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Abstract
In the field of large-scale data visualization, the graphics rendering speed is one of 
the most important factors for its application development. Since the large-scale data 
visualization usually requires three-dimensional representations, the three-dimen-
sional graphics libraries such as OpenGL and DirectX have been widely used. In 
this paper, we suggest a new way of accelerated rendering, through directly using 
the direct rendering manager packets. Current three-dimensional graphics features 
are focused on the efficiency of general purpose rendering pipelines. In contrast, we 
concentrated on the speed-up of the special-purpose rendering pipeline, for point 
cloud rendering. Our result shows that we achieved our purpose effectively.

Keywords Large-scale data visualization · Direct rendering manager · Graphics 
acceleration · Point rendering

1 Introduction

In the area of three-dimensional computer graphics, they focused on the both side 
of speed and simplicity of the visualization techniques. To show much more real-
istic scenes, they need precise and accurate numerical data on the graphics models. 
The core of the technique is how to efficiently and rapidly display those data on the 
screen. In contrast, they also pursue the easy and intuitive way of handling those big 
size data [16, 22, 29].
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At this time, OpenGL [18, 27, 30, 33] and DirectX [21] are the most widely used 
Application Programmer’s Interface (API) libraries in the computer graphics field [2, 
4]. Though some graphics engines and graphics tools are available, they focus on the 
efficient application programmer’s interfaces, rather than the execution speed. There-
fore, currently, these graphics libraries are regarded as the most efficient rendering 
ways for the large-scale precise data [22, 29].

In the field of modern computer graphics, the fundamental output units are output 
primitives. One of the most widely used output primitives is the triangles. Most three-
dimensional graphics scenes can be represented as a very large number of triangles. 
Other possible three-dimensional graphics primitives include points, line segments, 
quadrangles, and others. Thus, modern graphics pipelines are highly tuned for trian-
gles. In contrast, some graphics applications need other primitives. In this paper, we 
focused on three-dimensional points. The three-dimensional point primitives are finally 
mapped as two-dimensional pixels on the computer screens.

Due to the development of efficient point sampling devices, including laser scan-
ners and Light Detection And Ranging (LiDAR) devices, we often get millions or even 
billions of three-dimensional points, as the result of point sampling processes [25, 35]. 
In the typical LiDAR systems, laser lights illuminate the target objects, to measure the 
distance from the laser scanner to the target objects. We can use the LiDAR system to 
obtain various kinds of geological data, including terrain surfaces and interior obsta-
cles. Many geometric applications use the LiDAR system to build terrains, outside 
buildings, and geometric models [7, 9, 24, 31].

Typical LiDAR systems produce very large-scale data sets, with a large number of 
3D sampling points. Due to the extremely large number of points, the laser-scanned 
data points are often called as point clouds [5, 32]. To represent these point clouds on 
the computer screens directly, we need a three-dimensional graphics pipeline highly 
tuned to those point clouds. With the development of the modern point sampling 
devices, we now frequently get the need to efficiently draw those point clouds.

In this paper, we will show a special-purpose graphics rendering scheme, highly 
optimized for the three-dimensional point clouds. We focused on the low-level data 
packets between the main board and the graphics cards. We designed a small-scale ren-
dering library. We achieved this small-scale graphics rendering library, based on the 
Direct Rendering Manager (DRM) packets and application library functions. Our focus 
is to make a light-weight accelerated point rendering library, without graphical win-
dowing system support, especially for small-size and/or embedded systems.

In the next section, previous works are presented. In Sect. 3, we will present the 
underlying techniques, including the DRM packets, graphics pipelines, shading lan-
guage features, and others. Implementation results are followed. Conclusion is in the 
final section.

2  Previous works

Light Detection and Ranging (LiDAR) system generates a set of points to express 
its own 3D topographic information. LiDAR data can be displayed either through 
direct rendering of the point cloud or by extracting features through classification 
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and/or segmentation [5, 32]. In any case, a potential problem is that LiDAR data 
sets are massively large for even small target objects.

Levoy [20] was the first one to consider points as rendering primitives for solid 
objects. Several tree-based data structures have been proposed. It is important that 
the data structure supports levels of detail (LOD) so that the point cloud can be ren-
dered with a different amount of details, depending on the distance to the camera.

Gobbetti and Marton [12] proposed a rendering system called Layered Point 
Clouds (LPC). The point cloud is stored in a binary tree. By rendering just the 
points in the first levels of the hierarchy, a coarse approximation can be rendered.

Wimmer and Scheiblauer [37] introduced the so-called the nested octree as a 
data structure for point clouds. The nested octree is an octree whose nodes con-
tain subsamples of the points inside the bounding box represented by the octree 
node, similar to LPC.

Our focus is rendering the massively large point cloud, as is, without any con-
version to internal data structures. In this case, our concern is actually the draw-
ing tools. In the history of modern computer graphics, there have been many 
kinds of graphics libraries, including OpenGL [18, 30], DirectX [21], X window 
systems [23, 38], Display PostScript [34], Cairo [8], OpenInventor [36], Qt [19], 
and so on. Currently, three-dimensional graphics libraries are the main stream in 
the computer graphics and its related areas. Most of the 3D graphics application 
programs use 3D graphics libraries and/or 3D graphics engines, which are based 
on 3D graphics libraries such as OpenGL [18, 30] and DirectX [21].

Traditionally, the three graphics pipeline adopt the normalized device coor-
dinate as its reference frame for the intermediate results. For simplicity and effi-
ciency, the normalized device coordinates (xd, yd, zd) are ranged in a unit cube of 
[−1,+1] × [−1,+1] × [−1,+1] in the 3D coordinate system [1, 3, 14].

For precise texture mapping and/or level-of-detail operations, we need to cal-
culate the detail level of graphics primitives. For an edge, its edge length s can be 
calculated as follows:

where r is the specified resolution in pixels, f is the field of view, and �1 and �2 are 
two vectors from the camera position to the vertices of the edge. According to the 
magnitude of s, we can choose the suitable level-of-detail factors [26].

In some cases, we also need image-enhancement filtering techniques even for 
the point clouds. As an example, typical Monte Carlo convolution can be calcu-
lated as follows:

where N(x) is the set of neighborhood indices in a sphere of radius r, and p(⋅) is the 
probability density function (PDF) [15].
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3  Design of the rendering system

The initial start point of our work is the avoidance of using the graphical window 
systems. Modern graphical window systems have many overheads to handle the 
windows. Every graphical window should handle the user interactions and win-
dow-to-window events, and much more system-dependent user interface issues. 
In contrast, some computer graphics architectures adopt direct rendering systems, 
which accesses the framebuffer directly, as shown in Fig.  1. In some resource-
restricted systems and/or embedded systems, the graphical windowing systems 
are not necessary or even should be avoided due to the limited resources.

3.1  Direct rendering manager

In the case of Linux and its derived systems, the direct rendering manager (DRM) 
module can access the framebuffer directly [11]. In modern computer graphics 
architecture, the graphics-processing unit (GPU) is essential to the framebuffer 
management and various graphics processing. Thus, the modern DRM modules 
now also manage the GPUs in addition to the traditional framebuffers.

The DRM is actually a module of the Linux kernel. It provides an application 
programmer’s interface (API) to the GPU. The upper layers, including OpenGL 
and other application-level graphics libraries, use this DRM module as the stand-
ard way of transferring the data to the GPU. A programmer can send the render-
ing commands (or more explicitly, GPU machine instructions) and the target data 
to the GPU, through directly calling DRM functions, as shown in Fig. 2.

The DRM module provides additional functionalities including framebuffer 
managing, mode setting, memory-sharing objects handling, memory synchroni-
zation, and others. Some of these expansions had carried out their own specific 
names, such as Graphics Execution Manager (GEM) [28] or Kernel Mode Setting 
(KMS) [10]. Those parts are actually the sub-modules of the whole DRM mod-
ule. The detailed descriptions on these modules are followed in the subsections.

user applications a windowcontrol and transform

direct rendering manager framebufferuser applications

windowing system

direct management system

Fig. 1  Avoiding the use of graphical window systems
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3.2  Graphics execution manager

To control graphics contexts and its related graphics memory areas, Linux kernels 
also provide another module, named the Graphics Execution Manager (GEM). 
This module provides more optimized ways to share the low-level GPU buffers 
and the GPU-specific contexts. The GEM was designed to manage the graphics 
memory areas, including the graphics image areas and texture areas [10].

Graphics data can consume arbitrary amounts of memory, with 3D applica-
tions constructing even larger sets of textures and vertices. Historically, the tra-
ditional graphics application programs send the rendering data from the main 
memory to the graphics memory, for each context switching. For more speed-
ups, ensuring that graphics data remain persistent across context switches allows 
applications significant new functionality while also improving performance for 
existing API’s.

Modern Linux desktops include significant 3D rendering as a fundamental com-
ponent of the desktop image construction process. The 2D and 3D applications ren-
der their contents to off-screen memory areas, and the final screen image was dis-
played from those contents.

3.3  Kernel mode setting

Modern commercial GPUs have many selectable internal features, which can be 
controlled through the mode-setting commands. Those mode-setting commands 
include the setting of the screen resolutions, color bit resolutions, depth bit repre-
sentations, stencil bit settings, refresh rates, and much more. These commands are 
transferred to the GPU before the start of the target graphics application program.

A special Linux kernel module, named kernel mode setting (KMS), is used to 
provide those mode-setting commands [10, 17]. Currently, the kernel-level imple-
mentation of KMS enables us to select the screen resolutions and the console mode 
switching operations.

Fig. 2  The DRM module in the 
Linux Kernel

user program libdrm (API)

DRM
(direct rendering manager)

Graphics Card

Linux Kernel Space

Graphics Memory

GPU
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Another important resource related to the GPU is the graphics memory. In the 
typical graphics execution environment, there will be several 3D graphics applica-
tion programs, even with different settings for each of them. The different settings 
and its related graphics memory areas are referred as graphics context [27, 30].

4  Implementation and its results

In the case of Linux kernels, the DRM module is used to access the GPU. The upper 
layers, including OpenGL and other application-level graphics libraries, use this 
DRM module as the standard way of transferring the data to the GPU.

Typical graphics programs send the data as a mixture of the target data and the 
rendering commands for those data. In the case of large-scale data visualization, the 
portion of the target data is dramatically high, with very small amount of the ren-
dering commands. Currently, graphics libraries, however, use the traditional way of 
transferring the data and commands, as a set of mixtures.

OpenGL programs to render point clouds are typically constructed with point 
drawing primitives and large-size vertex buffer handling commands. The size of ver-
tex buffer itself and/or the number of points drawn by a single primitives is restricted 
with internal limitations of an OpenGL implementation. In our DRM-based imple-
mentation, the internal limitations of OpenGL implementations are avoided, and 
only the GPU-level physical limitations are applied to the rendering instructions. 
Since the physical limitations in modern GPUs are set to very large values, we have 
actually no practical limitations, in most cases.

In our DRM-based implementation, we by-pass the high-level libraries includ-
ing OpenGL and similar ones. Instead, we send the DRM packets, containing 
low-level GPU machine instructions, directly to the GPU. The vertex data are 
also managed by the DRM module. In this way, we can remove the duplicated 
GPU-level instructions in the rendering pipelines of the OpenGL and other high-
level graphics libraries. In the case of typical Vulkan-based rendering applica-
tions, as another example, they easily meet the repeated memory transfers between 
the host-visible areas and the device-local areas[6, 13], while our DRM modules 
can avoid those repeated copies, since we directly control the data in the GPU 
memory.

Our implementation is based on the Linux library implementation of DRM, 
named libdrm. This system library provides easy ways of sending DRM pack-
ets. Based on the DRM packets, the fundamental rendering pipeline can be easily 
established, as shown in Fig. 3. To minimize the implementation costs and also the 
rendering costs, we used an optimized OpenGL shading language program as an 
element of the fixed-function graphics pipeline. We also set the depth buffer (or 
Z-buffer) as a programmer-selectable option of the graphics pipeline. In the case 
of point clouds, the texture buffer and the stencil buffer are not required, at least for 
our application cases. So, we omitted the texture handling features and stencil buffer 
support.
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As a prototype implementation, we used a set of point clouds from LiDAR 
devices, which typically consist of more than 3 million color points, as shown 
in Figs.  4, 5, 6, and 7. In some OpenGL-based implementations, there may be 
internal limitations to the number of vertex points for each drawing commands, 
and also to the number of total vertex points. To solve these limitations, we split 
the point cloud into a set of separate rendering commands and their-related ver-
tex data. In contrast, our DRM-based implementation can draw the whole point 
cloud with a single GPU-command sequences, since the physical limitations of 
the GPU data access size are much larger.

Table  1 shows the experimental results. In comparison with the high-level 
OpenGL-based rendering method with full windowing system and full rendering 
pipeline support, our DRM-based implementation shows 42 to 94 times acceler-
ated rendering times. All experiments are executed on a Linux-based single board 
computer with Intel CPU and its embedded GPU.

Primitive
Processing

Vertex
Shader
(fixed)

Primitive
Assembly Rasterizer

Fragment
Shader
(fixed)

Frame 
Buffer

API
vertices

only points

Fig. 3  Our fixed-function graphics pipeline for point cloud rendering

Fig. 4  An example of large-scale data visualization with our DRM-based system
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5  Conclusion

In these days, typical graphics tools and application programming interface 
libraries are designed to support easy-to-use user interfaces and function calls. 
Currently, the graphics libraries are tuned to control the underlying graphics 
hardware directly, as is in the new graphics standard of Vulkan [13]. In the case of 

Fig. 5  Another example of large-scale data visualization from the LiDAR point cloud

Fig. 6  An example of our LiDAR point cloud rendering system
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large-scale data visualization, the rendering speed is more important. This paper 
shows a new way of efficiently rendering large-scale rendering data, through the 
DRM packets. It shows reasonable speed-ups.

Modern graphics systems use the programmable graphics pipelines. They 
execute the GPU instructions compiled from the shading language programs. For 
massively large-scale point clouds, the general purpose rendering pipelines are 
somewhat heavy to be processed. Our work is another way of processing the mas-
sively large-scale point clouds, with the special-purpose rendering pipeline. Our 
result shows this new approach works efficiently.

In the near future, we will release a customized application library for render-
ing massively large-scale point clouds. Especially the LiDAR point data will be 
processed most efficiently. We can extend the use of these special-purpose ren-
dering library for various kinds of point-based data.

Acknowledgements This research was supported by Basic Science Research Program through 
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant 
2019R1I1A3A01061310).

Fig. 7  Another example of our LiDAR point cloud rendering system

Table 1  Comparison of rendering times

# of points (a) Our DRM 
method (ms)

(b) Generic render-
ing (ms)

Ration (b/a)

Hwaseo (Fig. 4) 5,407,008 0.261 24.690 94.598
Seobuk (Fig. 5) 4,219,145 0.256 18.671 72.934
Banghwa (Fig. 6) 2,754,490 0.288 12.661 42.243
Hong (Fig. 7) 3,117,913 0.196 14.027 71.566
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