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Abstract
Directive-driven programming models, such as OpenMP, are one solution for 
exploring the potential parallelism when targeting multicore architectures. Although 
these approaches significantly help developers, code parallelization is still a non-
trivial and time-consuming process, requiring parallel programming skills. Thus, 
many efforts have been made toward automatic parallelization of the existing 
sequential code. This article presents AutoPar-Clava, an OpenMP-based auto-
matic parallelization compiler which: (1) statically detects parallelizable loops in C 
applications; (2) classifies variables used inside the target loop based on their access 
pattern; (3) supports reduction clauses on scalar and array variables whenever it is 
applicable; and (4) generates a C OpenMP parallel code from the input sequential 
version. The effectiveness of AutoPar-Clava is evaluated by using the NAS and 
Polyhedral Benchmark suites and targeting a x86-based computing platform. The 
achieved results are very promising and compare favorably with closely related auto-
parallelization compilers, such as Intel C/C++ Compiler (icc), ROSE, TRACO 
and CETUS.
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1 Introduction

Multicore processors have the potential to improve the performance of applica-
tions on modern computing platforms. Parallel programming approaches, such as 
OpenMP [30] and OpenCL [29], have emerged to assist application developers 
to exploit more and more parallelism in multi- and many core processors. How-
ever, even these approaches require the users (e.g., programmers) to identify the 
parallelizable regions from their applications and apply the target parallel pro-
gramming model on those regions. Thus, to take advantage of these programming 
models, programmers must parallelize their applications, a non-trivial task which 
requires in-depth knowledge of both the parallel paradigm and the target architec-
ture to deal with fundamentals of parallel programming such as data dependen-
cies, load balancing, synchronization and race conditions.

OpenMP [15, 30], one of the most popular directive-driven programming models 
to write shared-memory parallel programs, provides a simple and flexible interface 
for developing parallel applications for platforms ranging from embedded and stand-
ard desktop computers to supercomputers. For instance, programmers can change 
the execution pattern to exploit loop-level parallelism by simply adding a #pragma 
omp parallel directive before a target parallelizable for-type loop. Despite the 
usefulness of these directive-based parallel programming models, the main criti-
cal issue that needs to be addressed by programmers is which regions (e.g., loops) 
are parallelizable. To make this decision, programmers need to analyze the target 
regions to ensure that those regions can be safely executed in parallel. Also, to add 
the directive for the detected parallelizable loops, programmers need to classify each 
variable in the loop body into the proper OpenMP scoping (e.g., private, first-
private, or reduction clauses).

Many efforts have been made to support developers [6, 23, 27] as well as to 
provide automatic parallelization [5, 32, 39, 40]. In this paper, we focus particu-
larly on a flexible source-to-source compilation with C-code as an input, and the 
parallelized version, annotated by OpenMP directives, as the output. We target 
loop-level parallelism as the source of potential parallelism, and we provide par-
allelization strategies that improve performance by enhancing the quality of the 
parallelization, as well as the number of candidate parallel regions when com-
pared with state-of-the-art compilers.

Arbitrary control flow and sequential program analysis, on our automatic 
OpenMP-based parallelization approach, named AutoPar-Clava (our first 
efforts were presented in [3, 4]), is based on a source-to-source C compiler, 
namely Clava, which provides an Abstract-Syntax Tree (AST) and a high-level 
programming environment for specifying source code analyses and transforma-
tions [14, 34]. Parsing in Clava is done using a frontend based on Clang [16]. 
Clava uses a custom C/C++ AST, which closely resembles the intermediate rep-
resentation used by Clang, with extensions to support AST-based transforma-
tions, and the capability to generate code directly from the AST. To identify data 
dependencies inside a loop, we rely on the work of Pugh et al. [20, 37] known as 
the Omega-test and available by means of the Petit [19] tool.
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The main contributions of this paper are:

– A versatile auto-parallelization engine integrated in a source to source compiler 
and exposing to users its parallelization strategies in a high-level and modifiable 
code;

– A sequential code analyzer that increases the number of candidate parallel loops, 
by providing techniques such as scalar/array variable privatization, induction 
variables and parallel scalar and array reductions;

– Validation and evaluation by using an extensive set of benchmarks showing the 
impact of the proposed approach in terms of execution time and providing exper-
imental results and comparisons over other auto-parallelization compilers, such 
as ROSE [38], Cetus [17] and TRACO [32].

In relation to our first versions of the tool [3, 4], the current version improved: (a) 
the data dependency analysis and, consequently, is able to parallelize more loops; 
(b) identifies array reductions if the size of the array can be determined during loop 
analysis; and (c) performs array scoping. In this paper, we do not consider loop 
transformations, such as loop fusion, loop unrolling and loop tiling techniques [12]. 
For example, approaches, such as polyhedral-based [1], that allow to exploit data 
locality and parallelism, might be considered in future developments of AutoPar-
Clava and may improve its current performance. Additionally, the current version 
does not support functions with multiple exit points, recursive functions and calls to 
functions whose source code is not available in the input source.

The rest of the paper is organized as follows. Section 2 motivates and introduces 
core concepts. The proposed approach, AutoPar-Clava, is introduced and dis-
cussed in detail in Section 3. The experimental methodology is presented in Sect. 4, 
and in Sect. 5, experimental results are presented and discussed. Section 6 presents 
related work and available automatic parallelization tools with a brief description of 
some well-known approaches. Finally, Sect. 7 draws some conclusions and briefly 
outlines future work.

2  Motivation

Today’s high-performance computing (HPC) systems are composed of many multi-
core CPUs [42]. To take advantage of the existent parallelism, one of the following 
two approaches is usually applied. Either the application code is almost fully rewrit-
ten or the code is parallelized by developers, possibly using tools to help them on 
this task. Parallelization of software code is of paramount importance in order to 
cope with the target system resources, to improve the system utilization rate and 
to significantly reduce execution time. However, it is a time-consuming process 
that requires parallel programming skills, which is an obstacle for many develop-
ers. Hence, there is a need to continue researching and developing parallelizing 
compilers.

Source-to-source compilers have shown to be an effective solution for automatic 
parallelization. The main advantage is that the generated output code can be easily 
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inspected, manually modified, if desired, and the binary code can be generated with 
any compiler chosen by the user.

There is a variety of source-to-source compilers, tools and libraries to make eas-
ier the auto-parallelization of code (see a recent study of autoparallelization frame-
works in [40]), such as the Intel Compiler and PGI [35] as well-known commercial 
ones, and ROSE [25, 38, 39], Cetus [5, 17, 24], TRACO [32, 33] and PLUTO [13] 
as examples of academic approaches. Many of these tools present limitations on the 
set of OpenMP scoping, input code size, reduction for arrays and at the array ele-
ment level, as expressed in Sect.  6. AutoPar-Clava is able to receive a com-
plete program as input and produce a parallel version, ready to be compiled, which 
achieves better or equivalent performances as the state-of-the-art source-to-source 
auto-parallelization tools considered in this paper.

Additionally, the Clava framework, provides a higher level of abstraction, when 
compared with other approaches, and offers an accessible path that allows the repro-
duction or modification of parallelization strategies. A flexible compiler infrastruc-
ture that allows users to develop or extend parallelization strategies, without depend-
ing on low-level internal details of a specific compiler, allows to efficiently address 
the following:

– The evolution of the OpenMP standard needs adaptability and extensions to the 
parallelization strategies included in compilers providing OpenMP-based auto-
matic parallelization. One such example is the introduction of task-based paral-
lelization and of new clauses;

– No parallelization strategy fits all cases (e.g., applications and target machines), 
and it is important that advanced programmers, tuning experts, performance 
engineers and compiler specialists be able to extend or include new paralleliza-
tion strategies whenever needed;

– Ideas regarding new parallelization strategies need experiments and evaluation 
considering benchmark repositories to decide about their inclusion in production 
compilers. Thus, a compiler framework that facilitates this process helps research 
and innovation.

Bearing in mind the previous aspects, this paper presents AutoPar-Clava, an 
OpenMP-based automatic parallelization library implemented on top of the Clava 
source-to-source compiler.

3  Automatic parallelization

This section provides an overview and technical details of AutoPar-Clava for 
automatic parallelization of the input C code via OpenMP directives. Loops are 
often the main code regions to parallelize due in part to their time-consuming nature. 
However, there are several reasons that may prevent loop parallelization, such as 
the existence of data dependencies [46]. Generally, auto-parallelization approaches 
try to detect any occurrence of data dependencies between loop iterations by ana-
lyzing scalar variables and array access patterns in a static or dynamic way (e.g., 
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using profiling). The auto-parallelization strategy proposed in this paper is focused 
on static data-dependence analysis.
AutoPar-Clava starts by analyzing the input source code and identifies all 

candidate loops for parallelization. Typically, a loop is a candidate to be parallelized 
if it follows a certain canonical form and avoids certain restrictions, e.g., not con-
taining any break, exit, return, statements and system calls. Then, to decide 
if a candidate loop can be parallelized, AutoPar-Clava performs inter-iteration 
data-dependency analysis. In the end, AutoPar-Clava generates an OpenMP 
version of the input source code for each loop to be parallelized. The proposed 
approach contains four main phases: (1) preprocessing of the sequential code; (2) 
data-dependency analysis; (3) parallelization via OpenMP; and (4) code generation.

Figure 1 shows a C code excerpt annotated with OpenMP directives (as C prag-
mas) automatically generated by AutoPar-Clava, from the input C code with-
out the annotations. When considering the parallelization of the outermost loop, the 
AutoPar-Clava generates the OpenMP pragma in line 1. When considering the par-
allelization of the innermost loop, the AutoPar-Clava generates the OpenMP pragma 
of line 4. At the moment, the AutoPar-Clava strategy parallelizes the outermost loop 
of Fig. 1 and thus generates only the pragma in line 1. Further strategies could be 
research schemes to decide the loop to be parallelized.

3.1  Preprocessing

The source-to-source Clava compiler processes LARA code [14, 34] that allows 
to perform code queries, modifications and source-code generation requests over 
the AST. With Clava, users can adapt, extend, or develop their own custom pro-
gram analyses and transformations using a high-level programming model based on 
aspect-oriented concepts and JavaScript. Figure 2 shows an excerpt of LARA code 
that reports variable pattern accesses (i.e., read, write, or readwrite) within inner-
most loop bodies from a given input C code. For example, let us consider the C code 
example of Fig. 1 as input to Clava and the execution of this LARA code. In this 
LARA example, line 1 queries the code and selects all variable accesses (varref 
join points) inside the two available loop bodies (loop.body) from the C code. By 

Fig. 1  Example of OpenMP C code generated by AutoPar-Clava 
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filtering the query, in line 13, LARA only considers the body of the innermost loop 
in the sample code (i.e., $loop.nestedLevel === 1). By querying the differ-
ent attributes available in the join point varref, we can retrieve information such 
as variable name (i.e., name), variable access pattern (i.e., use) and variable type 
(i.e., joinPointType). This type of information is extensively used in the data-
dependency analysis process.

3.2  Dependency analysis

Dependency analysis [28] involves finding the four types of data-dependen-
cies, i.e., Anti-dependency, Output-dependency, Flow(true)-dependency and 
Input-dependency.

To determine if a loop can be parallelized, two types of data-dependencies are 
analyzed: (1) loop-independent that represents dependencies within a single loop 
iteration; and (2) loop-carried that represents dependencies among different itera-
tions of a loop.
AutoPar-Clava uses separate dependency analysis strategies to process sca-

lar and array dependencies. A loop is considered for parallelization if it is deter-
mined that: (1) it has no true dependencies; or (2) it has a true dependency, but it is 
a reduction operation; or (3) it has a false dependency so that it can be resolved by 
loop-private variables.

To perform dependency analysis on scalar and array variables, first AutoPar-
Clava does dataflow analysis over all statements in the loop and extracts how each 
variable is used. From the AST representation of the input code, Clava compiler 
provides information, such as the access type of variables (i.e., Read−R , Write−W ). 
With this information, an access pattern (e.g., RRW RRR ) for each variable (scalar/
array) is identified. The usage pattern is defined as a compressed version of the 
access pattern by removing consecutive repetitions from it (e.g., the usage pattern 
of ������ is ��� ) and is used to identify the data dependencies of the variables. In 
addition to determine access patterns within each target loop, the first access outside 

(a) (b)

Fig. 2  a An example of LARA code that prints variable access types inside innermost loops in input C 
code; and b the output when Clava applies the sample LARA code to the source code in Fig. 1
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the loop, to each variable, is registered in the nextUse attribute. For both scalar and 
array variables, AutoPar-Clava identifies reduction operations and categorize 
them into a reduction scope by using a pattern matching algorithm which fol-
lows the rules specified by OpenMP [31].1

One of the most common obstacles to loop parallelization is loop-carried depend-
encies over array elements. Array elements can be characterized by subscript expres-
sions, which usually depend on loop index variables. As with most auto-paralleli-
zation tools, AutoPar-Clava only deals with array affine index functions when 
determining data-dependencies [28] and thus loops with non-affine index functions, 
e.g., A[B[i]] are not considered for parallelization when there is a write in the 
access pattern.

There are several techniques to perform data-dependency analysis, and the most 
well-known tools use one or more of those techniques. For example, AutoPar [25], 
used in the ROSE compiler [38], uses the Gaussian elimination algorithm to solve 
a set of linear integer equations of loop induction variables, in the form of Baner-
jee–Wolfe inequalities [45]. Other approaches use tests such as GCD [7], Extended 
GCD [26] and Omega [37]. AutoPar-Clava uses the Omega library2 for data 
dependency analysis. Loop dependencies are converted into dependency relations in 
the form of Presburger arithmetic that are directly analyzed using the Omega library. 
Then, the output dependency analyzed for scalar and array variables within a loop 
are used to classify each variable into the proper OpenMP scoping.

3.2.1  Induction variables

Induction variables [28] represent scalar variables that are updated in each iteration 
of a loop. Induction variable substitution is used for resolving certain classes of data 
dependencies, and it is useful to resolve iteration dependencies on array accesses 
when they appear in indexes of those arrays. Furthermore, the combination of induc-
tion variable substitution with array privatization provides a powerful technique for 
removing cross-iteration dependencies [43]. AutoPar-Clava uses this technique 
to handle induction statements, specifically when they appear in subscript expres-
sions for array variable access. Considering the C code in Fig. 1, the occurrence of 
the scalar variable i in array access B[i] is replaced by its expression (i.e., k+1) 
and becomes B[k+1]. Note that, all these substitutions are applied during the anal-
ysis phases and are temporary in order to not change the original code.

3.2.2  Privatization

A private variable serves as temporary data by assigning a separate storage to each 
thread in the parallel execution. This resolves many data-dependencies for the target 
variable if all loop iterations use the same storage. Privatization has a strong impact 
on the performance obtained by loop parallelization, since it reduces the number of 

1 http://www.openm p.org/wp-conte nt/uploa ds/openm p-4.5.pdf#page=210.
2 http://www.cs.umd.edu/proje cts/omega /.

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf#page=210
http://www.cs.umd.edu/projects/omega/
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accesses to shared memory by each thread. For example, it is very common that at 
each iteration of a loop, a variable is initialized and then is used by other statements. 
By privatizing this variable, a local copy of the variable is provided for each thread 
and the loop becomes parallelizable. 

AutoPar-Clava implements a simple but effective variable privatizer 
approach, shown in Algorithm 1 and Algorithm 2, for scalar variables and array var-
iables, respectively.

For scalar variables, Algorithm  1 starts by reading, from the loop statement, all 
variables information, on line 3. Control loop variables are made private on line 4. The 
usage pattern of each variable is processed in order to decide which OpenMP scoping 
should be considered. If the usage pattern is only R, it can be set as a firstprivate 
variable (line 12), and if the usage pattern equals to WR or W and the usage after the 
loop (nextUse) is not a R, then it is a loop variable and it can be categorized as a 
private variable (line 15). Similarly, if a scalar variable usage pattern is W and the 
nextUse attribute is R, then it can be categorized as lastprivate variable (line 18).

For array variables, Algorithm 2 starts by reading, from the loop statement, the 
information of the arrays used inside the loop, on line 3. Then, for each array, the 
usage pattern and results of the dependency analysis are used to decide the OpenMP 
scoping. If there is no writes (W) to an array, it is added to the firstprivate list, 
on lines 5–8. Otherwise, from line 9 to 22, the dependency objects, returned from 
the dependency analysis, are processed in order to identify the arrays that can be 
made firstprivate. Line 10 identifies if the dependency statement refers the 
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array under analysis (arrayUse.name). If so, line 13 verifies if the dependency 
cannot be solved or ignored. If false, line 16 verifies if the array is simultaneously 
dependent of a inner loop, not dependent of the current loop and dependent of an 
outer loop. If false, on lines 19–20, the array is added to the firstprivate list if 
its usage pattern is WR and if it has no dependency with the current loop.

According to OpenMP 4.5 reference manual [31], an array variable cannot appear 
in a private clause, otherwise the allocated memory would not be accessible 
inside the threads and the private pointer would have an invalid address. Therefore, 
all array variables that do not have data-dependencies among different iterations of 
a loop are added to the firstprivate variable list, as it is the case for the array 
variables a, z and c for both loops in the code of Fig. 1. Additionally, if there are 
no access dependencies on a shared array, a firstprivate scoping makes a copy 
of the array address to each thread so that no overhead results when a set of threads 
access the same array in a different range of indexes. 

3.2.3  Scalar and array reductions

In some cases where privatization is not possible, a reduction operation (e.g., sum, 
product, or other commutative and associative operations over variables) may ena-
ble parallelization by computing a partial result locally by each thread and updating 
a global result only upon completion of the loop by a reduction operation. Algo-
rithm 3 shows our approach for reductions over scalar and array variables.
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Reduction variables are those with read and write access in different itera-
tions, which causes a data-dependency to be reported by the dependency analyzer. 
Generally, they are in the form of var op= expr or var= var op expr 
where the reduction-identifier (i.e., op) can be one of the following operators: 
+,−, ∗, &, |, ∧, && , and || followed by assignment operator (i.e., =).

For scalar variables, our analysis detects reduction variables and its associated 
operator that satisfy the above criteria and excludes the detected reduction variables 
and its dependencies from the loop-carried dependencies. For example, the usage 
pattern of variable d within the inner loop, of the C code in Fig. 1, is RW and follows 
the OpenMP reduction form for scalar variables. Therefore, in the output generated 
code, variable d appears into a reduction clause of the annotated #pragma for the 
inner loop. The same classification for variable d cannot be used for the outer loop 
since its usage pattern is WRW .

Reductions on array variables are a potential source of significant improvements 
of parallelization performance. Although following the OpenMP reduction criteria 
for array variables would need a more complex analysis, as we focus on loops where 
all array subscript expressions are affine functions of the enclosed loop indices and 
loop-invariant variables, the analysis is simplified. In order to apply the above crite-
ria for the array variables in the C code of Fig. 1, each access within the target loop 
body is considered as a scalar variable in the detection procedure. 
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Therefore, having similar memory accesses by means of array subscripts for both 
source and destination variables, in the target dependency relation, is an extra initial 
condition for array reduction recognition. For illustrating the process of array vari-
ables detection within loops, consider the code in Fig. 1. Among all array variables 
accesses, only two array variables b and r have write memory reference in their own 
access pattern. For the outermost loop, the data-dependency analysis detects output 
dependency relations for the two array variables b and r, which cannot be solved by 
a preliminary privatization process (their subscript expression is not affine functions 
of the loop indices or loop-invariant variables). For the outermost loop at line 2, 
since the array access r[index] is not a function of the enclosed loop index (i.e., 
variable j) or loop-invariant variables, it can be treated similarly to a scalar vari-
able (i.e., all loop iterations update the same element r[index]). In this case, as 
it meets the general reduction form "var op= expr" with acceptable OpenMP 
operator + for reduction clauses and does not appear elsewhere in the loop body, it is 
classified as a reduction clause for the outermost loop at line 2 (i.e., reduction(+ 
: r[index])). For array access b[i], by applying the induction variable proce-
dure, the subscript expression b[i] is converted to b[k+1] which is a function of 
the inner loop iterator (i.e., variable k). From the outer loop point of view, the array 
variable b within element range of [0,… ,M] is updated at each individual iteration. 
Since the update statement at line 8 (i.e., b[i] += a[k]) satisfies the criteria of 
OpenMP reductions, it can be classified as an array reduction variable. However, 
unlike the reduction on scalar variables, for reduction on array variables, one must 
specify the lower and upper bound for each dimension of the target array (array b in 
this example). Therefore, if the array size is obtained by static analysis, a reduction 
operation is identified, otherwise, the loop is marked as non-parallelizable.

For the inner loop at line 5, in Fig. 1, the subscript expression of array access 
b[k+1], converted by induction variable substitution from original statement 
b[i], is a function of the inner loop, each loop iteration k updates individual array 
elements b and there is no data-dependency issue due to the access of array b.

Concerning the implementation shown in Algorithm 3, it receives as input, the 
candidate variable, its usage pattern and the loop statement. On line 2, if the pat-
tern RW appears more than once, then a reduction is not applicable and the process 
finishes. Otherwise, on line 5, it is verified if the candidate variable has the same 
dependency in all references made inside the current loop. If true, the process con-
tinues and on lines 8 to 15, it is registered all operations where the candidate vari-
able appears. From line 16 to 21, it is selected an operation only if it is the only one 
associated with the candidate variable, or if the second operation is an assignment, 
i.e., the pattern "=" or "op=".

3.3  Code parallelization

Figure  3 shows the components of the AutoPar-Clava framework. The Clava 
weaver applies generic rules, written in LARA, over the input source code, call the 
parallelization engine and, finally, generates the output parallel code, where each for-
type loop statement is annotated either with an OpenMP pragma or with a comment 
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explaining why the loop could not be parallelized. The parallelization engine mod-
ule is the main core of AutoPar-Clava to analyze and decide which loops are 
parallelized and which pragmas to include in the output code.

One of the most important features to trace access patterns for each variable used 
inside of a candidate loop body is the capability to deal with function calls in the 
loop body. However, most static auto-parallelization frameworks do not include 
inter-procedural analysis and thus do not consider loops for parallelization when 
they contain user’s function calls. In other cases, function inlining needs to be per-
formed before parallelization, or the functions need to be identified as a non-side-
effect functions. Although function inlining may enable loop parallelization, its use 
may not be adequate as it may decrease performance, e.g., due to register pressure.

Avoiding loops because of function calls or only considering them when function 
inlining is previously performed or when dealing with functions previously marked 
without data-dependencies that prevent parallelization may miss important perfor-
mance improvement opportunities. AutoPar-Clava overcomes this problem 
by performing temporary function inlining, whenever possible during the analysis 
phase, to find a complete access pattern for each variable, even inside the called 
functions. This gives the compiler the opportunity to analyze the called function 
without inter-procedural analysis which is not yet supported. It also allows the com-
piler to identify statements in the functions (using the same analysis performed to 
the loop body to mark loops as non-parallelizable) that may also prevent the loop 
to be parallelized. Note that the function inlining is used by AutoPar-Clava at 
the analysis phase, and all changes in the code due to inlining are discarded in the 
generated output code unless a LARA strategy instructs the compiler to inline the 
function (we note however that for the code generated and evaluated in this paper 
we do not include function inlining in our code optimization strategies). The cur-
rent function inlining implementation does not support functions with multiple exit 
points, recursive functions and calls to functions whose source code is not avail-
able in the input source files. Additionally, in order to not miss loop parallelization 
opportunities due to library function calls, AutoPar-Clava uses a simple refer-
ence list, that can be modified by users, which contains functions that are known to 
not modify their input variables or that do not have side effects on I/O functionality 
(e.g., sqrt, sin).

Algorithm 4 presents the pseudo-code of the overall strategy for the paralleliza-
tion engine, which is implemented in the form of a LARA strategy. It receives a loop 

Rules 
Clava 

Weaver 
Parallelization Engine 

(Analysis & Decision)

Input 
code 

Fig. 3  AutoPar-Clava framework
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to analyze and verifies if it satisfies the OpenMP canonical form. Then, from lines 5 
to 9, it is verified if there are function calls and if they can be either in-lined or are 
known safe functions calls. At line 10, it is processed the induction variable proce-
dure which replaces the induction variable if the following conditions are satisfied: 
(a) it is not in the loop header; (b) it is not in an if statement; (c) the right side of 
the "=" operator does not have any reference to arrays; (d) it has no function calls; 
(e) it has no unitary operators; and (f) it has no binary shift operations. From line 
11 to 13, it is determined the usage pattern of each variable in the loop statement 
by performing data flow analysis. At line 14, it is invoked the dependency analyser, 
using Petit [19] tool. If there is no unsolved dependencies, at line 18 and 19, it is 
defined the scoping for each variable and added the OpenMP directive to the loop. 

3.4  Generation of the output code

As the last step, after determining the loops that can be parallelized, the output code 
is generated. The Clava AST contains the necessary information to reconstruct the 
source-code, including text elements such as comments and pragmas determined by 
Algorithm 4. Clava separates implementation files (e.g., .c) from header files (e.g., .h) 
and is able to reproduce them from the AST.

Figure 4 shows the LARA script for adding OpenMP #pragma directives into the 
target input loop statements (i.e., loopStmt), represented as part of the Rules block 
in Fig. 3.

As part of the flexibility offered by the Clava source-to-source compiler, one can 
instruct the compiler to add OpenMP pragmas for all the loops that were detected as 
being parallelizable, customize which loops should be annotated with pragmas (e.g., 
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if they are not inside a parallel loop, if they are detected as a hot-spot after a profiling 
step), and customize the generated pragmas (e.g., remove clauses related to reduction 
of arrays). LARA scripts provide enough flexibility in order to allow users to try and 
evaluate their own OpenMP-based parallelization strategies and/or develop applica-
tion-/domain-specific parallelization strategies.

4  Experimental methodology

In this section, we provide details about the target platform, experimental methodol-
ogy, comparison metrics and benchmarks used throughout the evaluation.

4.1  Platforms

The evaluation was performed on a Desktop with two Intel Xeon E5-2630 v3 CPUs 
running at 2.40 GHz and with 128 GB of RAM, using Ubuntu 16.04 x64-bits as 
operating system. To reduce variability in the results, the Turbo mode and the 
NUMA feature are disabled. Also, OMP_PLACES and OMP_PROC_BIND are set to 
cores and close, respectively.

4.2  Benchmarks

The Polyhedral/C 4.23 Benchmark Suite [36] and the NAS Parallel Benchmarks 
(NPB)4 are used for performance evaluation in this work. The Polyhedral/C 4.2 con-
tains many patterns commonly targeted by parallelizing compilers, with three differ-
ent dataset sizes, namely MEDIUM, LARGE and EXTRALARGE. The NAS Parallel 

Fig. 4  An example of a LARA aspect to insert an OpenMP directive before the loop statement and con-
siders the inclusion of different clauses according to code properties

3 https ://sourc eforg e.net/proje cts/polyb ench/.
4 https ://www.nas.nasa.gov/publi catio ns/npb.html.

https://sourceforge.net/projects/polybench/
https://www.nas.nasa.gov/publications/npb.html
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Benchmarks have available both sequential and manually parallelized OpenMP ver-
sions. Three input classes are used, namely W, A and B, being class W the smaller 
input, class B the largest one, and class A the medium size input for a single machine.

4.3  Compared compilers and configurations

Taking into account that AutoPar-Clava performs automatic static paralleliza-
tion over unmodified source-code, among all automatic parallelization approaches 
presented on Sect. 6, the ones closest to our objective are ROSE [38], Cetus [17] 
and TRACO [32]. As part of the ROSE compiler, autoPar [25] can automatically 
insert OpenMP pragmas in C/C++ code. The tools used in our experiments are: 
(a) autoPar version 0.9.9.199; (b) TRACO5; and (c) Cetus version 1.4.4.6 The Intel 
Compiler icc, a well-known commercial solution, is used in the version 18.0.0 free 
academic license. Polyhedral compilers such as PLUTO [13], which applies loop 
transformations (e.g., tiling and loop fusion), are not considered in this section as 
our tool does not support such transformation in the current version. Our plans for 
future work include code transformations in parallelization strategies. However, to 
show the potential of AutoPar-Clava, a comparison with Pluto is shown for the 
Polybench benchmarks in Sect.  5.1.4. Also, other well-known approaches such as 
SUIF [44] and POLARIS [10, 41], address the parallelizing Fortran77 code and are 
therefore not considered here.

For both the original serial code and the parallel OpenMP versions (i.e., paral-
lelized with AutoPar-Clava, icc, Cetus, TRACO and ROSE), we use icc to 
compile the target C code, using -O2. The optimization flag -O2 is used instead of 
-O3 because: (i) -O2 is the generally recommended optimization level by Intel7; 
and (ii) to be able to do a fair comparison between serial code and parallel code 
annotated with OpenMP pragmas, since we detected that in some cases, using the 
flag -qopenmp in serial code without OpenMP pragmas slows down the perfor-
mance of code compiled with -O3 to the same level as -O2.8

For each benchmark, each experiment was repeated 30 times and the average of 
execution time was used. For each data size, we have run the programs with 4, 8 and 
16 threads. In the case of the Polybench Benchmarks, we verified the output of all 
generated parallelized versions from each tool, by using the flag -POLYBENCH_
DUMP_ARRAYS that dumps all live-out arrays to the stderr and comparing it 
with the equivalent output of the sequential versions, and only parallel implementa-
tions with similar results are reported.

Note that, only icc, AutoPar-Clava and ROSE compilers are able to compile the 
original source files without imposing any limitations on the source code. Therefore, 
to provide a compatible input file for TRACO and Cetus, we modified the input code 
according to the restrictions of each of these compilers.

5 https ://sourc eforg e.net/proje cts/traco .
6 https ://engin eerin g.purdu e.edu/Cetus .
7 https ://softw are.intel .com/en-us/artic les/step-by-step-optim izing -with-intel -c-compi ler.
8 https ://softw are.intel .com/en-us/forum s/intel -c-compi ler/topic /75567 7.

https://sourceforge.net/projects/traco
https://engineering.purdue.edu/Cetus
https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler
https://software.intel.com/en-us/forums/intel-c-compiler/topic/755677
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To generate the parallelized versions by icc, we use the flag -parallel. 
icc uses a cost model with a threshold parameter to decide whether to parallelize 
a loop. The threshold[n] compiler option adjusts this parameter.9 The value of 
n ranges from 0 to 100, where 0 means to always parallelize a safe loop, irrespec-
tive of the cost model, and 100 tells the compiler to only parallelize those loops for 
which a performance gain is highly probable. The default value of n is conserva-
tively set to 100. In this study, the values 0 and 100 are considered.

4.4  Evaluation metrics

The evaluation is focused on the speedup obtained with the generated parallel code, 
which is defined as the ratio between the execution time of the sequential code and 
the execution time of the parallelized version. Additionally, in order to evaluate the 
ability of each compiler to detect parallelism, the number and type (i.e., inner or 
outer) of parallelized loops in the generated output code are reported.

5  Experimental evaluation

This section presents and discusses results obtained for Polybench and NAS bench-
marks. For simplicity, we refer to autoPar tool in ROSE compiler as ROSE in all 
figures and tables. Also, ���-par-threshold[0] and ���-par-threshold[100] represent the results 
of icc compiler when the -par-threshold parameter is set to 0 and 100, 
respectively.

5.1  Polybench benchmarks

Before presenting results for the Polybench benchmarks, we discuss the perfor-
mance impact of the proper OpenMP scoping, in particular concerning array vari-
ables, which leads to significant performance improvements.

5.1.1  OpenMP scoping

In order to demonstrate the effectiveness of proper OpenMP scoping for array vari-
ables (see Sect.  3.2), Fig.  5 compares four different possible types of array scop-
ing, tested in AutoPar-Clava. Based on the usage pattern, an array access 
can be classified into: (i) read only pattern (R); and (ii) write or readwrite pattern 
(R/w). In both classes (R) and (R/W) for accessing arrays, they are categorized 
with the firstprivate clause instead of shared (see Sect.  3.2.2). Note that 

9 https ://softw are.intel .com/en-us/node/52295 7.

https://software.intel.com/en-us/node/522957
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AutoPar-Clava applies the OpenMP scoping if and only if no data dependen-
cies, data conflicts and race conditions within the target loop are found.

Figure  5 presents the SpeedUp geometric mean obtained among all polybench 
benchmarks when array variables are made firstprivate, for different access 
patterns. For both access patterns R + R/W and R/W, AutoPar-Clava achieved 
higher performances than making firstprivate only read array variables (i.e., R) 
or without any privatization of array variables (i.e., None). Hence, in our proposed 
approach, we analyze access patterns of arrays to select the scoping that maximizes 
performance. As mentioned before, to have a fair comparison with the parallel-
ized code generated by icc, we use icc to compile the annotated OpenMP output 
code generated by each tool in our experiments. Some algorithms presented super-
linear speedups due to the limitation of one thread in managing efficiently a huge 
amount of data. However, the geometric mean is below 10, for 16 threads, for all 
cases. Based on our observations, using gcc, the performance of different strategies 
for array variable scoping does not present relevant performance differences among 
them, which indicates that icc performs some additional memory management for 
array variables according to their OpenMP scoping.

5.1.2  Polybench results

Table  1 shows the number of total loops parallelized by each auto-parallelization 
tool, as well as the type of the loops detected, i.e., inner or outer loop. At the 
moment, when a nested loop is identified to be parallelized, only the outermost one 
is marked to be parallelized. It is, however, easy to include a decision rule based on 
the number of iterations of the loop.

Figures 6 and 7 show the speedups of the parallelized versions of the PolyBench 
benchmarks, relative to the sequential versions, for each compared tool. Due to 
space limitations, we only present benchmarks with significant difference in terms 
of speedup, whereas for other benchmarks the improvements are similar for all com-
pared tools. However, full details of the number of detected loops for all benchmarks 

Fig. 5  The effectiveness of proper OpenMP scoping for array variables
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are presented in Table 1. Below, we discuss the results achieved for each individual 
benchmark.

2mm and 3mm: both benchmarks perform matrix multiplications with 2 and 3 
individual nested loops, respectively. The outermost one at each nested loops 
is marked and parallelized by all auto-parallelization tools. However, as shown 
in Fig. 6a, b the performance improvements are not similar. The reason can be 
explained by the variable classification into the proper OpenMP scoping per-

Table 1  The number and type of loop parallelization generated by each compared tools

: The functionality of the parallelized version is NOT similar to the sequential one.
: No output file generated by the tool
: the code is changed and modified by the tool

Benchmark name TRACO Cetus ROSE AutoPar- Clava

Outer Inner Outer Inner Outer Inner Outer Inner

2mm 2 – 2 – 2 – 2 –
3mm 3 – 3 – 3 – 3 –
adi – 2 – 2 – 2 – 2
atax 1 1 1 1 2 –

bicg 1 – 1 – 2 –

cholesky – – –
correlation 4 – 4 – 2 – 4 –
covariance 3 – 3 – 3 – 3 –
deriche 6 – 6 – 6 – 6 –
doitgen – 2 – 2 1 –

durbin – 2 – 3 – 3 – 3
gemm 1 – 1 – 1 – 1 –
gemver 4 – 4 – 4 – 4 –
gesummv 1 – 1 – 1 – 1 –
gramschmidt – 3 – 3 – 3
heat-3d – 2 – 2 – 2 – 2
jacobi-1d – 2 – 2 – 2 – 2
jacobi-2d – 2 – 2 – 2 – 2
lu – 1 – 1 – – –
ludcmp – – 4 – 4 – 4
mvt 2 – 2 – 2 – 2 –
seidel-2d – – – −
symm – 1 – 1 – 1
syr2k 1 – 1 – 1 – 1 –
syrk 1 – 1 – 1 – 1 –
trisolv – – – –
trmm – 1 – 1 – 1 – 1
Total 30 15 28 21 28 23 33 20
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6  Geomean speedups for PolyBench benchmarks (part 1)
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 7  Geomean speedups for PolyBench benchmarks (part 2)
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formed by each tool. Among all compared tools, TRACO just finds parallelizable 
loops and inserts the OpenMP parallel for pragma without any variable 
scoping. In the case of the ROSE autoPar tool, it only supports variable scoping 
for scalar variables. Cetus compiler applies more analysis on used variables, for 
both scalar and array variable types. By comparing the generated OpenMP direc-
tives provided by each tool, our proposed tool has a wide range of variable scop-
ing. To illustrate this feature, Fig.  8 shows the parallelized output code for the 
first nested loop of the kernel function in 3mm, for all compilers.

As shown in Fig. 8, AutoPar-Clava presents more variable scoping for scalar 
variables than the other compilers which only focus on privatization of loop indexes. 
In addition to scalar variable scoping, our approach categorizes each array variable 
based on its usage pattern. For instance, since both arrays A and B have read only 
pattern access inside of the outermost loop, they are categorized as firstprivate 
in the clause variable list (see Sect.  3.2.2). In terms of performance, AutoPar-
Clava and Cetus show the best improvement for both 2mm and 3mm. However, in 
the case of 3mm, based on our observations, Cetus achieved that improvement by 
classifying modified variable array E (see code in Fig. 8) as a firstprivate and 
lastprivate variable. icc achieved a SpeedUp of 1 for both 2mm and 3mm, as 
no loop was parallelized by this compiler, when the cost model is applied. Without 
cost model, the performance of icc is higher than 1, but lower than the perfor-
mance achieved by AutoPar-Clava.

atax amd bicg: both atax and bicg contain 2 individual nested loops. In both 
cases, the first outermost loop does a simple initialization of an array, and the 
second loop, which consumes more time, computes the mathematical opera-

Fig. 8  Annotated OpenMP C code for kernel_3mm considering ROSE, TRACO, Cetus and AutoPar-
Clava 
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tions. Both ROSE and TRACO compilers parallelized the same loop. Since both 
approaches only parallelized the first nested loop in bicg and could not parallel-
ized the second loop, which has higher influence on execution time improvement, 
the obtained SpeedUp is near to 1 (i.e., similar execution time to sequential code), 
as shown in Fig.  6d. For atax in Fig.  6c, both ROSE and TRACO approaches 
show performance slowdowns. This can be explained as parallelizing the inner 
loop from the second nested loop causes a higher time overhead of threads start-
ing and releasing at each iteration. In the case of Cetus, the input source code is 
modified by transforming of the loop structure, but the parallelized version of the 
code does not have correct functionality.
Since our proposed approach supports the OpenMP array reduction feature, 
for both benchmarks, AutoPar-Clava could obtain significant SpeedUp 
of 10× and 25× for atax and bicg, respectively. The parallelized output of our 
approach for atax is presented in Fig.  9. AutoPar-Clava could parallel-
ized the second outer loop (line 12) due to solving data dependency for the 
array access y at line 19 by classifying it as an array reduction variable (i.e., 
reduction(+:y[:2100])). However, other approaches could not support 
this feature and only parallelize the inner loop at line 18 which causes the degra-
dation of performance as shown in Fig. 6c.
Doitgen and durbin: for Doitgen, the best SpeedUp performance is obtained 
by AutoPar-Clava with a maximum improvement of 19. Both ROSE and 
TRACO parallelized the exact similar inner loops in their generated output code 
and did not obtain any performance improvement. The only exception is the par-
allelized output generated by Cetus, which did not pass the verification step as it 
is noted in Table 1. In the case of durbin, all compared auto-parallelization tools 
parallelized inner loops, resulting in a degradation of performance as shown in 

Fig. 9  Annotated OpenMP C code for kernel_atax considering ROSE, TRACO, Cetus and AutoPar-
Clava 
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Fig. 6f. The SpeedUp obtained by icc with the -par-threshold parameter 
equal to 100, for both Doitgen and durbin, indicates no loop parallelization for 
both benchmarks. However, by setting -par-threshold to 0, i.e., loops get 
auto-parallelized always, regardless of computation work volume, similar to other 
compared approach, ���-par-threshold[0] indicates a degradation of performance as 
well.
Gemm, gesummv and gramschmidt (Fig.  7a: for all three benchmarks, 
AutoPar-Clava, ROSE, Cetus and TRACO marked the same loops for par-
allelization. However, due to the wide range of variable scoping (see Fig.  5), 
AutoPar-Clava obtains, in general, better performance when compared to the 
other tools. In the case of icc, the SpeedUp ranks the second place for gemm 
and gramschmidt, but the last place without performing any parallelization for 
gesummv.
Heat-3d, jacobi-1d and jacobi-2d: all tools, except icc, annotated the similar 
inner loop in their generated output code. There is a degradation of performance 
for jacobi-1d which can be explained by the amount of work (i.e., dataset size) 
performed by the inner loop. Since the parallelized inner loop has low comput-
ing work, the overhead of allocating and releasing threads has a significant influ-
ence on the execution time, as shown in Fig. 7c. In contrast, for jacobi-2d with 
higher amount of computation work, even by parallelizing an inner loop, all tools 
achieved better execution time, as shown in Fig.  7d, being AutoPar-Clava 
and icc the best ones with equivalent performances. For heat-3d, ROSE and 
Cetus show similar performance improvements as AutoPar-Clava being icc 
the tool with higher speedup.
Mvt, syr2k and syrk: for all these benchmarks, the outermost loop is detected and 
parallelized by all auto-parallelization tools. However, due to the wide range of 
variable scoping, our proposed approach shows better performance for different 
datasets and number of threads among all compared tools.

5.1.3  Average performance

Figure 10 presents a boxplot chart of SpeedUp as a function of the number of 
threads and dataset parameters among all PolyBench benchmarks. In addition 
to the geomean Speedup, the average Speedup is also indicated by an individ-
ual diamond symbol in each boxplot. We can see that AutoPar-Clava has 
the highest geomean SpeedUp with a wider dispersion in the distribution of 
the results. This confirms the results presented in Fig.  6 and shows the higher 
performances that can be achieved with AutoPar-Clava for automatic 
parallelization.

5.1.4  Comparison to the polyhedral approach

The polyhedral approach is used to solve data dependencies, to produce parallel 
versions of the sequential code, possibly including loop transformations. Pluto 
[13] is a fully automatic source-to-source compiler which uses the polyhedral 



6776 H. Arabnejad et al.

1 3

model for loop transformations. To evaluate the impact in performance of using 
loop transformations in the parallelization strategy, the proposed AutoPar-
Clava approach is compared with Pluto. Figure   11 presents the obtained 
geomean speedups by these two approaches for all datasets and considering 8 and 
16 threads. Among all benchmarks available, the parallelized output code gen-
erated by Pluto does not pass the verification step for adi, deriche, ludcmp and 
nussinov, which are excluded from Fig. 11.

As shown in Fig.  11, among all 150 combinations of the 25 benchmarks, 3 
dataset sizes and 2 thread configurations, the proposed AutoPar-Clava 
approach could achieve higher performance for 70 cases with a geometric mean 
speedup of 9.01× against 2.59× of Pluto. In the same way, Pluto shows better 
improvements for 80 cases with geometric mean speedup of 7.74× against 2.03× 
of AutoPar-Clava.

The total average AutoPar-Clava improvements achieved for 2mm, 3mm, 
gemm, gemver and gesummv result from fisrprivate array scoping, 4, 6, 2, 9 and 3 
arrays, respectively. For atax, bicg and doitgen, additional improvements are due to 
the identification of an array reduction, which allows to parallelize the outermost 
loop, resulting less overhead. In the case of durbin, the speedup is below 1 due to 
the characteristics of this benchmark. AutoPar-Clava parallelizes 3 inner loops, 
at the same level, that operate over 1-d arrays. The overhead of successive fork/joins 

Fig. 10  Geomean speedups aggregated by dataset size and number of threads for all PolyBench bench-
marks

Fig. 11  Geomean speedups for PolyBench benchmarks achieved by AutoPar-Clava and Pluto
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and the reduced work in each parallel loop result in low performance. At the current 
version, we do not have conditional parallelism in order to avoid this result. Note 
that in this benchmark, Pluto did not achieve any performance improvement.

The benchmarks gramschmidt, heat-3d, jacobi-1d and jacobi-2d have in com-
mon the fact that AutoPar-Clava parallelizes inner loops, being the worse 
results for the first and the third cases due to work over 1-d arrays.

For the benchmarks cholesky, lu, seidel-2d and trisolv, no parallelization is 
performed due to unsolved data dependencies, therefore achieving a speedup of 1.

The improvements for symm result from 2 fisrprivate arrays with the particularity 
of having 3 nested loops being the second loop parallelized. Pluto did not perform 
any parallelization for this case. The benchmark syr2k has more work than syrk, 
and the speedup is slightly higher as well. In these cases, the results of AutoPar-
Clava are due to fisrprivate arrays, 2 and 1, respectively.

The cases where Pluto outperforms substantially AutoPar-Clava, namely 
correlation, covariance and trmm, are due to the fact that AutoPar-Clava per-
formance results from fisrprivate arrays, while Pluto performs loop transformations 
and introduces also vectorization pragmas.

These results show that AutoPar-Clava can achieve good performances 
compared to Pluto and potential for improvement if polyhedral transformations are 
added.

5.2  NAS benchmarks

Figures 12 and 13 show the speedup of the parallelized versions over the sequential 
version for NAS benchmarks achieved by each approach. Since Cetus and TRACO 
could not parallelize any of the NAS examples (i.e., they failed during execution), 
they were excluded from the results.

The manually parallelized OpenMP versions achieve speedups between 2× and 
15× , considering all programs and input sizes. The highest speedups were achieved 
with the BT, CG, EP and FT benchmark programs. This is not surprising, since 
these hand-parallelized versions have several source-code modifications besides the 
OpenMP pragmas, such as the usage of thread-local arrays (i.e., threadprivate 
clause) to save and collect temporary results.

The icc compiler, with both values 0 and 100 for the -par-threshold 
parameter, generally has very consistent performance for the programs EP and IS. 
However, by parallelizing loops when performance gains are predicted based on the 
icc compiler analysis data, i.e., -par-threshold equal to 100, we achieved 
higher performance, in the case of BT, FT, MG, SP and UA, compared to thresh-
old level 0 where icc parallelizes all loops that it identifies as parallelizable. Par-
ticularly, only for SP, ���-par-threshold[100] demonstrates slightly speedUp improve-
ment (maximum up to 2.14× ), and for other benchmark programs (i.e., BT, FT, MG 
and UA) no parallelization is considered as shown in Figs. 12 and 13. The only two 
exceptions are CG and UA programs obtained by ���-par-threshold[0] that parallelizes all 
loops identified as parallelizable, regardless of computation work volume. For CG 
program, ���-par-threshold[0] obtained a significant improvement, as shown in Fig. 12b; 
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the generated binary output file for UA program did not pass the benchmark valida-
tion phase, as shown in Fig. 13c.

The autoPar tool in ROSE compiler does not show significant performance 
improvements in most cases. Among nine programs, the parallelized code gener-
ated by autoPar tool did not pass the validation phase for CG and FT, and they are 
labeled as UNSUCCESSFUL in Figure 12b, d, respectively. In the case of EP, IS and 
MG, it does not demonstrate any performance improvement. Of the remaining four, 

(a) (b)

(c) (d)

(e) (f)

Fig. 12  Geomean speedups of the NAS benchmarks for 8 and 16 threads, and W, A, B problem sizes 
(part 1)
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three programs, BT, LU and SP, show a degradation of performance. In the case of 
UA program, the generated code is compilable, but a runtime Error occurs during 
the program execution.
AutoPar-Clava was able to parallelize all the nine programs in NAS bench-

mark and generated a compilable parallelized version that pass the validation step. 
For two of the programs, BT and EP, it had performances close to icc and slightly 
better in the case of the LU program. However, there is a significant degradation of 
performance for FT program which is caused by two factors: (a) inner loop paral-
lelization; and (b) lower amount of work performed by the parallelized loop in the 
generated output code. In contrast, for three programs, CG, MG and SP, AutoPar-
Clava performed significantly better than icc and close to the parallel hand ver-
sion which is mainly caused by inline functionality provided by our proposed tool 
that improves the accuracy of the analysis phase and increases loop parallelization 
opportunities for outermost for-type loops. By examining the output code generated 
by ROSE, and other approaches, we noticed that they do not consider loops for par-
allelization when the target loop body contains function calls.

(a) (b)

(c)

Fig. 13  Geomean speedups of the NAS benchmarks for 8 and 16 threads, and W, A, B problem sizes 
(part 2)
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One of the main shortcomings of the existing approach is the dependency 
analysis for array variables to which there is a high number of array accesses 
within the target loop, specially after function calls are inlined. As mentioned, in 
Sect. 3.2, loop dependencies are converted into dependency relations in the form 
of Presburger arithmetic and then analyzed by the Omega library. Therefore, a 
high number of dependency relations could not be handled due to Omega mem-
ory limitations to handle them.

To illustrate the results statistically, Fig.  14 presents a boxplot chart of the 
geomean speedups, obtained for NAS benchmark by each approach, as a func-
tion of the number of threads and Class size parameters. As it can be seen, 
AutoPar-Clava obtained a significant better performance compared to other 
auto-parallelization approaches. In conclusion, we improved the SpeedUp and 
also achieved higher values of performance with a wider dispersion in the distri-
bution of the results in comparison to other auto-parallelization tools. Figure 14 
also shows evidence of the large room for improvements, especially considering 
code transformations in parallelization strategies.

5.3  Statistical analysis

To determine the effect of AutoPar-Clava when compared to the other 
approaches, we conducted a two-tailed, paired samples, t − test (with � = 0.05 ) on 
the obtained speedups over the original benchmarks. We found a significant dif-
ference between the results obtained with AutoPar-Clava and the other tested 
approaches, meaning that the improvements observed are highly likely to be due to 
AutoPar-Clava, instead of happening by chance. The test was performed com-
paring our approach against all others, for each combination of number of threads 
and dataset size. The full results of the test can be found in our repository.10

Fig. 14  Geomean speedups for NAS benchmarks, aggregated by 8 and 16 threads, and W, A, B problem 
sizes

10 https ://githu b.com/specs -feup/specs -lara/tree/maste r/Publi catio ns/2019-SC.

https://github.com/specs-feup/specs-lara/tree/master/Publications/2019-SC
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6  Related work

The efficient utilization of modern computer systems requires appropriate use of the 
computing cores available in current processors. Many efforts have been made in 
order to transform sequential code into scalable parallel versions, either automat-
ically or by giving support to the programmer with the required transformations. 
From older efforts (e.g., [22]) toward automatic parallelization, to more recent ones 
(e.g., [27] which presented a system with cognitive properties in order to assist the 
programmers to avoid common OpenMP mistakes), there are still opportunities to 
improve the tools to generated parallel code automatically.

Automatic parallelization frameworks receive the source code as input and gener-
ate the parallelized version annotated by #pragma directives based on the target 
programming model (e.g., OpenMP) to express the potential parallelism of the par-
allelizable regions (e.g., loops) in the code or generate thread-based implementa-
tions using libraries to extend programs with threads (e.g., pthreads). As we mainly 
focus on a source-to-source compiler for automatic parallelization using a directive-
driven programming model, i.e., OpenMP, we select and have a brief discussion on 
the automatic parallelization frameworks targeting OpenMP annotations. In addi-
tion, as our approach is fully based on static analysis, we mainly focus on paralleli-
zation frameworks which are not guided by runtime information acquired from pro-
gram execution or by additional guidance provided by users. Thus, next we briefly 
discuss compilers that perform automatic loop parallelization by static analysis of 
the input source code.

The recent study in [40] provides important and interesting insights regarding the 
most well-known auto-parallelization frameworks. In the following paragraphs, we 
briefly summarize the ones more related to our approach and briefly compare them 
to AutoPar-Clava.

ROSE [38, 39] is an open source compiler, which provides source-to-source 
program transformations and analysis for C, C++ and Fortran applications. ROSE 
provides several optimizations, including auto-parallelization, loop unrolling, loop 
blocking, loop fusion and loop fission. As part of the ROSE compiler, autoPar [25] 
is the automatic parallelization tool used to generate OpenMP parallelized code ver-
sions from sequential code. For array accesses within loops, a Gaussian elimina-
tion algorithm is used to solve a set of linear integer equations of loop induction 
variables.

Pluto [13] is a fully automatic polyhedral source-to-source compiler. It trans-
lates C loop nests into an intermediate polyhedral representation called CLooG [8] 
(Chunky Loop Generator). With the ClooG format [9], the loop structure and its 
data-dependency and memory access pattern are kept, without its symbolic informa-
tion. By using this model, Pluto is able to explicitly model loop tiling and to extract 
coarse-grained parallelism and locality, and finally to transform loops. However, it 
only works on well-behaved specific perfect nested loops that have to be marked in 
the source code using pragmas.
icc [18] supports a number of optimizations, such as variable privatization, 

loop distribution and permutation and includes an auto-parallelization engine that 
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automatically detects loops that can be safely and efficiently executed in parallel and 
generates a multi-threaded version of the input program.

Par4All [2] is an automatic parallelizing and optimizing compiler for C and For-
tran and has backends for OpenMP, OpenCL and CUDA. The automatic transforma-
tion process is based on PIPS (Parallelization Infrastructure for Parallel Systems) 
[21], which is a framework for source-to-source program analysis, optimization and 
parallelization. Par4all does array privatization, reduction variable recognition and 
induction variable substitution. As far as we know, Par4all is not available online 
and that prevented us to include results using Par4all in our analysis.

Cetus [5, 17, 24] is a source-to-source compiler for ANSI C programs. Cetus uses 
static analyses such as scalar and array privatization, reduction variables recogni-
tion, symbolic data dependency testing and induction variable substitution. It uses 
the Banerjee–Wolfe inequalities [45] as a data dependency test framework and also 
contains the range test [11] as an alternative dependency test. Cetus provides auto-
parallelization of loops through private and shared variable analysis and automatic 
insertion of OpenMP directives.

TRACO [32, 33] is a loop parallelization compiler, based on the iteration space 
slicing framework (ISSF) and on the Omega library. Loop dependency analysis is 
performed by means of the Petit [19] tool. TRACO accepts C/C++ code and per-
forms coarse and fine-grained parallelism extraction using loop iteration space slic-
ing, variable privatization and parallel reduction on scalar variables. The output 
code is completed with OpenMP directives.

Our parallelization strategy distinguishes from these approaches in the follow-
ing aspects: (i) it produced functionally correct parallelized output code for all the 
evaluated benchmarks, similarly to the ROSE compiler (see Table 1); (ii) it consid-
ers a wider set of OpenMP scoping; (iii) it is not limited by the input code size, 
as occurred with TRACO and Cetus (see Table 1); (iv) besides reduction for sca-
lar variables, it also supports reduction for arrays and at the array element level; 
and (v) it includes temporary function inlining in order to allow data-dependence 
analysis of loops with function calls. Additionally, as our framework provides users 
with libraries and a programming language (LARA) to easily query, analyze, extract 
source code information, such as variables, loop statements and function structures 
from the AST, and make actions to transform code, it can be easily modified and 
updated, even by non-compiler experts, in order to support more OpenMP features 
and extend/change its parallelization strategy.

7  Conclusion

This paper presented AutoPar-Clava, an automatic parallelization approach for 
the C source-to-source Clava compiler. The compiler is currently focused on par-
allelizing C programs by adding OpenMP directives (mainly parallel-for) and the 
necessary clauses.

The main contributions of our work include the data-dependency analysis on 
array reduction operations and on the support to induction variables, which increases 
the number of candidate parallel loops, leading to better performances than other 
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state-of-the-art compilers, as shown by the experimental results with a representa-
tive number of benchmarks. A second and highly relevant contribution, in compari-
son to other compilers, is its versatile mechanisms to evaluate and add new paralleli-
zation strategies, from the analysis of the programs being compiled to the selection 
and insertion of OpenMP directives and clauses.

The experiments provided show promising results and improvements regarding 
other auto-parallelization compilers when targeting a multicore x86-based platform. 
However, in some cases, AutoPar-Clava achieves a degradation of performance 
which is caused by two factors: (a) inner loop parallelization; and (b) lower amount 
of work performed by the parallelized loop in the generated output code. In both 
cases, making a decision if the parallelization of a loop is beneficial can be deter-
mined by runtime feedback from program execution or by additional guidance pro-
vided from the user.

As future work, we plan to extend the framework with additional parallelization 
strategies (e.g., to deal with task parallelism) and techniques to orchestrate the par-
allelization with code transformations provided by our source-to-source compiler 
(such as loop tiling and loop interchange). One possibility is to extend the frame-
work with polyhedral model approaches. In addition, we intend to research a cost-
based analysis for guiding decisions regarding parallelization.
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