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Abstract
The large-scale virtualized Cloud data centers consume huge amount of electrical 
energy leading to high operational costs and emission of greenhouse gases. Virtual 
machine (VM) consolidation has been found to be a promising approach to improve 
resource utilization and reduce energy consumption of the data center. However, 
aggressive consolidation of VMs tends to increase the number of VM migrations 
and leads to over-utilization of hosts. This in turn affects the quality of service (QoS) 
of the applications running in the VMs. Thus, reduction in energy consumption and 
at the same time ensuring proper QoS to the Cloud users are one of the major chal-
lenges among the researchers. In this paper, we have proposed an energy efficient 
and QoS-aware VM consolidation technique in order to address this problem. We 
have used Markov chain-based prediction approach to identify the over-utilized and 
under-utilized hosts in the data center. We have also proposed an efficient VM selec-
tion and placement policy based on linear weighted sum approach to migrate the 
VMs from over-utilized and under-utilized hosts considering both energy and QoS. 
Extensive simulations using real-world traces and comparison with state-of-art strat-
egies show that our VM consolidation approach substantially reduces energy con-
sumption within a data center while delivering suitable QoS.
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1  Introduction

Cloud computing enables dynamic and on-demand provisioning of infrastructure, 
platform and software as services in a pay-per-use manner. These are termed as 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a 
Service (SaaS), respectively [1]. Instead of bearing the huge cost needed to build 
and maintain their own infrastructure, many large and small enterprises outsource 
their computational requirements to the Cloud.

Cloud service providers (CSPs), namely Google, Amazon, etc., have deployed 
large-scale virtualized data centers across the world in order to deliver services to 
their customers. These data centers containing numerous physical machines (hosts 
or servers) are responsible for consumption of enormous amount of electrical energy 
and emission of greenhouse gases. It has been reported that in 2016, the global data 
centers consumed around 416.2 terawatt hours of electricity which accounted for 
about 3% of the global electricity supply and 2% of the total greenhouse gas emis-
sions [2]. Analysts predict that the data centers’ energy requirement would increase 
about 15 times by 2030, resulting in around 8% of the global electricity demand [3]. 
This massive amount of energy consumption and emission of greenhouse gases by 
the data centers have a negative impact on the environment and lead to global warm-
ing. Also, owing to the rising energy costs, the CSPs are facing reduction in their 
profit margin. Reports show that energy consumption of the data centers accounts 
for around 12% of the monthly operational costs for the CSPs [4]. Thus, to develop a 
greener environment and increase the Return on Investment (ROI) of the providers, 
promotion of energy efficiency in a virtualized data center is extremely important.

The numerous servers in a data center largely contribute to the total energy con-
sumption of the data center [5]. Each server contains several virtual machines (VMs) 
which execute the tasks of the Cloud users. Task execution by the VMs increases 
the CPU and memory utilization of the servers which in turn leads to increase in 
energy consumption. However, it must be noted that the huge power consumption of 
the servers not only occurs due to the execution of large number of Cloud services, 
but also due to the inefficient usage of the computing resources. Research shows 
that generally servers operate at 10–50% of their maximum CPU utilization [6] and 
idle servers consume about 70% of their peak power consumption [7]. To improve 
resource utilization and obtain increased ROI, the CSPs use VM consolidation tech-
niques. The VM instances are dynamically consolidated to a minimum number of 
servers using live migration, keeping their current resource requirements into con-
sideration. Idle servers are switched to sleep mode to eliminate idle power consump-
tion [8]. It has been reported in [4] that the use of VM consolidation has led to only 
4% rise in data center energy consumption from 2010 to 2014, compared to about 
24% increase from 2005 to 2010.

VM consolidation in Cloud computing, however, has several challenges. Owing 
to the variable workload of the applications running on the VMs, their aggressive 
consolidation might lead to some VMs not getting their demanded resources during 
peak load. This in turn would hamper the quality of service (QoS) of the applica-
tions by leading to increase in response time, failure or time-out. Additionally, the 
performance overheads [9] associated with excess migration of VMs, increase the 
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completion time of the tasks executing in the VM instances and hence affect the 
QoS. An important objective of the CSPs is satisfaction of QoS defined via service 
level agreements (SLAs). At the same time, energy consumption of the data center 
has to be reduced to decrease operational costs and pave the way for sustainable and 
eco-friendly cloud computing.

Although many research works have been conducted to reduce energy consump-
tion in a Cloud data center by VM consolidation, most of them have not considered 
the performance overheads associated with VM migrations [8, 10–13]. Again, many 
existing studies have considered homogeneous data centers and have tried to con-
solidate the VMs so as to reduce the number of active hosts [11, 14]. However, the 
hosts in a data center are mostly heterogeneous having different resource capacities 
and different nature of power consumption. In such a context, simply minimizing the 
number of active hosts is not equivalent to minimizing energy consumption. Moreo-
ver, in Cloud environment, it is important not only to reduce energy consumption 
but at the same time lessen SLA violations. Thus, a trade-off is essential.

Keeping the above aspects into consideration, in this paper, we propose an energy 
efficient and QoS-aware dynamic VM consolidation approach that can be used in a 
heterogeneous virtualized data center by a CSP providing IaaS. The VM consolida-
tion approach involves identification of the over-utilized and under-utilized hosts in 
the data center, proper selection of VMs from these hosts and thereafter effective 
placement of the selected VMs to other hosts in the data center. The main contribu-
tions of this paper are as follows: 

1.	 Formulation of a prediction-based over-utilized and under-utilized host detection 
technique where we predict the CPU utilization of each of the VMs allocated to a 
host using the Markov chain model and thus obtain the predicted CPU utilization 
values of the host. Based on these values, the decision of considering the host to 
be over-utilized or under-utilized and subsequent VM migrations are taken.

2.	 Proposal of energy and QoS-aware VM selection and VM placement heuristics 
that enable load balancing, improve resource utilization and lessen the number 
of VM migrations within the data center.

3.	 Formulation of a VM consolidation approach by integrating the proposed predic-
tion-based over-utilized and under-utilized host detection technique, VM selection 
and VM placement policies to achieve proper trade-off between energy consump-
tion and QoS.

4.	 Exploration of the efficacy of our proposed VM consolidation approach by per-
forming extensive simulations using the CloudSim 3.0.3 simulation platform [15] 
and the PlanetLab workload data [16].

The rest of the paper is organized in the following manner: In Sect.  2, we pre-
sent some related works on VM consolidation in Cloud computing. In Sect. 3, we 
describe the power and energy model for a host in the data center, several overheads 
of VM migration and metrics for evaluation of QoS. Our VM consolidation model is 
also discussed in this section. sections 4, 5 and 6 describe our proposed over-utilized 
and under-utilized host detection, VM selection and placement and VM consolida-
tion strategies, respectively. We evaluate our proposed techniques and analyze the 
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simulation results in Sect. 7. We conclude our work giving it a future direction in 
Sect. 8.

2 � Related work

Reduction in energy consumption is one of the main challenges for data center infra-
structures. The important power consumers of a data center are servers, network 
equipment and cooling systems [17]. To reduce the energy consumption of the net-
work equipment, energy-efficient routing considering minimum network devices are 
used [18]. To reduce the energy consumption of the cooling systems, new innova-
tive techniques like evaporative cooling and free cooling are being used. When the 
servers in the data center get heated up, cooler air from the environment is let in. As 
in many places of the world the outside air remains cooler than that inside the data 
center for most of the time in a year, free cooling is becoming popular because of its 
cost-effective and energy-saving nature [19, 20]. Research shows that among serv-
ers, network equipment and coolers, the servers are the main power consumers con-
tributing to around 40–50% of the total energy consumption of the data centers [17, 
21]. Thus, in this paper, we focus on VM consolidation which has become a popular 
method for reducing energy consumption and improving resource utilization of the 
servers in a data center. In the last few years, several studies have been conducted on 
energy-aware VM consolidation. We briefly discuss some of the approaches for VM 
consolidation in the following:

Greedy approaches VM consolidation is considered as a general version of the bin-
packing problem, and greedy heuristics like First Fit (FF), Best Fit (BF), First Fit 
Decreasing (FFD), Best Fit Decreasing (BFD) are used for it. Beloglazov et al. [8] 
have proposed Modified Best Fit Decreasing (MBFD) algorithm to place a VM to 
the host that generates least increase in power consumption. Also three VM selec-
tion policies, namely the minimization of migrations (MM) policy, the highest 
potential growth (HPG) policy and the random choice (RC) policy were proposed to 
select VMs for migration from over-loaded and under-loaded hosts. The MM policy 
reduces the number of VM migrations, thereby improving QoS. Verma et al. [22] 
have presented pMapper, a power and migration cost-aware VM placement algo-
rithm. Here, the physical machines are classified into receivers and donors, and VMs 
are allocated from the donors to the receivers. pMapper tries to reduce migration 
costs by keeping the VMs in the receivers unmoved. Although this reduces migra-
tion overheads, it hinders power savings. Li et al. [11] have proposed a framework 
named EnaCloud that extends the FF and BF algorithm to reduce energy by reduc-
ing number of active hosts. Experiments are conducted on a set of homogenous 
servers.

In [23], Murtazaev et al. have presented Sercon algorithm where an all or none 
migration strategy is followed. All the VMs in an active host are tried to be placed 
on other hosts. If possible, a new placement scheme with a less number of active 
hosts is obtained. In [24], QoS-aware energy efficient VM consolidation techniques 
have been proposed. The authors have presented a prediction-based migration 
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technique for the VMs based on the predicted CPU utilizations. Also a deadline-
aware VM migration technique was proposed where by setting appropriate dead-
lines for the VMs, a trade-off between energy consumption and QoS is achieved. 
Zakarya et al. [4] have proposed energy-performance-cost (EPC)-aware VM migra-
tion heuristic that reduces energy consumption, improves performance of the VMs 
and reduces cost of the Cloud service consumers. A VM is migrated from source 
host to target host only if it improves energy efficiency and performance.

Evolutionary approaches Metaheuristics like ant colony optimization (ACO), 
genetic algorithm (GA) and particle swarm optimization (PSO) are used for solv-
ing the VM consolidation problem. Gao et al. [25] have adopted ACO to consoli-
date VMs in a virtualized data center to reduce energy consumption and improve 
response time of the applications. Farahnakian et  al. [26] have proposed ant col-
ony system-based VM consolidation (ACS-VMC) for better energy savings. Zhang 
et al. [27] have presented an effective evolutionary approach for VM allocation in 
reservation-based Cloud considering energy and service request acceptance ratio. 
In [28], the authors use an improved grouping genetic algorithm (IGGA) for VM 
consolidation to improve power savings and reduce migration costs. The migration 
cost of a VM is defined as a product of its memory, page dirty ratio and application 
sensitivity. A particle swarm optimization-based VM placement approach is pre-
sented in [13] to minimize energy consumption and maintain QoS while provision-
ing data intensive services in a heterogeneous data center. QoS is measured in terms 
of response time, throughput, availability and reliability of services. However, the 
migration of VMs and the costs associated with it are not taken into account. Liali 
et al. [29] propose an iterative budget algorithm for VM consolidation considering 
energy consumption, VM migration cost and communication overhead between the 
VMs. On the critical side, many of the above mentioned evolutionary techniques 
involve a lot of iterations, which are time consuming in nature.

Integer programming In [12], the authors have provided an integer programming 
formulation of the VM consolidation problem and have proposed a heuristic to 
provide services using reduced number of physical machines. An optimal cloud 
resource provisioning algorithm is presented by formulating a stochastic program-
ming model in [30]. It helps to reduce the total cost of on-demand and reservation-
based resource provisioning and proves to be advantageous for Cloud service con-
sumers. Ghribi et al. [14] have formulated a linear integer program to consolidate 
VMs to a minimum number of physical machines and reduce energy consumption. 
However, these exact solutions cannot be obtained in feasible time when the number 
of VMs and hosts in the data center are large.

DVFS-based approaches Dynamic voltage and frequency scaling (DVFS) technol-
ogy helps to reduce processor energy consumption by making it operate on differ-
ent frequencies with different voltage supplies. Ding et  al. [10] have proposed an 
energy efficient scheduling algorithm for the VMs where an optimal frequency is set 
for the hosts using DVFS, and the VMs are allocated considering the performance–
power ratio of the hosts. Here, the performance overheads of VM migrations are 
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not taken into account. Alnowiser et al. [31] have presented the Enhanced Weighted 
Round Robin (EWRR) algorithm for energy efficient task scheduling in the Cloud. 
Here, DVFS is used to specify the minimum VM frequency for each task based on 
the task’s complexity and deadline. A DVFS-aware VM consolidation technique to 
reduce energy consumption of a data center is presented in [32].

It is evident from the above discussion that a sizable amount of research work 
has been conducted on energy-aware VM consolidation in a Cloud data center. Our 
work is distinguishable from the above literature in the following aspects: (1) We 
propose an energy efficient and QoS-aware VM consolidation approach considering 
three aspects- over-utilized and under-utilized host detection, VM selection and VM 
placement that can be used by IaaS providers to dynamically consolidate VMs in a 
Cloud data center; (2) Identification of over-utilized and under-utilized hosts is done 
by analyzing the CPU utilization history of each of the VMs allocated to the hosts 
and predicting their CPU utilization in future using Markov chain model; (3) The 
migration costs of VMs are taken into account during VM selection and VM place-
ment; (4) Heterogeneity of physical machines as well as VMs is considered; (5) The 
VM consolidation decisions are fast and do not require any highly time consuming 
computation.

3 � System model

In this section, we describe the power and energy model used for hosts in a data 
center and the overheads related to migration of VMs. Also, we briefly state the met-
rics used to measure the SLA violations and evaluate the QoS. Finally, we discuss 
our VM consolidation model.

3.1 � Power and energy model

The energy consumed by the large number of servers within a data center has a 
major contribution toward the total energy consumption of the data center [5]. Com-
pared to other system resources of a host in the data center, the CPU has been found 
to consume the maximum energy [8, 28]. Studies have also shown that there lies a 
linear relationship between the power consumption of a host and its CPU utiliza-
tion [7, 25, 28]. The use of processor utilization-based power model in determining 
the power consumption of a host is highly dominant in the literature [8, 24, 33, 34]. 
Hence, we adopt this power model to obtain the power consumed by a host. It has 
been specified below:

where Pidle and Pmax represent the power consumption of an idle and a fully utilized 
host, respectively; and u is the current CPU utilization. Owing to the variation of 
workload, the CPU utilization of a host changes with time and hence can be repre-
sented as a function of time, u(t). Thus, the total energy consumption, Eh of a host 
can be calculated using the energy model [8] given as follows:

(1)P(u) = Pidle + (Pmax − Pidle) ⋅ u,
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3.2 � Overhead of virtual machine migration

Live migration of VMs helps to dynamically consolidate them to a minimum num-
ber of hosts. However, it affects the performance of applications running in the 
migrating VMs and has several other overheads [9]. Due to migration, a perfor-
mance degradation of about 10% of the CPU utilization has been observed in appli-
cations running in that VM [16]. Time taken for a VM migration depends on the 
memory used by the VM and the available network bandwidth. The performance 
degradation and delay of a VM vmi due to a migration [4, 16] has been stated below:

where Tmigi
 is the time taken for migration of vmi ; Memi is the memory used by vmi ; 

BWi is the available network bandwidth; Pdegri
 represents the performance degrada-

tion experienced by vmi ; t0 indicates the time when the migration of vmi starts; and 
ui(t) is the CPU utilization of vmi.

3.3 � Quality of service (QoS) and service level agreement (SLA) violation

One of the major objectives of the CSPs is to ensure proper QoS to their customers, 
defined using SLAs. Excessive consolidation of VMs can lead to over-utilization of 
hosts, deteriorate the performance of the VMs and take increased time in comple-
tion of the jobs running in the VMs. This in turn leads to SLA violations and affects 
the QoS. In [16], the authors have defined some metrics for evaluating the level of 
SLA violations in an IaaS platform. They are: SLA violation time per active host 
(SLATAH) as defined in Eq. (5), performance degradation due to migrations (PDM) 
defined in Eq. (6) and the combined SLA Violation (SLAV) metric stated in Eq. (7).

where N is the total number of hosts in a data center; Toverj is the time duration dur-
ing which the host j has experienced 100% CPU utilization; and Tactivej is the total 
time for which the host j has been active (serving VMs).

(2)Eh = ∫t

P(u(t))dt.

(3)Pdegri
=

1

10 ∫
t0+Tmigi

t0

ui(t)dt,

(4)Tmigi =
Memi

BWi

,

(5)SLATAH =
1

N

N∑
j=1

Toverj

Tactivej

,

(6)PDM =
1

M

M∑
i=1

Cdegri

Creqi

,
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where M is the total number of VMs; Cdegri
 is the estimated performance degradation 

of the VM vmi due to migrations; and Creqi
 is the total CPU capacity requested by vmi 

in its lifetime. During all the migrations of vmi , Cdegri
 has been estimated to be 10% 

of it’s CPU utilization and has been calculated using Eq. (3).
The reason for formulating the SLATAH metric as stated by the authors [16] is 

that if a host is over-loaded or has 100% CPU utilization, then the performance of the 
applications running in the VMs allocated to that host, is limited by the host capacity. 
Thus, the VMs in that host would not be able to acquire their desired performance 
level during the peak workloads. Again, the overall performance degradation of VMs 
due to migrations can be measured using the PDM metric. The SLATAH metric 
value increases with the over-utilization of hosts and the PDM metric value increases 
with the rise in number of VM migrations. Finally, a combined metric SLA violation 
(SLAV) was proposed to measure the performance degradation and hampering of QoS 
caused by both host overloading as well as VM migrations. It has been stated below:

In this paper, we use the SLATAH, PDM and SLAV metrics to measure the level of 
SLA violations and represent the QoS.

As energy can be reduced at the expense of an increased level of SLA violations, 
we consider the combined Energy and SLA violations (ESV) [16] metric as defined 
in the following:

where E denotes the total energy consumed by all the hosts in the virtualized data 
center.

3.4 � VM consolidation model

The overall broker-based VM consolidation architecture is depicted in Fig. 1. Once 
the users request for their VMs, the Initial VM Placement Module decides on which 
physical machines (PMs) of the data center those VMs must be placed. It uses the 
resource availability information of the PMs obtained from the Monitoring Module, 
for taking these decisions. The Monitoring Module retrieves the resource availabil-
ity information of the PMs through the Host Monitoring Agent (HMA) installed in 
each PM of the data center. The Initial VM Placement Module decides to place a 
VM on a PM only if it satisfies the resource requirements of the VM. As initially the 
CPU utilization pattern of VMs are not known, the placement decisions are taken 
using the Best Fit heuristic in order to reduce the number of active PMs. This in turn 
reduces the energy consumption of the data center. The Cloud data center consists 
of a VM provisioner which provisions the VMs on the hosts based on the placement 
decisions of the Initial VM Placement Module.

The Guest Monitoring Agent (GMA) installed in each VM and the Host Monitor-
ing Agent (HMA) installed in each PM continuously collect the resource utilization 
values of the VM and the PM, respectively and pass the data to the Monitoring Mod-
ule. Based on these data, using suitable technique (discussed in Sect. 4), this module 

(7)SLAV = SLATAH ⋅ PDM,

(8)ESV = E ⋅ SLAV,
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periodically identifies the over-utilized and under-utilized hosts in the data center. 
Thereafter it instructs the VM Migration Module to take decisions for reallocation 
of VMs from these hosts using suitable VM Selection and VM Placement policies 
(discussed in Sect. 5). Based on these decisions, the VM Provisioner performs the 
live migration of the selected VMs in the data center.

In this paper, we focus on the Monitoring Module and the VM Migration Module 
to perform energy efficient and QoS-aware dynamic VM consolidation in a Cloud 
data center (discussed in Sects. 4, 5 and 6).

4 � Identification of over‑utilized and under‑utilized hosts in the data 
center

In a VM consolidation approach, it is important to properly identify the over-utilized 
and under-utilized hosts in the data center so that VMs can be selected for migration 
from them. In [8, 16, 35], threshold-based policies have been used to decide when a 
host is over-utilized or under-utilized. An upper and a lower CPU utilization thresh-
old is set for the hosts in the data center. Whenever the current CPU utilization of a 
host violates the upper or the lower threshold, it is considered to be over-utilized or 
under-utilized, respectively. However, it is known that the CPU utilization of a host 
changes over time due to the dynamic nature of the workload of the VMs allocated 
to it [16]. So there lies the possibility of a host which has been detected to be over-
utilized at a particular time, having much less CPU utilization in near future. Also, an 
under-utilized host may not remain the same in the next few instances of time.

Fig. 1   VM consolidation model
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Based on this observation, we propose a technique to predict the CPU utilization 
of a host in future. As the CPU utilization of a host depends on the workloads of the 
VMs allocated to it, it is appropriate to analyze the CPU utilization history of each 
of the allocated VMs, predict their future CPU utilization and thereby obtain the 
predicted CPU utilization of the host.

4.1 � Prediction of utilization based on Markov chain model

Markov chain is a mathematical model used widely for prediction [36, 37]. The main 
components of a Markov chain are as follows: a set of states, S = {s1, s2,… , sr} ; 
Transition Probability pi,j that represents the probability of transition from state si 
to state sj ; and a State Transition Matrix comprising of the transition probabilities 
between different states. We use Algorithm 1, to determine the set of predicted CPU 
utilization values for a host.
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The input to Algorithm 1 are: the set of VMs currently allocated to the host 
( hostvmList ); the prediction window size (win); and the maximum CPU capacity 
of the host represented in Million Instructions Per Second ( hostmips ). The set of 
predicted CPU utilization values of the host Pred, is returned by this Algorithm, 
where |Pred| = win.

The CPU utilization of each VM in the hostvmList is predicted in lines 5 to 
22. At first, the utilization values in vmhist is used to obtain a sequence of states 
(stateSequence). We consider there are n possible states for a VM, namely 
st0, st1,… , stn−1 . The function f (vu, n) used to obtain the state corresponding to 
the CPU utilization vu of a VM is stated as follows: f (vu, n) = st⌊vu⋅(n−1)⌋ . Again, 
the CPU utilization of a VM in state stj is calculated as j

n−1
 . The current CPU uti-

lization ( vmcur ) of the VM is converted to the current state ( stc).
Once the sequence of states (stateSequence) for a VM is determined by map-

ping the utilization values present in vmhist to the corresponding states, the transition 
matrix TM for the VM is created using Eq. (9) and Eq. (10).

where TM is a n × n matrix and n represents the number of possible states for a VM. 
To calculate the value present in a cell of the matrix TM, we use Eq. (10) which is 
specified below:

where ti indicates the total number of transitions from the state i in the stateSequence 
of a VM; and ti,j represents the total number of transitions from the state si to state sj 
in the stateSequence of that VM.

Thereafter using the Markov chain model, we obtain the set of predicted uti-
lization values for a VM. In Algorithm  1, r is a row vector of size n. Initially, 
r[0], r[1],… , r[n − 1] are all set to zero except for r[c] (corresponding to the current 
state, stc ), which is set to one. After calculating r, in each iteration, the state ( stm ) 
which maximizes the values in r is predicted. The state ( stm ) is converted to the cor-
responding utilization ( vm

u
 ) and added to the matrix vmPredictedUtils.

After the CPU utilization of each of the VMs in hostvmList are predicted and 
stored in the vmPredictedUtils matrix, the possible future CPU utilization values of 
the host is calculated in lines 23 to 30 of this Algorithm. Here, uhostk indicates the 
kth predicted CPU utilization of the host and vmmipsj

 represents the CPU perfor-
mance of the jth VM ( vmj ) allocated to the host in Million Instructions per Second 
(MIPS).

(9)TM =

⎛
⎜⎜⎜⎝

p0,0 p0,1 ⋯ p0,(n−1)
p1,0 p1,1 ⋯ p1,(n−1)
⋮ ⋮ ⋱ ⋮

p(n−1),0 p(n−1),1 ⋯ p(n−1),(n−1)

⎞
⎟⎟⎟⎠
,

(10)pi,j =
ti,j

ti
,
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4.2 � Prediction‑based approach for over‑utilized and under‑utilized host 
detection

Based on the predicted CPU utilization values of the hosts obtained using Algo-
rithm 1, we determine the set of over-utilized and under-utilized hosts in the data 
center, as described in Algorithms 2 and 3, respectively.

Algorithm 2 takes the set of hosts in the data center (hostList) and the upper CPU 
utilization threshold for the hosts ( Thrup ) as input. It returns the set of over-utilized 
hosts in the data center ( overlist ) as output. Similarly, input to Algorithm 3 is the set 
of hosts in the data center (hostList) and the lower CPU utilization threshold for 
the hosts ( Thrlow ). Output of this Algorithm is the set of under-utilized hosts in the 
data center ( underlist ). As described in these Algorithms, we consider a host to be 
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over-utilized or under-utilized, not if it’s current CPU utilization violates the upper 
or the lower CPU utilization threshold, respectively. Rather, a host is regarded to be 
over-utilized or under-utilized only if it is mostly found to remain so in near future. 
Each of the Algorithms 2 and 3 (PBOHD and PBUHD) invokes Algorithm 1 which 
predicts the CPU utilization of a host using the Markov chain model as discussed 
in Sect. 4.1. Here, win indicates the prediction window size. Line 8 of Algorithm 2 
states that if a host is predicted to remain over-utilized for more than half the pre-
diction window size, it is added to the overlist . Similarly if a host is predicted to 
remain under-utilized for more than half the prediction window size, it is added to 
the underlist (line 8 of Algorithm 3). The Algorithms 1, 2 and 3 are used by the Mon-
itoring module (refer Fig. 1) to identify the over-utilized and under-utilized hosts in 
the data center.

If p is the total number of hosts in the data center and q is the maximum number 
of VMs allocated to a host, then time complexity of Algorithm 1 is O(q) and that of 
Algorithms 2 and 3 is O(pq).

5 � Virtual machine selection and it’s placement on proper host

5.1 � Increase in energy consumption due to allocation of a VM

As stated in Sect. 3.1, the power consumption of a host has a linear relationship with 
it’s CPU utilization. It is known that the CPU utilization of a host depends on the 
workload of the VMs placed on it. Let a host in the data center has k VMs allocated 
to it. Then it’s CPU utilization is calculated using Eq. (11) stated as follows:

where uk is the CPU utilization of the host having k VMs allocated to it; hostmips 
is the maximum CPU capacity of that host represented in MIPS; vmmipsi

 and vmutili
 

represent the MIPS and the CPU utilization of ith VM on the host, respectively. The 
power consumption of this host P(uk) , can be calculated using the Eq. (1) stated in 
Sect. 3.1.

Now, if a new VM is placed on this host, then it’s CPU utilization and power con-
sumption can be represented as uk+1 and P(uk+1) respectively. The increase in power 
consumption of the host (Pincr) due to the allocation of the (k + 1) th VM on it, is 
calculated using Eq. (12) stated below:

where vmmipsk+1
 and vmutilk+1

 are the MIPS and the CPU utilization of the newly allo-
cated (k + 1) th VM; Pidle and Pmax are the power consumption of the host when it is 

(11)uk =

∑k

i=1
(vmmipsi

⋅ vmutili
)

hostmips
,

(12)

Pincr = P(uk+1) − P(uk)

=

[
Pmax − Pidle

hostmips

]
⋅ (vmmipsk+1

⋅ vmutilk+1
)
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idle and when it is fully utilized, respectively. We define the term power factor ( Pf  ) 
of a host as follows:

Thus, it is evident from Eq. (12) that if a VM can be allocated to a host with consid-
erably lesser power factor ( Pf  ), then the increase in power and energy consumption 
of the data center can be reduced.

5.2 � Consideration of QoS while migration of a VM

Apart from decreasing the energy consumption of the data center, we aim to propose 
a VM consolidation technique that would also ensure improved QoS. As discussed 
in Sect. 3.2, there is some performance degradation of the VMs during their migra-
tions. Duration of a VM migration can be obtained using Eq. (4). In Eq. (4), we 
assume the available network bandwidth BWi used for migration of VM vmi is calcu-
lated as follows:

where BWsrcHosti
 is the available network bandwidth of the source host from which 

VM vmi is migrating; and BWdestHosti
 is the available network bandwidth of the host 

to which VM vmi is being placed after migration.
Longer duration of migration leads to increased performance degradation of the 

VMs that can be measured using Eq. (3). This in turn increases SLA violations, 
thereby affecting QoS. Thus, to decrease this performance degradation and achieve 
good QoS, we aim to reduce the migration duration of the VMs as well as the num-
ber of VM migrations in the data center.

5.3 � VM selection policy

When a host in the data center is identified to be over-utilized or under-utilized, VMs 
have to be selected for migration from them. In Eq. (12), it is evident that selection 
of VMs with less value of (vmmips ⋅ vmutil) will lead to less increase in energy con-
sumption. Again, to reduce the duration of migration (Eq. (4)) and improve QoS, 
VMs with smaller memory (RAM) should be selected for migration. Thus, when a 
host is found to be over-utilized, we determine the energy–QoS (EQV) cost of each 
of the VMs allocated to it using Eq. (15) stated as follows:

where EQVi indicates the energy–QoS cost of the VM vmi allocated to the over-uti-
lized host; vmmipsi

 and vmutili
 is the MIPS and the CPU utilization of vmi respectively; 

(13)Pf =

[
Pmax − Pidle

hostmips

]

(14)BWi = min(BWsrcHosti
,BWdestHosti

),

(15)EQVi = w1 ⋅

(
vmmipsi

⋅ vmutili

vmmipsmax
⋅ vmutilmax

)
+ w2 ⋅

(
vmRAMi

vmRAMmax

)
,
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and vmRAMi
 represents the RAM of vmi . While calculating the energy–QoS cost 

of a VM, we first normalize each component and then apply the linear weighted 
sum approach. Here, w1 and w2 are the weight parameters such that w1 + w2 = 1 ; 
0 < w1 < 1 ; 0 < w2 < 1 ; and w1,w2 ∈ ℝ . Migration of a VM with smaller EQV cost 
will be more energy-efficient and lead to lesser performance degradation, as com-
pared to a VM with greater EQV cost.

Our proposed VM selection policy based on the calculated EQV cost of the VMs 
is presented in Algorithm 4. We name this technique as Energy and QoS-aware VM 
selection policy (EQVS). In Algorithm 4, overlist represents the set of over-utilized 
hosts in the data center; Thrup is the upper CPU utilization threshold for the hosts; 
migrationListov is the set of VMs selected for migration from over-utilized hosts; 
vmmipsi

 and vmutili
 is the MIPS and the CPU utilization of vmi respectively; and 

hostmips is the MIPS of the host. Time complexity of EQVS is O(pq log q) where p is 
the number of over-utilized hosts in the data center and q is the maximum number of 
VMs allocated to a host.

We have performed experiments by taking different values of weight parameters 
w1 and w2 while calculating the EQV cost of a VM. We have observed that a higher 
value of w1 in cost calculation tends to select VMs with lower CPU requirement 
for migration, giving less preference to the memory requirement of the VM. This 
generally causes lesser energy consumption but poorer QoS (high PDM and SLAV 
values). On the contrary, when higher value of w2 is used, a VM with smaller mem-
ory (RAM) is preferably selected for migration. This improves QoS (low PDM and 
SLAV values) but increases energy consumption. Empirically we find the values 
w1 = 0.3 and w2 = 0.7 give the best energy and QoS trade-off.
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When a host in the data center is found to be under-utilized, all the VMs allocated 
to it are selected for migration.

5.4 � Energy and QoS‑aware VM placement

During VM consolidation, a proper VM placement technique is needed. As VM 
placement is a NP-hard problem [22, 38, 39], we propose a heuristic for efficient 
allocation of VMs on the hosts keeping the aspects discussed in Sects. 5.1 and 
5.2 into consideration. The proposed heuristic is named as energy and QoS-
aware VM placement (EQVP) and has been presented in Algorithm 5. This Algo-
rithm takes the following parameters as input: the set of hosts in the data center 
(hostList); the set of VMs to be allocated to the hosts (vmList); excludedHostList 
indicating the set of hosts in the data center which should not be considered for 
VM placement as described in Sect. 6; and the CPU utilization thresholds Thrup 
and Thrlow for the hosts. It returns the array A representing the allocation of VMs 
to the hosts.
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In Algorithm 5, at first we try to place each VM vmi in vmList on one of the 
hosts ( Hn ) in the data center whose current CPU utilization lies within the thresh-
olds. In order to obtain a suitable host for placement of VM vmi , we calculate the 
energy–QoS (EQH) cost of each host h in Hn using Eq. (16) stated as follows:

where Pfh
 is the power factor of host h obtained using Eq. (13); Pfmax

 is the maximum 
Pf  value among all the hosts in Hn used for normalization; BWh is the available net-
work bandwidth of host h; BWsrcHostvmi

 is the available network bandwidth of the 
source host of VM vmi ; and ucurh is the current CPU utilization of host h. Here �1, �2 
and �3 are weight parameters such that �1 + �2 + �3 = 1 and �1, �2, �3 ∈ ℝ.

A host having lesser Pfh
 value is more energy-efficient as explained in Sect. 5.1. 

On the contrary, a host having lesser BWh would increase the VM migration dura-
tion thereby affecting the QoS. Again, placement of vmi on a host in Hn having 
lesser ucurh would improve resource utilization and reduce the chance of VM 
migrations from that host due to over-utilization in future. Thus it is clear that the 
first component of EQHh considers the energy efficiency of the host, whereas the 
QoS aspect is considered by the second and the third components. Hence accord-
ingly, we set the weight parameters �1 = 0.5 and �2 = �3 = 0.25 . The host in Hn 
having minimum EQH cost is most suitable for placement of VM vmi , in terms of 
energy efficiency and QoS.

If none of the hosts in Hn have sufficient resources for placement of vmi , we try 
to place it on one of the hosts in Hu as stated in lines 11 to 17 of Algorithm 5. The 
host in Hu having highest CPU utilization is first considered for VM placement so 
that it’s CPU utilization no longer remains lesser than Thrlow , reducing chances of 
VM migrations due to under-utilization from it. If the other hosts in Hu are found 
to remain under-utilized in future, VMs can be migrated from them and they can 
be switched to sleep mode to reduce energy consumption of the data center.

If vmi could not be allocated to any host in Hn and Hu , then a suitable host is 
activated from sleep mode and the VM is allocated to it as stated in lines 18 to 
25 of Algorithm 5. Here, Hs represents the set of hosts that are in sleep mode. To 
obtain a suitable host for placement of vmi , we calculate the energy–QoS (EQH) 
cost of each host h in Hs using the following equation:

(16)EQHh = �1 ⋅

(
Pfh

Pfmax

)
+ �2 ⋅

[
1 −min

(
BWh

BWsrcHostvmi

, 1

)]
+ �3 ⋅ ucurh ,
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where Psh
 is the increase in power consumption of host h due to the placement of 

vmi ; and Psmax
 is the maximum Psh

 value among all hosts in Hs . Psh
 has been defined 

below:

where Pfh
 is the power factor of host h calculated using Eq. (13); vmutili

 and vmmipsi
 is 

the CPU utilization and MIPS of vmi respectively.
In Eq. (17), the first component of EQHh considers the energy efficiency of the 

host and the second component considers the QoS aspect. Hence we take the weight 
parameters �1 = �2 = 0.5 . A host in Hs having smaller EQH cost is more suitable 
for placement of vmi in comparison to a host having greater EQH cost. If p is the 
number of hosts in the data center and q is the number of VMs to be allocated on 
the hosts, then the time complexity of Algorithm  5 is O(pq log p) . Algorithms 4 
and 5 are used by the VM Migration Module (refer Fig. 1) for VM selection and 
reallocation.

6 � Virtual machine consolidation

We have integrated the Algorithms- PBOHD, PBUHD, EQVS and EQVP described 
in Sects. 4 and 5 to develop the Energy and QoS-aware VM Consolidation (EQC) 
technique presented in Algorithm  7. EQC periodically consolidates the VMs in a 
data center to improve energy efficiency and QoS.

(17)EQHh = �1 ⋅

(
Psh

Psmax

)
+ �2 ⋅

[
1 −min

(
BWh

BWsrcHostvmi

, 1

)]
,

(18)Psh
= Pidleh

+ Pfh
⋅ (vmutili

⋅ vmmipsi
),



9113

1 3

Energy and quality of service-aware virtual machine…

The input to Algorithm 7 are: hostList representing the set of hosts in the data 
center; and the CPU utilization thresholds Thrup and Thrlow for the hosts. At first the 
over-utilized hosts ( overlist ) in the data center are identified using the PBOHD Algo-
rithm and VMs are selected for migration from them using the EQVS policy. Then 
the selected VMs are placed on suitable hosts using the EQVP technique. It is logi-
cal that VMs selected from over-utilized hosts must not be placed on other over-uti-
lized hosts in the data center. Thus, in this case excludedHostList = overlist . There-
after, the under-utilized hosts in the data center are identified using the PBUHD 
Algorithm and the VMs allocated to them are selected for migration. Here, ucurh is 
the current CPU utilization of host h, Ex denotes the excludedHostList and hosts is 
the set of hosts in the data center currently switched to sleep mode. If it is possible 
to allocate all the VMs from an under-utilized host to other hosts using EQVP, it 
is switched to sleep mode thus reducing the total energy consumption of the data 
center.

7 � Performance evaluation

7.1 � Experimental setup

As it is difficult to perform large-scale experiments repeatedly on real Cloud 
setup, we have used the CloudSim 3.0.3 [15] simulation platform to evaluate our 
proposed heuristics and compare it with other state-of-art approaches. CloudSim 
is a modern and well-accepted simulation framework for the Cloud computing 
environment that supports the creation of a large-scale virtualized data center, 
power modeling and VM provisioning techniques. Our simulations have been 
conducted on a computer having Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz 
processor, 4 GB RAM and 64-bit Windows 10 Operating System.

We have simulated a heterogeneous data center consisting of 800 hosts. There 
are 4 types of hosts in the data center, namely Hitachi HA8000/SS10 (DK1) (dual 
core CPU with 3067 MIPS per core, 8GB RAM); IBM System x3200 M2 (dual 
core CPU with 3000 MIPS per core, 4GB RAM); HP ProLiant ML110 G5 (dual 
core CPU with 2660 MIPS per core, 4GB RAM); and HP ProLiant ML110 G4 
(dual core CPU with 1860 MIPS per core, 4GB RAM). In our experiment, we use 
the results of the SPECpower benchmark [40] that provides data on power con-
sumption by the servers. The nature of power consumption of the aforementioned 
servers for different CPU Utilization(%) variations [41] is given in Table 1. The 
power consumption of a server for 100% CPU utilization and 0% CPU utiliza-
tion represent its Pmax and Pidle respectively. There are 200 hosts of each of the 
4 types in the simulated data center. Each Hitachi HA8000/SS10 (DK1), IBM 
System x3200 M2, HP ProLiant ML110 G5 and HP ProLiant ML110 G4 host is 
modeled to have 1000 Mbits/s, 800 Mbits/s, 400 Mbits/s and 600 Mbits/s network 
bandwidth, respectively.

Similar to [16], we consider 4 types of VMs in the data center: the first 
type having 2500 MIPS single core CPU and 0.85 GB RAM; the second type 
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comprises of 2000 MIPS single core CPU and 1.7 GB RAM; the third type has a 
1000 MIPS CPU core and RAM of 1.7 GB; and the fourth type consists of a 500 
MIPS CPU core and 613 MB RAM. The characteristics of the VMs correspond to 
Amazon EC2 instance types [42].

We have used the PlanetLab workloads provided by the CloudSim 3.0.3 toolkit 
for conducting our simulations. These workload data have been generated by consid-
ering the CPU utilization variations of more than 1000 VMs from servers located in 
various places of the world [16]. In each PlanetLab workload file, the CPU utiliza-
tion values for a duration of 1 day taken at an interval of 5 min is given.

The properties of the PlanetLab workload traces are given in Table 2. Initially, the 
VMs are allocated to the hosts considering the resource requirements as specified 
by the VM types, assuming 100% CPU utilization. Thereafter, the VMs utilize less 
resources according to the data provided in the workload trace which create oppor-
tunities for dynamic consolidation of the VMs. We have conducted simulations for 
24 h on each PlanetLab workload trace to evaluate our proposed algorithms.

7.2 � Performance metrics

To analyze the performance of our proposed VM consolidation technique and com-
pare them with the state-of-art approaches, we have used some metrics. One of them 

Table 1   Power consumption (in Watts) of selected servers for different CPU utilization

Here, S1, S2, S3 and S4 represent servers Hitachi HA8000/SS10 (DK1), IBM System x3200 M2, HP 
ProLiant ML110 G5 and HP ProLiant ML110 G4, respectively

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S1 24.3 30.4 33.7 36.6 39.6 42.5 45.6 51.8 55.7 60.8 63.2
S2 75.2 78.2 84.1 89.6 94.9 100 105 109 112 115 117
S3 93.7 97 101 105 110 116 121 125 129 133 135
S4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

Table 2   Characteristics of 
PlanetLab workload traces

Date Number of VMs Mean CPU utili-
zation of VMs (%)

3 March 2011 1052 12.31
6 March 2011 898 11.44
9 March 2011 1061 10.70
22 March 2011 1516 9.26
25 March 2011 1078 10.56
3 April 2011 1463 12.39
9 April 2011 1358 11.12
11 April 2011 1233 11.56
12 April 2011 1054 11.54
20 April 2011 1033 10.43
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is the total energy consumed by the hosts in the virtualized data center where the 
energy consumption of each host is calculated using the power and energy model 
defined in Sect.  3.1. Another metric that we consider is the total number of VM 
migrations in the data center. To measure the level of SLA violations and gain an 
insight into the QoS provided by the VM consolidation approach, we use the SLAV 
(SLA violation), PDM (performance degradation due to migration) and SLATAH 
(SLA violation time per active host) metrics presented in Sect.  3.3. Finally, the 
trade-off between energy and QoS is determined using the ESV (energy and SLA 
violations) metric defined in Eq. (8).

7.3 � Some state‑of‑art approaches

Some of the over-utilized and under-utilized host detection, VM placement and VM 
selection strategies present in the literature, are discussed in the following: 

1.	 Threshold-based over-utilized and under-utilized host detection strategy: Upper 
and lower CPU utilization thresholds are set for the hosts in the data center. If the 
current CPU utilization of a host exceeds the upper threshold, it is considered to 
be over-utilized. Similarly, if the current CPU utilization is less than the lower 
threshold, the host is detected as under-utilized [8, 16, 35].

2.	 First Fit (FF) VM Placement Policy: Given a set of hosts, the FF policy assigns 
a VM to the first host that satisfies its resource requirements [4, 27].

3.	 Modified Best Fit Decreasing (MBFD) VM Placement Policy: In MBFD, the VMs 
are first sorted in decreasing order of their current CPU utilizations. Then each 
VM is allocated to the host that causes least increase in power consumption due 
to this allocation [8].

4.	 Minimization of Migration (MM) VM Selection Policy: MM policy [8] selects 
minimum number of VMs for migration from a host when it is found to be over-
utilized. If a host is under-utilized, all it’s VMs are migrated.

5.	 Minimum Migration Time (MMT) VM Selection Policy: When a host is found to 
be over-utilized, the MMT policy migrates the VM that requires minimum time 
for migration in comparison to other VMs allocated to that host [16].

Many researchers [4, 24, 27, 43] have adopted the aforementioned strategies 
as baseline methods for evaluation of their work. In this paper, for better evalua-
tion of our proposed over-utilized and under-utilized host detection (PBOHD and 
PBUHD), VM placement (EQVP) and VM selection (EQVS) policies, we execute 
them in combination with the state-of-art approaches discussed above. This enables 
us to comprehend the efficiency of our Algorithms as suitable strategies for each of 
the three steps of VM consolidation, namely over-utilized and under-utilized host 
detection, proper selection of VMs from those hosts and effective placement of the 
selected VMs on other hosts in the data center. Moreover, the efficacy of our VM 
consolidation approach presented in Algorithm  7 can be determined through this 
rigorous comparison.
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7.4 � Simulation results and analysis

We have taken three upper and lower CPU utilization threshold combinations for the 
hosts in the virtualized data center. In each case we have implemented the threshold-
based over-utilized and under-utilized host detection policy (discussed in Sect. 7.3) 
as well as our proposed prediction-based over-utilized and under-utilized host 
detection strategy (PBOHD and PBUHD) in combination with different VM place-
ment–VM selection techniques. Each combination of an over-utilized and under-
utilized host detection, VM selection, and VM placement technique is considered as 
a VM consolidation approach. The results are presented in Figs. 2, 3, 4, 5, 6 and 7. 
The results clearly show that our proposed VM consolidation approach EQC, com-
prising of prediction-based over-utilized and under-utilized host detection, EQVP 
VM placement policy and EQVS VM selection policy outperforms the other VM 
consolidation approaches by reducing energy consumption, number of VM migra-
tions and SLA violations. The efficacy of EQC in achieving proper trade-off between 
energy and QoS is evident from the low ESV metric value generated by it.

While conducting the prediction-based approach presented in Sect.  4, we have 
taken n as 100 and the prediction window size win as 6. In the CloudSim 3.0.3 plat-
form, simulation is performed at an interval of 5 min. So a prediction window of 
size 6 is equivalent to a prediction of 30 min. Also, for prediction we need some 
history data. So for an initial offset phase of 1  h we do not perform any predic-
tion. Thereafter, the CPU utilization values of a host are predicted at every time 
stamp and the decision of considering the host to be over-utilized or under-utilized 
is taken, as discussed in Sect. 4. Now, we briefly discuss the impact of over-utilized 
and under-utilized host detection, VM placement and VM selection strategies on a 
VM consolidation approach.

Performance impact of over-utilized and under-utilized host detection strategy on 
VM consolidation The results presented in Figs. 2, 3, 4, 5, 6 and 7 clearly show that 
in a VM consolidation approach, the use of the proposed prediction-based technique 
(PBOHD and PBUHD) for over-utilized and under-utilized host detection proves to 
be much more efficient than the threshold-based strategy present in the literature. In 
every threshold and in every VM placement- VM selection combination, the values 
of energy consumption, number of VM migrations, SLAV, PDM and ESV metrics 
obtained when prediction is used are much less than that of their threshold-based 
counterpart. Also, even though the value of the SLATAH metric obtained dur-
ing our proposed prediction-based approach is sometimes greater than that of Thr, 
ultimately the SLAV metric, which is a product of SLATAH and PDM, is lesser 
in the prediction-based policy. This is because our proposed approach substantially 
reduces the number of VM migrations thereby lessening the value of the PDM met-
ric. This in turn reduces the value of the SLAV metric.

We have considered three different CPU utilization threshold combinations with 
40% interval between the upper and lower CPU utilization thresholds as specified 
in [8]. Figures 2 and 6 show that higher utilization thresholds reduces energy con-
sumption but increases SLA violations. We can attribute this result to the fact that 
higher thresholds provide opportunities for aggressive VM consolidation which can 
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affect QoS. Thus, the service providers must set a proper threshold to maintain a 
trade-off between energy consumption and QoS requirements. It is evident from the 
results in Fig 7 that in comparison to the other threshold combinations, thresholds 
80–40% generally provides better ESV. Also, it is evident that in every threshold 
combination, our prediction-based approach totally outperforms the threshold-based 
host detection strategy.

Performance impact of VM placement strategy on VM consolidation The results pre-
sented in Figs. 2, 3, 4, 5, 6 and 7 give us an idea about the relative efficacy of the 
VM placement and VM selection techniques. However, to achieve a clear under-
standing and perform better analysis, we have taken the VM placement strategies 
(FF, MBFD and EQVP) and the VM Selection strategies (MM, MMT and EQVS) 
and have implemented them in different combinations. In each case PBOHD (with 
Thrup = 80% ) and PBUHD (with Thrlow = 40% ) have been used as the over-utilized 
and under-utilized host detection approach, respectively. The results are presented in 
Figs. 8, 9, 10, 11, 12 and 13.

It is evident from the results in Figs. 8, 9, 10, 11, 12 and 13 that given a particu-
lar over-utilized and under-utilized host detection and VM selection policy, EQVP 
clearly outperforms MBFD and FF, when used as the VM placement policy. EQVP 
provides significant energy savings and reduces the number of VM migrations 
because it tries to allocate VMs on hosts having lesser EQH cost. It also reduces the 
time taken for VM migration which consequently reduces the value of the PDM met-
ric. Moreover, EQVP effectively balances the load on the hosts by trying to allocate 
VMs on hosts having lesser CPU utilization. Hence, the value of the SLATAH met-
ric is generally found to be low when EQVP is used. Also, the values of the SLAV 
metric (product of PDM and SLATAH) and the ESV metric (product of Energy and 
SLAV) are highly satisfactory when EQVP is used as the VM placement policy in a 
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Fig. 8   Comparison of different VM Placement and VM Selection strategies with respect to the 
energy consumption of the data center. In each case PBOHD (with Thrup = 80% ) and PBUHD (with 
Thrlow = 40% ) have been used as the over-utilized and under-utilized host detection approach, respec-
tively
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VM consolidation approach. From the results it is evident that in comparison to FF, 
MBFD causes lesser energy consumption. Number of VM migrations, SLAV and 
ESV values of MBFD are also mostly lesser than that of FF.

Performance impact of VM selection strategy on VM consolidation The results 
presented in Figs. 8, 9, 10, 11, 12 and 13 help us to analyze the impact of the 
VM selection policy on the VM consolidation approach. For a given over-uti-
lized and under-utilized host detection and VM placement policy, MM mostly 
causes lesser number of VM migrations but generates higher energy consump-
tion, SLATAH, PDM, SLAV and ESV values in comparison to MMT and EQVS. 
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Fig. 9   Comparison of different VM Placement and VM Selection strategies with respect to num-
ber of VM migrations in the data center. In each case PBOHD (with Thrup = 80% ) and PBUHD (with 
Thrlow = 40% ) have been used as the over-utilized and under-utilized host detection approach, respec-
tively
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Fig. 10   Comparison of different VM Placement and VM Selection strategies with respect to the SLA-
TAH metric. In each case PBOHD (with Thrup = 80% ) and PBUHD (with Thrlow = 40% ) have been used 
as the over-utilized and under-utilized host detection approach, respectively
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Although the number of VM migrations in MMT is sometimes higher than that 
of MM, the value of PDM metric is lower. This is possibly because MMT selects 
VMs that require minimum time for migration, which reduces the performance 
degradation of VMs and thus PDM reduces. EQVS mostly provides least energy 
consumption. This is because while selecting VMs for migration, EQVS consid-
ers the (vmmips ⋅ vmutil) value of the VM. The number of VM migrations are gen-
erally greater than MM and sometimes greater or lesser than MMT. As EQVS 
tries to select VMs with smaller memory (RAM), the duration of migration and 
performance degradation due to migration reduces. Thus, EQVS generates a 
PDM value which is lesser than MM. Although the SLATAH and PDM values 
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Fig. 11   Comparison of different VM Placement and VM Selection strategies with respect to the PDM 
metric. In each case PBOHD (with Thrup = 80% ) and PBUHD (with Thrlow = 40% ) have been used as 
the over-utilized and under-utilized host detection approach, respectively
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the over-utilized and under-utilized host detection approach, respectively
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generated by EQVS is sometimes higher than that of MMT, EQVS mostly leads 
to least energy consumption, SLAV and ESV values.

Thus, the efficacy of PBOHD and PBUHD, EQVS, and EQVP as suitable 
techniques for detection of over-utilized and under-utilized hosts in the data 
center, VM selection and VM placement, respectively, is established through 
this rigorous comparison. Also, the simulation results clearly show that our pro-
posed EQC VM consolidation approach potentially outperforms other VM con-
solidation techniques by improving energy efficiency and QoS.

8 � Conclusion and future work

Reduction in energy consumption of a Cloud data center while ensuring proper QoS 
to the users is one of the major challenges among the researchers. To address this 
problem, in this paper, we have presented an Energy and QoS-aware VM Consolida-
tion approach (EQC) that can effectively consolidate the VMs among the heteroge-
neous hosts of a data center. EQC is developed by integrating the prediction-based 
over-utilized host detection (PBOHD), prediction-based under-utilized host detec-
tion (PBUHD), energy and QoS-aware VM selection policy (EQVS) and energy and 
QoS-aware VM placement policy (EQVP). Extensive simulations using CloudSim 
toolkit and PlanetLab workload data enable us to make the following conclusions. 
Firstly, the use of PBOHD and PBUHD in identification of over-utilized and under-
utilized hosts in the data center substantially reduces the number of VM migrations 
thereby reducing SLA violations and improving QoS. Secondly, EQVS and EQVP 
clearly outperforms the existing VM selection and VM placement policies like MM, 
MMT, MBFD, etc., by significantly reducing energy consumption, number of VM 
migrations and SLA violations. Finally, the simulation results validate the efficacy 
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Fig. 13   Comparison of different VM Placement and VM Selection strategies with respect to the ESV 
metric. In each case PBOHD (with Thrup = 80% ) and PBUHD (with Thrlow = 40% ) have been used as 
the over-utilized and under-utilized host detection approach, respectively
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of EQC in achieving proper trade-off between two conflicting parameters—energy 
and QoS, in comparison to other state-of-art approaches.

In future, we will investigate the problem of consolidation of VMs in a Cloud 
data center by taking into account other system resources like memory and network 
bandwidth, as they also have an impact on the total energy consumption of the data 
center. We also plan to evaluate our proposed VM consolidation approach in a real 
Cloud environment like the OpenStack [44] in future.
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