
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:8313–8323
https://doi.org/10.1007/s11227-019-03114-y

1 3

An accelerated rendering scheme for massively large point
cloud data

Nakhoon Baek1 · Kwan‑Hee Yoo2

Published online: 18 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In the field of large-scale data visualization, the graphics rendering speed is one of
the most important factors for its application development. Since the large-scale data
visualization usually requires three-dimensional representations, the three-dimen-
sional graphics libraries such as OpenGL and DirectX have been widely used. In
this paper, we suggest a new way of accelerated rendering, through directly using
the direct rendering manager packets. Current three-dimensional graphics features
are focused on the efficiency of general purpose rendering pipelines. In contrast, we
concentrated on the speed-up of the special-purpose rendering pipeline, for point
cloud rendering. Our result shows that we achieved our purpose effectively.

Keywords Large-scale data visualization · Direct rendering manager · Graphics
acceleration · Point rendering

1 Introduction

In the area of three-dimensional computer graphics, they focused on the both side
of speed and simplicity of the visualization techniques. To show much more real-
istic scenes, they need precise and accurate numerical data on the graphics models.
The core of the technique is how to efficiently and rapidly display those data on the
screen. In contrast, they also pursue the easy and intuitive way of handling those big
size data [16, 22, 29].

 * Kwan-Hee Yoo
 khyoo@cbnu.ac.kr; khyoo@chungbuk.ac.kr

 Nakhoon Baek
 oceancru@gmail.com; nbaek@knu.ac.kr

1 School of Computer Science and Engineering, Kyungpook National University, Daegu 41566,
Republic of Korea

2 Department of Computer Science, Chungbuk National University, Cheongju, Chungbuk 28644,
Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-03114-y&domain=pdf

8314 N. Baek, K.-H. Yoo

1 3

At this time, OpenGL [18, 27, 30, 33] and DirectX [21] are the most widely used
Application Programmer’s Interface (API) libraries in the computer graphics field [2,
4]. Though some graphics engines and graphics tools are available, they focus on the
efficient application programmer’s interfaces, rather than the execution speed. There-
fore, currently, these graphics libraries are regarded as the most efficient rendering
ways for the large-scale precise data [22, 29].

In the field of modern computer graphics, the fundamental output units are output
primitives. One of the most widely used output primitives is the triangles. Most three-
dimensional graphics scenes can be represented as a very large number of triangles.
Other possible three-dimensional graphics primitives include points, line segments,
quadrangles, and others. Thus, modern graphics pipelines are highly tuned for trian-
gles. In contrast, some graphics applications need other primitives. In this paper, we
focused on three-dimensional points. The three-dimensional point primitives are finally
mapped as two-dimensional pixels on the computer screens.

Due to the development of efficient point sampling devices, including laser scan-
ners and Light Detection And Ranging (LiDAR) devices, we often get millions or even
billions of three-dimensional points, as the result of point sampling processes [25, 35].
In the typical LiDAR systems, laser lights illuminate the target objects, to measure the
distance from the laser scanner to the target objects. We can use the LiDAR system to
obtain various kinds of geological data, including terrain surfaces and interior obsta-
cles. Many geometric applications use the LiDAR system to build terrains, outside
buildings, and geometric models [7, 9, 24, 31].

Typical LiDAR systems produce very large-scale data sets, with a large number of
3D sampling points. Due to the extremely large number of points, the laser-scanned
data points are often called as point clouds [5, 32]. To represent these point clouds on
the computer screens directly, we need a three-dimensional graphics pipeline highly
tuned to those point clouds. With the development of the modern point sampling
devices, we now frequently get the need to efficiently draw those point clouds.

In this paper, we will show a special-purpose graphics rendering scheme, highly
optimized for the three-dimensional point clouds. We focused on the low-level data
packets between the main board and the graphics cards. We designed a small-scale ren-
dering library. We achieved this small-scale graphics rendering library, based on the
Direct Rendering Manager (DRM) packets and application library functions. Our focus
is to make a light-weight accelerated point rendering library, without graphical win-
dowing system support, especially for small-size and/or embedded systems.

In the next section, previous works are presented. In Sect. 3, we will present the
underlying techniques, including the DRM packets, graphics pipelines, shading lan-
guage features, and others. Implementation results are followed. Conclusion is in the
final section.

2 Previous works

Light Detection and Ranging (LiDAR) system generates a set of points to express
its own 3D topographic information. LiDAR data can be displayed either through
direct rendering of the point cloud or by extracting features through classification

8315

1 3

An accelerated rendering scheme for massively large point…

and/or segmentation [5, 32]. In any case, a potential problem is that LiDAR data
sets are massively large for even small target objects.

Levoy [20] was the first one to consider points as rendering primitives for solid
objects. Several tree-based data structures have been proposed. It is important that
the data structure supports levels of detail (LOD) so that the point cloud can be ren-
dered with a different amount of details, depending on the distance to the camera.

Gobbetti and Marton [12] proposed a rendering system called Layered Point
Clouds (LPC). The point cloud is stored in a binary tree. By rendering just the
points in the first levels of the hierarchy, a coarse approximation can be rendered.

Wimmer and Scheiblauer [37] introduced the so-called the nested octree as a
data structure for point clouds. The nested octree is an octree whose nodes con-
tain subsamples of the points inside the bounding box represented by the octree
node, similar to LPC.

Our focus is rendering the massively large point cloud, as is, without any con-
version to internal data structures. In this case, our concern is actually the draw-
ing tools. In the history of modern computer graphics, there have been many
kinds of graphics libraries, including OpenGL [18, 30], DirectX [21], X window
systems [23, 38], Display PostScript [34], Cairo [8], OpenInventor [36], Qt [19],
and so on. Currently, three-dimensional graphics libraries are the main stream in
the computer graphics and its related areas. Most of the 3D graphics application
programs use 3D graphics libraries and/or 3D graphics engines, which are based
on 3D graphics libraries such as OpenGL [18, 30] and DirectX [21].

Traditionally, the three graphics pipeline adopt the normalized device coor-
dinate as its reference frame for the intermediate results. For simplicity and effi-
ciency, the normalized device coordinates (xd, yd, zd) are ranged in a unit cube of
[−1,+1] × [−1,+1] × [−1,+1] in the 3D coordinate system [1, 3, 14].

For precise texture mapping and/or level-of-detail operations, we need to cal-
culate the detail level of graphics primitives. For an edge, its edge length s can be
calculated as follows:

where r is the specified resolution in pixels, f is the field of view, and �1 and �2 are
two vectors from the camera position to the vertices of the edge. According to the
magnitude of s, we can choose the suitable level-of-detail factors [26].

In some cases, we also need image-enhancement filtering techniques even for
the point clouds. As an example, typical Monte Carlo convolution can be calcu-
lated as follows:

where N(x) is the set of neighborhood indices in a sphere of radius r, and p(⋅) is the
probability density function (PDF) [15].

s =
r

f
cos

−1

(
�1 ⋅ �2

|�1||�2|

)
,

(f ∗ g)(x) =
1

|N(x)|
∑

j∈N(x)

f (yj)g

(
x−yj

r

)

p(yj|x)
,

8316 N. Baek, K.-H. Yoo

1 3

3 Design of the rendering system

The initial start point of our work is the avoidance of using the graphical window
systems. Modern graphical window systems have many overheads to handle the
windows. Every graphical window should handle the user interactions and win-
dow-to-window events, and much more system-dependent user interface issues.
In contrast, some computer graphics architectures adopt direct rendering systems,
which accesses the framebuffer directly, as shown in Fig. 1. In some resource-
restricted systems and/or embedded systems, the graphical windowing systems
are not necessary or even should be avoided due to the limited resources.

3.1 Direct rendering manager

In the case of Linux and its derived systems, the direct rendering manager (DRM)
module can access the framebuffer directly [11]. In modern computer graphics
architecture, the graphics-processing unit (GPU) is essential to the framebuffer
management and various graphics processing. Thus, the modern DRM modules
now also manage the GPUs in addition to the traditional framebuffers.

The DRM is actually a module of the Linux kernel. It provides an application
programmer’s interface (API) to the GPU. The upper layers, including OpenGL
and other application-level graphics libraries, use this DRM module as the stand-
ard way of transferring the data to the GPU. A programmer can send the render-
ing commands (or more explicitly, GPU machine instructions) and the target data
to the GPU, through directly calling DRM functions, as shown in Fig. 2.

The DRM module provides additional functionalities including framebuffer
managing, mode setting, memory-sharing objects handling, memory synchroni-
zation, and others. Some of these expansions had carried out their own specific
names, such as Graphics Execution Manager (GEM) [28] or Kernel Mode Setting
(KMS) [10]. Those parts are actually the sub-modules of the whole DRM mod-
ule. The detailed descriptions on these modules are followed in the subsections.

user applications a windowcontrol and transform

direct rendering manager framebufferuser applications

windowing system

direct management system

Fig. 1 Avoiding the use of graphical window systems

8317

1 3

An accelerated rendering scheme for massively large point…

3.2 Graphics execution manager

To control graphics contexts and its related graphics memory areas, Linux kernels
also provide another module, named the Graphics Execution Manager (GEM).
This module provides more optimized ways to share the low-level GPU buffers
and the GPU-specific contexts. The GEM was designed to manage the graphics
memory areas, including the graphics image areas and texture areas [10].

Graphics data can consume arbitrary amounts of memory, with 3D applica-
tions constructing even larger sets of textures and vertices. Historically, the tra-
ditional graphics application programs send the rendering data from the main
memory to the graphics memory, for each context switching. For more speed-
ups, ensuring that graphics data remain persistent across context switches allows
applications significant new functionality while also improving performance for
existing API’s.

Modern Linux desktops include significant 3D rendering as a fundamental com-
ponent of the desktop image construction process. The 2D and 3D applications ren-
der their contents to off-screen memory areas, and the final screen image was dis-
played from those contents.

3.3 Kernel mode setting

Modern commercial GPUs have many selectable internal features, which can be
controlled through the mode-setting commands. Those mode-setting commands
include the setting of the screen resolutions, color bit resolutions, depth bit repre-
sentations, stencil bit settings, refresh rates, and much more. These commands are
transferred to the GPU before the start of the target graphics application program.

A special Linux kernel module, named kernel mode setting (KMS), is used to
provide those mode-setting commands [10, 17]. Currently, the kernel-level imple-
mentation of KMS enables us to select the screen resolutions and the console mode
switching operations.

Fig. 2 The DRM module in the
Linux Kernel

user program libdrm (API)

DRM
(direct rendering manager)

Graphics Card

Linux Kernel Space

Graphics Memory

GPU

8318 N. Baek, K.-H. Yoo

1 3

Another important resource related to the GPU is the graphics memory. In the
typical graphics execution environment, there will be several 3D graphics applica-
tion programs, even with different settings for each of them. The different settings
and its related graphics memory areas are referred as graphics context [27, 30].

4 Implementation and its results

In the case of Linux kernels, the DRM module is used to access the GPU. The upper
layers, including OpenGL and other application-level graphics libraries, use this
DRM module as the standard way of transferring the data to the GPU.

Typical graphics programs send the data as a mixture of the target data and the
rendering commands for those data. In the case of large-scale data visualization, the
portion of the target data is dramatically high, with very small amount of the ren-
dering commands. Currently, graphics libraries, however, use the traditional way of
transferring the data and commands, as a set of mixtures.

OpenGL programs to render point clouds are typically constructed with point
drawing primitives and large-size vertex buffer handling commands. The size of ver-
tex buffer itself and/or the number of points drawn by a single primitives is restricted
with internal limitations of an OpenGL implementation. In our DRM-based imple-
mentation, the internal limitations of OpenGL implementations are avoided, and
only the GPU-level physical limitations are applied to the rendering instructions.
Since the physical limitations in modern GPUs are set to very large values, we have
actually no practical limitations, in most cases.

In our DRM-based implementation, we by-pass the high-level libraries includ-
ing OpenGL and similar ones. Instead, we send the DRM packets, containing
low-level GPU machine instructions, directly to the GPU. The vertex data are
also managed by the DRM module. In this way, we can remove the duplicated
GPU-level instructions in the rendering pipelines of the OpenGL and other high-
level graphics libraries. In the case of typical Vulkan-based rendering applica-
tions, as another example, they easily meet the repeated memory transfers between
the host-visible areas and the device-local areas[6, 13], while our DRM modules
can avoid those repeated copies, since we directly control the data in the GPU
memory.

Our implementation is based on the Linux library implementation of DRM,
named libdrm. This system library provides easy ways of sending DRM pack-
ets. Based on the DRM packets, the fundamental rendering pipeline can be easily
established, as shown in Fig. 3. To minimize the implementation costs and also the
rendering costs, we used an optimized OpenGL shading language program as an
element of the fixed-function graphics pipeline. We also set the depth buffer (or
Z-buffer) as a programmer-selectable option of the graphics pipeline. In the case
of point clouds, the texture buffer and the stencil buffer are not required, at least for
our application cases. So, we omitted the texture handling features and stencil buffer
support.

8319

1 3

An accelerated rendering scheme for massively large point…

As a prototype implementation, we used a set of point clouds from LiDAR
devices, which typically consist of more than 3 million color points, as shown
in Figs. 4, 5, 6, and 7. In some OpenGL-based implementations, there may be
internal limitations to the number of vertex points for each drawing commands,
and also to the number of total vertex points. To solve these limitations, we split
the point cloud into a set of separate rendering commands and their-related ver-
tex data. In contrast, our DRM-based implementation can draw the whole point
cloud with a single GPU-command sequences, since the physical limitations of
the GPU data access size are much larger.

Table 1 shows the experimental results. In comparison with the high-level
OpenGL-based rendering method with full windowing system and full rendering
pipeline support, our DRM-based implementation shows 42 to 94 times acceler-
ated rendering times. All experiments are executed on a Linux-based single board
computer with Intel CPU and its embedded GPU.

Primitive
Processing

Vertex
Shader
(fixed)

Primitive
Assembly Rasterizer

Fragment
Shader
(fixed)

Frame
Buffer

API
vertices

only points

Fig. 3 Our fixed-function graphics pipeline for point cloud rendering

Fig. 4 An example of large-scale data visualization with our DRM-based system

8320 N. Baek, K.-H. Yoo

1 3

5 Conclusion

In these days, typical graphics tools and application programming interface
libraries are designed to support easy-to-use user interfaces and function calls.
Currently, the graphics libraries are tuned to control the underlying graphics
hardware directly, as is in the new graphics standard of Vulkan [13]. In the case of

Fig. 5 Another example of large-scale data visualization from the LiDAR point cloud

Fig. 6 An example of our LiDAR point cloud rendering system

8321

1 3

An accelerated rendering scheme for massively large point…

large-scale data visualization, the rendering speed is more important. This paper
shows a new way of efficiently rendering large-scale rendering data, through the
DRM packets. It shows reasonable speed-ups.

Modern graphics systems use the programmable graphics pipelines. They
execute the GPU instructions compiled from the shading language programs. For
massively large-scale point clouds, the general purpose rendering pipelines are
somewhat heavy to be processed. Our work is another way of processing the mas-
sively large-scale point clouds, with the special-purpose rendering pipeline. Our
result shows this new approach works efficiently.

In the near future, we will release a customized application library for render-
ing massively large-scale point clouds. Especially the LiDAR point data will be
processed most efficiently. We can extend the use of these special-purpose ren-
dering library for various kinds of point-based data.

Acknowledgements This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant
2019R1I1A3A01061310).

Fig. 7 Another example of our LiDAR point cloud rendering system

Table 1 Comparison of rendering times

of points (a) Our DRM
method (ms)

(b) Generic render-
ing (ms)

Ration (b/a)

Hwaseo (Fig. 4) 5,407,008 0.261 24.690 94.598
Seobuk (Fig. 5) 4,219,145 0.256 18.671 72.934
Banghwa (Fig. 6) 2,754,490 0.288 12.661 42.243
Hong (Fig. 7) 3,117,913 0.196 14.027 71.566

8322 N. Baek, K.-H. Yoo

1 3

References

 1. Baek N (2017) A fixed-function rendering pipeline with direct rendering manager support. In:
ICITCS ’17, pp 106–109

 2. Baek N (2019) An emulation scheme for OpenGL SC 2.0 over OpenGL. J Supercomput 1:1–10
 3. Baek N, Kim K (2019) Design and implementation of OpenGL SC 2.0 rendering pipeline. Clust

Comput 1:1–6
 4. Baek N, Ryu K (2015) Emulating OpenGL ES 2.0 over the desktop OpenGL. Clust Comput

18:165–175
 5. Baek N, Shin W, Kim KJ (2017) Geometric primitive extraction from LiDAR-scanned point clouds.

Clust Comput 20(1):741–748
 6. Bailey MJ Mike bailey’s vulkan page. http://cs.orego nstat e.edu/~mjb/vulka n. Retrieved 17 Dec

2019
 7. Benner WR Jr (2016) Laser scanners: technologies and applications. Amazon Digital Services
 8. Cairo Graphics. http://www.cairo graph ics.org/. Retrieved 17 Dec 2019
 9. Dowman I (2004) Integration of LIDAR and IFSAR for mapping. Int Arch Photogramm Remote

Sens 35:90–100
 10. Faith RE (2016) The direct rendering manager: Kernel support for the direct rendering infrastruc-

ture. http://dri.sourc eforg e.net/doc/drm_low_level .html. Retrieved 17 Dec 2019
 11. Fonseca J (2005) Direct rendering infrastructure: architecture. https ://pdfs.seman ticsc holar

.org/2ac2/20302 febc4 2da62 babf9 d5557 17d65 881ae 8.pdf. Retrieved 17 Dec 2019
 12. Gobbetti E, Marton F (2004) Layered point clouds: a simple and efficient multiresolution structure

for distributing and rendering gigantic point-sampled models. Comput Gr 28(6):815–826
 13. Group TKVW (2018) Vulkan 11.8.5–a specification. Khronos Group, Beaverton
 14. Guo H (2014) Modern mathematics and applications in computer graphics and vision. World Scien-

tific Pub, Singapore
 15. Hermosilla P et al (2018) Monte carlo convolution for learning on non-uniformly sampled point

clouds. ACM Trans Gr 37(6):235
 16. Hughes JF et al (2013) Computer graphics: principles and practice, 3rd edn. Addison-Wesley,

Reading
 17. Kernel Mode Setting. https ://wiki.archl inux.org/index .php/kerne l_mode_setti ng. Retrieved 17 Dec

2019
 18. Kessenich J (2016) The OpenGL shading language, language version: 4.50. Khronos Group,

Beaverton
 19. Lazar G (2017) Mastering Qt 5. Packt Publishing, Birmingham
 20. Levoy M (1989) Design of a real-time high-quality volume rendering workstation. In: Proceedings

VVS ’89, pp 85–92
 21. Luna F (2012) Introduction to 3D Game Programming with DirectX 11. Mercury Learning and

Information
 22. Malizia A (2006) Mobile 3D graphics. Springer, Berlin
 23. Maloney RJ (2018) Low level X window programming: an introduction by examples. Springer,

Berlin
 24. Maltamo M, Næsset E (2016) Forestry applications of Airborne laser scanning: concepts and case

studies. Springer, Berlin
 25. Marshall GE, Stutz GE (2011) Handbook of optical and laser scanning, 2nd edn. CRC Press, Boca

Raton
 26. Mueller J, et al. (2018) Shading atlas streaming. In: Siggraph Asia ’18
 27. Munshi A, Leech J (2010) OpenGL ES common profile specification, version 2.0.25 (Full Specifica-

tion). Khronos Group, Beaverton
 28. Packard K, Anholt E (2008) The graphics execution manager: part of the direct rendering manager.

https ://lwn.net/Artic les/28379 8/. Retrieved 17 Dec 2019
 29. Pulli K et al (2007) Mobile 3D graphics: with OpenGL ES and M3G. Morgan Kaufmann Publishers

Inc., Massachusetts
 30. Segal M, Akeley K (2016) The OpenGL graphics system: a specification, version 4.5 (Core Profile).

Khronos Group, Beaverton
 31. Shan J, Toth CK (2018) Topographic laser ranging and scanning: principles and processing, 2nd

edn. CRC Press, Boca Raton

http://cs.oregonstate.edu/~mjb/vulkan
http://www.cairographics.org/
http://dri.sourceforge.net/doc/drm_low_level.html
https://pdfs.semanticscholar.org/2ac2/20302febc42da62babf9d555717d65881ae8.pdf
https://pdfs.semanticscholar.org/2ac2/20302febc42da62babf9d555717d65881ae8.pdf
https://wiki.archlinux.org/index.php/kernel_mode_setting
https://lwn.net/Articles/283798/

8323

1 3

An accelerated rendering scheme for massively large point…

 32. Shin W, Baek N (2016) Editing LiDAR-based terrains with height and texture maps. In: ICISS ’16
 33. Simpson RJ (2013) The OpenGL ES shading language, language version: 1.00. Khronos Group,

Beaverton
 34. Systems A (1993) Programming the display postscript system with X (APL). Addison-Wesley,

Reading
 35. Vosselman G, Mass HG (2010) Airborne and terrestrial laser scanning. CRC Press, Reading
 36. Wernecke J (1994) The inventor mentor: programming object-oriented 3D graphics with open

inventor. Addison-Wesley, Reading
 37. Wimmer M, Scheiblauer C (2006) Instant points. In: Proceedings of Symposium on Point-Based

Graphics ’06, pp 129–136
 38. Young D (1994) The X window system: programming and applications with Xt, OSF/Motif, 2nd

edn. Prentice Hall, Englewood Cliffs

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	An accelerated rendering scheme for massively large point cloud data
	Abstract
	1 Introduction
	2 Previous works
	3 Design of the rendering system
	3.1 Direct rendering manager
	3.2 Graphics execution manager
	3.3 Kernel mode setting

	4 Implementation and its results
	5 Conclusion
	Acknowledgements
	References

