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Abstract
In recent years, reversible logic has attracted high importance because of its in-cog-
nitive property of reduction in energy dissipation which is the main requirement in 
low-power digital circuits. Reversible logic is one of emerging fields of research, 
which is used in various fields such as low-power CMOS, DNA computing, quan-
tum computing, fault tolerance and nanotechnology. A circuit is reversible if it has 
the same number of inputs and outputs, and there is a one-to-one correspondence 
between them. A reversible circuit is parity-preserving if the EXOR of the inputs 
is equal to the EXOR of the outputs. Flip-flops are considered as one of the most 
important digital designs that are widely used as building blocks in the design of 
sequential circuits. In this paper, two new 4 × 4 parity-preserving reversible blocks 
are first proposed, called PNM1 and PNM2, respectively. Quantum syntheses of 
the proposed blocks are carried out using the Miller et  al. method. In the follow-
ing, effective designs of parity-preserving reversible D, T and J-K flip-flops along 
with their master–slave versions are introduced using the proposed parity-preserv-
ing reversible blocks and DFG gates. Finally, a 4-bit asynchronous up-counter is 
designed using the proposed parity-preserving reversible D flip-flop and FRG gate. 
The results of the comparisons show that although the proposed structures are close 
to previous designs in terms of gate count, constant input and garbage output crite-
ria, they are superior in terms of quantum cost.
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1  Introduction

Landauer proved that the thermal energy generated by the loss of one bit of infor-
mation during processing is equal to kTLn2 Joules of heat energy, where k is the 
Boltzmann’s constant and T is the absolute temperature of the environment [1]. 
Bennett showed that in order to avoid energy waste in computational circuits, the 
processes should be reversible; that is, if reversible logic gates are used, there 
is no power consumption, and no energy is lost [2]. A block is reversible if the 
number of inputs with the number of outputs is equal, and there is a one-to-
one correspondence between them [3]. In other words, the input vector can be 
retrieved through the output vector. In reversible logic, feedback loop and fan-out 
(fan-out = 1) are not allowed [3]. Of course, Toffoli showed that feedback is pos-
sible in reversible circuits [4]. Accordingly, a sequential circuit is reversible if its 
combinational part is reversible. Fredkin used this concept to propose the first 
reversible sequential circuit design, which had a feedback loop from the output. 
Reversible logic is widely applied in a wide variety of research fields such as low-
power CMOS [5], optical technology [6], quantum computing [7], DNA comput-
ing [8] and nanotechnology [9]. In order to properly synthesize the reversible cir-
cuits, it is necessary that criteria such as, gate count (GC), number of constant 
inputs (CI), garbage outputs (GO), and quantum cost (QC) are optimized, which 
are defined as follows [10–19]:

Gate count (GC) This criterion refers to the number of gates used in reversible 
circuit design.

Constant inputs (CI) This criterion refers to the number of inputs that are set to a 
constant value (0 or 1) for the synthesis of the logical function.

Garbage outputs (GO) This indicates the number of unwanted outputs which are 
added to make a function reversible.

Quantum cost (QC) This refers to the cost of reversible circuits based on the 
number of elementary quantum gates. The QC of reversible 1 × 1 gate (such as 
the NOT gate) and 2 × 2 gates (such as the controlled-V, controlled-V+ , CNOT 
and integrated 2-qubit gates) is considered to be equal to one.

Logical calculation (LC) A number of gates such as EXOR, AND and NOT are 
used to construct a logical function.

One of the most issues in the reversible circuits is the fault-detection prob-
lem. The parity check is considered as one of the straightforward and low-cost 
approaches to identify faults in the communication and digital systems. Hence, 
the parity-preserving can be used well in the reversible circuits with an effective 
cost. A reversible block is called parity-preserving if the EXOR of the inputs is 
equal to EXOR of the outputs [20].
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So far, several reversible computational circuits with parity-preserving capa-
bility are introduced, such as adder [21], multiplier [22, 23], divider [24], ALU 
[25] and flip-flops [26].

Among these, flip-flops are of particular importance since they are frequently 
used as the building blocks in the sequential circuits.

The main scientific contributions of this paper are summed up as follows:

•	 Proposing two new parity-preserving reversible blocks with the low quantum 
cost.

•	 Quantum synthesis of the proposed blocks is performed using the Miller et al. 
method.

•	 Introducing effective designs of D, T and J-K flip-flops and their master–slave 
versions using the proposed parity-preserving reversible blocks.

•	 The comparison results indicate that the proposed circuits are better than previ-
ous related works.

The rest of the paper is as follows: In Sect.  2, the basis of the reversible logic 
and Miller et  al. synthesis algorithm are described. In Sect.  3, the related works 
are reviewed. In Sect. 4, the proposed new parity-preserving reversible blocks are 
introduced. In Sect. 5, the simulation results and comparisons are presented. Finally, 
Sect. 6 concludes the paper.

2 � An overview of reversible logic

In this section, we introduce some basic concepts in reversible logic, including 
preliminaries, some parity-preserving reversible gates and Miller et  al. synthesis 
algorithm.

A gate/block is called reversible if there is a one-to-one correspondence between 
the inputs and the outputs. The function F, with the input vector Iv = (I1, I2, …, In) 
and the output vector Ov = (O1, O2, …, On), is reversible if and only if there is a one-
to-one correspondence between the input and output vectors [27].

A gate/block is parity-preserving if the parity of the inputs is equal to the par-
ity of the outputs. Therefore, if a fault takes place on one of the outputs, it can be 
detected. Furthermore, a reversible circuit is fault-tolerant if it is only made from the 
parity-preserving reversible gates/blocks [20].

Fig. 1   Quantum representation 
of NOT gate

Fig. 2   Quantum representation 
of CNOT gate
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2.1 � Basic reversible gates

NOT gate
A NOT gate is a 1 × 1 quantum gate with QC equal to 1, as shown in Fig. 1 [28].
Controlled-NOT gate (CNOT)
The CNOT gate, which is also known as the Feynman gate (FG), is a 2 × 2 

reversible gate that has the inputs control (A) and target (B) and the produces 
the outputs P = A and Q = A ⊕ B. The CNOT quantum representation is shown in 
Fig. 2. As can be seen, if the control input is equal to 1 (A = 1), the output Q will 
be the inverse of the target input ( ̄B ); otherwise, the target input (B) is transferred 
unchanged to the output Q [29].

Controlled-V and controlled-V+ gates
Controlled-V and controlled-V+ gates are known as primary 2 × 2 quantum 

gates and are shown in Fig. 3a and b, respectively [10, 28].
V and V+ matrices are provided in Eqs.  (1) and (2), respectively [10, 28, 

30–32]:

Also, V and V+ matrices have the following properties [10, 28]:

(1)V =
1 + i

2

(

1 −i

−i 1

)

(2)V+ =
1

i + 1

(

1 −1∕i

i 1

)

(3)V × V = NOT

(4)V+ × V = V × V+ = I

(5)V+ × V+ = NOT

Fig. 3   Quantum realization of a controlled-V gate and b controlled-V+ gate

Fig. 4   Quantum realization of 
three integrated qubit gates: 
a pattern 1, b pattern 2 and c 
pattern 3
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As seen in Fig. 3, if the control input A is equal to 1 (A = 1), controlled-V and 
controlled-V+ gates result in V(B) and V+(B) outputs, respectively. Otherwise, tar-
get input B will be transferred unchanged to the output. Their QC is 1.

The quantum realization of the three integrated 2-qubit gates is shown in 
Fig. 4. It should be mentioned that each dotted rectangle in Fig. 4 is equivalent to 
a 2 × 2 gate, and its QC is 1 [11, 12, 32, 33].

A common method to simplifying of quantum circuits is template matching. 
Two practical templates are illustrated in Fig. 5 showing possible reductions for 
several cascades [34, 35].

It should be noted that the quantum cost of the circuits shown in Fig. 6 is equal 
to zero [35–39].

2.2 � Basic parity‑preserving reversible gates

So far, various parity-preserving reversible gates/blocks have been introduced 
[14, 26, 40–46]. In the following, we introduce the three most important gates, 
including double Feynman gate (DFG), Fredkin gate (FRG) and new fault toler-
ance gate (NFT).

Double Feynman gate (DFG) Circuit representation and quantum realization 
of the 3 × 3 parity-preserving reversible DFG gate are illustrated in Fig. 7 [20]. 

Fig. 5   Templates with 2 or 3 inputs

Fig. 6   Simplification rules for minimizing the quantum cost of the reversible circuits

Fig. 7   Reversible DFG gate: a circuit view and b quantum realization
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Table 1   Truth table of the DFG 
gate

A B C P Q R

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 0

Fig. 8   Reversible FRG gate: a circuit view and b quantum realization

Table 2   Truth table of the FRG 
gate

A B C P Q R

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Fig. 9   Reversible NFT gate: a circuit view and b quantum realization



2212	 M. Noorallahzadeh, M. Mosleh 

1 3

Its truth table is also provided in Table 1 so that its output equations are P = A, 
Q = A ⊕ B and R = A ⊕ C. Moreover, its quantum cost is 2 and the logical calcula-
tion is 2α.

Fredkin gate (FRG) Circuit representation and quantum realization of the 
3 × 3 parity-preserving reversible FRG gate are shown in Fig.  8 [47]. Its truth 
table is also given in Table 2 so that its output equations are P = A, Q = A′B ⊕ AC 
and R = A′C ⊕ AB. In addition, its quantum cost is 5 and logical calculation is 
2α + 4β + 1δ.

New fault tolerance gate (NFT) Circuit representation and quantum realiza-
tion of the 3 × 3 parity-preserving reversible NFT gate are shown in Fig.  9 [48]. 
Its truth table is also given in Table  3 so that its output equations are P = A ⊕ B, 
Q = B′C ⊕ AC′ and R = BC ⊕ AC′. Moreover, its quantum cost is 5 and the logical 
calculation is 3α + 3β + 2δ.

2.3 � Miller synthesis algorithm

Miller et al. synthesis algorithm is a transformation-based approach that is able 
to synthesis a reversible circuit in terms of n × n Toffoli gates. In this method, a 
circuit is built by a single pass through the specification with minimal look ahead 
and no back-tracking [34]. Basic Miller et al. synthesis algorithm is given as fol-
lows [34].

Consider, an m-input, m-output, totally specified Boolean function f (X), 
X = {x1, x2… xm} is reversible if it maps each input assignment to a unique output 
assignment. In the other words, a reversible function specified as a mapping over 
{0, 1… 2m − 1}.

To start, a basic naive and greedy scheme is utilized that specifies Toffoli gates 
only on the output side of the specification.

2.4 � Basic algorithm

Step 1 If f (0) ≠ 0, invert the outputs corresponding to 1 bits in f (0). Each inver-
sion needs a 1 × 1 Toffoli gate (TOF1). The transformed function f+ has f+ (0) = 0.

Table 3   Truth table of the NFT 
gate

A B C P Q R

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 0 0 1
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Step 2 Assume each i in turn for 1 ≤ i < 2m − 1 letting f+ indicate the current 
reversible specification. If f+ (i) = i, no transformation and therefore no Toffoli 
gate are needed for this i. Otherwise, gates are needed to transform the specifi-
cation to a new specification with f++(i) = i. The required gates have to map f+ 
(i) → i.

Let p be the bit sequence with 1’s in all positions where the binary expansion of 
i is 1, while the expansion of f+ (i) is 0. These are the 1 bits that should be added in 
transforming f+ (i) → i. Conversely, let q be the bit sequence with 1’s in all positions 
where the expansion of i is 0, while the expansion of f+ (i) is 1. q specifies the bits to 
be deleted in the transformation.

For each pj = 1, utilize the Toffoli gate with control lines corresponding to all out-
puts in positions where the expansion of i is 1 and whose target line is the output in 
position j. Then, for each qk = 1, apply the Toffoli gate with control lines correspond-
ing to all outputs in positions where the expansion of f+ (i) is 1 and whose target line 
is the output in position k.

3 � Related works

In 2006, Thapliyal and Srinivas [49], using eight Fredkin gates (FRG), proposed 
a parity-preserving reversible T flip-flop, which has GC = 8, CI = 11, GO = 11 and 
QC = 40. Also, they provided a parity-preserving reversible J-K flip-flop using seven 
FRG gate which has GC = 7, CI = 9, GO = 10 and QC = 35. Moreover, they intro-
duced D, T, J-K master–slave flip-flops. D master–slave flip-flop has GC = 5, CI = 6, 
GO = 6 and QC = 25. T master–slave flip-flop has GC = 23, CI = 32 and GO = 35, and 
QC = 115. J-K master–slave flip-flop has GC = 22, CI = 30, GO = 32 and QC = 110.

In 2010, Thapliyal and Ranganathan, using two reversible Fredkin gates 
(FRGs), proposed a parity-preserving reversible D flip-flop, which has GC = 2, 
CI = 2, GO = 2 and QC = 10 [50]. Also, they presented a parity-preserving revers-
ible T flip-flop using three FRG gates, in which the GC = 3, CI = 3, GO = 3 and 
QC = 15. They also presented a parity-preserving reversible J-K flip-flop using 
four FRG gates, in which the GC = 4, CI = 4, GO = 5 and QC = 20.

In 2011, Haghparast and Navi, using one FRG gate as well as one double Fey-
nman gate (DFG), proposed a reversible D latch, which has GC = 2, CI = 1 as well 
as GO = 2 and QC = 7 [51].

In 2012, Gharajeh and Haghparast first suggested a new parity-preserving reversi-
ble gate, called Unit4, and then presented a fault-tolerant reversible D flip-flop using 
one Unit4 gate in which GC = 1, CI = 3 as well as GO = 3 and QC = 10 [41].

In 2014, Pareek et al. first suggested a new parity-preserving reversible gate, 
called PAREEK gate and then presented a parity-preserving reversible D flip-
flop, using PAREEK gate, with GC = 1, CI = 1 as well as GO = 2 and QC = 7 [40].

Also, in 2014, Pareek [52] presented a parity-preserving reversible D flip-flop, 
using PAREEK and DFG gates, with GC = 2, CI = 3, GO = 3 and QC = 9 and also, 
presented a parity-preserving reversible T flip-flop, using PAREEK and DFG 
gates, with GC = 2, CI = 2 as well as GO = 2 and QC = 9. Also, they provided a 
parity-preserving reversible J-K flip-flop using FRG, DFG and PAREEK gates, in 
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which GC = 4, CI = 5 as well as GO = 6 and QC = 19. They also provided a parity-
preserving reversible master–slave D flip-flop using two PAREEK gates, in which 
GC = 2, CI = 2 as well as GO = 3 and QC = 14.

In 2017, Misra et  al. first proposed a new parity-preserving reversible gate, 
called RCQCA gate, and then presented a parity-preserving reversible D flip-flop, 
using RCQCA and DFG gates, with GC = 2, CI = 3, as well as GO = 3 and QC = 8 
[26]. Also, they provided a parity-preserving reversible T flip-flop using RCQCA 
and DFG gates, in which GC = 2, CI = 2, GO = 2 and QC = 8.

In 2018, Goswami et al. [53] first proposed two new parity-preserving revers-
ible block, called TFR and TF2G, and then presented a parity-preserving revers-
ible D flip-flop, using one TFR and one TF2G gates, with GC = 2, CI = 3, as 
well as GO = 3 and QC = 19. Also, they provided a parity-preserving reversible 

Table 4   A brief description of the parity-preserving reversible flip-flops designs

Designs GC CI GO QC LC

D flip-flop designs with output Q
 Haghparast and Navi [51] 2 1 2 7 4α + 4β + 1δ
 Pareek et al. [40] 1 1 2 7 3α + 2β + 1δ

D flip-flop designs with outputs Q and Q̄
 Misra et al. [26] 2 3 3 8 6α + 2β + 1δ
 Thapliyal and Ranganathan [50] 2 2 2 10 4α + 8β + 2δ
 Gharajeh and Haghparast [41] 1 2 3 10 8α + 16β + 8δ
 Pareek [52] 2 3 3 9 5α + 3β + 1δ
 Goswami et al. [53] 2 3 2 19 18α + 4β + 1δ

T flip-flop designs with outputs Q and Q̄
 Pareek [52] 2 2 2 9 5α + 2β + 1δ
 Thapliyal and Ranganathan [50] 3 3 3 15 6α + 12β + 3δ
 Misra et al. [26] 2 2 2 8 6α + 2β + 1δ
 Thapliyal and Srinivas [49] 8 11 11 40 16α + 32β + 8δ

J-K flip-flop designs with outputs Q and Q̄
 Pareek [52] 4 5 6 19 9α + 10β + 3δ
 Thapliyal and Ranganathan [50] 4 4 5 20 8α + 16β + 4δ
 Thapliyal and Srinivas [49] 7 9 10 35 14α + 28β + 7δ

Master–slave D flip-flop designs with output Q
 Pareek [52] 2 2 3 14 6α + 4β + 2δ

Master–slave D flip-flop designs with outputs Q and Q̄
 Thapliyal and Srinivas [49] 5 6 6 25 10α + 20β + 5δ
 Goswami et al. [53] 4 5 4 38 36α + 8β + 2δ

Master–slave T flip-flop designs with outputs Q and Q̄
 Thapliyal and Srinivas [49] 23 32 35 115 46α + 92β + 23δ

Master–slave J-K flip-flop designs with outputs Q and Q̄
 Thapliyal and Srinivas [49] 22 30 32 110 44α + 88β + 22δ
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master–slave D flip-flop using two TFR and two TF2G gates, in which GC = 4, 
CI = 5, GO = 4 and QC = 38.

Moreover, in Table 4, a summary of the previous parity-preserving reversible 
flip-flops designs is provided.

4 � Proposed parity‑preserving reversible designs

In this section, we first propose two effective parity-preserving reversible blocks 
and then, using these blocks, various new parity-preserving reversible flip-flops are 
introduced.

Table 5   Truth table of the 
proposed parity-preserving 
reversible block, PNM1

EXOR inputs A B C D P Q R S EXOR 
outputs

0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 1 1 0 1 1
1 0 0 1 0 1 1 1 0 1
0 0 0 1 1 1 1 1 1 0
1 0 1 0 0 0 0 0 1 1
0 0 1 0 1 0 0 1 1 0
0 0 1 1 0 0 0 0 0 0
1 0 1 1 1 0 0 1 0 1
1 1 0 0 0 0 1 0 0 1
0 1 0 0 1 0 1 0 1 0
0 1 0 1 0 0 1 1 0 0
1 1 0 1 1 0 1 1 1 1
0 1 1 0 0 1 0 0 1 0
1 1 1 0 1 1 0 1 1 1
1 1 1 1 0 1 0 0 0 1
0 1 1 1 1 1 0 1 0 0

Fig. 10   Circuit representation of 
the proposed PNM1 block
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4.1 � Proposed parity‑preserving reversible blocks

4.1.1 � Proposed block, PNM1

The truth table of the proposed 4 × 4 parity-preserving reversible block is shown in 
Table 5. Each input vector is mapped individually to an output vector. The proposed 
reversible structure is called the PNM1 block.

The output equations of the PNM1 block can be determined as follows:

P(A,B,C,D) = (A⊕ B)� (1)
Q(A,B,C,D) = B� (2)
R(A,B,C,D) = B�C⊕ BD (3)
S(A,B,C,D) = B�D⊕ BC� (4)

The circuit representation of the PNM1 block is shown in Fig. 10.
In order to calculate the quantum cost of the proposed reversible block, it is 

necessary first to be implemented using the NCT library (NOT-CNOT and Tof-
foli). For this purpose, the synthesis approach provided by Miller et  al. is used 
[34]. The Miller et al. synthesis algorithm is a greedy method that determined the 
Toffoli gates only on the output side of the specification. The steps of the Miller 
algorithm in order to obtain the inputs via the outputs are shown in Table 6.

Fig. 11   Toffoli gates: a TOF1(A), b TOF2(A, B), c TOF3(A, B, C) and d quantum realization of TOF3(A, 
B, C)

Fig. 12   NCT-based circuit of the proposed PNM1 block

Fig. 13   NCV-based circuit of the proposed PNM1 block
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An n × n Toffoli gate (TOFn (x1, x2, …, xn)) consists of (n − 1) control lines 
that transit through the gate unchanged and a target line on which the value is 
inverted if all the control lines are equal to value ‘1.’ TOF1 (A) is the special case 
that there are no control lines; therefore, x1 always invert. It is called NOT gate. 
TOF2 (A, B) is called Feynman or controlled-NOT gate (CNOT). TOF3 (A, B, C) 
is often termed to simply as a Toffoli gate. These gates are illustrated in Fig. 11.

As can be seen from Table 6,

•	 Step 1 identifies TOF1 (P, Q) giving Step 2
•	 Step 2 identifies TOF2 (Q, P) giving Step 3
•	 Step 3 identifies TOF2 (Q, S) giving Step 4
•	 Step 4 identifies TOF3 (Q, R, S) giving Step 5
•	 Step 5 identifies TOF3 (Q, S, R) giving Step 6
•	 Step 6 identifies TOF3 (Q, R, S).

Fig. 14   The optimized NCV of the proposed PNM1 block

Table 7   Truth table of the 
proposed parity-preserving 
reversible block, PNM2

EXOR inputs A B C D P Q R S EXOR 
outputs

0 0 0 0 0 0 1 1 0 0
1 0 0 0 1 0 1 1 1 1
1 0 0 1 0 0 1 0 0 1
0 0 0 1 1 0 1 0 1 0
1 0 1 0 0 0 0 1 0 1
0 0 1 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0 1 0
1 0 1 1 1 1 0 0 0 1
1 1 0 0 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 0
0 1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 1
0 1 1 0 0 1 1 1 1 0
1 1 1 0 1 1 1 1 0 1
1 1 1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 0 0 0
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It should be noted that the TOF gates are determined from the output side to 
the input side. The Toffoli-based circuit of the proposed PNM1 block is illus-
trated in Fig. 12.

Given that the quantum cost of the primitive gates 1 × 1 and 2 × 2 is one, then the 
initial quantum cost of the proposed PNM1 block is 11.

Fig. 15   Circuit representation of 
the proposed PNM2 block

Table 8   Steps to apply the Miller et al. synthesis on the proposed PNM2 block

Inputs Outputs Step 1 Step 2 Step 3 Step 4

Invert Q and R If (P = 1), then 
invert

If (Q = 1 and 
R = 1), then 
invert P

If (P = 1), then 
invert Q

A B C D P Q R S P Q R S P Q R S P Q R S P Q R S

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0
1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1
1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0
1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0
1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1
1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0
1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1
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Moreover, according to Fig. 12, the NCV display of the proposed PNM1 block is 
shown in Fig. 13.

After simplifying the circuit shown in Fig.  13, according to the simplification 
rules in [33, 35–37], the optimized NCV display of the proposed PNM1 circuit is 
illustrated in Fig. 14.

Therefore, the total quantum cost of the proposed PNM1 block is 5. In addition, 
its logical calculation is 3α + 3β + 3δ.

4.1.2 � Proposed block, PNM2

The truth table of the proposed 4 × 4 parity-preserving reversible block is shown in 
Table 7. Each input vector is mapped individually to an output vector. The proposed 
reversible structure is called the PNM2 block.

The output equations of the PNM2 block can be determined as follows:

P(A,B,C,D) = AC�
⊕ BC (1)

Q(A,B,C,D) = (A⊕ B)� (2)
R(A,B,C,D) = C� (3)
S(A,B,C,D) = AC�

⊕ BC⊕ D (4)

The circuit representation of the PNM2 block is shown in Fig. 15.
As can be seen from Table 8,

Fig. 16   NCV-based circuit of 
the proposed PNM2 block

Fig. 17   NCV-based circuit of 
the proposed PNM2 block

Fig. 18   The optimized NCV of the proposed PNM2 block
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•	 Step 1 identifies TOF1 (Q, R) giving Step 2
•	 Step 2 identifies TOF2 (P, S) giving Step 3
•	 Step 3 identifies TOF3 (Q, R, P) giving Step 4
•	 Step 4 identifies TOF2 (P, Q).

Fig. 19   Proposed parity-preserving reversible D flip-flop: a circuit view and b quantum realization

Fig. 20   Proposed parity-preserving reversible D flip-flop: a circuit view and b quantum realization
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It should be noted that the TOF gates are determined from the output side to the 
input side, respectively. The Toffoli-based circuit of the proposed PNM2 block is 
illustrated in Fig. 16.

Given that the quantum cost of the primitive gates 1 × 1 and 2 × 2 is one, then the 
initial quantum cost of the proposed PNM2 block is 9.

Moreover, according to Fig. 16, the NCV display of the proposed PNM1 block is 
shown in Fig. 17.

After simplifying the circuit shown in Fig.  17 according to the simplification 
rules in [33, 35–37], the optimized NCV display of the proposed PNM2 circuit is 
illustrated in Fig. 18.

Therefore, the total quantum cost of the proposed PNM2 block is 6. In addition, 
its logical calculation is 4α + 2β + 2δ.

4.2 � Proposed parity‑preserving reversible flip‑flops

In this section, using the proposed parity-preserving reversible blocks PNM1, PNM2 
blocks and DFG gate various parity-preserving reversible flip-flops D, T and J-K are 
introduced.

The output equation of a D flip-flop with inputs D and CLK is expressed as 
Qt+1 = Qt.CLK + CLK.D . In Fig. 19, the first proposed parity-preserving reversible D 
flip-flop (PPDFF1) is illustrated using the PNM2 block.

Fig. 21   The first proposed parity-preserving reversible T flip-flop: a circuit view and b quantum realiza-
tion
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As seen in Fig.  19, the first proposed parity-preserving reversible D flip-flop has 
GC = 1, CI = 1 and GO = 2. Given that one parity-preserving reversible PNM2 block 
has been used in its design, so the quantum cost is calculated as follows:

The second parity-preserving reversible D flip-flop (PPDFF2) is shown in Fig. 20 
using the proposed PNM1 block and DFG gate.

As seen in Fig. 20, the second proposed parity-preserving reversible D flip-flop has 
GC = 2, CI = 3 and GO = 3. Given that one parity-preserving reversible PNM1 block 
and one DFG gate have been used in its design, so the quantum cost is calculated as 
follows:

QCPPDFF1 = 1QCPNM2 = (1 × 6) = 6

QCPPDFF2 = 1QCPNM1 + 1QCDFG = (1 × 5) + (1 × 2) = 7

Fig. 22   The second proposed parity-preserving reversible T flip-flop: a circuit view and b quantum reali-
zation

Fig. 23   The proposed parity-preserving reversible J-K flip-flop: a circuit view and b quantum realization
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The output equation of the T flip-flop with inputs T and CLK can be written as 
Qt+1 = TQt.CLKQt.CLK . Moreover, it can be easily demonstrated that the above 
equation is equal to Qt+1 = (T.CLK)Qt.

In Fig. 21, the first proposed parity-preserving reversible T flip-flop (PPTFF1) 
is illustrated using the PNM2 block and DFG gate.

As seen in Fig.  21, the first proposed parity-preserving reversible T flip-flop 
has GC = 2, CI = 2 and GO = 2. Given that one parity-preserving reversible PNM2 
block and one DFG gate have been used in its design, so the quantum cost is cal-
culated as follows:

Fig. 24   The first proposed parity-preserving reversible master–slave D flip-flop: a circuit view and b 
quantum realization

Fig. 25   The second proposed parity-preserving reversible master–slave D flip-flop flop: a circuit view 
and b quantum realization
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In Fig. 22, the second proposed parity-preserving reversible T flip-flop (PPTFF2) 
is illustrated using the PNM1 block and DFG gate.

As seen in Fig. 22, the second proposed parity-preserving reversible T flip-flop 
has GC = 2, CI = 3 and GO = 3. Given that one parity-preserving reversible PNM1 
block and one DFG gate have been used in its design, so the quantum cost is calcu-
lated as follows:

The characteristic equation of J-K flip-flop is Qt+1 = CLKQt + CLK
(

JQ̄t + K̄Qt
)

 . 
The parity-preserving reversible J-K flip-flop is shown in Fig. 23 using the proposed 
reversible PNM1 and PNM2 blocks.

As seen in Fig. 23, the second proposed parity-preserving reversible J-K flip-flop 
has GC = 2, CI = 2 and GO = 3. Given that one PNM1 block and one PNM2 block 
have been used in its design, so the quantum cost is calculated as follows:

In Fig. 24, the first proposed parity-preserving reversible master–slave D flip-flop 
is illustrated using the two parity-preserving reversible D Flip-flops (PPDFF1).

As seen in Fig. 24, the first proposed parity-preserving reversible master–slave D 
flip-flop has GC = 2, CI = 2 and GO = 3. Given that two parity-preserving reversible 
D flip-flops (PPDFF1) has been used in its design, so the quantum cost is calculated 
as follows:

In Fig. 25, the second proposed parity-preserving reversible master–slave D flip-
flop is illustrated using the two parity-preserving reversible D flip-flops (PPDFF2).

QCPPTFF1 = 1QCPNM2 + 1QCDFG = (1 × 6) + (1 × 2) = 8

QCPPTFF2 = 1QCPNM1 + 1QCDFG = (1 × 5) + (1 × 2) = 7

QCPPJ-KFF = 1QCPNM1 + 1QCPNM2 = (1 × 5) + (1 × 6) = 11

Quantum Cost = 2QCPPDFF1 = (2 × 6) = 12

Fig. 26   The proposed parity-preserving reversible master–slave T flip-flop: a circuit view and b quantum 
realization
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As seen in Fig. 25, the second proposed parity-preserving reversible master–slave 
D flip-flop has GC = 4, CI = 6 and GO = 6. Given that two parity-preserving revers-
ible D flip-flops (PPDFF2) have been used in its design, so the quantum cost is cal-
culated as follows:

In Fig. 26, the proposed parity-preserving reversible master–slave T flip-flop is 
illustrated using the one parity-preserving reversible T flip-flop (PPTFF2) and one 
parity-preserving reversible D flip-flop (PPDFF2).

Quantum Cost = 2QCPPDFF2 = (2 × 7) = 14

Fig. 27   The proposed parity-preserving reversible master–slave J-K flip-flop: a circuit view and b quan-
tum realization

Fig. 28   The proposed parity-preserving reversible 4-bit asynchronous up-counter
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As seen in Fig. 26, the proposed parity-preserving reversible master–slave T flip-
flop has GC = 4, CI = 6 and GO = 6. Given that one parity-preserving reversible T 
flip-flop (PPTFF2) and one parity-preserving reversible D flip-flop (PPDFF2) have 
been used in its design, so the quantum cost is calculated as follows:

Quantum Cost = 1QCPPTFF2 + 1QCPPDFFF2 = (1 × 7) + (1 × 7) = 14

Fig. 29   The QCA implementation of the proposed reversible blocks: a QCA layout of the PNM1 block, 
b simulation results of the PNM1 block, c QCA layout of the PNM2 block and d simulation results of the 
PNM2 block
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Fig. 29   (continued)



2229

1 3

Parity‑preserving reversible flip‑flops with low quantum…

In Fig. 27, the proposed parity-preserving reversible master–slave J-K flip-flop is 
illustrated using the one parity-preserving J-K flip-flop (PPJ-KFF) and one parity-
preserving reversible D flip-flop (PPDFF2).

As seen in Fig.  27, the proposed parity-preserving reversible master–slave J-K 
flip-flop has GC = 4, CI = 5, and GO = 6. Given that one parity-preserving J-K flip-
flop (PPJ-KFF) and one parity-preserving reversible D flip-flop (PPDFF2) have been 
used in its design, so the quantum cost is calculated as follows:

In Fig. 28, the proposed parity-preserving reversible 4-bit asynchronous up-coun-
ter (PPUPC) is illustrated using the four proposed parity-preserving reversible D 
flip-flops (PPDFF2) and three FRG gates.

As seen in Fig. 28, the proposed parity-preserving reversible 4-bit asynchronous 
up-counter has GC = 11, CI = 18 and GO = 15. Given that four parity-preserving 
reversible D flip-flops (PPDFF1) flip-flops and three FRG gates have been used in 
its design, so the quantum cost is calculated as follows:

5 � Simulation results and comparisons

In this section, we implement the proposed reversible blocks in QCA technology 
by QCADesigner 2.0.3 software [54]. As observed, the proposed reversible blocks 
consist of 2-input AND, 2-input XOR and 2-input XNOR gates. To achieve effective 
quantum-dot cellular automata [55–59] implementation of the proposed blocks, we 
have used 2-input XOR presented in [60]. The QCA layouts, along with the simula-
tion results of the proposed reversible blocks, are illustrated in Fig. 29.

As seen in Fig. 29, the proposed QCA layouts are coplanar and consist of sim-
ple cells so that crossing of the wires is carried out using the technique introduced 

Quantum Cost = 1QCPPJ-KFF + 1QCPPDFF2 = (1 × 11) + (1 × 7) = 18

Quantum Cost = 4QCPPDFF2 + 3QCFRG = (4 × 7) + (3 × 5) = 43

Table 9   The energy consumption analysis of the QCA reversible gates

Circuits Avg. leakage energy diss 
(meV)

Avg. switching energy diss 
(meV)

Total energy diss (meV)

0.5 EK 1 EK 1.5 EK 0.5 EK 1 EK 1.5 EK 0.5 EK 1 EK 1.5 EK

Proposed 
QCA 
revers-
ible PNM1 
block

100.25 301.57 599.35 611.71 519.69 421.15 711.96 821.26 1020.5

Proposed 
QCA 
revers-
ible PNM2 
block

105.46 333.26 606.10 624.61 538.28 453.59 730.07 871.54 1059.38
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Fig. 30   Energy dissipation map at 2 K and tunneling energy of 0.5 EK for a the proposed QCA revers-
ible PNM1 block and b the proposed QCA reversible PNM2 block
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by Abedi et al. [61]. The QCA layout of the PNM1 block has 345 cells with occu-
pied area 0.82 μm2 and a delay equal to 2.75 clock cycles. Also, the QCA layout 
of the PNM2 block has 353 cells with occupied area 0.63 μm2 and a delay equal 
to 2.5 clock cycles.

In order to compute the energy consumption of the QCA reversible blocks, we 
have used the QCAPRO tool [62]. The results of the energy consumption analysis 
of the proposed structures at three different levels of energy (0.5  EK, 1  EK and 
1.5 EK) are provided in Table 9.

Table 10   Comparative characteristics of the parity-preserving reversible D flip-flop designs a with out-
put Q and b outputs Q and Q̄

Designs GC CI GO QC LC Ratio

(a)
 Haghparast and Navi [51] 2 1 2 7 4α + 4β + 1δ 1.16
 Pareek et al. [40] 1 1 2 7 3α + 2β + 1δ 1.16
 Proposed PPDFF1 1 1 2 6 4α + 2β + 2δ 1

(b)
 Misra et al. [26] 2 3 3 8 6α + 2β + 1δ 1.14
 Thapliyal and Ranganathan [50] 2 2 2 10 4α + 8β + 2δ 1.42
 Gharajeh and Haghparast [41] 1 2 3 10 8α + 16β + 8δ 1.42
 Pareek [52] 2 3 3 9 5α + 3β + 1δ 1.28
 Goswami et al. [53] 2 3 2 19 18α + 4β + 1δ 2.71
 Proposed PPDFF2 2 3 3 7 5α + 3β + 3δ 1

Table 11   Comparative characteristics of the parity-preserving reversible T flip-flop designs with outputs 
Q and Q̄

Designs GC CI GO QC LC Ratio

Pareek [52] 2 2 2 9 5α + 2β + 1δ 1.28
Thapliyal and Ranganathan [50] 3 3 3 15 6α + 12β + 3δ 2.14
Misra et al. [26] 2 2 2 8 6α + 2β + 1δ 1.14
Thapliyal and Srinivas [49] 8 11 11 40 16α + 32β + 8δ 5.71
Proposed PPTFF1 2 2 2 8 6α + 2β + 2δ 1.14
Proposed PPTFF2 2 3 3 7 5α + 3β + 3δ 1

Table 12   Comparative characteristics of different parity-preserving reversible J-K flip-flop designs with 
outputs Q and Q̄

Designs GC CI GO QC LC Ratio

Pareek [52] 4 5 6 19 9α + 10β + 3δ 1.72
Thapliyal and Ranganathan [50] 4 4 5 20 8α + 16β + 4δ 1.81
Thapliyal and Srinivas [49] 7 9 10 35 14α + 28β + 7δ 3.18
Proposed PPJ-KFF1 2 2 3 11 7α + 5β + 5δ 1
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Besides, energy dissipation maps of the proposed designs with tunneling 
energy of 0.5 EK are illustrated in Fig. 30. The cells with higher power dissipation 
are depicted with darker colors in the thermal hot spot maps.

In the following, the performance analyses of the proposed parity-preserv-
ing reversible designs concerning the existing designs are provided. Tables  10, 
11, 12, 13, 14, 15 and 16 give the characteristics of the proposed flip-flops cir-
cuits along with the previous designs in terms of GC, CI, GO, QC, LC and ratio 

Table 13   Comparative characteristics of different parity-preserving reversible master–slave D flip-flop 
designs a with output Q and b outputs Q and Q̄

Designs GC CI GO QC LC Ratio

(a)
 Pareek [52] 2 2 3 14 6α + 4β + 2δ 1.16
 Proposed#1 2 2 3 12 8α + 4β + 4δ 1

(b)
 Thapliyal and Srinivas [49] 5 6 6 25 10α + 20β + 5δ 1.78
 Goswami et al. [53] 4 5 4 38 36α + 8β + 2δ 2.71
 Proposed#2 4 6 6 14 10α + 6β + 6δ 1

Table 14   Comparative 
characteristics of two parity-
preserving reversible master–
slave T flip-flop designs with 
outputs Q and Q̄

Designs GC CI GO QC LC Ratio

Thapliyal and 
Srinivas [49]

23 32 35 115 46α + 92β + 23δ 8.21

Proposed 4 6 6 14 10α + 6β + 6δ 1

Table 15   Comparative 
characteristics of two parity-
preserving reversible master–
slave J-K flip-flop designs with 
outputs Q and Q̄

Designs GC CI GO QC LC Ratio

Thapliyal and 
Srinivas [49]

22 30 32 110 44α + 88β + 22δ 6.11

Proposed 4 5 6 18 12α + 8β + 8δ 1

Table 16   Characteristics of the parity-preserving reversible 4-bit asynchronous up-counter design

Design GC CI GO QC

Proposed 11 18 15 43
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criteria. The ratio criterion denoted the ratio of quantum cost of each existing 
design in comparison with the quantum cost of the proposed design.

As shown in Table 10a, the quantum cost of the proposed PPDFF1, compared 
with the best previous design in [51] and [40], shows an improvement of 14.28%. 
Also, its GC, CI and GO criteria are equal or better to all of the previous designs. 
Also, as shown in Table 10b, the quantum cost of the proposed PPDFF2, com-
pared with the best previous design in [26], shows an improvement of 12.50%. 
Besides, its GC, CI and GO criteria are very close to than all of previous designs.

[51] [40]
GC 50.00 0.00
CI 0.00 0.00
GO 0.00 0.00
QC 14.28 14.28
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-60.00
-40.00
-20.00
0.00

20.00
40.00
60.00
80.00

Im
pr

ov
em

en
t (

%
)

(a) (b)

Fig. 31   Improvement of the proposed parity-preserving reversible D flip-flop compared to other designs 
a with output Q and b with outputs Q and Q̄

[52] [50] [26] [49]
GC 0.00 33.33 0.00 75.00
CI 0.00 33.33 0.00 75.00
GO 0.00 33.33 0.00 75.00
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Fig. 32   Improvement of the proposed parity-preserving reversible T flip-flop compared to other designs 
a PPTFF1 and b PPTFF2
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Moreover, the improvement percentage of the proposed parity-preserving 
reversible PPDFF1 and PPDFF2 is shown in Fig. 31.

As shown in Table 11, the quantum cost of the proposed PPTFF2, compared 
with the best previous design in [26], shows an improvement of 12.50%. In addi-
tion, its GC, CI and GO criteria are smaller or equal to all of previous designs. In 
addition, the improvement percentage of the proposed parity-preserving revers-
ible PPTFF1 and PPTFF2 is shown in Fig. 32.

As shown in Table 12, the quantum cost of the proposed PPJ-KFF1, compared 
with the best previous design in [52], shows an improvement of 42.10%. Also, its 
GC, CI and GO criteria are so better than all of the previous designs.

Besides, the improvement percentage of the proposed parity-preserving revers-
ible PPJ-KFF1 is shown in Fig. 33.

Fig. 33   Improvement of the pro-
posed parity-preserving revers-
ible J-K flip-flop compared to 
other designs
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Fig. 34   Improvement of the proposed parity-preserving reversible master-salve D flip-flop compared to 
other designs a with output Q and b outputs Q and Q̄
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As shown in Table 13a, the quantum cost of the parity-preserving master–slave 
Proposed#1, compared with the best previous design in [52], shows an improve-
ment of 14.28%. In addition, its GC, CI and GO criteria are equal to all of the 
previous designs. Also, as shown in Table 13b, the quantum cost of the parity-
preserving master–slave Proposed#2, compared with the best previous design in 
[49] shows an improvement of 44%. Besides, its GC, CI and GO criteria are very 
close to all of the previous designs.

In addition, the improvement percentage of the proposed parity-preserving 
reversible master–slave D flip-flop is shown in Fig. 34.

Also, as shown in Table 14, the quantum cost of the proposed parity-preserving 
master–slave T flip-flop, compared with the best previous design in [49], shows 

Fig. 35   Improvement of the pro-
posed parity-preserving revers-
ible master–slave T flip-flop 
compared to the other designs
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Fig. 36   Improvement of the pro-
posed parity-preserving revers-
ible J-K flip-flop compared to 
other designs
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an improvement of 87.82%. In addition, its GC, CI and GO criteria are smaller 
than all of the previous designs. Besides, the improvement percentage of the pro-
posed parity-preserving reversible master–slave T flip-flop is shown in Fig. 35.

Also, as shown in Table  15, the quantum cost of the proposed parity-preserving 
master–slave J-K flip-flop, compared with the best previous design in [49], shows an 
improvement of 83.63%. In addition, its GC, CI and GO criteria are smaller than all 
of the previous designs. Besides, the improvement percentage of the proposed parity-
preserving reversible master–slave J-K is shown in Fig. 36.

6 � Conclusion

In this paper, initially two novel parity-preserving reversible blocks were introduced. 
Then, effective designs of parity-preserving reversible D, T and J-K flip-flops, as 
well as their master–slave, were proposed using the proposed blocks and DFG gates. 
Finally, a parity-preserving reversible 4-bit asynchronous up-counter was designed 
using the proposed parity-preserving reversible D flip-flops and three FRG gates. 
The proposed circuits are compared with the existing counterparts in terms of con-
stant inputs, garbage outputs and quantum cost. The comparison results show that 
the proposed designs are superior to the quantum cost and some of the other criteria, 
such as constant input and garbage outputs. Utilizing the proposed flip-flops designs 
in the parity-preserving reversible sequential circuits such as registers, BCD coun-
ters and RAM minimizes the quantum cost criteria. All the scales are in the nano-
metric area.
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