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Abstract
In today’s increasingly international economy, return and volatility spillover effects 
across international equity markets are major macroeconomic drivers of stock 
dynamics. Thus, information regarding foreign markets is one of the most important 
factors in forecasting domestic stock prices. However, the cross-correlation between 
domestic and foreign markets is highly complex. Hence, it is extremely difficult to 
explicitly express this cross-correlation with a dynamical equation. In this study, we 
develop stock return prediction models that can jointly consider international mar-
kets, using multimodal deep learning. Our contributions are threefold: (1) we visu-
alize the transfer information between South Korea and US stock markets by using 
scatter plots; (2) we incorporate the information into the stock prediction models 
with the help of multimodal deep learning; (3) we conclusively demonstrate that 
the early and intermediate fusion models achieve a significant performance boost 
in comparison with the late fusion and single-modality models. Our study indicates 
that jointly considering international stock markets can improve the prediction accu-
racy and deep neural networks are highly effective for such tasks.

Keywords Stock prediction · Deep neural networks · Multimodal · Data fusion · 
International stock markets

1 Introduction

1.1  Aims and scope of the study

The interdependence between international stock markets has been steadily 
increasing in recent years. In particular, after the stock market crash of 1987, the 
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interdependence increased significantly [1], and more recently, this interdependence 
was widely noticed during the global financial crisis of 2007 [2]. Both originated in 
the US and resulted in a sharp decline in the stock prices of international stock mar-
kets, rapidly spreading to other countries. The crisis clearly confirmed that the finan-
cial events originating in one market are not isolated to that particular market but are 
also transmissible across international borders. Currently, this internationalization is 
a common phenomenon and expected to accelerate.

The goal of our study is to investigate the contribution of additional international 
market information in stock prediction by using deep learning. Typically, this inter-
connection has not been considered in stock prediction unlike various data catego-
ries such as country-specific price, macroeconomic, news, and fundamental data. 
We considered the South Korean and US stock markets with non-overlapping stock 
exchange trading hours as a case study and studied the one-day-ahead stock return 
prediction of the South Korean stock market by combining the data of the two mar-
kets. The combination of the markets is particularly fascinating due to their differ-
ent behaviors: the US markets have a long-run upward trend, whereas the South 
Korean markets do not. Therefore, the possible existing correlations between them 
are not just the result of the continued global economic growth. We utilized the daily 
trading data (i.e., opening, high, low, and closing prices) of both markets, which is 
publicly available and quantifies the daily movement of the markets. The publicity 
ensures that our results are more likely to be independent and easily integrated with 
other data, serving as a prototypical model.

We designed multimodal deep learning models to extract cross-market correla-
tions by concatenating features at early, intermediate, and late fusions between 
modalities. The models place a different emphasis on intra- and inter-market cor-
relations depending on the markets to be tested. The experiments showed that the 
early and intermediate fusions achieve better prediction accuracy than the single 
modal prediction and late fusions. This indicates that multimodal deep learning can 
capture cross-correlations from stock prices despite their low signal-to-noise ratio. 
It also indicates that when optimizing prediction models, cross-market learning 
provides opportunities to improve the accuracy of stock prediction, even when the 
shared trends in markets are scarce.

The remainder of this paper is organized as follows. Section  1.2 discusses the 
connections to existing work. Section 2 introduces the US and South Korean (KR) 
international stock markets. Section  3 discusses data and preprocessing methods. 
Section  4 describes a basic architecture for deep neural networks and illustrates 
three prediction models. Section 5 presents information on the training of the deep 
neural networks. Section 6 presents the prediction accuracy of the models and dis-
cusses their capacity. Finally, Sect.  7 presents the concluding remarks and future 
scope of the study.

1.2  Connections with previous studies

Over the past few decades, machine learning techniques, such as artificial neural 
networks (ANNs), genetic algorithms (GAs), support vector machines (SVM), and 
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natural language processing (NLP), have been widely employed to model financial 
data, for example, a genetic classifier designed to control the activation of ANNs [3], 
the genetic algorithms approach to feature discretization in ANNs [4], the wavelet 
de-noising-based ANN [5], wavelet-based ANN [6], and the surveys on sentiment 
analysis [7] and machine learning [8, 9].

Machine learning techniques help to mitigate the difficulties in modeling, such 
as the existence of nonlinear behaviors in financial variables, the non-stationarity 
of relationships among the relevant variables, and a low signal-to-noise ratio. In 
particular, deep learning is becoming a promising technique for modeling finan-
cial complexity, owing to its ability to extract relevant information in complex, 
real-world world data [10], for example, stock prediction based on long short-term 
memory (LSTM) networks [11], deep portfolios based on deep autoencoders [12], 
threshold-based by using recurrent neural networks [13], and deep factor models 
involving deep feed-forward networks [14], and LSTM networks [15].

A major challenge for further research in this area is the simultaneous consid-
eration of the numerous factors in financial data modeling. In the search for factors 
that explain the cross-sectional expected stock returns, numerous potential candi-
dates have been found by using econometric models, for example, accounting data, 
macroeconomic data, and news [16–20]. Stock price predictions that consider a few 
pre-specified factors may lead to incorrect forecasting as they reflect partial informa-
tion or an inefficient combination of the factors. Thus, currently, one of the most 
important tasks in finance is to develop a method that effectively integrates diverse 
factors in prediction processes.

A few recent studies have begun to combine financial data using deep learning. 
Xing et al. [21] dealt with the price, volume, and sentiment data to build a portfo-
lio using LSTM networks. Bao et  al. [22] used trading data (prices and volume), 
technical indicators, and macroeconomic data (exchange and interest rates) to pre-
dict stock prices by combining the wavelet transform (WT), stacked autoencoders 
(SAEs), and LSTMs. The fusion strategy of these studies concatenates the data into 
the input layers, known as an early fusion. However, because hidden layers in such 
approaches are exposed to cross-modality information, it could be more difficult to 
use them specifically to extract the essential intra-modality relations during training. 
In this study, to effectively integrate financial data, we introduce a systematic fusion 
approach, i.e., early, intermediate, and late fusions, by considering the international 
stock markets as a case study.

International market dynamics has been a controversial issue in financial aca-
demia and industries due to the increasing economic globalization. Although stock 
market integration is intuitively obvious in an era of free trade and globalization, 
the underlying mechanisms are highly complex and not easily understood. Finan-
cial economists have developed models for describing The dynamic interdepend-
ency among major world stock exchanges using econometric tools such as vector 
autoregression (VAR) and autoregressive conditional heteroskedastic (ARCH) 
models [23, 24]. They have attempted to find underlying reasons behind the interde-
pendence, providing possible scenarios of mechanisms in terms of deregulation [25, 
26], international business cycles [27], regional affiliations and trade linkages [28], 
and regional economic integration [29]. However, despite the advantage of such 
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approaches in explaining the underlying mechanism, they generally only deal with 
a small number of financial variables, and as a result describe only a partial aspect 
of the complex financial reality, which is actually characterized by multidimensional 
and nonlinear characteristics. Thus, international markets are a good case study for 
the effectiveness of deep learning in financial data fusion. Furthermore, modeling 
international markets is important in practice because investors and portfolio man-
agers need to continually assess international information and adjust their portfolios 
accordingly, in order to take the benefits of portfolio diversification [30].

Technically, we were inspired by the success of the multimodal deep learning 
technique [31–33] in computer science. The main advantage of deep learning is 
the ability to automatically learn hierarchical representations from raw data, which 
can then be extended to cross-modality shared representations at different levels of 
abstraction [31, 33]. Multimodal deep learning has been widely applied to multiple 
channels of communication, such as auditory (words, prosody, dialogue acts, and 
rhetorical structure) and visual (gesture, posture, and graphics), achieving better pre-
diction accuracy than approaches using only single-modality data.

2  International stock markets: US and KR

We consider two international stock markets of South Korea (KR) and the US. They 
are effective cases for studying the spillover effect because the trading time hori-
zons of these markets do not overlap. The US stock market opens at 9:30 a.m and 
closes at 4:00 p.m. (EST time), whereas the KR stock exchange opens at 9:00 a.m. 
and closes at 3:30 p.m. (KST time). The KR market opens three hours after the US 
market closes. Due to the non-overlapping time zones, the closing prices of the US 
market index affect the opening prices of the KR market index and vice versa.

There is significant empirical evidence on the correlative behavior between the 
two markets. Na and Sohn [34] investigated the co-movement between the Korea 
composite stock index (KOSPI) and the world stock market indexes using associa-
tion rules. They found that the KOSPI tends to move in the same direction as the 
stock market indices in the US and Europe, and in the opposite direction to those in 
other East Asian counties, including both Hong Kong and Japan, which have com-
petitive relationships with KR. Jeon and Jang [35] found that the US market plays 
a leading role in the KR stock market by applying the vector autoregression (VAR) 
model to the daily stock prices in both nations. Lee [36] statistically showed a sig-
nificant volatility spillover effect between them.

Overall, the results of previous studies based on traditional financial models and 
primarily linear regression models have consistently demonstrated the existence of 
an interrelationship between the two markets by identifying statistically significant 
explanatory variables. The objective of this study is to capture this interrelationship 
by using multimodal deep learning and utilize it as complementary information for 
stock prediction. Figure 1 shows a schematic diagram of the model that integrates 
the KR and US stock market prices and predicts the KR market. (The neural net-
work will be discussed in detail in Sect. 4.)
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3  Data and preprocessing

3.1  International market indexes

We used the KOSPI (KO) index as a proxy of the KR stock markets and the Stand-
ard and Poor’s 500 (SP), NASDAQ (NA), and Dow Jones Industrial Average (DJ) 
indexes as proxies of the US stock market. The KO is a highly representative index 
of the KR stock markets as it tracks the performance of all common shares listed 
on the KR stock exchange, based on capitalization-weighted schemes. The DJ is 
a price-weighted index composed of 30 large industrial stocks. The SP is a value-
weighted index of 500 leading companies in diverse industries of the US economy. 
The SP index covers 80% of the value of US equities and therefore provides an 
aggregate view of overnight information in the USA. The NA is weighted by capi-
talization of the stocks included in its index and contains stocks in large technology 
firms, such as Cisco, Microsoft, and Intel.

3.2  Raw data

The daily market data for the four indexes are obtained from Yahoo Finance and 
contain daily trading data, such as opening prices (Open), high prices (High), low 
prices (Low), adjusted closing prices (Close), and end-of-day volumes. The data are 
from the period between January 1st, 2006, and December 31st, 2017 (Fig. 2). The 
data from days where either one of the stock markets was closed were excluded from 
our data set.

KR close

EU open

US open

US close

KR open

EU close

03:30 PM

05:30 PM

11:00 PM

03:00 AM

07:00 AM

09:00 AM

Asian markets 
open

10:00 AM

KR close 03:30 PM

Exchange trading hours (KR time) Prediction Model

KO Prediction

Supervised learning 
for one-day-ahead prediction

KR data
U

S data

Fig. 1  Schematic diagram of the model integrating KR and US stock market prices and predicting KR 
market prices
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3.3  Training, validation, and test set

All data are divided into a training dataset (70% ) for developing the prediction mod-
els and test set (30% ) for evaluating its predictive ability. 30% of the training set was 
used as a validation set.

3.4  Feature construction

We seek predictors in order to predict the daily (close-to-close) KO return at time 
t + 1 rt+1 , given the feature vector xt extracted from the trading data available at time 
t. To describe the movement of the indexes, we defined a set of meaningful features 
at time t as follows:

1. Daytime, High-to-Close Return ∶= DHTC⋅

t
=

Hightt−Closet

Closet
,

2. Daytime, Open-to-Close return ∶= DOTC⋅

t
=

Opent−Closet

Closet
,

3. Daytime, Low-to-Close return ∶= DLTC⋅

t
=

Lowt−Closet

Closet
,

4. Overnight, Close-to-Close return ∶= OCTC⋅

t
=

Closet−Closet−1

Closet−1
,

5. Overnight, Open-to-Close return ∶= OOTC⋅

t
=

Opent−Closet−1

Closet−1
.

The features describe the daily movement of stock indexes: DHTC⋅

t
 for the highest 

daytime movement, DLTC⋅

t
 for the lowest daytime movement, DOTC⋅

t
 for the day-

time movement, OOTC⋅

t
 for the opening jump responding to the overnight informa-

tion, and OCTC⋅

t
 for the total movement reflecting all information available at time t.

Let us denote the feature vector for each modality as 
xi
t
= [DHTCi

t
, DOTOi

t
, DLTCi

t
, OCTCi

t
, OOTCi

t
]T , where i ∈ {KO, SP, DJ, NAS} , 

Fig. 2  Normalized KOSPI, S&P500, DAIJ, and NASDAQ indexes over the period from 2006 to 2017 
obtained by subtracting the mean from each original value and dividing by the standard deviation
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and US ∈ {SP,NA,DJ} . An input feature xt for multimodal models at time t is the 
combination of xKO

t
 and xUS

t
 , depending on the multimodal deep learning architec-

ture. Note that we did not include returns across markets, such as SP Close-to-KO 
Close return = CloseSP

t
∕CloseKR

t
− 1 , because they are statistically non-stationary 

at any conventional significance level. In the following, we will use the notation 
OCTCKO

t
 and rt interchangeably to denote the daily close-to-close return on the KO 

index.
To improve the accuracy of the prediction and prevent complications arising from 

convergence during training, we normalized the individual feature into the range 
[min,max] , using the following formula:

where x on the right side represents the normalized value of data x on the right side; 
maxtrain and mintrain denote the maximum and minimum values of data x, respec-
tively; these were estimated using only the training set to avoid look-ahead biases 
and then applied to the validation and test sets.

3.5  Association of the two markets

For an intuitive understanding, we visualize the patterns between the features and 
target by using scatter plots with a regression best-fit line. Figure 3 shows the scat-
ter plots for the pairs of KO features and the one-day-ahead returns. There is an 
extremely weak positive linear association, which is described by the shallow slopes 
of the regression lines from 0.002 to 0.164 and significant variation around the lin-
ear regression lines. As shown in Fig. 4, the scatter plots for the SP features exhibit 
more diverse patterns, i.e., positive as well as negative slopes, with relatively steeper 
slopes from −0.453 to 0.385 and significant variation around the linear regression 
lines. The steeper slopes exhibit a certain extent of a spillover effect from the US 
daytime stock market to the next day KR stock market. This implies that the US and 
KR markets share a certain amount of information. We ultimately intend to capture 
this information by using multimodal deep learning.

4  Multimodal deep learning network model

4.1  Deep neural network

The multimodal deep neural network consists of deep neural networks (DNNs), 
which are a sequence of fully connected layers. The DNN can extract high-level fea-
tures from raw data through statistical learning over a large amount of data to obtain 
an effective representation of input data.

Suppose that we are given a training data set {xt}Tt=1 and a corresponding label 
set {rt}T+1t=2

 , where T denotes the number of days in the period of the training set. 
The DNN consists of an input layer L0 , an output layer Lout , and H hidden layers 

(1)x ⟵
x −mintrain

maxtrain −mintrain
(max −min) +min,
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Fig. 3  Scatter plots of the pairs (KO feature, one-day-ahead KO return) from January 1st, 2006, to 
December 31st, 2017, with a regression line and associated 95% bootstrapped confidence intervals. The 
regression equation is given by DOTCt+1 = �

0
+ �

1
xKR
t

+ � , where �
0
 , �

1
 , and � are the intercept, slope, 

and random disturbance, respectively
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(a) β0 = 0.002, β1 = −0.453 (b) β0 = 0.000, β1 = −0.431

(c) β0 = −0.001, β1 = −0.332 (d) β0 = 0.000, β1 = 0.385

(e) β0 = 0.000, β1 = 0.302

Fig. 4  Scatter plots of the pairs (SP feature, one-day-ahead KO return) from January 1st, 2006, to 
December 31st, 2017, with a regression line and associated 95% confidence interval. The regression 
equation is given by DOTCt+1 = �

0
+ �

1
xSP
t

+ � , where �
0
 , �

1
 , and � are the intercept, slope, and random 

disturbance, respectively
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Lh(h ∈ {1, 2,… ,H}) between the input and output layers. Each hidden layer Lh 
is a set of several units, which could be arranged as a vector a ∈ ℝ

|Lh| , where |Lg| 
denotes the number of units in Lh . The units in Lh are recursively defined as a 
nonlinear transformation of the h − 1-th layer:

where the weight matrix Wh ∈ ℝ
|Lh−1|×|Lh| , the bias vector bh ∈ ℝ

|Lh| , and f (⋅) , 
where the weight matrix Wh ∈ ℝ

|Lh−1|×|Lh| . The nonlinear activation function 
f (⋅) ∶ ℝ

Nl×1 → ℝ
Nl×1 acts entry-wise on its argument and the units a0 in the input 

layer L0 are the feature vectors. According to the daily return regression task, a sin-
gle unit with a linear activation function in the output layer is used in the output 
layer Lout . Then, given the input a0 = xt , the one-day-ahead return prediction r̂⋅

t+1
 is 

given by

where Wout ∈ ℝ
|LH | and aH is the unit in the final hidden layer LH.

4.2  Single and multimodal deep networks for stock prediction

We built the prediction models based on early, intermediate, and late fusion 
frameworks.

Single modal models (baseline) To compare the performance of the fusion models, 
we used four types of single modal models: (1) KO-Only DNN, (2) SP-Only DNN, 
(3) NA-Only DNN, and (4) DJ-Only DNN models (left-hand side of Fig. 5). Their 
training sets {xt} are given by {xKO

t
} , {xSP

t
} , {xNA

t
} , and {xDJ

t
} , respectively.

(2)ah = f (WT
h
ah−1 + bh),

(3)r̂⋅
t+1

= WT
out
aH ,

KO/SP/NA/DJ feature

KO feature SP/NA/DJ feature

Ensemble Fusion

Prediction

Fig. 5  The KO/SP/NA/DJ-Only DNN model is shown in the left figure, where the input feature is given 
by KO/SP/NA/DJ, respectively. The ensemble fusion model is shown in the right figure, where {ŷKO

t+1
} and 

{ŷUS
t+1

} are individually produced from each DNN, and the final predictions {ŷt+1} are obtained using rules
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Early fusion The input feature vectors are simply concatenated together at the 
input layer and then processed together throughout the DNN (left-hand side of 
Fig. 6). The feature vector is given by

where we use [xKO
t

; xUS
t
] to denote the concatenation of the two vectors xKO

t
 and xUS

t
 . 

Although this model is computationally efficient as compared to the other fusion 
models, as it requires a lower number of parameters, it has several drawbacks [37] 
such as overfitting in the case of a small-size training sample and the disregard of 
the specific statistical properties of each modality.

Intermediate fusion Intermediate fusion combines the high-level features learned 
by separate network branches (right-hand side of Fig. 6). The network consists of 
two parts. The first part consists of three independent deep neural networks, i.e., 
DNN1, which extracts features from the input feature {xKO

t
} , DNN2, which extracts 

features from the input feature {xUS
t
} , and DNN3, which fuses the extracted features 

and forecasts returns. The input feature vector of DNN3 is given by

where aDNN1
H

 and aDNN2
H

 are the units of DNN1 and DNN2, respectively. These 
fusions are not exposed to cross-modality information at the raw data level and con-
sequently reveal more intra-modality relationships than the early fusion model.

Late fusion Late fusion refers to the aggregation of decisions from multiple 
predictors (right-hand side of Fig. 5). Let ŷKO

t+1
 and ŷUS

t+1
 be the predictions from the 

individual DNNs. Then, the final prediction is

(4)xt = [xKO
t

; xUS
t
],

(5)a
DNN3
0

= [aDNN1
H

; aDNN2
H

]

KO and SP/NA/DJ features

KO feature SP/NA/DJ feature

DNN 1 DNN 2

DNN 3

Fig. 6  The early fusion model is shown in the left figure, where the input feature is given by the concate-
nation of KO and US features. The intermediate fusion model is shown in the right figure, where the KO 
and US features are fed into DNN1 and DNN2 separately. The extracted features from these two DNNs 
are fused by DNN3 to generate daily return predictions
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where F is a rule combining the individual predictions, such as averaging [38], vot-
ing [39], or learned model [40, 41], to generate the final results. In this study, we 
used the linear rule given by

� is a weight to combine the prediction values from the KO and US data. Here, � is 
a mixing parameter that determines the relative contribution of each modality to the 
combined semantic space. We set � = 0.5 , so that the KO and US sources contribute 
equally to the final prediction results.

All neural networks are trained by minimizing the mean squared error (MSE), 
(1∕N)

∑N

t=1
(r̂t+1 − rt+1)

2 , on the validation set.

Financial implications of fusion at different levels
It would be financially meaningful to distinguish between fusion levels when inter-

national financial markets are combined. The price of domestic stock is commonly 
influenced by foreign events, but the degree of that influence depends on the interna-
tional financial interdependency of the domestic stock market. Developed financial 
markets are likely to be highly exposed to international events and exhibiting high inter-
national correlations. In contrast, underdeveloped markets are likely to be isolated and 
exhibiting low international and high intra-national correlations. Early fusion would 
be more suitable for developed markets in the sense that it can directly capture cross-
correlations between domestic and foreign features in a single concatenation layer. In 
contrast, the intermediate fusion would be more suitable for underdeveloped (or devel-
oping) markets in the sense that domestic features are more likely correlated with each 
other than with external foreign markets.

5  Training

To find the best configuration, we used the tree-structured Parzen estimators (TPE) 
algorithm [42], as one of the Bayesian hyperparameter optimizations, which is capa-
ble of optimizing more hyperparameters simultaneously (Table 1). The hyperparam-
eters include: the number of layers, the number of hidden units per layer, the activation 
function for a layer, the batch size, the optimizer, the learning rate, and the number of 
epochs. We apply the back-propagation algorithm [43, 44] to get the gradient of our 
models, without any pre-training, meaning that deep networks can be trained efficiently 
with ReLU without pre-training [45]). All network weights were initialized using Glo-
rot normal initialization [46].

(6)r̂t+1 = F(r̂KO
t+1

, r̂US
t+1

),

(7)r̂t+1 = 𝜆 × r̂KO
t+1

+ (1 − 𝜆) × r̂US
t+1

,
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5.1  Regularizations

We used three types of regularization methods to control the overfitting of the 
networks and to improve the generalization error, including dropout, early stop-
ping, and batch normalization.

Dropout The basic idea behind dropout is to temporarily remove a certain por-
tion of hidden units from the network during training time, with the dropped units 
being randomly chosen at each and every iteration [49]. This reduces the coad-
aptation of the units, approximates model averaging, and provides a way to com-
bine many different neural networks. In practice, dropout regularization requires 
specifying the dropout rates, which are the probabilities of dropping a neuron. In 
this study, we inserted dropout layers after every hidden layer and performed a 
grid-search over the dropout rates of 0.25, 0.5, and 0.75 to find an optimal drop-
out rate for every architecture (Table 1).

Batch normalization The basic idea of batch normalization (BN) is similar to 
that of data normalization in training data preprocessing [50]. The BN technique 
uses the distribution of the summed input to a neuron over a mini batch of train-
ing cases to compute the mean and variance, which are then used to normalize 
the summed input of that neuron on each training case. There is a lot of evidence 
that the application of batch normalization results in even faster convergence of 
training, increasing the accuracy compared to the same network without batch 
normalization [50].

Early stopping Another approach we used to prevent overfitting is early stopping. 
Early stopping involves freezing the weights of neural networks at the epoch, where 
the validation error is minimal. The DNNs, which were trained with iterative back 
propagation, were able to learn the specific patterns of the training set after every 
epoch, instead of the general patterns, and begun to over-fit at a certain point. To 

Table 1  List of hyperparameters and their corresponding range of values

Number of layers number of the layers of the (each branch) neural networks. Number of hidden units 
number of units in the hidden layers of the neural network. Dropout dropout rates. Bath size number 
of samples per batch. Activation sigmoid function �(z) = 1∕(1 + e

−z) , hyperbolic tangent function 
tanh(z) = (ez − e

−z)∕(ez − e
−z) , and rectified linear unit (ReLU) function ReLU(z) = max(0, z) . Learning 

rate learning rate of the back-propagation algorithm. The number of epochs number of iterations over 
all the training data. Optimizer stochastic gradient descent (SGD) [47], RMSProp [48], and ADAM [47]

Hyperparameter Considered values/functions

Number of hidden layers {2, 3}
Number of hidden units {2, 4, 8, 16}
Dropout {0.25, 0.5, 0.75}
Batch size {32, 64, 128}
Optimizer {RMSProp, ADAM, SGD (no momentum)}
Activation function Hidden layer: {tanh, ReLU, sigmoid}, 

output layer: linear
Learning rate {0.001}
Number of epochs {100}
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avoid this problem, the DNNs were trained only with the training set, and the train-
ing was stopped if the validation MSE ceased to decrease for 10epochs.

6  Experiments

6.1  Evaluation metric

It is often observed that the performance of stock prediction models depends on 
the window size used. To make the evaluation task more robust, we conducted 
experiments over three different windows: (1) Expt. 1 from 01-Jan-2006 to 31-Dec-
2017; Expt. 2 from 01-Jan-2010 to 31-Dec-2017; and Expt. 3 from 01-Jan-2014 to 
31-Dec-2017.

After obtaining the predictions for the test data, they were denormalized using 
the inverse formula of Eq. (1). Hereafter, r̂t denotes the denormalized prediction. 
Given a test set {xKO

t
, xUS

t
}T
t=1

 and a corresponding level {rt}T+1t=2
 , where T denotes the 

number of days in the test sample. We evaluate the prediction performance using the 
MSE and the hit ratio defined as follows:

where Pt is the directional movement of the prediction on the tth trading day, defined 
as:

6.2  Daily strategies as baselines

To evaluate the single and fusion models, we examined the hit ratios for the three 
regular rules:

• Momentum-based prediction-I If the KOSPI index rises (falls) today, it predicts 
that the KOSPI index will rise (fall) tomorrow too.

• Momentum-based prediction-II If the S&P500 index rises (falls) today, it pre-
dicts that the KOSPI index will rise (fall) tomorrow too.

• Buy and holding strategy Based on positive historical returns, it predicts that the 
KOSPI index of the next day will rise.

Table 2 shows that the momentum-based prediction-II is the most accurate of the 
three rules, exhibiting hit ratios of 0.562, 0.558, and 0.536 for Expt. 1, Expt. 2, and 
Expt. 3, respectively.

(8)Hit ratio =
1

T

T∑

t=1

Pt,

Pt =

{
1 if r̂t+1 ⋅ rt+1 > 0 (i.e., correct directional prediction),

0 otherwise (i.e., incorrect directional prediction).
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6.3  Results

We present the prediction results obtained with the fusion models for the pairs of 
KO and SP features (Table 3), the KO and NA features (Table 4), and the KO and DJ 
features (Table 5), along with those of non-fusion models for each of the country-
specific features as a baseline model. To remove potentially undesirable variances 
that arise from parameters having different min–max ranges, we also conducted the 
experiments with three distinct ranges [−1, 1] , [0, 1], and [−0.5, 0.5] . The main find-
ings are follows:

Early versus intermediate fusion For the fusion of the KO and SP fea-
tures (Table  3), the mean hit ratio (directional prediction) of the early fusion 
( 0.606 ± 0.011 ) is slightly higher or comparable to that of the intermediate 
fusion ( 0.597 ± 0.029 ). For the fusion of the KO and NA features (Table  4), 
the hit ratio of early fusion ( 0.584 ± 0.019 ) is slightly lower or comparable to 
that of the intermediate fusion ( 0.595 ± 0.013 ). For the fusion of the KO and 
DJ features (Table 5), the hit ratio of the early fusion ( 0.585 ± 0.027 ) is slightly 

Table 2  Hit ratios of the three 
regular rules

Expt. no Momentum-based 
prediction-I

Momentum-based 
prediction-II

Buy and hold

1 0.484 0.562 0.549
2 0.492 0.558 0.534
3 0.488 0.536 0.523

Table 3  Hit ratio (MSE×10−5 ) measure for Expts. 1–3 for the KO and SP data

The value in bold is the best hit ratio (MSE) value in each row

Scaling Non-fusion Multimodal fusion

KO-only DNN SP-only DNN Late Early Intermediate

Expt. 1
[ − 1, 1] 0.490 (5.257) 0.499 (5.268) 0.513 (5.26) 0.609 (4.781) 0.599 (4.989)
[0, 1] 0.526 (5.284) 0.506 (8.787) 0.514 (6.011) 0.612 (4.630) 0.592 (0.480)
[ − 0.5, 0.5] 0.519 (5.622) 0.500 (7.590) 0.501 (5.851) 0.607 (0.463) 0.608 (4.820)

Expt. 2
[ − 1, 1] 0.505 (5.726) 4.755 (6.199) 0.479 (5.852) 0.613 (4.951) 0.617 (5.091)
[0, 1] 0.487 (5.717) 4.755 (6.343) 0.470 (5.917) 0.615 (5.054) 0.587 (5.193)
[ − 0.5, 0.5] 0.484 (5.716) 4.755 (6.437) 0.477 (5.933) 0.590 (4.982) 0.648 (5.048)

Expt. 3
[ − 1, 1] 0.552 (3.895) 0.549 (3.902) 0.549 (3.891) 0.602 (3.601) 0.609 (3.629)
[0, 1] 0.464 (4.004) 0.507 (4.558) 0.500 (4.132) 0.619 (3.680) 0.545 (3.890)
[ − 0.5, 0.5] 0.468 (3.991) 0.482 (4.877) 0.496 (4.251) 0.584 (3.676) 0.570 (3.700)
Mean ± SD 0.499 ± 0.028 0.496  ± 0.023 0.499 ± 0.024 0.606±0.011 0.597 ± 0.029
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lower or comparable to that of the intermediate fusion ( 0.600 ± 0.022 ). Thus, 
the performance of the two fusion approaches is comparable overall, which is 
consistent over the different window sizes and the min–max ranges. In terms 

Table 4  Hit ratio (MSE×10−5 ) measure for Expts. 1–3 for the KO and NA data

The value in bold is the best hit ratio (MSE) value in each row

Scaling Non-fusion Multimodal fusion

KO-only DNN NA-only DNN Late Early Intermediate

Expt. 1
[ − 1, 1] 0.490 (5.257) 0.518 (5.290) 0.500 (5.275) 0.598 (4.774) 0.600 (4.586)
[0, 1] 0.526 (5.284) 0.500 (6.699) 0.504 (5.571) 0.594 (4.479) 0.596 (0.478)
[ − 0.5, 0.5] 0.519 (5.262) 0.509 (9.565) 0.508 (6.351) 0.592 (0.467) 0.605 (5.048)

Expt. 2
[ − 1, 1] 0.505 (5.726) 0.484 (6.090) 0.482 (5.823) 0.608 (5.218) 0.597 (5.178)
[0, 1] 0.487 (5.717) 0.480 (6.061) 0.486 (5.826) 0.597 (5.071) 0.613 (5.122)
[ − 0.5, 0.5] 0.484 (5.716) 0.475 (6.162) 0.475 (5.841) 0.580 (5.196) 0.573 (5.221)

Expt. 3
[ − 1, 1] 0.552 (3.895) 0.549 (3.908) 0.549 (3.901) 0.556 (3.624) 0.605 (3.690)
[0, 1] 0.464 (4.004) 0.471 (4.521) 0.496 (4.962) 0.552 (3.710) 0.573 (3.693)
[ − 0.5, 0.5] 0.468 (3.991) 0.489 (4.810) 0.489 (4.244) 0.584 (3.648) 0.599 (3.764)
Mean ± SD 0.499 ± 0.028 0.497 ± 0.024 0.498 ± 0.021 0.584 ± 0.019 0.595±0.013

Table 5  Hit ratio (MSE×10−5 ) measure for Expts. 1–3 for the KO and DJ data

The value in bold is the best hit ratio (MSE) value in each row

Scaling Non-fusion Multimodal fusion

KO-only DNN DJ-only DNN Late Early Intermediate

Expt. 1
[ − 1, 1] 0.490 (5.257) 0.518 (5.263) 0.515 (5.253) 0.598 (4.774) 0.623 (4.987)
[0, 1] 0.526 (5.284) 0.521 (10.360) 0.523 (7.186) 0.607 (4.861) 0.617 (5.539)
[ − 0.5, 0.5] 0.519 (5.262) 0.483 (0.701) 0.488 (5.698) 0.610 (0.517) 0.609 (5.748)

Expt. 2
[ − 1, 1] 0.505 (5.726) 0.473 (6.241) 0.473 (5.861) 0.603 (5.219) 0.606 (5.287)
[0, 1] 0.487 (5.717) 0.475 (6.076) 0.482 (0.582) 0.601 (5.161) 0.613 (5.122)
[ − 0.5, 0.5] 0.484 (5.716) 0.473 (6.465) 0.472 (5.892) 0.592 (5.326) 0.617 (5.694)

Expt. 3
[ − 1, 1] 0.552 (3.895) 0.549 (3.906) 0.549 (3.902) 0.577 (3.825) 0.580 (4.015)
[0, 1] 0.464 (4.004) 0.482 (4.514) 0.482 (4.093) 0.538 (3.933) 0.556 (3.890)
[ − 0.5, 0.5] 0.468 (3.991) 0.461 (4.693) 0.482 (4.171) 0.542 (3.878) 0.584 (4.015)
Mean ± SD 0.499 ± 0.028 0.492  ± 0.029 0.496 ± 0.026 0.585 ± 0.027 0.600±0.022
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of computational efficiency, the early fusion model is more attractive due to its 
lower number of parameters compared to the intermediate fusion model.

Single versus multimodality The overall hit ratio of the single modal mod-
els is about 0.49: 0.499 ± 0.028 for the KO-Only DNN, 0.496 ± 0.023 for the 
SP-Only DNN (Table  3), 0.497 ± 0.024 for the NA-Only DNN (Table  4), and 
0.492 ± 0.029 for the DJ-only DNN (Table 5). Interestingly, the performances are 
slightly worse than the momentum-based prediction-II (approximately 0.55) and 
the buy and hold strategy (approximately 0.53). The hit ratios of the late fusion 
are 0.499 ± 0.024 for the KO and SP fusion, 0.498 ± 0.021 for the KO and NA 
fusion, and 0.496 ± 0.026 for the KO and DJ fusion, which are lower than those of 
the early and intermediate fusions. These results show that the parameters of the 
two modalities need to be estimated jointly. The poor performance of the single-
modality models clearly emphasizes the importance of multimodal integration to 
leverage the complementarity of stock data and provides more robust predictions.

7  Discussion and conclusion

We developed stock prediction models that combine information from the South 
Korean and US stock markets by using multimodal deep learning. We exploited 
DNN as a branch of deep learning to take advantage of its strong capability in 
nonlinear modeling and designed three types of architectures to capture the cross-
modal correlation at different levels. Experimental results show that the early and 
intermediate fusion models predict stock returns more accurately than the sin-
gle modal and late fusion models, which do not consider cross-modal correlation 
in their predictions. This indicates that joint optimization can effectively capture 
complementary information between the markets and assist in the improvement 
in stock predictions.

This study has a few limitations. First, we examined three different time periods 
of 2006–2017, 2010–2017, and 2014–2017. Over these periods, the early and inter-
mediate fusion model consistently outperformed the regular rule-based prediction 
and late fusion models, in terms of accuracy. However, the sample sizes of the pre-
sent study are relatively small, and the performance of the models may vary based 
on the period and depending on the globalization level of the stock markets. Second, 
the information of international markets is limited to trading data.

Future works will focus on two aspects. First, we plan to include more diverse 
information sources such as fundamental data and sentiment indexes. The stock 
prices are determined by the supply and demand of the stocks, which occurs due 
to various information inputs. Thus, integrating more diverse data would lead to an 
improvement in the reliability of stock prediction. Second, we plan to analyze the 
prediction results by using explainable machine learning techniques. Understanding 
and interpreting prediction models are crucial in financial fields.
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