xc(3) = [3, 1, 2, 3, 4] , f (xc(2)) =

3×3

1+1
× 2.0 = 6.0 , and so the particle best and 

the global best positions will be: ℑc = xc(3) and g = xc(3) , respectively. Since the 
objective function at the global best position is greater than the one at the initial 
position (i.e., f (g) = 6.0 > f (g

◦
) = 2.625 ), the algorithm will return the last modi-

fied global best g = xc(3) = [3, 1, 2, 3, 4] . Therefore, after all particles have been 
communicated, the second row will be aligned by moving the symbol (‘c’) at 
index 2 a distance 3 − 2 = 1 . This means that the second row will be aligned by 
moving ‘c’ to the third row and adding a gap at that place to get a matrix M 
shown in Fig. 4b.

Aligning the second row shown in Fig.  4 is a good example which demon-
strates the strength of the proposed objective function in the algorithm. Compar-
ing the two matrixes in Fig. 4a, b, each of the two matrixes could be a solution 
to our alignment problem. The objective function at the second row will take the 
responsibility to choose one of these two matrixes (the one that maximizes the 
objective function value). That is why, this function may need to be adapted when 
applying to other fields. It is clear from the calculated objective function values at 
the second row that the more aligned rows and the minimum added gaps give the 
larger objective value.

Similar to the first row, the swarm for the third row has only one particle 
pc , so it returns null as the row is aligned (see Fig. 4b). For the fourth row, the 
swarm includes the two particles pb and ph . The initial global best position is 
g
◦
= xb(4) = [4, 1, 2, 4], where the symbol ‘b’ at the fourth row has indexes 1, 

2 and 4, and then f (g
◦
) = (1 × 3)∕(1 + 0) × 0.625 = 1.875 . Similar to aligning 

the second row, using the first stop criterion (i), the particle pb will fly 3 times 
( r =5,6 and 7). After the particle pb stops flying, the global best position will 
be g = xb(7) = [7, 1, 2, 4] . After the particle ph stops flying, the global best is 
updated to be g = xh(6) = [6, 3] at which f (xh(4)) = (4 × 3)∕(1 + 2) × 1.25 = 5.0 . 
So, the algorithm at the fourth row of the matrix M shown in Fig. 4b will return 
g = xh(6) = [6, 3] . This means that the row will be aligned by moving the symbol 
‘h’ at the fourth row a distance 6 − 4 = 2 and adding gaps in that places. The 
matrix obtained after this step is shown in Fig. 4c.

In the sixth row of the matrix in Fig. 4c, the swarm creates the four particles: 
pd , pf  , ph and pj . The initial global best position is g◦ = xd(6) = [6, 1] where the 
symbol ‘d’ at the sixth row has an occurrence at index 1, and then f (g

◦
) = 1.0 . 

Each of the four particles will fly down, but the global best and the local best will 
not be modified as none of them fly to a position at which the objective function 
is greater than f (g

◦
) = 1.0 . This means that the global best for the four particles 

remains g
◦
 . Therefore, the algorithm terminates after identifying the four symbols 

‘d,’ ‘f,’ ‘h’ and ‘j’ as disjunctive/mutative. Similarly, the algorithm identifies the 
four symbols ‘e,’ ‘g,’ ‘i’ and ‘k’ as disjunctive in the seventh row. Finally, the last 
two rows are aligned. Gaps are added in the row when it is identified by the algo-
rithm as an aligned row and it was not full. The result will be the matrix shown in 
Fig. 4d which is the same as the one in Fig. 2b ( M′).



9183

1 3

NestMSA: a new multiple sequence alignment algorithm  

6  Experiments

In this paper, we focused on measuring the performance of the proposed algorithm 
and comparing it with other algorithms in the two domains: Web data extraction 
and removing DUST, although it could be adapted to be used in other domains. 
Sequences in these domains are usually of small sizes. Each character in the 
sequence corresponds to either a datum to be extracted (DOM subtree) from Web 
pages or an URL token as mentioned before. Three experiments are conducted in 
this paper, two of them are used to evaluate the algorithm in the field of Web data 
extraction, while the third one is used to evaluate the algorithm in the domain of 
removing DUST. The first experiment is conducted to measure the performance of 
the proposed algorithm on a dataset of peer matrixes that are generated by a Web 
data extraction system. The second experiment tries to compare the proposed algo-
rithm with the two alignment algorithms in TEX [19] and DCA [20]. Finally, the 
third experiment is conducted to measure the performance of the algorithm on a set 
of dup-clusters (each dup-cluster is a set of different URLs with similar contents) 
gathered from the common crawl dataset. All the experiments are conducted on a 
standard Intel Core i7-4600U 2.7 GHz CPU with 8G RAM running window 10.

Recall and precision are used to measure the performance of the algorithm in the 
first two experiments. We use the same formulas applied in both DCA and TEX in 
order to achieve the comparison. Given an aligned matrix M′

alg
 extracted by an algo-

rithm called ‘ alg ’ and the aligned matrix M′
manually

 extracted manually by experts, 
recall ( Rr ) and precision ( Pr ) for each row r in the aligned matrix M′

alg
 are calculated 

as follows:

Now, recall ( R ) and precision ( P ) could be calculated for each matrix by dividing 
the number of correctly extracted rows ( CR ) by the total number of rows in M′

manually
 

( GA ) and the total number of rows in M′
alg

 ( ER ), respectively. Similar to DCA, we 
consider a row as correctly extracted if Rr ≥ 0.85 . Therefore, recall ( R ), precision 
( P ) and F-measure ( F ) are calculated as follows:

For the first experiment, a dataset is generated for the purpose of this work by the 
help of a Web data extraction system [3, 26] and a simple GUI. The tools developed 
for the Web data extraction system FiVaTech are used to automatically collect all the 
matrixes to be aligned. The research purpose-designed GUI is used to simplify the 
manual labeling and alignment process of the collected matrixes. (C++ is the core 
language for this GUI as FiVaTech is written using it.) A total of 1200 peer matrixes 

Rr =
#correct aligned symbols inM�

alg
at row r

# symbols in M�
manually

at row r

Pr =
#correct aligned symbols inM�

alg
at row r

# symbols in M�
alg

at row r

(9)R =
CR

GA
, P =

CR

ER
, F =

2 × R × P

R + P



9184 M. Kayed, A. A. Elngar 

1 3

taken from 51 Web sites (Testbed for Information Extraction from Deep Web 
(TBDW) Version 1.02 dataset1) are collected, and their corresponding alignments 
are created to measure the performance of the proposed algorithm. We ignore to 
collect peer matrixes formed from subtrees near the roots of the DOM trees as many 
of them already have aligned rows (full aligned in many cases). We add a constraint 
on the characters (data) in the peer matrixes to be taken from DOM trees at least 4 
levels from the root ( <body> tag). Particularly, we take 200 peer matrixes from each 
level (4, 6, 8, 10 and greater than 10) in the DOM trees (a total of 1200 matrixes). 
Figure 5 shows the average time cost for each block of 200 matrixes (in millisec-
onds). Also, both the average number of sequences and the average sequence lengths 
for each block are shown in the figure. As shown in the figure, the time cost to align 
peer matrixes near the root of the DOM trees is very small and it is increased gradu-
ally when the dimensions of the matrixes increased. The average time cost for the 
whole 1200 matrixes is approximately equal to 0.42 ms.

To guarantee that the results are not biased to the used dataset, we used the fol-
lowing heuristic to find the most appropriate penalties for the non-aligned, aligned 
and full aligned rows. We fix the value of �2 to be 0.5, start �1 and �3 with the val-
ues 0.1 and 0.6, respectively, and finally measure the precision and recall. After that, 
iteratively we add 0.05 to each of the two values of �1 and �3 , and again measure 
the precision and recall at each iteration. Finally, we chose the penalties values with 
the maximum F-measure. If more than one iteration has a maximum F-measure, we 
chose the highest �1 and �3 values.

Table 1 shows the results of applying our proposed algorithm on the dataset in 
three different cases when each of the three stopping criteria discussed in Sect. 5 is 
used to calculate the particles’ flying span (columns 2, 3 and 4), respectively. For 
each case, the total number of gaps, the total number of matched symbols, the total 
number of disjunctive symbols, the total number of full aligned rows and the average 
alignment score are calculated and compared with the manually generated aligned 

Fig. 5  Time cost for the algorithm NestMSA

1 http://daise n.cc.kyush u-u.ac.jp/TBDW/.

http://daisen.cc.kyushu-u.ac.jp/TBDW/


9185

1 3

NestMSA: a new multiple sequence alignment algorithm  

matrixes. The alignment score is calculated using Eq.  8 for each matrix (resulted 
by the proposed algorithm), and then the average of these matrixes scores is cal-
culated. We set 1 to the value C(r) in Eq. 8. The total number of gaps is calculated 
after ignoring gaps added at the end of the sequences to have the same length. Also, 
when calculating the number of matched symbols, we only consider the rows that 
have more than one occurrence of a symbol. As shown in Table 1, applying the last 
criterion gives better results. The performance of the algorithm in the three differ-
ent stopping cases is measured by using recall, precision and F-measure (defined in 
Eq. 9). Table 2 shows that there is no significant difference when applying either of 
the first two criteria (i and ii), while the last criterion (iii) gives better performance.

For the second experiment, we use the 22 Web sites in the DCA dataset2 that 
are used for the comparison between TEX and DCA. The average number of pages 
in each site is 30 pages, while the average number of sequence lengths is 292. To 
compare our proposed algorithm with the two algorithms DCA and TEX, we used 
recall, precision and F-measure that are defined in Eq. 9. Table 3 shows that our pro-
posed algorithm outperforms both DCA and TEX. The performance of the proposed 
algorithm is: R = 0.95 , P = 0.96 , F = 0.96 . The average number of the manually 
aligned rows (called golden answer in DCA) is 47 rows per website, while the aver-
age number of aligned rows extracted by the proposed algorithm is 47.27 which is 
much closer. TEX suffered from false-positive data attributes. It produced the high-
est number of aligned rows, resulting in low precision.

Finally, the last experiment is conducted on a collection Web pages URLs 
crawled from the common crawl dataset,3 which is an open repository of Web crawl 
data. We developed a simple tool to choose only Web sites supporting Google’s 

Table 1  Results of applying the algorithm on the dataset using 3 different stop criteria

Criterion i Criterion ii Criterion iii Manual alignment

# Gaps 4750 4738 4523 4496
# Matched symbols 171765 171778 172047 172900
# Disjunctive 432 421 388 382
# Full Aligned Rows 6138 6119 6128 6115
Avg score of the aligned matrixes 14.6 14.8 15.2 14.9

Table 2  The performance of the 
proposed algorithm

Criterion i Criterion ii Criterion iii

R 95.3 95.1 96.7
P 93.9 93.7 95.8
F 94.6 94.4 96.2

2 https ://sites .googl e.com/site/ncula b/proje ct/WDEMS /dca.
3 http://commo ncraw l.org/the-data/get-start ed/.

https://sites.google.com/site/nculab/project/WDEMS/dca
http://commoncrawl.org/the-data/get-started/


9186 M. Kayed, A. A. Elngar 

1 3

suggestion [27], in which the canonical URLs are explicitly specified. The data are 
collected from 10 Web sites. (The 10 sites are extracted using the three categories: 
Sports, Travel and Business.) The average number of dup-clusters in a Web site is 
275, while the total number of dup-clusters (peer matrixes) in the ten sites is 3170. 
The minimum number of URLs in a dup-cluster is 2, and the maximum number is 
49. Our aim in this experiment is evaluating the performance of the proposed MSA 

Table 3  Performance comparison between our algorithm and both DCA and TEX

Site GA DCA TEX Our algorithm

ER R P F ER R P F ER R P F

1 44 43 0.98 0.97 0.97 52 0.59 0.63 0.61 44 1.00 1.00 1.00
2 21 21 1.00 1.00 1.00 37 0.76 0.64 0.69 21 1.00 1.00 1.00
3 39 37 0.93 0.97 0.95 44 0.33 0.34 0.33 40 0.90 0.88 0.89
4 117 113 0.96 0.98 0.97 156 0.54 0.55 0.54 115 0.94 0.96 0.95
5 101 100 0.87 0.93 0.90 119 0.36 0.35 0.35 100 0.94 0.95 0.95
6 51 43 0.84 0.98 0.90 93 0.84 0.52 0.64 48 0.86 0.92 0.89
7 92 90 0.93 0.96 0.94 101 0.65 0.67 0.66 90 0.97 0.99 0.98
8 13 13 1.00 1.00 1.00 13 0.85 0.61 0.71 13 1.00 1.00 1.00
9 15 16 0.91 0.86 0.88 11 0.87 0.77 0.82 15 1.00 1.00 1.00
10 21 19 0.75 0.83 0.79 24 0.67 0.70 0.68 20 0.86 0.90 0.88
11 31 30 0.96 0.97 0.96 64 0.58 0.49 0.53 29 0.87 0.93 0.90
12 106 106 0.93 0.95 0.94 54 0.52 0.65 0.58 107 0.99 0.98 0.99
13 14 14 1.00 1.00 1.00 52 0.43 0.12 0.19 14 1.00 1.00 1.00
14 48 48 0.97 0.97 0.97 55 0.83 0.70 0.76 48 1.00 1.00 1.00
15 38 37 0.93 0.97 0.95 35 0.74 0.78 0.76 38 0.95 0.95 0.95
16 13 13 1.00 1.00 1.00 22 0.92 0.60 0.73 13 1.00 1.00 1.00
17 17 17 1.00 1.00 1.00 17 0.94 1.00 0.97 17 1.00 1.00 1.00
18 70 67 0.91 0.96 0.93 66 0.73 0.70 0.71 71 0.97 0.96 0.96
19 36 35 0.96 0.99 0.97 21 0.92 0.89 0.90 35 0.92 0.94 0.93
20 30 30 0.95 0.97 0.96 53 0.71 0.44 0.54 28 0.93 1.00 0.97
21 60 60 0.98 0.98 0.98 83 0.70 0.54 0.61 57 0.83 0.88 0.85
22 78 78 0.96 0.96 0.96 104 0.64 0.50 0.56 77 0.95 0.96 0.95
Avg 47.95 46.82 0.94 0.96 0.95 58.00 0.69 0.60 0.63 47.27 0.95 0.96 0.96

Table 4  Performance of the 
proposed algorithm in removing 
dust domain

Site R P F SPS Site R P F SPS

1 0.92 0.90 0.91 0.88 6 0.95 0.94 0.94 0.93
2 0.96 0.92 0.94 0.92 7 1.00 0.98 0.99 0.95
3 0.94 0.94 0.94 0.95 8 0.93 0.90 0.91 0.87
4 0.90 0.89 0.89 0.90 9 0.94 0.93 0.93 0.93
5 0.96 0.91 0.93 0.92 10 0.95 0.96 0.95 0.91
Average 0.95 0.93 0.94 0.92



9187

1 3

NestMSA: a new multiple sequence alignment algorithm  

algorithm in the DUST domain; we are not focusing on finding or evaluating the 
normalization rules that transform a group of URLs having the same formation into 
a canonical formation. We used the same measures used in the two experiments ( R , 
P and F ) discussed before as well as the common score metric Sum of Pairs (SPS). 
Table 4 shows the results of the 10 Web sites. As shown in the table, the perfor-
mance of the algorithm is high (recall, precision and F averages are 0.95, 0.93 and 
0.94, respectively). The SPS score values (the average is 0.92) are calculated based 
on the distance scoring among the sequences.

7  Conclusion

This paper suggested a new multiple sequence alignment algorithm (NestMSA) that 
is inspired by the particle swarm optimization behavior. Different from all other 
researches that adapt PSO to solve the multiple sequence alignment problem, parti-
cles in our proposed algorithm are nested and communicated among the sequences 
(at one row in the matrix) to guarantee obtaining the global maximum. A new objec-
tive function is also suggested which considers all the characteristics of the multiple 
sequence alignment problem. To improve the efficiency of the algorithm, a com-
bination of three different stopping criteria are applied to reduce the particles’ fly-
ing span. The proposed algorithm considered the variations occurred in the multiple 
sequence alignment problem such as missing patterns, repetitive patterns and dis-
junctive patterns. We addressed the problem of MSA in the two domains Web data 
extraction and removing DUST as very few works are done although those are very 
important domains. But, we will consider the problem of DNA sequences alignment 
in which the sequences are very long with multiple nested repetitive regions in our 
future work.

References

 1. Mount DW (2004) Bioinformatics: sequence and genome analysis, 2nd edn. Cold Spring, Harbor, 
NY

 2. Zhai Y, Liu B (2005) Web data extraction based on partial tree alignment. In: Proceeding of the 
International Conference of World Wide Web (WWW-14), pp 76–85

 3. Kayed M, Chang C-H (2010) GiVaTech: page-level web data extraction from template pages. IEEE 
Trans Knowl Data Eng 22(2):249–263

 4. Rodrigues K, Cristo M, De Moura ES, Da Silva A (2015) Removing DUST using multiple align-
ment of sequences. IEEE Trans Knowl Data Eng 27(8):2261–2274

 5. Bar-Yossef Z, Keidar I (2009) Do not crawl in the DUST: different URLs with similar text. In: ACM 
Transactions on the Web (TWEB), vol 3. New York, USA, pp 1–31

 6. Kayed M (2012) Peer matrix alignment: a new algorithm. In: Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (ICDM), pp 268–279

 7. Notredame C (2002) Recent progress in multiple sequence alignment: a survey. Pharmacogenomics 
3(1):131–144

 8. Rubio-Largo A, Vanneschi L, Castelli M, Vega-Rodrguez MA (2018) A characteristic-based frame-
work for multiple sequence aligners. IEEE Trans Cybern 48(1):41–51



9188 M. Kayed, A. A. Elngar 

1 3

 9. Quoc-Nam T, Wallinga M (2017) UPS: a new approach for multiple sequence alignment using mor-
phing techniques. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 
pp 425–430

 10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X win-
dows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. 
Nucleic Acids Res 25(24):4876–82

 11. Notredame C, Higgins DG, Heringa J (2000) T-COFFEE: a novel method for fast and accurate mul-
tiple sequence alignment. J Mol Biol 302(1):205–217

 12. Rodriguez PF, Nino LF, Alonso OM (2007) Multiple sequence alignment using swarm intelligence. 
Int J Comput Intell Res 3(2):123–130

 13. Xu F, Chen Y (2009) A method for multiple sequence alignment based on particle swarm optimiza-
tion. In: 5th International Conference on Intelligent Computing, ICIC 2009, Ulsan, South Korea, pp 
16–19

 14. Zhan Q, Wang N, Jin S, Tan R, Jiang Q, Wang Y (2019) ProbPFP: a multiple sequence alignment 
algorithm combining hidden Markov model optimized by particle swarm optimization with parti-
tion function. BMC Bioinf 20:573

 15. Chang C-H, Kuo S-C (2004) OLERA: a semi-supervised approach for Web data extraction with 
visual support. IEEE Intell Syst 19(6):56–64

 16. Crescenzi V, Mecca G, Merialdo P (2001) RoadRunner: towards automatic data extraction from 
large web sites. In: 27th international conference on very large data bases. Morgan Kaufmann Pub-
lishers Inc

 17. Simon K, Lausen G (2005) ViPER: augmenting automatic information extraction with visual Per-
ceptions. In: Proceedings of the 2005 ACM CIKM international conference on information and 
knowledge management, Bremen, Germany, pp. 381–388, October 31–November 5, 2005

 18. Yuliana OY, Chang C-H (2016) AFIS: aligning detail-pages for full schema induction. In: Confer-
ence on technologies and applications of artificial intelligence (TAAI)

 19. Sleiman HA, Corchuelo R (2013) TEX: an efficient and effective unsupervised web information 
extractor. Knowl Based Syst 39:109–123

 20. Yuliana OY, Chang C-H (2018) A novel alignment algorithm for effective web data extraction from 
singleton-item pages. Appl Intell 48(11):4355–4370

 21. Chentoufi A, El Fatmi A, Bekri A, Benhlima S, Sabbane M (2017) Genetic algorithms and dynamic 
weighted sum method for RNA alignment. In: Intelligent Systems and Computer Vision (ISCV) 
Conference, pp 1–5

 22. Amorim AR, Visotaky JMV, Contessoto ADC, Neves LA., De Souza RCG, Valncio RC, Zafalon 
GFD (2017) Performance improvement of genetic algorithm for multiple sequence alignment. In: 
17th International Conference on Parallel and Distributed Computing, Applications and Technolo-
gies (PDCAT), pp 69–72

 23. Lalwani S, Kumar R, Gupta N (2013) A review on particle swarm optimization variants and their 
applications to multiple sequence alignment. J Appl Math Bioinf 3(2):87–124

 24. Jagadamba PVSL, Babu MSP, Rao AA, Rao PKS (2011) An improved algorithm for multiple 
sequence alignment using particle swarm optimization. In: IEEE 2nd International Conference on 
Software Engineering and Service Science, pp 544–547

 25. Kamal A, Mahroos M, Sayed A, Nassar A (2012) Parallel particle swarm optimization for global 
multiple sequence alignment. Inf Technol J 11(8):998–1006

 26. Chang C-H, Chang C-H, Kayed M (2012) Fivatech2: a supervised approach to role differentiation 
for web data extraction from template pages. In: 26th Annual Conference of the Japanese Society for 
Artificial Intelligence, Special Session on Web Intelligence & Data Mining, pp 1–9

 27. Google webmaster central blog: specify your canonical. https ://webma sters .googl eblog 
.com/2009/02/speci fy-your-canon ical.html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://webmasters.googleblog.com/2009/02/specify-your-canonical.html
https://webmasters.googleblog.com/2009/02/specify-your-canonical.html

	NestMSA: a new multiple sequence alignment algorithm
	Abstract
	1 Introduction
	2 Related works
	3 Particles swarm optimization
	4 MSA problem formulation
	5 The proposed algorithm: NestMSA
	5.1 Particle objective function
	5.2 An illustrative example

	6 Experiments
	7 Conclusion
	References




