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Abstract
In this paper, we present several important details in the process of legacy code 
parallelization, mostly related to the problem of maintaining numerical output of 
a legacy code while obtaining a balanced workload for parallel processing. Since 
we maintained the non-uniform mesh imposed by the original finite element code, 
we have to develop a specially designed data distribution among processors so that 
data restrictions are met in the finite element method. In particular, we introduce a 
data distribution method that is initially used in shared memory parallel processing 
and obtain better performance than the previous parallel program version. Besides, 
this method can be extended to other parallel platforms such as distributed memory 
parallel computers. We present results including several problems related to perfor-
mance profiling on different (development and production) parallel platforms. The 
use of new and old parallel computing architectures leads to different behavior of 
the same code, which in all cases provides better performance in multiprocessor 
hardware.
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1 Introduction

2D shallow water models have become standard in the numerical analysis of environ-
mental flows. For flood wave analysis, a 2D shallow water representation provides an 
adequate resolution of the impact on flooding and the ability to include the effects of 
river branches, islands, tributaries, complex navigation channels and many geometric 
and topographic complexities. Besides, other environmental hazards, such as a flood or 
pollutant spill, can be predicted, which could be used to aid in the risk assessment and 
management control actions [2, 19, 26].

The flooding problem simulation was progressively developed until the end of the 
last century with the FEM (Finite Element Method) [19]. More specifically, the FEM 
is used to model geometry and edge conditions providing better efficiency [19] and 
abstraction than other simulation/modeling methods. This paper presents further paral-
lelization and computing performance improvement for the numerical method than our 
previous work [25]. The shallow water numerical model is initially designed follow-
ing a Taylor–Galerkin scheme [19, 26]. The spatial resolution is accomplished with 
weighted residuals (Galerkin method) and the temporal advance by means of a Taylor 
series approximation. The Taylor method is based on the knowledge of the Jacobian 
matrices that correspond to the projections of flows in the two orthogonal Cartesian 
coordinates [19, 26]. The differential system of shallow water equations is expressed 
conservatively by Eq. 1 as follows:

where

• U(h, p, q) is the nodal vector of unknowns, where h is the water depth, p is the 
discharge flow in the x direction (longitudinal) and q is the discharge flow in the y 
direction (transversal).

• Fi, i = 1, 2 is the convective flow vector in x- and y-axes, respectively, as shown in 
Eqs. 2 and 3.

• Rdi, i = 1, 2 is the diffusive vector.
• Rs is the source vector (containing the terms of topographic and friction variations) 

given by Eq. 4.
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The bed and friction slopes are given as

where z = (x, y) is the bed elevation above an arbitrary domain and C is the Chézy 
coefficient of the bed resistance. The initial conditions are the natural quiet lake, and 
the boundary conditions are given by

• P(0, y, t) = �(y, t) , where � is the velocity at the entry section.
• h(Lx, y, t) = h0 , where h0 is the final depth at Lx (output section).
• q(Lx, y, t) = 0.
• q(x, 0, t) = 0 , q(x, Ly, t) = 0 , where these conditions represent the normal fluxes 

in the lateral boundary. The same boundary conditions are applied to a symmet-
ric circular hole.

Simulations results provide the values of U(h, p, q), the vector of nodal unknowns. 
The time evolution is modeled as a sequence of two half-steps of temporary advance, 
for which the solution of the first half-step is the initial condition of the second:

The FEM briefly described above imposes simulations with a triangulation mesh 
similar to that shown in Fig. 1, representing finite element domain subdivision, with 
radial densification symmetry around a circular obstacle and a high densification in 
the lateral edges. Besides, the Taylor–Galerkin approximation—being an explicit 
method—imposes a small temporal increment in order to satisfy the Courant–Frie-
drichs–Lewy condition of stability [26]. And the small time step, in turn, implies a 
strong requirement on computing power for stable/useful results. The starting point 
of the work presented in this paper has been already explained in [25], and it was 
focused in the Fortran program that implements the FEM simulation with two objec-
tives: (1) to enhance/update the Fortran source code in case it is needed and (2) to 
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speed up program execution, taking advantage of the multiprocessing facilities pro-
vided by current computing platforms. As it could be expected, both objectives were 
partially accomplished, because both imply an incremental work on legacy code (the 
original Fortran program). Thus, we continue the parallelization and the correspond-
ing performance evaluation, with direct implication on the mesh partitioning among 
processors and the resulting workload balance. Even when the mesh partitioning 
in this paper is implemented and evaluated in shared memory parallel computers, 
the same underlying idea could be used for a distributed memory parallel computer 
implementation.

The rest of the paper is organized as follows. Section 3 briefly summarizes the 
work already made and published on this specific model [25]. Section  2 includes 
references to several related works on the shallow water numerical model in general. 
Section 4 discusses the general data parallel approach we have chosen as a global 
parallelization of the legacy code. Section 5 introduces the mesh/data distribution 
among processors for parallel processing. The mesh partition would introduce sev-
eral changes in the legacy code and defines a specific pattern for computing. Sec-
tion 6 introduces the specific performance evaluation experiments and explains sev-
eral interesting results. Finally, Sect. 7 details the conclusions as well as some of the 
immediate work to enhance the current code and parallel processing.

2  Related work

There have been a number of papers reporting numerical methods to solve the 2D 
shallow water problem for flood wave analysis. The finite volume method for flood 
wave analysis [2] adequately represents the fluxes in physical approximations. A 
Taylor–Galerkin scheme is the underlying numerical approach used in [19, 26]. 
Since we are working on the legacy code, where this specific knowledge and pre-
vious developments are embedded in the code, we did not have to modify and/or 
develop any new research related to the numerical approach.

Domain decomposition and mesh generation methods to improve load balance have 
been used in [11], in numerical experiments applied to computational fluid dynamics 
(CFD) and electromagnetism. Furthermore, non-structured mesh (based on advancing 
front) and a large number of elements are used in [11], and a generalized method is 
presented in [9]. Our approach maintains the original mesh structure and densification 
defined by the expert scientific/users so that we do not change the mesh and/or mesh 

Fig. 1  Finite element mesh
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structure in any way. Maintaining the original mesh limits the approach to the parti-
tioning and load balancing of the mesh as is, but we avoid having to deal with possible 
numerical errors and/or software bugs of new mesh configuration/approaches.

The influence of mesh partitioning on the solution of incompressible flow prob-
lems, e.g., flow around submarines, is studied applying software packages such as 
Code Saturn, Metis, ParMetis and Zoltran [20, 21]. Metis and ParMetis give the best 
load balance and speedup results. While we do not discard using software librar-
ies such as ParMetis, we are currently working from the point of view of legacy 
software. We expect to acquire experience on the legacy software and all its charac-
teristics as a previous step toward more global code changes, such as using external 
parallel/parallelization libraries.

As explained above, the focus of our approach is on maintaining the original 
source code and mesh structure, which includes specific densification characteris-
tics, thus avoiding the portability and translation of source code for using already 
defined libraries and numerical approaches. Mainly, we constrained the work to the 
HPC/parallel computing field, maintaining the original numerical approach, and 
thus, we do not include any numerical artifacts/errors regarding the original numeri-
cal results.

As shown in [12], the mesh partitioning in the context of FEM for parallel pro-
cessing is an NP-hard problem, and we take advantage of the mesh partitioning 
characteristics for aiding the partitioning. In particular, we have chosen an initial 
approach of a spatial/geometry-aware partitioning in terms of the definitions in [1, 
13], along with ad hoc enhancements for unbalanced results and special cases, as 
explained in Sect.  5.1. We are considering further partition enhancements by tak-
ing into account different mesh densification in terms of local/greedy partitioning as 
described in [1, 6, 12].

Unlike the approaches in [4, 16], we do not consider a parallel initial mesh con-
struction nor an a priori approach focused in distributed shared memory paral-
lel computer. Instead, we consider the numerical approach and its corresponding 
mesh (including specific densification pattern/s, as in the problem in this paper) as 
departure points, and we propose a mesh partitioning independently of being used 
in a physically shared or distributed memory, including distributed shared memory 
architecture. Our approach avoids extra work required for verifying that the mesh 
generation does not introduce any numerical errors and implies the minimum source 
code change to existing programs (e.g., the large number of scientific legacy code 
currently used). This decision also excludes the generation of completely irregular 
mesh configurations, and we maintain the original mesh definition (including densi-
fication) so that our approach will not generate any numerical instability or unknown 
(side) effects of changing the underlying mesh.

3  Previous work on the legacy code

In this section, we will summarize the work already done on the code implementing 
the shallow water numerical model, mostly published in [25]. The initial phase was 
focused on enhancing the legacy code, by following the sequence:
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• Porting the development and operation environments from Windows OS to the 
Linux OS. Most of the changes were related (as expected) to the compiler, basi-
cally to take advantage of the GNU compiler options, which include many new 
optimizations and are in continuous development.

• Identification of source code and subprograms important section/s, mostly 
using basic profiling, such as that provided by the GNU tools (gprof). Identify-
ing important subprograms and the general runtime call graph helps to focus the 
work on the source code directly related to performance rather than trying to 
reengineer all the program at once.

• Some basic code updates from the Fortran 77 “coding style” to more modern 
coding style, e.g., code indentation and other code changes related to free-format 
lines, available since Fortran 90/95 standards. All of these changes are focused 
on improving code readability and maintainability (i.e., software engineering 
project improvements [24]).

• The most time-consuming subroutine was identified with profiling experiments. 
In that subroutine, several iteration structures (Fortran Do loops) were identi-
fied and parallelized using OpenMP [17]. Some of those Do loops were paral-
lelized by using the knowledge of the expert users and programmers, for which 
we simplify the questions to “yes/no” answers in terms of numerical problems 
(related to data structures and data dependency problems). In all cases, semantics 
of source code has been preserved and the numerical output has been maintained 
identical to that of the original program.

The profile-based standard methodology previously described is, in some way, a 
“blind” technique, since the source code restructuring is made with little knowl-
edge of its application. The numerical/scientific field experts were consulted about 
data flow and array access patterns in Fortran iterative structures. This methodology 
implied a strong programming effort by HPC (high-performance computing) expert 
programmers in order to introduce changes on the source code with no impact on 
the program output. Summarizing, while standard and well-known source code 
transformations such as core indentation can be carried out “blindly,” several other 
transformations have to be supervised/aided by the numerical field experts. Perfor-
mance was improved even when the optimized code was reduced to the single most 
time-consuming subroutine. This whole process was carried out in a “development 
computing environment” so that the “production computing environment” was not 
overloaded with development tasks and experiments. Table 1 shows the main char-
acteristics of each computing platform. Performance experiments were carried out 
in both computing environments, and the results are summarized in Table 2, which 
provides more information in terms of possible performance improvements and 
research. Initially, it is worth taking into account three factors:

1. We obtained performance improvement with small source code changes.
2. The maximum number of processors (cores) is different in each environment: four 

in the production environment and eight in the development environment.
3. Only the most time-consuming subroutine has been parallelized.
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While the second factor explains at least some of the difference in the improve-
ment obtained in the different platforms (more processors naturally imply more 
improvement), the difference in efficiency shows that the parallelization is more 
effective in the older platform (the one we have called “development environ-
ment”). We have taken this version of the program as a departure point for the 
work we explain in the following sections of this paper. Basically, we have chosen 
to deepen the parallelization process, based on the fact that

• At least in one of the computing environments, we obtained good scalability 
results (efficiency of about 0.87 with eight processors).

• One of the possible reasons of the low efficiency in the newer hardware (the 
one we have called “production environment”) is that parallelizing a single 
subroutine may penalize other subroutines performance (e.g., by introducing 
memory footprints which imply higher cache miss ratio).

Finally, the global gain is relatively small, because there is only a single sub-
routine being parallelized. Table 3 summarizes performance gains in each envi-
ronment using all available processors (4 in the production environment and 8 
in the development one). The data shown in Table 3 are computed from data in 
Table V and Table VI in [25]. While the performance gain focuses on net/raw 
performance improvement, the efficiency highlights the fraction of the available 
resources effectively used. Also, recall that only one Fortran subroutine is paral-
lelized: the most time-consuming one.

Besides, the bare performance result improvements, we found that in this case, 
GNU performance profiling tools were not good enough for obtaining accept-
able profiling data. The results obtained by gprof (with data provided by gcc) 
were far from being reliable at least regarding the wall-clock time, so we used our 
own simple profiling by introducing instrumentation code in the program. The 

Table 1  Production and development computing environments

Production env. Development env.

CPU Intel I5-2310 2.9GHz Intel Xeon 5405 @2.00GHz
Max. # of cores 4 8
CPU launch date Q2’11 Q4’07

Table 2  Performance experiments, most time-consuming subroutine

Sequential t (s) Parallel t (s) Speedup Efficiency

Production env. 6000 3420 1.75 0.44
Development env. 13,500 1950 6.92 0.87



5643

1 3

Legacy code and parallel computing: updating and parallelizing…

instrumentation is maintained in the performance results we report below, so that 
we do not change the way in which we obtain performance data.

Summarizing, in our previous work we have acquired experience on the legacy 
code, parallelized a section of code (the most time-consuming subroutine) and used 
several performance analysis tools and techniques. However, the work constrained 
to a single subroutine and also constrained the global performance and efficiency 
gains, as shown in Table 3. We have found that further analysis on other time-con-
suming subroutines and specifically Fortran Do loops is too complex in this particu-
lar legacy code. Thus, we take a global approach to the parallelization process, a 
data parallel one, as explained below.

4  Data parallel approach

Taking advantage of the work described in the previous section, we decided to 
approach the parallelization of the remaining sequential code in the program. It is 
worth noting that, at this point, there are several pros and cons for a larger-scale 
(i.e., beyond a single subroutine) parallelization. As explained in the previous sec-
tion, we have chosen to deepen the parallelization process. More specifically, our 
approach is focused on a larger-scale parallelization process in which more than a 
single subroutine would be handled. It is worth noting that, at this point, there are 
several points to remark:

• The rest of the code (other than the most time-consuming subroutine) remains as 
legacy code.

• Despite the previous item, we are able to take advantage of the experience 
obtained with the parallelization of a single routine:

• Almost all the data structures are already known: data arrays and indirection 
arrays.

• The coding style includes characteristics such as large number of source code 
lines by subroutine and large number of subroutine parameters/arguments.

• The source code changes should take into consideration inter-procedural side/
collateral effects. Therefore, the optimization process becomes a global-scale 
work.

From the point of view of HPC, the FEM computing naturally leads to a data parallel 
processing pattern or data parallelism [18]. Data parallelism has been traditionally 

Table 3  Performance 
experiments, global 
performance gain

%Gain Efficiency

Production env. (13,140 s vs. 
11,820 s)

36 0.2

Development env. (31,560 s 
vs. 20,040 s)

10 0.28



5644 F. G. Tinetti et al.

1 3

associated with SIMD (single-instruction multiple-data streams, [5]) hardware and 
the current GPU (Graphic Processing Units) implementations as explained in [8]. 
However, we have decided a more standard process/thread-oriented implementation 
for data parallelism considering:

• The thread-level computing allows a direct harnessing of multi-core facilities of 
current processors, such as those in the environments mentioned in the previous 
section. Furthermore, multi-core hardware computing facilities are made almost 
directly available to programmers via well-known and established programming 
specifications such as OpenMP, which we have already used.

• Once identified the threads operating on well-defined data or data structures, the 
SPMD (single-program multiple-data) processing model could be approached 
[23]. It is not a completely automatic process though and granularity plays a 
huge role in obtaining acceptable performance gains. Each parallelization scale 
should be taken initially as a hypothesis to be verified by experimenting on real 
applications. Distributed memory parallel platforms such as clusters of comput-
ers can be used for SPMD implementations based on the message passing pro-
gramming model [14]. Also, distributed memory parallel architectures allow to 
easily overcome the problem of a limited (relatively small) shared memory par-
allel computer. Thus, distributed memory parallel architectures provide greater 
hardware scalability than shared memory ones.

• SIMD/GPU is not excluded, because each individual partition may be processed 
via a GPU, i.e., taking advantage of making the same operations in a single data 
region.

• Data parallelism is mostly focused on data dependencies for computing, which 
is easily achieved in a FEM approach by spatially partitioning the data in defined 
geographical regions. Figure  1 schematically shows how the whole simulation 
process is done by processing nodes belonging to a triangulation mesh. The rest 
of the section will discuss the alternatives for data distribution among threads.

Clearly, considering data parallelization implies a work of higher abstraction level 
than that of the previous section. It is not possible to implement data paralleliza-
tion by looking at specific loops in specific subroutines as in [25]. Instead, we must 
define one or more conceptual data (mesh) partitions and, later, process them in 
parallel. Conceptually, data partitioning must be carried out independently of either 
a shared memory implementation (e.g., threading with OpenMP) or a distributed 
memory implementation (e.g., SPMD processing with MPI).

Even when data parallelism is independent of the parallel hardware and program-
ming model at the conceptual level, it is not the case at the practical level. In prac-
tice, we have to take into account two important details: 

1. We are working with a legacy application which, in turn, implies

• A lot of knowledge about the problem and the numerical issues is already 
included in the program, and we should reuse all that knowledge without hav-
ing to solve again the same problems.
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• Developing (shared memory) threaded code from an existing serial code is 
less prone to error than developing another version of the program for SPMD 
computing. Programming SPMD implies to include explicit message passing 
operations, usually send and receive MPI functions, which allows processes 
in different computers to send and receive data, respectively.

2. Beyond and above reuse of knowledge, legacy source code issues and program-
ming complexities, we necessarily have to deal with performance. The main 
objective for the whole parallel approach is, in general, to improve performance. 
In this context, we have the previous work as a good indication that at least some 
performance improvement is feasible.

We will approach a data parallel version of the whole program taking into account 
the explanations and considerations above. We do not approach the whole Fortran 
program as a software engineering source code upgrade project [10], e.g., for full 
Fortran 2003 [15] or Fortran 2008 [3] or Fortran 2018 [7] code. Instead, we focus on 
the triangularization mesh partitioning for data parallel processing, as explained in 
the next section.

5  Data distribution and balanced workload

The main ideas for the data parallel computing in this work are

• Taking advantage of the reuse of the legacy FEM code, so that numeric results 
are maintained stable, and comparable to the output of the original version.

• Having more partitions than processors in order to avoid data dependency con-
flicts neighboring partitions.

• Planning for computing non-neighboring data partitions in parallel (simultane-
ously), because they do not have any data dependency requirement.

Partitioning and planning are defined as preprocessing steps, i.e., the actual code of 
the program is not changed or adapted for any specific number of processors used at 
runtime. Partitions are defined and scheduled so that the program processes parti-
tions according to the data provided as input. We also consider the characteristics of 
the triangularization mesh, as shown in Fig. 1, including radial densification symmetry 
around a circular obstacle and a high densification in the lateral edges. Those char-
acteristics imply that density is symmetric in radial coordinates around obstacles and 
is greater in the lateral edges. Thus, a partitioning method cannot follow a traditional 
striping model by partitioning either the x-axis or the y-axis for equally sized areas as 
schematically shown in Figs. 2 and 3, respectively. Areas containing parts or the whole 
obstacle and/or lateral edges will have much more data to process than the other ones. 
And a partitioning that follows the striping model/s will impose an unbalanced paral-
lel workload among processors. We analyze the non-uniform triangulation in order to 
define a partitioning scheme maintaining an acceptable balanced workload for parallel 
processing. The following description of the partitioning and planning preprocessing 
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steps is made as in an ideal scenario, i.e., assuming there are no issues for obtaining 
equally sized partitions. Basically, we define partitions by

• Radial densification symmetry around an obstacle would lead to a radial mesh par-
titioning relative to the obstacle.

• In general, the partitioning algorithm starts defining the number of partitions as 
twice the number of processors to be used.

Having a number of partitions as twice the number of processors allows planning 
the entire computing process as a sequence of two phases of simultaneous computing 
with all the available processors, i.e., with a single synchronization point. Thus, having 
p processors we will define 2 × p almost equally sized partitions and an entire FEM 
computing step will be made with a single synchronization point, i.e., half of the non-
neighboring partitions in the first phase and the other half of the non-neighboring par-
titions in a second computing phase. Both steps will use all the available processors 
without any intermediate synchronization, because partitions are non-neighbors, i.e., 
they do not have any computing data dependency. More specifically, we can identify 
each partition as part1, part2,… , part2×p , where parti has two neighboring partitions: 
partj and partk with

as shown in Fig. 4 for p = 4 . According to this example, the first computing phase 
will process parti for i = 1, 3, 5, 7 , the second computing phase will process parti for 
i = 2, 4, 6, 8 , and every processor will be busy in each phase provided the partitions 

j =

{
i + 1 if i < 2 × p

1 if i = 2 × p
k =

{
i − 1 if i > 1

2 × p if i = 1

Fig. 2  Mesh horizontal partitioning

Fig. 3  Mesh vertical partitioning
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have (approximately) the same number of triangularization mesh nodes. Besides, if 
the partitions are almost equal, the intermediate synchronization time between the 
phases will be minimal.

5.1  Dealing with unbalanced partitioning and special cases

The previous description is made assuming that a mesh radial partitioning produces 
partitions containing almost the same number mesh nodes. However, a radial parti-
tion does not always capture the unbalance produced by high densification in the 
lateral edges. Then, we must define an adaptive algorithm for balancing the number 
of nodes in each partition. The algorithm uses a threshold, delta, for considering a 
balanced partitioning, so that Eq. 11

is used for defining a balanced partitioning, where

• #partitions is the total number of partitions.
• #nodes(partk) , k = 1,… , #partitions , is the number of nodes (data to be pro-

cessed) in partition partk

The initial partitioning is made as explained, i.e., (a) the number of partitions is 
2 × p , being p the total number of available processors, and (b) partition areas are 
defined subdividing the total geographical area in radial sectors, taking the obstacle 
as the central point, as shown in Fig. 5. There are several factors for generating dif-
ferent number of nodes in each partition, even beyond a � threshold, such as

• The high number of triangles resulting from high densification of lateral edges, 
which is not captured by the radial criteria around the obstacle.

• Rectangular simulation areas such as that of Fig. 5 that naturally define several 
partitions with larger subareas than others.

(11)|#nodes(parti) − #nodes(partj)| ≤ � 1 ≤ i, j ≤ #partitions

Fig. 4  Partitioning for p = 4
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If the different number of triangles per partition is greater than a threshold � for 
one or more partitions pair as defined in Eq. (11), we apply the following (re)bal-
ance algorithm: 

1. Identify half of the partitions with less number of elements.
2. Compute avghalf  , the average of elements of the partitions identified in the previ-

ous step.
3. For each of the unbalanced partitions parti, compute the number of subdivisions 

in which parti will be subdivided as subdiv = #nodes(parti)∕avghalf .
4. If the resulting partitioning is balanced according to Eq. (11), then nothing else 

needs to be done. Otherwise, go to step 1 using the actual partitioning.

Figure  6 schematically shows a possible result after using the balance algorithm 
given above on the initial partitioning shown in Fig. 5. The visual effect of Fig. 5 
may not necessarily reflect the partitioning balance due to the non-regularity of the 
mesh and the � threshold of acceptable unbalance between partitions. As expected, 
the � threshold is defined in relative terms, as a % of acceptable difference between 
the number of nodes of any two partitions.

Even when theoretically each node belongs to a single mesh partition, several 
issues arise at the implementation level of abstraction, because a node actually 
means a triangle. A triangle is defined by three vertices, and depending on geom-
etry, it is possible that a single triangle belongs to more than one partition as defined 
by the polar partitioning. Even when most of the triangles will have the vertices in a 
single partition, there are exceptions:

• Two vertices belong to a single partition, and the other vertex belongs to a differ-
ent partition.

Fig. 5  Initial mesh partitioning

Fig. 6  Initial mesh partitioning
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• All of the three vertices belong to different partitions. Triangle edges near the 
center of the radial partitioning are more likely to be in more than two partitions 
than those in the edges of the geographical area.

For the former case, in which two vertices belong to a single partition, we assign the 
triangle to the partition holding those two vertices. Triangles with vertices in three 
different partitions are defined as special triangles. Special triangles are included in 
a special partition and sequentially processed, in order to avoid erroneous numerical 
results because of data dependency issues in the parallel processing of partitions.

It is worth mentioning that the repartitioning algorithm has several practical lim-
its and issues regarding a large number of mesh partitions:

• Too many partitions imply too little number of nodes per partition which, in turn, 
imply a small granularity and the corresponding penalty due to many synchroni-
zation points.

• As the number of partitions grows, the geographical area of each partition is 
smaller and the number of special triangles proportionally increases. We should 
maintain the number of special triangles relatively small given that they are pro-
cessed sequentially, i.e., generating the corresponding performance penalty.

The previous limits/issues imply we have a � threshold as large as that correspond-
ing to a 25% of acceptable unbalance. It is worth noting that the unbalance is rela-
tive to half of the processing, since we start with a number of partitions as twice 
the number of available processors. Also, part of the unbalanced workload can be 
avoided by a correct ordering of partition processing, i.e., by the appropriate plan-
ning, as explained in the next subsection.

5.2  Planning: partitions processing scheduling

Once defined the mesh partitioning, it is necessary to schedule each partition pro-
cessing, i.e., computing the FEM on actual data. Having a number of partitions of at 
least twice the number of processors available allows computing the whole data set 
with relatively little number of synchronizations. In the best scenario, we will have 
2 × p equally sized partitions for computing on p processors. And this best case for 
processing can be carried out with a single synchronization point as follows:

• Select and process a non-adjacent half of partitions, i.e., p partitions to be asyn-
chronously processed in parallel. Figure 5 shows an example with 8 partitions, 
where partitions 1, 3, 5 and 7 do not have any data dependency between each 
other, and they contain non-neighboring geographical regions and, thus, can be 
processed asynchronously in parallel.

• Select and process the second half of the partitions, i.e., the remaining p parti-
tions to be asynchronously processed in parallel. Following the example of 
Fig. 5, partitions 2, 4, 6 and 8 do not have any data dependency between each 
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other, and they contain non-neighboring geographical regions and, thus, can 
be processed asynchronously in parallel.

The single synchronization point is necessary between processing the first and 
second half of partitions, because partitions in different halves do contain pro-
cessing data dependencies. Take into account that processing non-adjacent parti-
tions allow to overcome the problem of potential synchronization at single trian-
gle level. Otherwise, i.e., in case adjacent partitions are processed in parallel, data 
dependencies have to be controlled at each triangle so that numerical results are 
not affected depending on the relative order in which adjacent triangles are pro-
cessed. Thus, ensuring non-adjacent partitions processing we avoid triangle-level 
synchronization and allow partition-level (i.e., sets of triangles) synchronization.

There are several scenarios in which there is more than a single synchroniza-
tion point, and specific planning is required. A number of partitions multiple of p 
(number of processors available) are unlikely to happen whenever the (re)balance 
algorithm is used. Unbalanced partitions require repartitioning some of them, and 
the new total number of partitions tends to be below 6 × p . There are a number of 
reasons for that number, mostly related to the specific mesh and mesh densifica-
tion areas, so it is possible that in other scenarios the final number of partitions 
will be different (while always greater than 2 × p ). Besides, the so-called special 
partition (i.e., the set of triangles with vertices initially in more than two parti-
tions) must be sequentially processed.

In case there is a special partition, it is sequentially processed, as explained 
above, which implies an “extra” synchronization point. However, since the num-
ber of partitions is relatively small for avoiding many synchronization points as 
well as small processing granularity, the number of triangles in the special parti-
tion is also relatively small, below 5% of the total number of triangles to be used 
in the whole computation. In case there are more than 2 × p partitions due to the 
balance algorithm, there are more synchronization points. Basically, there may be 
as many computing phases as the total of partitions divided by p, the number of 
processors. There is some extra planning optimization as well, while maintaining 
that non-adjacent partitions are processed in each computing phase. We did not 
dig into much detail on extra optimization possibilities given that the number of 
total partitions we had to process is not too large in any of the experiments.

Summarizing, the different scenarios depending on partitioning, which, in 
turn, depends on the specific non-homogenous mesh triangularization, define the 
planning as

• Best case: two computing phases, with a single synchronization point between 
them.

• Number of partitions prt > 2 × p partitions: as many computing phases as 
cp = ⌈prt∕p⌉ with cp − 1 synchronization points.

• If there is a special partition, it always implies adding another (sequential) 
computing phase with its corresponding extra synchronization point.
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6  Experimentation and analysis of results

We have carried out a relatively large number of performance experiments in order 
to evaluate our proposal. Since we have a large number of raw performance timing 
measurements, we present the performance results in terms of relative improvement 
enhancements for a better understanding the impact of our approach. We initially car-
ried out sequential experiments to identify the time difference (i.e., overhead) produced 
by the new code arrangement. The processing time overhead was less than ten percent. 
There were no major source code changes, and the numerical results were consistent in 
all the experiments.

The first parallel computing experiments were carried out without any control of 
workload balance. We define the 2 × p radially defined partitions as explained in the 
beginning of Sect. 5. The angle was chosen to keep 2 × p partitions. Parallel computing 
is realized via OpenMP, mostly because only relatively small source code changes have 
been introduced in the legacy software. We follow the presentation of performance 
results as that introduced in Sect. 3, according to the so-called “development” and “pro-
duction” environments, respectively, described in Table 1.

Table 4 shows performance results of the new parallel version, i.e., with radial parti-
tioning. Experiments in the development environment are scaled from 1 to 8 processors 
running in parallel (with 2 and 4 processors as intermediate values). It is worth taking 
into account that the processors are already available in both platforms, i.e., the parallel 
computing version is able to take advantage of every computing facility in each parallel 
computer.

The performance gain is maximized with the rebalancing and planning methods also 
explained in the previous section. As a result, the performance gain is 54% in the pro-
duction environment and 66% in the development environment. (Rebalancing and plan-
ning introduce a small additional performance gain.) Table 5 summarizes the global 
performance results of the initial parallel version in column labeled as “Initial %Gain” 
(those from Table 4) and the best parallel version in column labeled as “Best %Gain,” 
in both hardware platforms. There are two main reasons for the large performance 
gain in this new parallel version as compared to the original version: (a) the enhanced 
workload balance, taking into account the radial density around the obstacle, and (b) 
the global parallel processing, where not only the most time-consuming subroutine is 
parallelized.

The global parallelization presented in this paper takes advantage of the previ-
ous work of parallelizing the most time-consuming subroutine [25], providing a gen-
eral approach to partitioning and runtime planning. As a result, we have been able to 
enhance performance up to 54% and 66% in the production and development environ-
ments, respectively, without changing the original mesh definition, and with minor 

Table 4  Performance gain 
experiments

#Processors-%Gain

Production env. 2p-40% 4p-51%
Development env. 2p-35% 4p-47% 8p-61%
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source code changes. The source code is available at https ://bitbu cket.org/maxip erezu 
nlam/sw2d_paral elo/src/maste r/. If instructions about partitioning software, shallow 
water software or profiling files are required, please send an e-mail to the authors.

We plan to use this partitioning method for parallel processing even in distributed 
memory parallel computers. In this case, we will have to carefully consider

• Granularity issues, because explicit data transfers will be needed, thus adding over-
head.

• Stronger source code changes, as compared to the OpenMP/shared memory 
approach in this paper.

We have also made experiments on a new production environment, with a better pro-
cessor: Intel Core i7-7700HQ @2.8GHz, and performance results are summarized in 
Table 6. Results are very similar to those in Table 5 for the production environments. 
Performance improvements are maintained almost constant even when the new produc-
tion environment is about five years newer than the previous one (Q2’11 vs. Q1’17) 
and a better processor model (i5-2310 vs. i7-7700HQ).

7  Conclusions and further work

We have presented the current state of a process, conceived to be of incremental nature, 
of performance enhancement via parallelization on a specific legacy code. We contin-
ued the work already started and published in a previous paper. We took advantage of 
previous experience on the legacy code, which has resulted in performance enhance-
ments between 51 and 66%, obtained through a global parallel processing approach. We 
consider our approach as a proof of concept of what can be made on a legacy numerical 
code, expected to take advantage of current parallel computing hardware platforms. We 
have chosen to minimize the source code changes in order to avoid introducing bugs 
and numerical instabilities, while adding parallel computing. In particular, the mesh of 
points on which the sequential computation takes place is maintained unchanged, and 
uses a data parallel approach which allowed us to have better performance gain than in 
previous work.

Table 5  Performance gain 
experiments

Initial %Gain Best %Gain

Production env. 36% 54%
Development env. 10% 66%

Table 6  Performance gain 
experiments in new production 
environment

#Processors-%Gain

New production env. 2p-38% 4p-54%

https://bitbucket.org/maxiperezunlam/sw2d_paralelo/src/master/
https://bitbucket.org/maxiperezunlam/sw2d_paralelo/src/master/


5653

1 3

Legacy code and parallel computing: updating and parallelizing…

We implemented a specific mesh partitioning taking into account non-uniform 
mesh densities, with a rebalancing algorithm for unbalanced partitions due to com-
bined different mesh densifications. We pay particular attention to maintain the orig-
inal mesh unchanged, i.e., we do not redefine the mesh nor mesh densification/s, 
and thus, the whole numerical approach is maintained as in the initial legacy code. 
Maintaining the numerical approach, in turn:

• Implies the minimum amount of source code changes, reducing the likelihood of 
introducing bugs in a source code hard to read and modify as every legacy code.

• Simplifies source code changes verification/validation, because the same numeri-
cal expected results should be found, and the mesh and numerical processing has 
not been changed at all.

Besides, we think the partitioning and rebalancing algorithms could be used in many 
any similar problems, i.e., one in which the mesh is not uniform, in the sense of 
having different densification areas. A priori, we do not think this approach could 
be adopted in other more complex scenarios, such as those in which the mesh is 
completely irregular. Also, since the partitioning is focused on distributing data, 
we expect to take advantage of the experience for a distributed memory parallel 
approach as a possible following enhancement. We also expect to work in identify-
ing current performance penalties/bottlenecks for implementing further performance 
improvements.

We also plan to solve the control problem for the 2D shallow water equations [22] 
to get a regulated solution of flood wave propagation. And this new control routine 
should be optimized and parallelized with HPC techniques, including the resulting 
code in the original simulation work. Results will be verified using the open-source 
software Telemac2D-Mascaret.
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