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Abstract
The performance of classifiers has a direct impact on the effectiveness of intrusion 
detection system. Thus, most researchers aim to improve the detection performance 
of classifiers. However, classifiers can only get limited useful information from the 
limited number of labeled training samples, which usually affects the generaliza-
tion of classifiers. In order to enhance the network intrusion detection classifiers, 
we resort to adversarial training, and a novel supervised learning framework using 
generative adversarial network for improving the performance of the classifier is 
proposed in this paper. The generative model in our framework is utilized to con-
tinuously generate other complementary labeled samples for adversarial training 
and assist the classifier for classification, while the classifier in our framework is 
used to identify different categories. Meanwhile, the loss function is deduced again, 
and several empirical training strategies are proposed to improve the stabilization 
of the supervised learning framework. Experimental results prove that the classifier 
via adversarial training improves the performance indicators of intrusion detection. 
The proposed framework provides a feasible method to enhance the performance 
and generalization of the classifier.
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1 Introduction

Intrusion detection, as a kind of multilevel and multilayer network protection meas-
ure, aims to detect various intrusion behaviors by collecting and analyzing all kinds 
of information on the network. In fact, intrusion detection is usually equivalent to a 
classification problem. It identifies whether network traffic behaviors are normal or 
any one of the other four attack types: Denial of Service (DoS), Probe, Root to Local 
(R2L) and User to Root (U2R) [1, 2]. Then, it sets the alarm and takes appropri-
ate measures. Therefore, there is no doubt that constructing a suitable classifier and 
training it to improve its generalization is the key task of intrusion detection.

Several machine learning methods, including support vector machine (SVM) [3, 
4], artificial neural network (ANN) [5, 6], K-nearest neighbors (KNN) [7, 8], ran-
dom forest (RF) [9] and others [10, 11], have been implemented as classifiers to 
improve the performance of intrusion detection and have made good progress. How-
ever, previous works based on traditional machine learning methodologies, which 
belong to shallow learning algorithms, have a limited ability to represent complex 
functions for complex classification problems [12].

More recently, with the development of deep learning, more and more research-
ers have explored deep learning methods to enhance the performance of classifiers 
for intrusion detection, and have also achieved remarkable results. Compared with 
traditional machine learning algorithms, deep learning methods are adept in repre-
senting high-dimensional spatial features and can automatically learn the intrinsic 
features without feature engineering [13]. The experiments demonstrated deep net-
works significantly outperformed the shallow network in detection of attacks [12].

However, in practice, whether classifiers for intrusion detection are based on 
traditional machine learning or based on deep learning methods, the detection 
effectiveness is highly dependent on the number of samples for training. After all, 
in the supervised learning, classifiers can only get limited useful information from 
the limited number of labeled samples, which usually affects the generalization 
of classifiers. The best way to make a machine learning model generalize better 
is to train it on more data. Data augmentation allows more data to be generated 
from limited data, increasing the number and diversity of training samples. Train-
ing samples supplements can reduce the model’s dependence on certain attrib-
utes, thereby improving the generalization ability of the model. Unfortunately, it 
is difficult to generate new fake data for a density estimation task unless we have 
already solved the density estimation problem [14]. In addition, it is expensive 
and time-consuming for labeling large training datasets. It is sometimes impossi-
ble due to emerging and fast evolving intrusion attacks, which makes those prob-
lems particularly severe. Generative adversarial networks (GANs) can learn the 
probability distribution of dataset, and try to generate new ‘fake’ samples similar 
to data samples. Since GANs introduce interaction in the training stage (which is 
equivalent to adding a kind of ‘fake’ labeled samples relative to original data sam-
ples), GANs can expand the labeled data and give more useful information on the 
basis of the training set. In fact, as a semi-supervised model, GANs enhance the 
effectiveness of image recognition [15], anomaly detection [16], imaging markers 
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[17], etc. Since GANs are suited to model the high-dimensional complex distri-
butions of real-world data [18], it is reasonably straightforward to utilize them to 
offer more useful information to improve the generalization of classifiers. Several 
works have begun to explore the applications of GANs for anomaly detection. As 
far as we know, there are three types of application methods to apply GAN for 
intrusion detection.

With the purpose of generating adversarial attacks to evade the intrusion detec-
tion system, authors applied GAN to generate adversarial malicious examples to 
perform the black-box attacks. The experiments showed many intrusion detection 
systems were vulnerable to adversarial perturbations using GAN [19, 20]. A frame-
work based on GAN generated DoS attack traffic similar to the normal traffic to 
evade network traffic classifiers [21]. Obviously, our research goal in this paper is 
to enhance the performance of the classifier for intrusion detection rather than to 
obtain the generated attacks to evade the intrusion detection system.

With the purpose of balancing previously unbalanced datasets, a framework 
based on GAN was proposed to generate data that captured the data distribution of 
selected attack types from the dataset. As a result, the framework was feasible for 
improving the performance of intrusion detection systems [22]. With the same pur-
pose to address the challenges of both data scarcity and data imbalance, a frame-
work was developed to incorporate deep adversarial learning with statistical learn-
ing. Experiments indicated that the proposed framework outperformed other models 
[23]. Indeed, the problem of unbalanced classification in the training set leads to a 
decline in the detection performance for intrusion detection, which results in a large 
bias of the classifier, and the prediction of the classifier tends to be the majority in 
the dataset. The above methods are essential to train the GAN model to learn the 
distribution of minority status, and oversampling samples to balance the training set. 
At last, they change the inter-class distribution in the training set. In this paper, we 
leverage GAN to generate new label data. It is equivalent to adding other new cat-
egory of data to the training set rather than changing the number of other categories, 
and fundamentally different from those oversampling methods. It does not need to 
train each class separately, the training process is more simplified, and the training 
time and overhead are certainly decreased.

With the purpose of identifying anomaly attacks, in [16], authors developed 
GAN-based models for anomaly detection, and achieved good results on image and 
network intrusion datasets for binary classification. Compared with those methods, 
the application scenario in this paper is different. The above methods mainly use 
GANs for binary classification. The discriminant model of GAN itself is a binary 
classifier to judge the real or fake for input data, which is very similar to the anom-
aly detection. Therefore, GANs can easily be extended to the application scenario of 
binary classification. However, in the multiclass classification scenario, the multi-
class classifier not only needs to judge the anomaly, but also needs to further judge 
the category of anomaly.

Inspired by the above reasoning, in this paper, we restrict our focus to complement 
the labeled samples via adversarial training, and augment the training set. Specifi-
cally, in the training phase, because the generative model G is continually generating 
‘fake’ samples to offer the classifier C with useful information (which enhances the 
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classification performance of the classifier C), the ID-GAN framework improves the 
generalization of the classifier.

As far as we know, we first propose the supervised learning framework based on 
GAN for intrusion detection (ID-GAN) under the multiclass classification task. Experi-
mental results show that the ID-GAN framework improves the performance of clas-
sifiers by using complementary and helpful information by adversarial training. The 
framework can effectively enhance the generalization of the classifier and can improve 
the effectiveness of intrusion detection in a series of adversarial rounds, which achieves 
state-of-the-art results on the benchmark NSL-KDD dataset.

The main contributions in this paper are embodied in overcoming the following 
challenges.

1. The discriminative model D in the original GAN is a binary classifier, so it only 
can be used to judge whether the sample is from the real dataset or not. It does not 
have ability to further predict the classification of real samples. Hence, a novel 
supervised learning framework based on GAN for the multiclass classification is 
proposed in the paper.

2. Because the structure of the proposed framework is different from the original 
GAN, it is necessary to deduce the loss function again for the supervised learn-
ing according to the needs of the multiclass classification for intrusion detection. 
Therefore, we show the theoretical derivation of the loss function.

3. Unlike the original GAN and its variants, the purpose of the proposed framework 
is to train a multiclass model with enhanced performance rather than a generative 
model. Therefore, the training method of the framework is different from that of 
the original GAN and its variants, and how to train the proposed framework needs 
to be studied. Several empirical strategies are proposed to improve the stabiliza-
tion of the framework.

4. Aiming at the problem of experimental verification, we compare the performance 
of the original classifier with that of the enhanced classifier via adversarial train-
ing on the benchmark NSL-KDD dataset for the multiclass classification, and 
show the graphical depiction in detail on how to enhance the classifier with the 
help of the proposed framework.

The remainder of the paper is organized as follows. Section 2 introduces the lat-
est research progress in the field of intrusion detection, especially application research 
using deep learning in this area. We detail the original GANs and its variants in Sect. 3. 
Section 4 introduces our method and describes how to construct the supervised learn-
ing framework. The experimental configuration and evaluation criteria are shown in 
Sect. 5. Section 6 reveals how to train the proposed framework, and the experimental 
results and discussion are presented in Sect. 7. Finally, conclusion and future work are 
drawn.
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2  Related work

Significant progress has been made in improving the performance of classifiers in 
the field of intrusion detection.

To improve the accuracy of decision tree (DT) and naïve Bayes (NB) classifi-
ers for multiclass classification, two independent hybrid mining algorithms were 
presented [24]. Hybrid DT algorithm utilized a NB classifier to avoid overfitting, 
while Hybrid NB algorithm employed a DT classifier to select important features 
to improve efficiency. Kanakarajan, Muniasamy [25] introduced greedy randomized 
adaptive search procedure with annealed randomness—Forest (GAR-forest), to 
improve the performance of multiclass classification with feature selection. Experi-
mental results showed that GAR-forest performed better for multiclass classification 
problem compared with random forest, C4.5, naive Bayes and multilayer perceptron.

Some researchers reduce the high dimensions and feature space by removing 
redundant or unimportant features to further improve the performance of the classi-
fier. Kuang et al. [26] reduced the high-dimensional data using hybrid kernel prin-
cipal component analysis (KPCA) and then utilized the SVM for intrusion detec-
tion. Ikram, Cherukuri [27] studied the integrating of principal component analysis 
(PCA) and SVM for abnormal recognition. The above research reduces the dimen-
sions of the input feature space in the intrusion detection system, which effectively 
improves the overall performance of the classification. Nevertheless, PCA suffers 
from the fact that it is a linear combination of all the original variables. Thus, it 
often cannot obtain deterministic mappings from high-dimensional spaces to low-
dimensional spaces [28]. Furthermore, its nonlinear extension KPCA suffers from 
two major disadvantages. First, the underlying manifold structure of data is not con-
sidered in process modeling. Second, the selection of the kernel function and kernel 
parameters is always problematic [29].

More recently, deep learning is one of the most effective machine learning tech-
niques which is getting popular, and has gained a wide range of applications in the 
intrusion detection community. The researchers take advantage of generative models 
such as deep autoencoder (DAE), deep Boltzmann machine (DBMs) and deep belief 
networks (DBNs) in a pre-training stage (unsupervised learning) to improve the 
detection performance. During this process, each of the lower layers is separately 
trained from other layers, which allows other layers to be greedily trained layer by 
layer from the bottom up [12, 30]. Furthermore, the final prediction and classifica-
tion are carried out by traditional machine learning algorithms such as SVM or Soft-
Max, which avoids manual intervention to select features and can effectively repre-
sent high-dimensional features.

Abolhasanzadeh [31] proposed an approach to detect attacks in big data using 
DAE based on dimensionality reduction and the neural network bottleneck feature 
extraction. The results in terms of accuracy rate outperformed PCA, factor analysis 
and KPCA.

Gao et  al. [32] successfully exploited a classifier based on DBN for intrusion 
detection, and concluded that the classifier achieved a high accuracy when the 
greedy layer-by-layer learning algorithm was used for pre-train.
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For optimizing the basic network structure of the DBN classification model in 
intrusion detection system, Wei et  al. [33] designed an artificial fish swarm algo-
rithm optimization particle swarm optimization joint genetic algorithm optimization 
particle swarm optimization algorithm (AFSA-GA-PSO). In order to optimize DBN 
model, the framework based on the above algorithm (AFSA-GA-PSO-DBN) was 
proposed and tested for multiclass classification. Compared with the machine learn-
ing model with superior performance such as SVM, random forest and naive Bayes, 
the framework improved the average classification accuracy.

Potluri et  al. [34] applied the convolutional neural networks (CNNs) for intru-
sion detection with the purpose of identifying the multiple attack classes. Different 
performance metrics such as precision, recall and F-measure were calculated and 
compared with the existing deep learning approaches.

Javaid et al. [35] proposed a deep learning method based on self-taught learning 
(STL), and improved the performance of network intrusion detection for multiclass 
classification.

However, the DAE, DBNs and DBMs algorithms have the difficulties of an 
intractable partition function or an intractable posterior distribution. Therefore, they 
are typically only used for pre-training a classification network [36].

Generative adversarial networks are another type of deep generative model. Dif-
ferent from other generative models, GANs incorporate the adversarial idea and 
allow for interaction during training. It is a great potential model to be applied and 
popularized for many actual scenarios. In the past 2  years, there have been hun-
dreds of GAN variants. In terms of GANs as a semi-supervised model [37, 38], the 
authors extended GAN to semi-supervised model in image classification to enhance 
the robustness of unsupervised learning models.

Several works have begun to explore the applications of GANs for the anomaly 
detection task. A semi-supervised model based on GAN, consisting of two genera-
tors, three discriminators and one classifier, was proposed for detection anomalies 
in communication packet streams [39]. The approach was effective for packet flow 
binary classification.

In [16], authors developed GAN-based models for anomaly detection, and 
achieved good results on image and network intrusion datasets for binary classifica-
tion. However, the variant of GANs belongs to unsupervised learning, which is only 
leveraged for anomaly detection, and is incompetent for multiclass classification.

Different from the above variants, in this paper, we develop a novel framework 
based on GAN, propose the supervised learning approach for multiclass classifica-
tion, and suggest several empirical techniques for the framework training.

3  Generative adversarial networks

Generative adversarial networks [40] belong to one of the deep learning frameworks 
first proposed by Ian J. Goodfellow in 2014. This idea is sought after by academ-
ics in various fields of study, and it shows broad application prospects in imaging, 
visual computing and other fields.
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Generally, a standard framework of GANs consists of a generative model G and a 
discriminative model D. During the training of GANs, the samples (which are called 
as ‘fake’ samples or generated samples) generated by the generative model G and 
the real data samples are mixed, and then randomly transmitted to the discriminative 
model D. The goal of the discriminative model D (which is equivalent to a binary 
classifier) is to identify the real data samples and the generated samples as accu-
rately as possible. Meanwhile, the goal of the generative model G is the opposite of 
the discriminant model, which is to deceive the discriminative model D as much as 
possible and minimize the probability that the discriminative model D identifies the 
generated sample. Both sides are constantly optimizing themselves during training 
until they reach the equilibrium where neither side can improve and the generated 
sample is completely indistinguishable from the real data sample.

In summary, the original GAN contains a generative model G and a discrimina-
tive model D. G is used to capture the distribution of the dataset and generate simi-
lar samples, while D is a discriminator that determines whether the input is a data 
sample or a generated sample. The basic framework of the original GAN is shown 
in Fig. 1.

The generative model G takes a noise distribution p(z) (usually a Gaussian distri-
bution or uniform distribution) as an input and produces fake samples G(z). Mean-
while, the discriminative model D identifies whether a sample comes from the data 
distribution p(x) or the generated samples G(z). The loss function of GANs can be 
defined as the following optimization problem [40]:

Equation  (1) shows that in the training process of GANs, the discriminative 
model needs to be constantly revised to maximize the value of V, that is, to max-
imize D(x) and minimize D(G(z)). Meanwhile, it is necessary to revise model G 
to minimize the value of V. In other words, by maximizing D(G(z)), the generative 
model tries to generate samples that are very similar to the data samples. Finally, 
both G and D reach the Nash equilibrium. The generative model G can estimate the 
probability distribution of the real data samples. Meanwhile, the detection accuracy 

(1)min
G

max
D

V(D,G) = Ex∼Pdata

[
logD(x)

]
+ Ez∼Pz

(z)
[
log (1 − D(G(z)))

]

data samples ?

data  

samples p(x) 

generated 

samples G(z) Real data set Discriminative 
Model D

Generative 
Model G

Yes or No 

Noise p(z) 

Fig. 1  The framework of original GAN
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of the determinative model D is equal to 50%, which makes it difficult to identify 
whether the data sample is real or fake.

Additionally, GANs can be applied in semi-supervised learning. In an original 
GAN, the discriminator is a binary classifier that identifies the authenticity of sam-
ples. Considering a K-class task, the output of the generator can be classified as 
K+1, and the corresponding discriminator becomes a (K+1)-category classification 
problem [15]. The advantage of this kind of processing is that it can make full use of 
unlabeled data to learn the probability distribution of real data samples and thus aid 
the training process of supervised learning.

Let Pmodel(y = K+1|x) denote the probability that x is a generated sample, which 
corresponds to 1 − D(x) in the original GAN framework. Assuming that the dataset 
consists of real data and some generated samples, the loss function for training the 
classifier then becomes Eq.  (2), which can be divided into two parts for different 
data sources. For labeled data samples, Lsupervised stands for the negative log prob-
ability of the labeled sample, given that the sample is from the real data. The goal is 
to expect the discriminative model to output the correct label on the real data distri-
bution Pdata(x, y). For an unsupervised loss Lunsupervised, the loss function is defined 
by GANs. This is in fact the standard GAN game-value that becomes evident when 
we substitute D(x) = 1 − Pmodel(y = K+1|x) in Eq. (3) [15].

4  Proposed methodologies

4.1  The supervised learning framework using adversarial training for intrusion 
detection

A standard multiclass classifier for intrusion detection usually takes a sample x as 
input, and outputs a 5-dimensional vector (lnormal, lprobe, ldos, lr2l, lu2r) that can be 
turned into one of the five possible class probabilities by applying the softmax func-
tion. In the supervised learning, such a model is then trained by minimizing the 
cross-entropy between the real labels and the predictive distribution Pmodel(y|x) to 
obtain the optimal parameters.

As stated before, the two core models in a GAN are the generative model G and 
the discriminative model D. D as a binary classifier only has ability to judge whether 
the sample is from the real dataset or not. It does not have ability to further predict 

(2)

L = −Ex,y∼Pdata(x,y)

[
logPmodel(y|x)

]
− Ex∼G

[
logPmodel(y = K + 1|x)

]

= Lsupervised + Lunsupervised, where

Lsuperviesed = −Ex,y∼pdata
(x, y) logPmodel(y|x, y < K + 1), and

Lunsuperviesed = −{Ex∼pdata
(x) log

[
1 − Pmodel(y = K + 1|x)

]

+ Ex∼Glog[Pmodel(y = K + 1|x)]}

(3)Lunsuperviesed = −Ex∼Pdata(x)
logD(x) − Ez∼noise log(1 − D(G(Z)))
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the classification of real data samples. Additionally, most of classifiers for intru-
sion detection usually belong to the supervised learning, so we need to reconstruct a 
supervised learning framework based on GAN.

In order to supply more information for the multiclass classifier C, we take the 
output of the generative model C as the input of the classifier C together with the 
original training set.

To improve the efficiency of the framework and further simplify the framework, 
we replace the discriminative model D with a multiclass classifier C. In this way, the 
classifier C not only undertakes the task of classification for the training set, but also 
serves as the role of the discriminative model D to determine whether the sample 
is from the generative model G or the real dataset. We regard the output of the gen-
erative model G as the ‘fake’ category, and the corresponding multiclass classifier 
becomes a 6-category classifier. Therefore, the original GAN is transformed into a 
supervised learning framework for intrusion detection, as shown in Fig. 2. First, the 
framework needs to train the classifier through adversarial training, as indicated by 
the green arrow. Second, the blue arrow represents the framework inputs the test 
samples into the trained classifier for multiclass classification.

After the introduction of adversarial training for intrusion detection, the generative 
model can continually generate ‘fake’ samples from a random distribution p(z). In the 
adversarial training, the multiclass classifier identifies whether the sample is Normal, 
or fake, or any one of the other four attack types: DoS, Probe, R2L and U2R, while 
the generative model dynamically adjusts the strategy for generating more similar fake 
samples according to the feedback (fake or real) from the multiclass classifier. Thus, 
the framework can train the classifier together with new augmented training set, which 

(xl, yl)

 (xf, yf)

Training
set

Multiclass 
Classifier 

Generative
Model 

Softmax 

Noise p(z) 

Softmax 

Test set 

Normal Dos Probe R2L  U2R 

Real, l=Normal

Real, l =Dos 

Real, l =Probe 

Real, l = R2L  

Real, l = U2R  

Fake

Fig. 2  The framework of ID-GAN
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includes original five-category labeled samples and constantly generated new ‘fake’ 
samples.

For example, originally, only a professor (similar to the classifier) trained stu-
dents to recognize and classify five languages (Russian, English, Arabic, French and 
German). An assistant professor (similar to the generative model) is added to train 
the students to recognize whether it belongs to five languages or not. Although the 
supplementary assistant professor does not directly teach students how to identify 
and classify the five types of languages, the practice of distinguishing ‘whether it 
belongs to five languages’ is also helpful for classification and recognition of lan-
guages. There are rough feedbacks, which are better than no feedback.

In summary, the main idea of the ID-GAN framework is to train a multiclass clas-
sifier that plays both the roles of a classifier performing the classification task and a 
classifier to distinguish generated samples from the real data samples. To be more 
specific, the classifier takes a sample as the input and classifies it into six classes. 
Real data samples are classified into the first five classes, and generated samples are 
classified into ’fake’ class, as shown in Fig. 2.

4.2  The derivation of the loss function

It is assumed that (xl, yl) is a sample from the training set that contains a 5-cat-
egory classification label, where yl ∈ {normal, dos, probe, r2l, u2r} . The generative 
model generates ‘fake’ samples (xf, yf) from the random noise distribution, where 
yf = ‘fake.’ The samples (x, y) are synthetic data samples and generated samples, 
where the label y contains six classes ( y ∈ {normal, dos, probe, r2l, u2r, fake} ). For 
the multiclass classification problem, the classifier inputs a sample x and outputs 
the classification probabilities for the six classes pi (i = 1, 2, 3, 4, 5, 6). The first five 
categories correspond to the original classification, and the last classification corre-
sponds to ‘fake’ category by applying the softmax function.

Assuming that p is the real probability distribution of the sample and q is the pre-
dicted probability distribution of the classifier, the cross-entropy for a given dataset 
X is defined as:

The value of Eq.  (4) indicates the error between the real classification and the 
predicted classification. The smaller the value is, the closer the predicted probability 
distribution is to the real probability distribution, and the more accurate the pre-
dicted result will be.

Under the multiclass classification task, the loss function is usually defined as 
cross-entropy loss. Let yjxi represent the real probability distribution of the sample xi, 
and let Pmodel

(
y = j|xi

)
 represent the predicted probability distribution of the sample 

xi, then the corresponding loss function can be defined as:

(4)CE(p, q) = −
∑

x∈X

p(x) log q(x)

Lx = −
∑

j

yj
xi
logPmodel

(
y = j|xi

)
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For dataset X, which is synthetic data samples and generated samples, the corre-
sponding loss function is defined as:

After one-hot coding, the real category of the sample yjxi is mapped into a 
K-dimension vector. For example, [1, 0, 0, 0, 0, 0] indicates that the sample belongs 
to the ‘normal’ category, [0, 1, 0, 0, 0, 0] indicates that the sample belongs to the 
‘dos’ category, and [0, 0, 1, 0, 0, 0] indicates that the sample belongs to the ‘probe’ 
category. [0, 0, 0, 1, 0, 0] means that the sample belongs to ‘r2l’ category, [0, 0, 0, 0, 
1, 0] indicates that the sample belongs to ‘u2r’ category, and [0, 0, 0, 0, 0, 1] indi-
cates that the sample belongs to the ‘fake’ category. Similarly, if the sample xi 
belongs to category c, then yc

xi
 = 1. Besides, all the values of the remaining columns 

are 0, that is, yj≠cxi
 = 0.

Therefore, the loss function of the multiclass classifier in the proposed framework 
can be further expressed as follows.

5  Experiments

5.1  Dataset

The NSL-KDD (Knowledge Discovery and Data Mining) [41, 42] is a benchmark 
dataset for network intrusion detection. It removes a large amount of redundant data 
in the original dataset and adjusts the normal and abnormal data in proper propor-
tions to make the testing and training set sizes more reasonable. This is still ideal 

(5)∀j ∈ {normal, dos, probe, r2l, u2r, fake}

Lc = −
1

N

N∑

i=1

∑

j

yj
xi
logPmodel

(
y = j|xi

)

(6)∀j ∈ {normal, dos, probe, r2l, u2r, fake}

Lc = −
1

N

N∑

i=1

∑

j

yj
xi
logPmodel

(
y = j|xi

)

= −
1

N

N∑

i=1

[
yj=c
xi

logPmodel

(
y = c|xi

)
+
∑

j≠c

yj
xi
logPmodel

(
y = j|xi

)
]

= −
1

N

N∑

i=1

[
yj=c
xi

logPmodel

(
y = c|xi

)]

= −
1

N

N∑

i=1

[
logPmodel

(
y = c|xi

)]
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and the most trustful public benchmark dataset [43–45] for an effective and accurate 
assessment of different machine learning algorithms for intrusion detection.

The NSL-KDD dataset consists of a training set and a test set. The training set 
 KDDTrain+ contains 125,973 instances, and the test set  KDDTest+ contains 22,544 
instances, as shown in Table 1.

There are 41 features and 1 class label for every traffic record, and the features 
include basic features (No. 1–No. 10), content features (No. 11–No. 22) and traffic 
features (No. 23–No. 41), as shown in Table 2. According to their characteristics, 
attacks in the dataset are categorized into four attack types: DoS, Probe, R2L and 
U2R. The testing set has some specific attack types that disappear in the training set, 
which allows it to provide a more realistic theoretical basis for intrusion detection. 

Each instance in the dataset is described by 41 features and 1 label, which is nor-
mal or one of the attack types (DoS, Probe, R2L and U2R). Because the input value 

Table 1  Different classifications 
in the NSL-KDD dataset

Total Normal Dos Probe R2L U2R

KDDTrain+ 125,973 67,343 45,927 11,656 995 52
KDDTest+ 22,544 9711 7458 2421 2754 200

Table 2  Features of NSL-KDD dataset

No. Features Types No. Features Types

1 duration Continuous 22 is_guest_login Symbolic
2 protocol_type Symbolic 23 count Continuous
3 service Symbolic 24 srv_count Continuous
4 flag Symbolic 25 serror_rate Continuous
5 src_bytes Continuous 26 srv_serror_rate Continuous
6 dst_bytes Continuous 27 rerror_rate Continuous
7 land Symbolic 28 srv_rerror_rate Continuous
8 wrong_fragment Continuous 29 same_srv_rate Continuous
9 urgent Continuous 30 diff_srv_rate Continuous
10 hot Continuous 31 srv_diff_host_rate Continuous
11 num_failed_logins Continuous 32 dst_host_count Continuous
12 logged_in Symbolic 33 dst_host_srv_count Continuous
13 num_compromised Continuous 34 dst_host_same_srv_rate Continuous
14 root_shell Continuous 35 dst_host_diff_srv_rate Continuous
15 su_attempted Continuous 36 dst_host_same_src_port_ra Continuous
16 num_root Continuous 37 dst_host_srv_diff_host_rat Continuous
17 num_file_creations Continuous 38 dst_host_serror_rate Continuous
18 num_shells Continuous 39 dst_host_srv_serror_rate Continuous
19 num_access_files Continuous 40 dst_host_rerror_rate Continuous
20 num_outbound_cmds Continuous 41 dst_host_srv_rerror_rate Continuous
21 is_host_login Symbolic
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should be a numeric matrix, we must convert some nonnumeric features, such as 
‘protocol_type,’ ‘service’ and ‘flag’ features, into numeric form. For example, the 
feature ‘protocol_type’ has three types of attributes, ‘tcp,’ ‘udp’ and ‘icmp,’ and its 
numeric values are encoded as binary vectors (1,0,0), (0,1,0) and (0,0,1). Similarly, 
the feature ‘service’ has 70 types of attributes, and the feature ‘flag’ has 11 types of 
attributes. Continuing in this way, therefore, after one-hot coding and normalization 
of the features, the 41-dimensional feature is transformed into a 122-dimensional 
feature.

5.2  Selection of generative model and classifier for ID‑GAN

In theory, we can choose any generative model and classifier as the generative model 
G and multiclass classifier C for the ID-GAN framework, respectively. However, 
in practical applications, the generative model and classifier are generally nonlin-
ear mapping functions, such as the multilayer perception machine, long short-term 
memory (LSTM) and others.

We selected the LSTM network as the generative model, which is a special type 
of recurrent neural networks (RNNs) with improvement and promotion. LSTM has 
the ability to remember the long-term information and overcome the vanishing gra-
dient problem. In this paper, a 3-layer LSTM network was adopted as a generative 
model in the ID-GAN framework, which included an input layer, a hidden layer and 
an output layer. The number of neurons in the input layer was set to 120, and the 
number of hidden layer nodes was set to 80. The number of output nodes was 122, 
the same as the number of processed features mentioned in Sect. 4.1. Besides, the 
time step was set to 10.

Artificial neural network is one of the common machine learning methods for 
many complex applications, such as pattern recognition, automatic control and deep 
learning. It is a nonlinear structure, and its main purpose is to classify spam identifi-
cation, disease judgment, cats and dogs classification and so on. In [5], authors pro-
posed a model based on ANNs for binary and multiclass classification in the realm 
of intrusion detection and achieved good results. In this paper, we used a 4-layer 
neural network structure as multiclass classifier C, including an input layer, two hid-
den layers and an output layer. The number of neurons in the input layer was 122, 
which was the same as the number of features. The numbers of hidden layer nodes 
in the first and second layer were 80 and 20, respectively. For adversarial training, 
the number of output layers was 6, which was the same as the number of classes.

5.3  Classification metrics

In order to comprehensively and objectively evaluate the performance of the clas-
sifier in detecting intrusion behaviors, five indicators, accuracy, precision, recall, 
f1-score and confusion matrix, are in use.

True Positive (TP) indicates the intrusion traffic that is correctly detected, True 
Negative (TN) indicates the legitimate traffic that is correctly detected, False Nega-
tive (FN) indicates the intrusion traffic that is incorrectly detected as legal traffic, 
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and False Positive (FP) indicates the legal traffic that is falsely detected as illegal 
traffic.

As shown in Table 3, each column of the confusion matrix represents a predic-
tion category, and the total number in each column represents the number of data 
predicted as the category. Each row represents the true category of the data, and the 
total number of data in each row represents the number of data in the category.

The accuracy, precision, recall and f1-score are, respectively, defined in Eqs. (8) 
to (11).

To evaluate the performance of the multiclass classifier, due to label imbalance, 
we utilize weighted average precision, weighted average recall and weighted aver-
age f1-score. We only need to calculate metrics for each label, and find their average 
weighted by support (the proportion of each class). In short, the weight is the occur-
rence ratio that the number of each label accounts for the total number. Obviously, 
the overall accuracy is equal to weighted average recall.

Hence, a good classifier for intrusion detection should have a higher accuracy, 
precision, recall and f1-score.

5.4  Controlled experiments

In this paper, controlled experiments were adopted to more accurately and objec-
tively evaluated the effect of the multiclass classifier via adversarial training using 
our framework. As stated before, since ANN was selected as the multiclass clas-
sifier in the ID-GAN framework, we should also choose ANN without adversarial 
training as the controlled group. Apparently, the parameters of the multiclass classi-
fier without adversarial training (denoted as Coriginal) were the same as those of the 

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)F1 score =
2 × Recall × Precision

Recall + Precision

Table 3  Confusion matrix Actual class Predicted class

Anomaly Normal

Anomaly TP FN
Normal FP TN
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classifier via adversarial training (denoted as Cenhanced) in the ID-GAN framework. 
The number of input nodes was also 122. The number of the first and second hidden 
nodes was 80 and 20, respectively. However, the output of Coriginal has five nodes 
(five categories), which was the only difference compared with Cenhanced in ID-GAN 
framework.

5.5  Experimental configuration

In this paper, we used one of the broadest deep learning frameworks—Keras, the 
architecture of which is flexible and supports various models and new tricks such as 
Batch normalization. The experiment was performed on a personal notebook Think-
Pad E450, which has a configuration of an Intel Core i5-5200U CPU @ 2.20 GHz 
with 8 GB memory and did not use GPU acceleration.

6  Training the framework

To ensure the objectivity and impartiality of experiments and to accurately and 
objectively evaluate the performance of the ID-GAN framework for enhancing the 
multiclass classifier, we had selected 11 observation points at 100, 200, 500, 1000, 
2000, 5000, 8000, 10,000, 20,000, 50,000 and 125,973 different numbers of ‘fake’ 
samples that were mixed in the adversarial training at each epoch. Their respective 
ratios to the total samples are 0.08%, 0.16%, 0.40%, 0.79%, 1.56%, 3.82%, 5.97%, 
7.35%, 13.70%, 28.41%, and 50.00%. Then, we observed the average accuracy of the 
enhanced classifier via adversarial training on the test set  KDDTest+ over epochs.

Although GANs have achieved great success in image generation, training a sta-
ble GAN is still difficult in practice. As mentioned before, we chose the generative 
model and multiclass classifier for the ID-GAN framework. This section focuses on 
addressing the issue of training difficulty because of the excessively free and uncon-
trollable frameworks of GANs. We chose two training parameters that most affect 
the performance of the multiclass classifier, including the existence of prior training 
and the noise distribution. This allows us to test how the above parameters affect the 
performance of the classifier and how to get a more stable, robust and generalized 
trained classifier.

1. Prior training

The prior training mentioned in this paper refers to training the classifier n_times 
times in advance by using the original five-category dataset before adversarial train-
ing. This allows the classifier to be properly guided to prevent itself from being too 
free to control. Under the same experimental conditions, the detection performance 
of the multiclass classifier was tested on the test set  KDDTest+ with and without 
prior training, respectively.

As shown in Algorithm 1, first, we trained the multiclass classifier C for n_times. 
Then, we drew m generated ‘fake’ samples and n real data samples, respectively, to 
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train the classifier. Moreover, since the classifier C can better guide adjustments of 
generative model G, generally let the classifier C loop more times during the train-
ing [40]. Thirdly, we froze the classifier C and draw m generative samples again to 
train the generative model G.

Without loss of generality, the times n_times of the prior training were set to 10, 
the epoch k of ID-GAN was set to 90. Thus, total training epoch was 100.

Figure  3 shows the average accuracy of the classifier on the test set at the 11 
mixed observation points with and without prior training, respectively. The results 
reveal that the average detection performance of the classifier with prior training 
on the test set at 11 different mixed ‘fake’ samples is higher than that without prior 
training. As a result of the experiments, we concluded that prior training of the mul-
ticlass classifier is conducive to training the ID-GAN model toward a more ‘correct’ 
direction. 
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2. Uniform distribution versus Gaussian distribution

The uniform distribution or Gaussian distribution can usually be used as the 
input of the generative model G. To further train a more stable and efficient mul-
ticlass classifier, we mainly studied the performance of the multiclass classifier 
via adversarial training using the uniform distribution or Gaussian distribution 
as the input of the generative model, respectively.

The experimental results shown in Fig. 4 indicate that the average accuracy 
of the classifier via the ID-GAN framework on the test set does not differ among 
the five observation points of 1000, 5000, 8000, 20,000 and 125,973 using the 
Gaussian distribution or the uniform distribution as the input of the generative 
model, and the maximum difference of the average accuracy is 0.0036. However, 
at the observation points of 500, 2000, 10,000 and 50,000, the average accuracy 
on the test set with the uniform distribution as the input of G is higher than the 
Gaussian distribution under the same situation, and the maximum difference is 
0.0131.

Through the study of training the ID-GAN framework, a priori training for 
classifiers is used in advance, and the uniform distribution is helpful to enhance 
the performance of classifiers. In this way, we can train a relative local optimal 
classifier via the ID-GAN framework of which the detection performance is high 
and stable. Of course, the training model we get is not the best, but we provide 
the notion of training and prove the impacts of prior training and the choice of 
the noise distribution on the performance.

Fig. 3  The average accuracy of the classifier using the ID-GAN at different observation points with and 
without prior training, respectively
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7  Results and discussion

7.1  Controlled group

As stated before, controlled experiments were adopted and ANN was selected as 
the multiclass classifier in controlled group. Under the conditions of 100 training 
epochs, the accuracy of the original classifier Coriginal on the dataset over epochs is 
shown in Fig. 5. The average accuracies of the original classifier on the training set 
and the test set are 99.67% and 78.81%, respectively, and the original classifier has 
the highest accuracy of 79.85% on the test set at the 95th epoch.

7.2  Overall comparison

In Sect.  5, we trained a local optimal classifier using the ID-GAN framework on 
the test set at 11 different observation points, as shown in Fig. 6. The vertical axis 
represents the average accuracy on the test set, while the horizontal axis represents 
the number of ‘fake’ samples mixed with training samples at each adversarial train-
ing epoch. Moreover, the blue dot indicates the average accuracy of the classifier 
enhanced Cenhanced by the ID-GAN framework on the test set, and the red-dotted line 
indicates the baseline of the average accuracy of the original classifier Coriginal on the 
same test set.

Fig. 4  The average accuracy of the classifier at different observation points with the Gaussian distribu-
tion and uniform distribution, respectively
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Figure 6 indicates that the average accuracy of the enhanced classifier Cenhanced at 
9 points has exceeded that of the original classifier Coriginal. The classifier via adver-
sarial training using the ID-GAN framework obviously improves its detection per-
formance and generalization. As the number of generated samples increases (e.g., 
50,000 to 125,973), the average detection performance of the enhanced classifier 

Fig. 5  The accuracy of the original classifier over epochs
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Cenhanced begins to decline, and the ID-GAN framework no longer enhances the clas-
sifier Coriginal. The fact that generated samples account for a large proportion in the 
synthesized data at each adversarial training epoch can cause the classifier to focus 
too much on the sample to be ‘fake,’ decreasing the classification performance of the 
original five types.

Figure 7 details the accuracy of the original classifier Coriginal and the enhanced 
classifier Cenhanced on the test set over epochs at the 11 observation points, and show 
how to improve the performance of the classifier Coriginal using ID-GAN frame-
work. The blue line indicates the accuracy of the original classifier Coriginal on the 
test set, while the red line indicates the accuracy of the enhanced classifier Cenhanced 
via adversarial training on the same test set over 100 epochs. In addition, the black 
arrow represents the optimal enhanced classifier on the test set.

Based upon the results of controlled experiments, the accuracy of the enhanced 
classifier Cenhanced is significantly higher than that of the original classifier Coriginal 
after approximately 20 epochs and up to 80 (section [20, 80]) at the 100, 500, 2000, 
8000 and 10,000 observation points.

Correspondingly, the maximum accuracies of optimal enhanced classifiers 
Cenhanced via ID-GAN framework at the 11 observation points are also significantly 
higher than those of the original classifier Coriginal, no matter how many ‘fake’ sam-
ples are mixed.

Figure 7 shows the graphical depiction in detail on how to enhance the classifier 
with the help of the proposed framework.

7.3  Individual comparison

The accuracy and weighted average of the precision, recall and f1-score of optimal 
classifiers (the black arrows) can be gained using the classification_report function 
from scikit-learn library.

The performance measures of different multiclass classifiers on the same test set 
are shown in Table 4. The row with the orange background color indicates the per-
formance of the original classifier Coriginal (ANN), the rows with the light-gray back-
ground color indicate the performance of multiclass classifiers on the same test set 
in other studies [5, 25, 35], and the rows without background color indicate the per-
formance of enhanced classifiers Cenhanced via adversarial training at different obser-
vation points.

As shown in Table  4, the accuracy of our original classifier Coriginal based on 
ANN (79.85%) is almost the same as the result (79.90%) gained in [5], which also 
proves the validity and objectivity of our experimental results. However, classifiers 
enhanced via adversarial training outperform the original classifier Coriginal without 
ID-GAN framework and those in other studies in terms of the weighted average of 
accuracy, precision and other performance indicators.

The experimental results prove that the ID-GAN framework can enhance the 
original classifier’s classification performance and generalization ability via adver-
sarial training.
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In order to describe the improving detection performance of the classifier via 
adversarial in detail, we take the observation point 8000 as an example. The 
confusion matrices of the enhanced classifier and original classifier are shown in 

Fig. 7  The accuracy of multiclass classifiers on the test set over epochs at the 11 observation points
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Table 4  Performance measures of different multiclass classifiers on the same test set  KDDTest+

Classifier Accuracy (%) Weighted 
average 
precision

Weighted 
average 
recall

Weighted 
average 
F1-score

Training time (s)

Decision Tree (C4.5) 
[25]

74.93 0.8020 0.7490 0.6970 –

Naïve Bayes [25] 73.76 0.8010 0.7380 0.7140 –
Random forest [25] 75.69 0.8000 0.7570 0.7230 –
GAR–forest [25] 78.90 0.8240 0.7980 0.7990 –
ANN [5] 79.90 – – – –
AFSA-GA-PSO-DBN 

[33]
82.36 – – – –

CNN [34] 78.42 – – – –
Self-taught learning [35] 79.10 – – – –
ANN (original classifier) 79.85 0.8242 0.7985 0.7809 2565
Enhanced classifier 

(Num. = 100)
82.83 0.8353 0.8283 0.8175 2597

Enhanced classifier 
(Num. = 200)

82.41 0.8413 0.8241 0.8172 2645

Enhanced classifier 
(Num. = 500)

83.10 0.8520 0.8310 0.8196 2691

Enhanced classifier 
(Num. = 1000)

82.39 0.8441 0.8239 0.8122 2765

Enhanced classifier 
(Num. = 2000)

82.28 0.8451 0.8228 0.8102 2848

Enhanced classifier 
(Num. = 5000)

81.69 0.8412 0.8169 0.8034 2980

Enhanced classifier 
(Num. = 8000)

82.70 0.8470 0.8270 0.8131 3080

Enhanced classifier 
(Num. = 10,000)

82.23 0.8376 0.8223 0.8072 3220

Enhanced classifier 
(Num. = 20,000)

81.33 0.8304 0.8133 0.8048 3347

Enhanced classifier 
(Num. = 50,000)

81.09 0.8420 0.8109 0.7884 4283

Enhanced classifier 
(Num. = 125,973)

80.67 0.8258 0.8067 0.7932 6268

Table 5  Confusion matrix of the 
original classifier on  KDDTest+

Actual class Predicted class

Normal DoS Probe R2L U2R

Normal 9259 76 366 9 1
DoS 1111 6198 125 24 0
Probe 397 234 1748 42 0
R2L 1962 0 12 775 5
U2R 163 0 0 15 22
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Tables 5 and 6, respectively. The confusion matrix indicates that the enhanced 
classifier has an increase in the correct classification of all five types, and it 
especially improves the detection performance of Probe and R2L attacks. 

Meanwhile, Table  7 shows that the recall, precision and other performance 
indicators of the enhanced classifier on each class, and also the weight average 
of those indicators are improved compared with the original classifier.

7.4  Training time

In terms of training time, data augmentation means that the number of the train-
ing sample is increased, the classifier takes more training time and the cost of 
training time is certainly increased. From Table  4, if the ID-GAN framework 
generates a small number of training samples (less than 8000), the model train-
ing time will take no more than 500  s. As the training samples increase, for 
example, mixing generated samples more than 10,000, the training time will 
cost more than 700 s. Of course, this is just an experimental result on a personal 
computer, and we believe that the training time will be greatly reduced on GPU 
acceleration or on a high-performance server.

Table 6  Confusion matrix 
of the enhanced classifier on 
 KDDTest+

Actual class Predicted class

Normal DoS Probe R2L U2R

Normal 9385(↑) 79 236 5 6
DoS 1035 6242(↑) 158 23 0
Probe 161 168 2034(↑) 57 1
R2L 1775 0 14 953(↑) 12
U2R 141 1 16 11 31(↑)

Table 7  Classification metrics of the enhanced classifier compared with the original classifier on 
 KDDTest+

Intrusion type Original classifier Enhanced classifier

Recall Precision F1-score Recall Precision F1-score

Normal 0.9535 0.7182 0.8193 0.9664 0.7510 0.8452
DoS 0.8311 0.9524 0.8876 0.8370 0.9618 0.8950
Probe 0.7220 0.7765 0.7483 0.8401 0.8275 0.8338
R2L 0.2814 0.8960 0.4283 0.3460 0.9085 0.5012
U2R 0.1100 0.7857 0.1930 0.1550 0.6200 0.2480
Weighted average 0.7985 0.8242 0.7809 0.8270 0.8470 0.8131
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7.5  Discussion

Compared with the binary classification for intrusion detection, the multiclass classi-
fication needs to further judge the intrusion type. Hence, the multiclass classification 
problem is more complicated and has greater detection difficulty. As shown in Table 4, 
in terms of the most important performance indicators of multiclass classification, the 
detection accuracy of decision tree (C4.5), naïve Bayes, random forest, GAR-forest, 
ANN, and self-taught learning is less than 80%, and the ANN model obtains the high-
est detection accuracy (79.9%). In the experiment, we further enhanced the multiclass 
classification effect of the ANN model through the ID-GAN framework, which obvi-
ously improved the multiclass classification detection performance of the ANN model. 
The detection accuracy, precision and f1-score are improved by about 3.25%, 2.87% 
and 2.78%, respectively. In [33], the DBN based on an optimization method for multi-
class classification archived the highest detection accuracy (82.36%), and the classifica-
tion accuracy of the CNN algorithm was 78.42% [34]. Even so, our proposed approach 
is also superior to those methods.

From the above experimental results, we believe that the samples continuously gen-
erated by the generative model (as the sixth labeled samples) using adversarial train-
ing can provide useful and complementary information for the classifier, and are help-
ful to improve the accuracy, precision, f1-score and other performance indicators. It 
is verified accordingly that the ID-GAN framework can generate more useful training 
samples from limited data, and increase the number and diversity of training samples. 
Consequently, it improves the generalization of the classifier.

To give a popular example: Even if no one is taught to recognize words, more exer-
cise to distinguish ‘that is not the word’ is also beneficial to recognize words. Rough 
feedback is better than no feedback.

In terms of overall performance comparison, the average detection rate of the 
enhanced model on the test set during 100 iterative training outperforms that of the 
original classifier, especially approximately during the training interval [20, 80] at the 
100, 500, 2000, 8000 and 10,000 observation points. The ID-GAN framework using 
complementary and helpful information from the generative model significantly 
improves the detection performance of the original classifier. In comparison with the 
optimal model, the optimal classifier obtained using adversarial training is superior to 
the original classifier in terms of accuracy, precision, f1-score and other performance 
indicators, especially improving the detection performance of Probe and R2L attacks.

Hence, the ID-GAN framework via supervised adversarial training can enhance 
generalization of the original classifier in the performance of detecting attacks, and 
can be used as a framework to improve the performance of the intrusion detection 
classifier.

8  Conclusion and future work

In this paper, we first further transform GAN into a supervised learning approach, and 
propose an intrusion detection framework based on GAN using adversarial training to 
enhance the classifier. The ID-GAN framework continually generates the ‘fake’ labeled 
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samples by using the generative model G, assists the classifier to improve the detection 
performance, and enhances the generalization of the original classifier. The approach 
proposed in this paper provides a feasible method to enhance the classifier. It also 
provides a new technology and area of thought for the research and practice in other 
related fields, such as botnet detection.

Similarly, the proposed approach may be under threats of training difficulties and 
lack of diversity in generated samples. As with other deep learning applications, there 
are still interpretation and self-adaption scientific problems. In future research, we will 
study the effect of the ID-GAN framework for other classifiers and further study the 
optimization training method. Furthermore, we will focus on the hyper parameters of 
ID-GAN framework, such as the value of n_times in prior training and the number of 
steps to apply to the classifier.
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Appendix

See Tables 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19.

Table 8  The performance 
indicators of the original 
classifier

Intrusion type Precision Recall F1-score Support

Normal 0.7182 0.9535 0.8193 9711
DoS 0.9524 0.8311 0.8876 7458
Probe 0.7765 0.7220 0.7483 2421
R2L 0.8960 0.2814 0.4283 2754
U2R 0.7857 0.1100 0.1930 200
Weighted average 0.8242 0.7985 0.7809 22,544

Table 9  The performance 
indicators of the enhanced 
classifier (Num. = 100)

Intrusion type Precision Recall F1-score Support

Normal 0.7648 0.9652 0.8534 9711
DoS 0.9544 0.8390 0.8930 7458
Probe 0.8629 0.7980 0.8292 2421
R2L 0.7895 0.3991 0.5301 2754
U2R 0.1188 0.0600 0.0797 200
Weighted average 0.8353 0.8283 0.8175 22,544
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Table 10  The performance 
indicators of the enhanced 
classifier (Num. = 200)

Intrusion type Precision Recall F1-score Support

Normal 0.7656 0.9288 0.8394 9711
DoS 0.9588 0.8277 0.8885 7458
Probe 0.7084 0.8430 0.7699 2421
R2L 0.9474 0.4844 0.6410 2754
U2R 0.2778 0.0500 0.0847 200
Weighted average 0.8413 0.8241 0.8172 22,544

Table 11  The performance 
indicators of the enhanced 
classifier (Num. = 500)

Intrusion type Precision Recall F1-score support

Normal 0.7532 0.9665 0.8466 9711
DoS 0.9575 0.8333 0.8911 7458
Probe 0.8449 0.8166 0.8305 2421
R2L 0.9267 0.4179 0.5761 2754
U2R 0.7778 0.0350 0.0670 200
Weighted average 0.8520 0.8311 0.8196 22,544

Table 12  The performance 
indicators of the enhanced 
classifier (Num. = 1000)

Intrusion type Precision Recall F1-score Support

Normal 0.7453 0.9584 0.8385 9711
DoS 0.9600 0.8376 0.8947 7458
Probe 0.8131 0.7926 0.8028 2421
R2L 0.9372 0.3954 0.5562 2754
U2R 0.4074 0.0550 0.0969 200
Weighted average 0.8441 0.8239 0.8122 22,544

Table 13  The performance 
indicators of the enhanced 
classifier (Num. = 2000)

Intrusion type Precision Recall F1-score Support

Normal 0.7426 0.9558 0.8358 9711
DoS 0.9585 0.8363 0.8932 7458
Probe 0.8218 0.8191 0.8204 2421
R2L 0.9374 0.3751 0.5358 2754
U2R 0.6087 0.0700 0.1256 200
Weighted average 0.8451 0.8228 0.8102 22,544



6716 C. Yin et al.

1 3

Table 14  The performance 
indicators of the enhanced 
classifier (Num. = 5000)

Intrusion type Precision Recall F1-score Support

Normal 0.7412 0.9575 0.8355 9711
DoS 0.9478 0.8395 0.8904 7458
Probe 0.8059 0.7770 0.7912 2421
R2L 0.9785 0.3471 0.5125 2754
U2R 0.2561 0.1050 0.1489 200
Weighted average 0.8412 0.8169 0.8034 22,544

Table 15  The performance 
indicators of the enhanced 
classifier (Num. = 8000)

Intrusion type Precision Recall F1-score Support

Normal 0.751 0.9664 0.8452 9711
DoS 0.9618 0.8370 0.8950 7458
Probe 0.8275 0.8401 0.8338 2421
R2L 0.9085 0.3460 0.5012 2754
U2R 0.6200 0.1550 0.2480 200
Weighted average 0.8470 0.8270 0.8131 22,544

Table 16  The performance 
indicators of the enhanced 
classifier (Num. = 10,000)

Intrusion type Precision Recall F1-score Support

Normal 0.7472 0.9672 0.8431 9711
DoS 0.9517 0.8410 0.8929 7458
Probe 0.8774 0.8187 0.8470 2421
R2L 0.8564 0.3141 0.4596 2754
U2R 0.2348 0.1350 0.1714 200
Weighted average 0.8376 0.8223 0.8072 22,544

Table 17  The performance 
indicators of the enhanced 
classifier (Num. = 20,000)

Intrusion type Precision Recall F1-score Support

Normal 0.7426 0.9558 0.8358 9711
DoS 0.9585 0.8363 0.8932 7458
Probe 0.8218 0.8191 0.8204 2421
R2L 0.9374 0.3751 0.5358 2754
U2R 0.6087 0.0700 0.1256 200
Weighted average 0.8451 0.8228 0.8102 22,544
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