
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:455–480
https://doi.org/10.1007/s11227-019-03033-y

1 3

An energy‑aware scheduling algorithm
for budget‑constrained scientific workflows based
on multi‑objective reinforcement learning

Yao Qin1  · Hua Wang2 · Shanwen Yi1 · Xiaole Li3 · Linbo Zhai4

Published online: 23 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Since scientific workflow scheduling becomes a major energy contributor in clouds,
much attention has been paid to reduce the energy consumed by workflows. This
paper considers a multi-objective workflow scheduling problem with the budget
constraint. Most existing works of budget-constrained workflow scheduling can-
not always satisfy the budget constraint and guarantee the feasibility of solutions.
Instead, they discuss the success rate in the experiments. Only a few works can
always figure out feasible solutions. These methods work, but they are too compli-
cated. In workflow scheduling, it has been a trend to consider more than one objec-
tive. However, the weight selection is usually ignored in these works. The inap-
propriate weights will reduce the quality of solutions. In this paper, we propose an
energy-aware multi-objective reinforcement learning (EnMORL) algorithm. We
design a much simpler method to ensure the feasibility of solutions. This method is
based on the remaining cheapest budget. Reinforcement learning based on the Che-
byshev scalarization function is a new framework, which is effective in solving the
weight selection problem. Therefore, we design EnMORL based on it. Our goal is to
minimize the makespan and energy consumption of the workflow. Finally, we com-
pare EnMORL with two state-of-the-art multi-objective meta-heuristics in the case
of four different workflows. The results show that our proposed EnMORL outper-
forms these existing methods.

Keywords  Scientific workflows · Cloud computing · Energy saving · Reinforcement
learning · Multi-objective optimization · The budget constraint

 *	 Hua Wang
	 wanghua@sdu.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3062-4052
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-03033-y&domain=pdf

456	 Y. Qin et al.

1 3

1  Introduction

Cloud computing has been an important computing paradigm, which can provide
computing resources through the Internet [1]. For cloud consumers, cloud com-
puting can provide an infinite amount of resources and has the advantages of reli-
ability, scalability, and flexibility [2].

The increasing demand for cloud computing has made the energy problem be
one of the major concerns in clouds [3]. It is reported that the energy consump-
tion of cloud data centers accounted for 1% of global electricity usage in 2010,
and this rate is expected to increase to 3–13% in 2030 [4]. High energy consump-
tion of data centers also increases global greenhouse gas emissions (GHGE) [5].
Data centers have been the largest culprit in the information and communication
technology (ICT), which grew from 33% in 2010 to 45% of global ICT emissions
by 2020 [6]. Due to its advantages, cloud computing has been widely used to
execute scientific workflow applications [7]. Over the last few years, scientific
workflow scheduling has been one of the primary energy consumers in clouds
[8]. As a result, we should consider energy saving when designing the workflow
scheduling algorithm.

This paper considers a multi-objective workflow scheduling problem with the
budget constraint. Budget-constrained workflow scheduling is one of the main
research directions in the field of workflow scheduling. However, most exist-
ing works of budget-constrained workflow scheduling cannot always satisfy the
budget constraint and guarantee the feasibility of solutions. Instead, they discuss
the success rate of scheduling in the experiments [8–10]. Unlike these works,
[11] and [12] propose methods to guarantee the feasibility. These two methods
are based on a concept called the budget level. They convert the budget constraint
of the whole workflow into the budget constraints of tasks. The existing methods
can always figure out feasible solutions, but they are complicated. What’s more,
the budget constraints of tasks are just the sufficient conditions of the original
budget constraint. In this paper, we propose a much simpler way to guarantee the
feasibility of solutions. We directly use the original budget constraint instead of
converting it. Our method is proposed based on a concept called the remaining
cheapest budget (RCB) [9].

In workflow scheduling, it has been a trend to consider more than one objective
[13]. However, the weight selection problem is usually ignored in these works. It
is an acknowledged difficult problem to determine the appropriate weight for each
objective in multi-objective optimization [14]. If the weights are inappropriate, it
will reduce the quality of solutions. From the literature, we find that the combina-
tion of reinforcement learning (RL) and the Chebyshev scalarization function can
efficiently solve the weight selection problem [15]. RL based on the Chebyshev
scalarization function is a new algorithm framework, which provides a general
solution to multi-objective optimization. As a result, we design the scheduling
algorithm based on it.

In this paper, we propose an energy-aware multi-objective RL (EnMORL)
algorithm. Our goal is to find a set of Pareto approximations, which can

457

1 3

An energy-aware scheduling algorithm for budget-constrained…

simultaneously minimize the makespan and energy consumption of the work-
flow under the specified budget. The energy model in this paper is based on the
dynamic voltage/frequency scaling (DVFS) technique [16]. Like most list-based
scheduling algorithms [17], EnMORL consists of a ranking phase and a mapping
phase. In EnMORL, we first assign a priority to each task in the workflow and
then select a virtual machine (VM) of the appropriate type for each task in the
order of priority. Finally, we compare EnMORL with two state-of-the-art multi-
objective meta-heuristics in the case of four workflows, which come from dif-
ferent scientific applications. The experimental results show that our proposed
EnMORL outperforms these existing methods.

The main contributions of this paper can be summarized as follows:

1.	 RL is capable of solving difficult multi-step decision-making problems [18]. It is
very suitable for solving the workflow scheduling problem in this paper.

2.	 We propose a new method based on RCB to satisfy the budget constraint and
guarantee the feasibility of solutions. This method is much simpler than those in
[11] and [12].

3.	 We propose the EnMORL algorithm based on the Chebyshev scalarization func-
tion, which is efficient in solving the weight selection problem.

4.	 The experimental results demonstrate that EnMORL can compete efficiently with
two state-of-the-art multi-objective meta-heuristics in terms of makespan, energy
consumption, and the hypervolume indicator [19].

The remainder of this paper is organized as follows: We introduce related works
from two aspects in Sect. 2. We briefly introduce the multi-objective optimization in
Sect. 3. We give the mathematical formulation of the scheduling problem in Sect. 4.
We present our proposed EnMORL algorithm in Sect. 5. We evaluate the perfor-
mance in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 � Related work

In this section, we first introduce some representative works of budget-constrained
workflow scheduling, and then the related works of energy-aware workflow
scheduling.

The quality of service (QoS) requirements, such as the makespan and cost, are
the traditional optimization objectives in workflow scheduling. In this area, budget-
constrained workflow scheduling is one of the major research hot spots.

Most existing works of budget-constrained workflow scheduling do not guar-
antee the feasibility of the solution. Instead, they discuss the success rate or the
failure rate of the scheduling in the experiments. Arabnejad et al. [9] propose
a heterogeneous budget-constrained scheduling (HBCS) algorithm. The authors
aim to minimize the makespan under the specified budget. In their algorithm,
they use the combination of the time and cost factors to select the processor for
the current task. Garg et al. [10] propose a �-fuzzy dominance sort-based discrete

458	 Y. Qin et al.

1 3

particle swarm optimization (PSO) algorithm called �-FDPSO to solve the work-
flow scheduling in grid computing. Their goal is to optimize makespan, cost, and
reliability objectives simultaneously under deadline and budget constraints. The
authors use the �-fuzzy dominance-based sorting procedure to select the particle
with a lower rank.

Unlike the above works, Wu et al. [11] aim to find feasible solutions in budget-
constrained workflow scheduling. Their proposed critical-greedy (CG) algorithm
preassigns tasks with the budget level to meet the budget constraint. However,
this algorithm only applies to homogeneous data centers. In [12], Chen et al.
extend the concept of the budget level to heterogeneous environments. They
propose an efficient algorithm called minimizing the schedule length using the
budget level (MSLBL). The authors aim to minimize the makespan of the work-
flow while satisfying the budget constraint. To meet the budget constraint, the
authors convert the budget constraint of the whole workflow into those of tasks.
When using the budgets of tasks, MSLBL can at least assign each task assign to
the processor with the minimum cost. The methods in [11] and [12] are complex.
The budget constraints of tasks are just the sufficient conditions of the original
budget constraint. In this paper, we will use a much simpler way to guarantee the
feasibility of solutions. We design our method based on the original budget con-
straint instead of converting it.

An increasing number of scientific workflows are migrating into clouds. As
a result, workflow scheduling has been one of the primary energy consumers in
data centers. In recent years, much attention has been paid to reduce the energy
consumption of workflow scheduling.

In, Li et al. [20] propose a cost and energy-aware scheduling (CEAS) algo-
rithm to solve workflow scheduling in clouds. CEAS is composed of five sub-
algorithms. Their goal is to minimize the execution cost and energy consumption
under the deadline constraint. To meet the deadline constraint, they propose the
concept of sub-makespan. In, Qureshi et al. [21] introduce the concept of power-
aware application profiles (APs). The authors use APs to compute the execution
cost of a workflow according to the energy consumption requirements. Their
scheduling algorithm considers CPU, memory, I/O, and energy consumption
requirements.

To reduce the makespan and energy consumption, Sofia et al. [13] propose
a multi-objective algorithm based on non-dominated sorting genetic algorithm
(NSGA-II) [22]. The authors also propose two single-objective genetic algorithms
(GA) to minimize energy consumption and makespan individually. Verma et al.
[8] propose a hybrid PSO (HPSO) algorithm to handle the workflow scheduling
problem in clouds. HPSO is the combination of heterogeneous earliest finish time
(HEFT) [23] and multi-objective PSO (MOPSO) [24]. Their objectives include time
minimization, cost minimization, and energy saving. The authors consider both the
bi-objective workflow scheduling problem as well as the tri-objective workflow
scheduling problem in their work.

We notice that the energy models in the above works are all based on the DVFS
technique. This technique has been widely used in energy-aware workflow schedul-
ing problems.

459

1 3

An energy-aware scheduling algorithm for budget-constrained…

3 � Multi‑objective optimization

A maximization multi-objective problem with m decision variables and n objec-
tives can be defined as [25]:

where �⃗x is the decision vector, X is the search space, f⃗ is the objective vector, and Y
is the objective space.

A solution ��⃗x1 is said to dominate another solution ��⃗x2 , ( ��⃗x1 ≻ ��⃗x2 ), if and only if
both of the following two conditions are true [26]:

1.	 The solution ��⃗x1 is not worse than ��⃗x2 in any objective.
2.	 The solution ��⃗x1 is strictly better than ��⃗x2 in at least one objective.

The points that are not dominated by any other points are called the non-domi-
nated points, and the corresponding decision variables are called non-dominated
solutions or Pareto optimal solutions. The Pareto optimal front is defined as the
set of all non-dominated points. Similarly, the Pareto optimal set is the set of all
non-dominated solutions.

The concept of Pareto optimal set is used to optimize problems with multi-
ple objectives. The multi-objective algorithm aims to find a Pareto approximate
set that can approximate the true Pareto optimal set. In this paper, the set of
non-dominated solutions will be updated after the construction of each feasible
solution.

4 � System models and mathematical formulation

Our algorithm aims to schedule a budget-constrained workflow on a set of avail-
able heterogeneous resources, which are in the form of VMs in clouds. This sec-
tion consists of five parts, namely the workflow model, cloud data center model,
makespan model, energy model, and mathematical formulation.

4.1 � Workflow model

In general, a workflow application is represented by a directed acyclic graph
(DAG). A DAG can be modeled as a tuple G(T, D), where T = {t1,… , tm} is the
set of m tasks in the workflow, and D is the set of directed edges between tasks.
Directed edges represent the task-dependency constraints. If there exists an edge

(1)
max f⃗ (�⃗x) = [f1(x1, x2,… , xm),… , fn(x1, x2,… , xm)]

s.t.

�⃗x = (x1, x2,… , xm) ∈ X

(2)f⃗ = (f1, f2,… , fn) ∈ Y ,

460	 Y. Qin et al.

1 3

(ti, tj) ∈ D , then ti is called an immediate predecessor of tj , and tj is called an
immediate successor of ti . We use pre(ti) to denote the set of all immediate pre-
decessors of task ti , and succ(ti) to denote the set of all immediate successors of
task ti . A task can only start after all of its predecessors complete their execution.
The task with no predecessors is called the entry task, which can be denoted as
tentry . The task with no successors is called the exit task, which can be denoted as
texit . The size of data processed by task ti is denoted by ini , which is expressed in
Millions of Instructions (MI). The size of data transferred between task ti and tj is
denoted by trani,j , which is expressed in MB.

4.2 � Cloud data center model

In the cloud data center, the computing resources are usually provided in the form of
homogeneous VMs. We assume that the cloud data center offers n types of VMs, which
have different prices with different performance. We use V = {v1,… , vn} to denote the
set of VM types. For simplicity, we assume that each VM type vj can provide an infinite
number of VMs to execute all the tasks of a workflow.

In this paper, the cloud service is charged based on the number of time intervals that
the VM has been used. The consumers have to pay for the whole time interval even if
it is not completely used. We use cj to denote the unit price or cost of using the VM
type vj for each time interval, and pj to denote the processing speed of type vj for each
time interval. The processing speed pj is expressed in million instructions per second
(MIPS).

Let xi,j be a binary variable, which represents whether task ti is executed on the VM
type vj (xi,j = 1) or not (xi,j = 0) . Each task ti ∈ T is executed exactly once, so there
exists the equation

∑n

j=1
xi,j = 1 , where n is the number of VM types in the data center.

4.3 � Makespan model

Without loss of generality, we assume that each task can be executed on any VM in
the data center. If task ti is assigned to VM type vj , the execution time ET(ti, vj) of
task ti is expressed as follows:

When considering the decision variable xi,j , the actual execution time ET(ti) of task
ti can be calculated as:

We have assumed that all the VMs are in the same data center, which means the
storage cost and the transmission cost can be ignored. Let EC(ti) denote the cost of
executing task ti , which can be calculated as follows:

(3)ET(ti, vj) =
ini

pj

(4)ET(ti) =

n∑

j=1

ET(ti, vj) ⋅ xi,j =

n∑

j=1

ini

pj
⋅ xi,j

461

1 3

An energy-aware scheduling algorithm for budget-constrained…

We have assumed that each VM type vj can provide a sufficient number of VMs to
execute all the tasks of a workflow. We assume that all the VMs in the cloud data
center have the same communication bandwidth, the value of which is set to a con-
stant b. Then, the actual finish time FT(ti) of task ti can be calculated as:

The makespan MS of the workflow is defined as the maximum actual finish time of
the exit tasks:

4.4 � Energy model

The energy consumption in this paper is calculated based on the DVFS technique
[16]. The dynamic power consumption is the most important factor, so we ignore
the static energy consumption [27]. The dynamic power capability Pd is expressed
as follows:

where B is the number of switches per clock cycle, C is the total capacitance load, V
is the supply voltage, and f is the frequency. From Eq. (8), we know that the supply
voltage is the dominant factor. The total energy consumed by the whole workflow
can be calculated as follows [8]:

where Vi denotes the supply voltage of the VM on which task ti is executed. It is
often assumed that VMs are operating at the maximum voltage level when they are
busy [8]. The VM type with higher performance has a higher supply voltage. With-
out loss of generality, we assume that a VM with higher performance consumes
more energy.

4.5 � Mathematical formulation

The two objectives in this paper are to minimize makespan and energy consumption.
Besides, the scheduling problem subjects to a budget constraint. Based on Eqs. (7)
and (9), the scheduling problem is formulated as follows:

(5)EC(ti) = ET(ti) ⋅ cj =

n∑

j=1

ini

pj
cj ⋅ xi,j

(6)FT(ti) =

{
ET(ti), pre(ti) = �

max
tp∈pre(ti)

{
FT(tp) +

tranp,i

b

}
+ ET(ti), pre(ti) ≠ �

(7)MS = max{FT(texit)}

(8)Pd = BCV2f ,

(9)E =

m∑

i=1

BC(Vi)
2f ⋅ ET(ti) =

m∑

i=1

�(Vi)
2
⋅ ET(ti),

462	 Y. Qin et al.

1 3

where m and n is the number of all tasks and VM types respectively, and BG denotes
the budget.

The constraint (10) ensures that the cost of the workflow must be smaller than the
budget. The constraint (11) ensures that each task is executed only once. The constraint
(12) defines the decision variables. What’s more, it is quite remarkable that the task-
dependency constraint is reflected by Eq. (6), and xi,j can be found in all objectives and
constraints.

A consumer can determine the budget within the range provided by the following
equation [9]:

where Cc denotes the cost of the cheapest scheduling, Ch denotes the cost of the
most expensive scheduling, and kBG is the budget factor, which is determined by the
consumer. When kBG < 0 , there exists the inequation BG < Cc . It means that the
consumer cannot afford to pay the cost of the workflow. When kBG ≥ 1 , BG ≥ Ch .
There will be no budget constraint anymore. Only when 0 ≤ kBG < 1 , the schedul-
ing problem is budget-constrained. If kBG = 0 , the consumer can only choose the
cheapest scheduling. In the experiments, we set kBG in the range of 0.1–0.9. The step
length is set to 0.1.

Without loss of generality, we assume that a VM with higher computing perfor-
mance charges more in the data center. Given ti ∈ T and vj, vk ∈ V , if processing
speeds satisfy pj < pk , then there exists the inequation ET(ti, vj) ⋅ cj < ET(ti, vk) ⋅ ck .
After reducing the above inequation, we obtain:

The cheapest cost Cc is obtained by selecting the VM with the lowest performance
to execute each of the tasks. And the highest cost Ch is obtained by selecting the VM
with the highest performance to execute each of the tasks.

In conclusion, the problem in this paper is about the multi-objective scientific work-
flow scheduling, in which the makespan and energy consumption are optimized under

(10)

Goals:

min MS and min E

Constraints:

m∑

i=1

EC(ti) ≤ BG

(11)
n∑

j=1

xi,j = 1, ∀ti ∈ T

(12)xi,j ∈ {0, 1}, ∀ti ∈ T , vj ∈ V ,

(13)BG = Cc + kBG ⋅ (Ch − Cc),

(14)
cj

pj
<

ck

pk

463

1 3

An energy-aware scheduling algorithm for budget-constrained…

a budget constraint. Workflow scheduling is NP-hard [28]. In the next section, we will
apply a multi-objective RL algorithm based on the Chebyshev scalarization method to
the scientific workflow scheduling problems.

5 � The proposed EnMORL algorithm

This section consists of four parts, namely reinforcement learning, the Cheby-
shev scalarization function, the learning agent of EnMORL, and the description of
EnMORL.

5.1 � Reinforcement learning

Single-objective RL is usually described in the form of a Markov decision process
(MDP) [29]. We use S = {s1,… , sM} to denote the state space, and A = {a1,… , aN}
to denote the set of N actions, which are available in the current state. For each com-
bination of current state s, an available action a ∈ A and a next state s′ , there always
exists a transition probability p(s�|s, a) and a reward signal r(s, a).

RL aims to find an optimal policy � , which maximizes the expected discounted
reward �[

∑∞

i=0
� iri] , where � ∈ (0, 1] is the discount factor, and ri is the reward signal

at time step i. This goal can be expressed using Q values which record the expected
discounted reward for each state-action pair. We use Q�(s, a) to denote the Q value
of taking action a ∈ A in state s under policy � , and Q∗ to denote the optimal Q
value.

In a famous RL algorithm called Q-learning [30], Q̂(s, a) was proposed to itera-
tively approximate Q∗ . The Q̂(s, a) value is updated accordingly to following update
rule:

where 0 < 𝛼i ≤ 1 denotes the learning rate at time step i, and r is the reward of tak-
ing action a in state s. The Q̂(s, a) value will converge to Q∗(s, a) if visiting all state-
action pairs infinitely using an appropriate learning rate [31].

In a multi-objective RL algorithm, the MDP is usually extended to a multi-
objective MDP, and the reward signal is extended to a reward vector [32]. The
vector of reward signals in a multi-objective RL algorithm can be denoted as
r⃗(s, a) = {r1(s, a),… , rk(s, a)} , where k is the number of objectives.

5.2 � The Chebyshev scalarization function

The linear scalarization function is widely used in multi-objective algorithms,
including RL, PSO, and Ant Colony Optimization (ACO) [15]. However, it can
only discover solutions in convex regions of the Pareto front [33]. Besides, it is an
acknowledged difficult problem to determine the appropriate weights when using

(15)Q̂(s, a) = (1 − �i)Q̂(s, a) + �i

(
r + � max

a�
Q̂(s�, a�)

)
,

464	 Y. Qin et al.

1 3

the linear scalarization function [14]. The inappropriate weights will affect the qual-
ity of solutions. Therefore, we use the Chebyshev scalarization method in our pro-
posed algorithm.

The Chebyshev scalarization function is categorized as a nonlinear scalari-
zation method, which overcomes the shortcomings of the linear scalarization
function. It can discover Pareto optimal solutions regardless of the front shape.
Besides, the Chebyshev scalarization function is not particularly dependent on
the actual weights used. We can select a relative optimal weight tuple from sev-
eral randomly generated ones in preliminary experiments [15].

The Chebyshev scalarization function evaluates actions using the metric Lp .
This metric is defined as the distance between a point in the objective space and a
utopian point z∗ , which records the best value for each objective [34]. During the
learning process, z∗ is constantly updated. The value of z∗

i
 for objective i can be

calculated as follows:

where fi denotes the function of objective i, f best
i

(x) denotes the best value so far for
objective i of the solution x, and � denotes a small constant. We set � to 2.0. We use
Lp(x) to denote the distance between the corresponding point of solution x and the
utopian point z∗ and it can be expressed as follows:

where p ≥ 1 . We use k to denote the number of objectives, and 0 ≤ wi ≤ 1 to denote
the weight of each objective i, which satisfies the equation

∑k

i=1
wi = 1 . When

p = ∞ , the metric will be called the Chebyshev metric. It can be expressed as
follows:

In multi-objective RL, fi(x) is replaced by Q̂i(s, a) , which denotes the Q̂ value for
each objective i. Then, the ŜQ value or the scalarized Q̂ value of a state-action pair
(s, a) can be calculated as follows:

The above equation describes the scalarization of Q̂ values when using the Cheby-
shev scalarization function in RL. The action corresponding to the smallest ŜQ value
will be chosen as the greedy action in state s. In other words, the greedy strategy can
be expressed as follows:

(16)z∗
i
= f best

i
(x) + �,

(17)Lp(x) =

(
k∑

i=1

wi|fi(x) − z∗
i
|p
)1∕p

,

(18)L∞(x) = max
i=1⋯k

wi|fi(x) − z∗
i
|

(19)ŜQ(s, a) = max
i=1⋯k

wi|Q̂i(s, a) − z∗
i
|

(20)greedya(s) = argmin
a∈A

ŜQi(s, a),

465

1 3

An energy-aware scheduling algorithm for budget-constrained…

where A is the available action set in state s. Algorithm 1 shows the scalarized �
-greedy strategy for a multi-objective RL algorithm, where ��⃗w is the vector of
weights for multiple objectives.

5.3 � The learning agent of EnMORL

In this part, we introduce the learning agent of EnMORL in terms of the state space,
the available action set, and the reward vector.

5.3.1 � The state space

The state space in the EnMORL algorithm describes the usage of all VM types at
each time step, which is denoted by S = {s1,… , sq} . Apart from the final state, each
state corresponds to a time step.

The state si ∈ S denotes the usage of all VM types at time step i. The above state
can be expressed as si = {s1

i
,… , sn

i
} , where n is the number of all VM types, and

s
j

i
∈ si is the set of all tasks which have been assigned to VM type vj ∈ V at time

step i. In our implementation, the usage of all VM types and the task assignments
in the current state si is figured out using the current values of decision variables. It
should be noted that the constraint (11) can only be satisfied after the construction
of a solution.

At each time step, we only schedule one task based on the available action set.
The maximum time step is determined by the number of tasks in the workflow.
There exists the equation q = m + 1 , where m is the number of tasks. In particular,
sm+1 is the final state, in which all tasks have been assigned to a VM.

5.3.2 � The available action set

The set of available actions at time step i is denoted by Ai . Tasks are sorted and
scheduled in descending order of their priorities, which are calculated according to
Eq. (26). We denote the task to be scheduled at time step i as ti.

466	 Y. Qin et al.

1 3

As described above, most existing works of budget-constrained workflow sched-
uling cannot ensure the feasibility of solutions. Instead, they discuss the success rate
or the failure rate of the scheduling in the experiments. Only a few works, like [11]
and [12], can guarantee the feasibility. However, their methods are too complex.

To guarantee the feasibility of solutions, we use a concept called the RCB in our
algorithm. This concept is initially proposed in [9] to select computing resources for
tasks. RCB is defined as the remaining cheapest cost for unscheduled tasks excluding
the current task ti , which updates using the following equation:

where ECc(ti) is the least cost of executing task ti . In this paper, we define a concept
called the possible remaining budget. If task ti is assigned to VM type vj at time step
i, then the possible remaining budget PRB(ti, vj) can be calculated as:

where
∑i−1

u=1
EC(tu) denotes the total cost of tasks that have been assigned before, and

EC(tu) is calculated according to Eq. (5). In EnMORL, taking action means select-
ing an appropriate VM type to execute the current task. Then, the available action
set Ai at time step i can be represented as follows:

Our core idea is to ensure that the actual remaining budget (ARB) is never less
than the RCB during the mapping phase. In other words, always keep the remain-
ing budget enough. This method can even be used to enable the feasibility of the
solution in the worst case when the budget factor kBG = 0 . At each time step i, only
when task i is assigned to the cheapest VM type, the inequation PRB(ti, vj) ≥ RCB
holds. We do not consider kBG = 0 in the experiments, because there is only one fea-
sible solution in that case.

5.3.3 � The reward vector

In multi-objective RL algorithms, we use a vector of reward signals instead of a single
reward signal. Let r⃗ = [r1, r2]

T denote the reward vector, where r1 is the reward of the
first objective, and r2 is the reward of the second objective.

If the action selected at time step i is ai ∈ Ai , the reward of the first objective can be
calculated as follows:

where FTbest(ti) denotes the finish time of task ti when it is executed on a VM with
the highest performance, and FT(ti, ai) denotes the finish time of task ti when it is
executed on VM type ai . Similarly, the reward of the second objective can be calcu-
lated as follows:

(21)RCB = RCB − ECc(ti),

(22)PRB(ti, vj) =

�
BG − ET(ti, vj) ⋅ cj, i = 1

BG −
∑i−1

u=1
EC(tu) − ET(ti, vj) ⋅ cj, i > 1,

(23)Ai = {vj ∈ V|PRB(ti, vj) ≥ RCB}

(24)r1(si, ai) =
FTbest(ti)

FT(ti, ai)
,

467

1 3

An energy-aware scheduling algorithm for budget-constrained…

where Ebest(ti) denotes the energy consumption of task ti when it is executed on a
VM with the lowest power capability, and E(ti, ai) denotes the energy consumption
of task ti when it is executed on VM type ai.

5.4 � The description of EnMORL

Like other list-based algorithms, EnMORL includes a ranking phase and a mapping
phase.

In the ranking phase, each task ti in the workflow is assigned a priority [23],
which is denoted by pr(ti) . And the value of pr(ti) can be calculated as follows:

where ET(ti) is the average execution time of task ti over all types of VMs. The
priority pr(ti) represents the length of the longest path from task ti to the exit node.
In the ranking phase, we do not know where the tasks will run. As a result, the aver-
age value is considered in the Eq. (26). In the mapping phase, tasks are sorted in
descending order of their priorities and assigned according to Algorithm 2.

Algorithm 2 shows the pseudocode of the EnMORL algorithm. This algorithm
can also be described in the following five steps.

Step 1:	 The ranking phase. In this step, we assign a priority to each task ti ∈ T and
then sort all tasks in descending order of their priorities.

Step 2:	 The initialization phase. In this step, we initialize the Pareto approximate set
Sp and the Q̂ value for each objective.

Step 3:	 The mapping phase. In this step, the learning agent constructs a feasible
solution or a trajectory according to the scalarized �-greedy strategy shown in
Algorithm 1. After taking action, the Q̂ values will be updated according to Eq.
(15).

Step 4:	 Update of the Pareto approximate set. After a solution has been constructed,
the Pareto approximate set Sp will be updated. If the solution in the current itera-
tion is not dominated by any other solutions in Sp , it will be added to the set. All
solutions dominated by the newly added one will be eliminated from the set.

Step 5:	 The termination check. If the maximum number of iterations is reached, the
algorithm terminates and returns the Pareto set Sp . Otherwise, go to Step 2.

(25)r2(si, ai) =
Ebest(ti)

E(ti, ai)
,

(26)pr(ti) = ET(ti) + max
ts∈succ(ti)

{
trani,s

b
+ pr(ts)

}
,

468	 Y. Qin et al.

1 3

More specifically, Step 1 corresponds to lines 1–4 in Algorithm 2, Step 2 corre-
sponds to lines 5, 6, Step 3 corresponds to lines 8–29, Step 4 corresponds to line 31,
and Step 5 corresponds to line 32.

6 � Performance evaluation

In the section of experiments, we present performance comparisons of our EnMORL
algorithm with some state-of-the-art scheduling algorithms in terms of makespan,
energy consumption, and the quality of the Pareto approximate set. This section con-
sists of five parts, namely workflow structure, simulation setup, weight selection,
solution selection, and experimental results.

469

1 3

An energy-aware scheduling algorithm for budget-constrained…

6.1 � Workflow structure

In simulation experiments, we use four different synthetic workflows, which are
described in [35], to evaluate the performance of our proposed algorithm. These
synthetic workflows are based on realistic workflow structures from different scien-
tific areas, which are as follows:

1.	 Montage: Astronomy
2.	 EpiGenomics: Biology
3.	 CyberShake: Earthquake
4.	 SIPHT: Biology

The characterization of the above workflows, including their structure, data, and
computational requirements, is described in detail in [35]. The corresponding work-
flow structures are shown in Fig. 1.

6.2 � Simulation setup

In simulations, all algorithms are implemented in the Java language and run on a PC
with an Intel Core i5-9400F CPU at 2.90 GHz and 8 GB RAM.

In this paper, we use CloudSim [36], which is a widely used framework, to simu-
late the environment of a cloud data center. Cloudsim can offer a repeatable and
controllable experimental environment, which enables the users to pay no attention
to the hardware details.

The cloud data center provides computing resources in the form of 10 differ-
ent VM types. In this paper, each VM type is dynamic voltage scaling (DVS) ena-
bled, and each of them is generated using a method similar to those in [27] and
[8]. For each VM type vj , a set of voltage supply levels (VSLs) is random and
uniformly distributed among three different sets of VSLs, which are shown in
Table 1. The processing speed of each VM type is chosen at random in the range of
1000–5000 MIPS. The VM type with the highest performance is five times faster
than the type of lowest performance. In this paper, a VM is operating at the maxi-
mum voltage level when there exists a task executing on it. When a VM is in the
idle state, the supply voltage drops to the minimum level [8]. The bandwidth of each

(a) Montage (b) EpiGenomics (c) CyberShake (d) SIPHT

Fig. 1   Overview of four workflow structures

470	 Y. Qin et al.

1 3

communication link between VMs is equal, and the value is set to 25 Mbps. What’s
more, the pricing model similar to Amazon EC2 is used in the experiments, and we
assume that the unit price of each VM type is proportional to its performance.

In Pareto-based RL algorithms, the convergence time or the time to get the opti-
mized solution is usually figured out according to a quality indicator called hyper-
volume [15, 25, 26].

As shown in Fig. 2, hypervolume is defined as the volume of the area between
solution points and the reference point [19]. In the case of a maximization prob-
lem, a suitable reference point can be obtained by determining the lower limit of
each objective and then subtracting a small constant. In the case of a minimization
problem, the reference point can be obtained by determining the upper limit of each
objective and then adding a small constant. If there is only one solution in the Pareto
approximate set, the value of hypervolume will be 0. For the Pareto approximate set,
a higher hypervolume means better quality.

The Q-learning algorithm will converge to the optimal policy if each action
and state is sufficiently sampled [31]. For example, Fig. 3 shows the convergence

Fig. 2   Given a reference point
R, the gray area represents the
hypervolume obtained for a
Pareto approximate set in a bi-
objective environment

objective 1

ob
je

ct
iv

e
2

S4

S1

S3

S2

R

S1

Table 1   Voltage–relative speed pairs

Level Pair 1 Pair 2 Pair 3

Voltage (V
k
) Relative

speed (%)
Voltage (V

k
) Relative

speed (%)
Voltage (V

k
) Relative

speed
(%)

0 2.20 100 1.75 100 1.50 100
1 1.90 85 1.40 80 1.20 80
2 1.60 65 1.20 60 0.90 50
3 1.30 50 0.90 40
4 1.00 35

471

1 3

An energy-aware scheduling algorithm for budget-constrained…

of EnMORL with respect to hypervolume in the case of Montage and kBG = 0.4 .
The convergence time here is expressed in the iterations. With the increase of the
iterations, hypervolume tends to converge to a fixed value.

Due to the importance of parameters for RL, we conduct experiments to con-
figure them. These parameter values are often used in RL algorithms. Table 2
shows a set of experiments in the case of Montage workflow and kBG = 0.4 . The
columns “hyper” and “ Icon ” represent the hypervolume value and the convergence
iteration, respectively. From the table, we find that the variation of parameters has
a greater influence on the convergence time. In other cases, we have similar find-
ings. Therefore, the parameter configurations are mainly based on convergence
time. In all experiments, the parameter configurations for EnMORL are entirely
identical. The parameter � in the �-greedy strategy is set to 0.1. The learning rate

0 100 200 300 400 500
0

100

200

300

400

500

H
yp

er
vo

lu
m

e

Iteration

Fig. 3   The hypervolume value relative to the iterations in the case of Montage and k
BG

= 0.4

Table 2   Parameter configuration
in the case of Montage and
k
BG

= 0.4

Number � �
i

� Hyper I
con

1 0.1 0.1 0.9 441.33 119
2 0.1 0.2 0.8 448.12 131
3 0.1 0.3 0.7 439.34 127
4 0.2 0.1 0.8 454.87 134
5 0.2 0.2 0.7 460.23 145
6 0.2 0.3 0.9 469.56 149
7 0.3 0.1 0.7 481.24 157
8 0.3 0.2 0.9 477.50 165
9 0.3 0.3 0.8 489.62 163

472	 Y. Qin et al.

1 3

�i is fixed to 0.1 at any time step and the discount factor � is set to 0.9. Results are
collected and averaged over 30 trials of each 500 iterations.

6.3 � Weight selection

The weight selection is very important for the multi-objective problems. The inap-
propriate weights have a terrible impact on the quality of the solution set. However,
it is an acknowledged difficult problem to determine the weights in multi-objective
algorithms [14]. Moffaert et al. [15] find that the combination of RL and the Cheby-
shev scalarization function is not particularly dependent on the weights used.

When applying the Chebyshev scalarization function to RL, most weight tuples
can achieve good results. We can choose a relatively optimal weight tuple from ran-
domly generated ones. The weight selection in the Chebyshev scalarization method
is based on hypervolume.

In preliminary experiments, we select the relatively optimal weight tuple from
randomly generated ones for each workflow according to the value of hypervolume.
For instance, we present the weight selection in the case of the Montage workflow
and kBG = 0.4 . We randomly generate 10 scalarization weights w1 , which are in the
range (0, 1), of the makespan objective. Then, the corresponding weights of the
energy objective are calculated by w2 = 1 − w1 . We collect and average the hyper-
volume of each weight tuple over 20 trials. Figure 4 shows the hypervolume value
corresponding to 10 weight tuples in the case of Montage and kBG = 0.4 . In particu-
lar, EnMORL returns only one solution in the case of the fourth tuple. So the cor-
responding hypervolume value is 0. We choose the third one, which corresponds to
the largest hypervolume.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

H
yp

er
vo

lu
m

e

Weight tuples

Fig. 4   The obtained hypervolume corresponding to the policies learned for each of the 10 weight tuples
in the case of Montage and k

BG
= 0.4

473

1 3

An energy-aware scheduling algorithm for budget-constrained…

6.4 � Solution selection

There are multiple different solutions in the Pareto approximate set. Our goal is to
minimize the makespan and energy consumption. As a result, we select the solution,
which is closest to the origin, to evaluate the performance. We propose a metric to
select such a solution from the approximate set. We first normalize the values of two
objectives and then calculate the Euclidean distance between each normalized solu-
tion point and the origin. The Euclidean distance De(x) in terms of solution x can be
calculated as follows:

where NM(x) = f1(x)∕MSc is the normalized makespan, NE(x) = f2(x)∕Eh is the nor-
malized energy consumption, f is the objective function, f1(x) is the actual makespan
of solution x, MSc is the makespan when all tasks are executed on the cheapest VM
type, f2(x) is the actual energy consumption of solution x, and Eh is the energy con-
sumption when all tasks are executed on the most expensive VM type.

6.5 � Experimental results

In this section, EnMORL is compared with two popular multi-objective meta-heu-
ristics, which are called NSGA-II [22] and MOPSO [24], in terms of makespan,
energy consumption, and the hypervolume indicator. More specifically, NSGA-II
used for comparison is the multi-objective algorithm in [13], MOPSO used for com-
parison is a new version called HSPO [8].

The experiments consist of four parts in the case of four different workflows,
namely Montage, EpiGenomics, CyberShake, and SIPHT. They are representative
and reasonable examples of workflows.

6.5.1 � Montage workflow

The experimental results of the Montage workflow with different budget factors are
shown in Figs. 5a, 6a, and 7a.

Figure 5a shows the results of the makespan. On the whole, the values of makes-
pan generally decline with the rise of budget factors. When kBG = 0.1 , the values of
the makespan by using EnMORL are 29.33% and 20.36% lower than those obtained
by using NSGA-II and MOPSO, respectively. When kBG increases to 0.9, the values
of the makespan obtained by using EnMORL become 16.93% and 7.55% lower than
those obtained by using NSGA-II and MOPSO, respectively.

As we can see from Fig. 6a, energy consumption generally increases with the
increase in budget factors. The main reason is that more tasks will be assigned to the
VM types, which have higher performance when the budget increases. When a task
is executed on a VM with higher performance, it consumes more energy. In the case
of kBG = 0.1 , the values of the energy consumption by using EnMORL are 16.02%
and 5.71% lower than those obtained by using NSGA-II and MOPSO, respectively.
When the value of kBG increases to 0.9, the values of the energy consumption obtained

(27)De(x) =
√
NM(x)2 + NE(x)2,

474	 Y. Qin et al.

1 3

by using EnMORL become 38.24% and 29.01% lower than those obtained by using
NSGA-II and MOPSO, respectively.

Hypervolume is a commonly accepted quality indicator in multi-objective RL [15].
Figure 7a shows the hypervolume values obtained by using three multi-objective algo-
rithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We find that the
hypervolume values obtained by EnMORL are higher than those obtained by NSGA-II
and MOPSO. It is because that the weights used in EnMORL are selected according to
hypervolume, while the weights used in NSGA-II and MOPSO are simply set to 0.5.
NSGA-II and MOPSO are all scalarized based on the linear scalarization function. It
is an acknowledged difficult problem to determine the weights in the linear scalariza-
tion function [14]. As a result, the weight tuple is often seen as the preference for each
objective. If the hypervolume value is very low or equals to 0, the weight tuple in use is
inappropriate.

0.0 0.2 0.4 0.6 0.8 1.0

200

220

240

260

280

300

320

340

360
M

ak
es

pa
n

(s
ec

on
d)

kBG

NSGA-II
MOPSO
EnMORL

(a) Montage

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

8000

10000

12000

14000

16000

18000

20000

22000

M
ak

es
pa

n
(s

ec
on

d)

kBG

NSGA-II
MOPSO
EnMORL

(b) EpiGenomics

800

1000

1200

1400

1600

1800

2000

2200

2400

M
ak

es
pa

n
(s

ec
on

d)

kBG

NSGA-II
MOPSO
EnMORL

(c) CyberShake

4000

6000

8000

10000

12000

14000

M
ak

es
pa

n
(s

ec
on

d)

kBG

NSGA-II
MOPSO
EnMORL

(d) SIPHT

Fig. 5   Makespan of three multi-objective algorithms under different k
BG

 in the case of a Montage, b Epi-
Genomics, c CyberShake and d SIPHT

475

1 3

An energy-aware scheduling algorithm for budget-constrained…

6.5.2 � EpiGenomics workflow

The experimental results of the EpiGenomics workflow with different budget fac-
tors are shown in Figs. 5b, 6b and 7b.

Figure 5b shows the results of the makespan. On the whole, the values of
makespan generally decline with the rise of budget factors. When kBG = 0.1 ,
the values of the makespan by using EnMORL are 45.95% and 37.22% lower
than those obtained by using NSGA-II and MOPSO, respectively. When kBG
increases to 0.9, the values of the makespan obtained by using EnMORL become
48.36% and 25.29% lower than those obtained by using NSGA-II and MOPSO,
respectively.

As we can see from Fig. 6b, the values of energy consumption generally increase
with the increase in budget. In the case of kBG = 0.1 , the values of the energy con-
sumption by using EnMORL are 23.63% and 7.37% lower than those obtained by
using NSGA-II and MOPSO, respectively. When the value of kBG increases to 0.9,
the values of the energy consumption obtained by using EnMORL become 34.54%
and 21.55% lower than those obtained by using NSGA-II and MOPSO, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
80

100

120

140

160

180

200
E

ne
rg

y
co

ns
um

pt
io

n
(J

)

kBG

NSGA-II
MOPSO
EnMORL

(a) Montage

0.0 0.2 0.4 0.6 0.8 1.0

10000
11000
12000
13000
14000
15000
16000
17000
18000

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

kBG

NSGA-II
MOPSO
EnMORL

(b) EpiGenomics

0.0 0.2 0.4 0.6 0.8 1.0
600

800

1000

1200

1400

1600

1800

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

kBG

NSGA-II
MOPSO
EnMORL

(c) CyberShake

0.0 0.2 0.4 0.6 0.8 1.0

5000

6000

7000

8000

9000
E

ne
rg

y
co

ns
um

pt
io

n
(J

)

k
BG

NSGA-II
MOPSO
EnMORL

(d) SIPHT

Fig. 6   Energy consumption of three multi-objective algorithms under different k
BG

 in the case of a Mon-
tage, b EpiGenomics, c CyberShake and d SIPHT

476	 Y. Qin et al.

1 3

Figure 7b shows the hypervolume values obtained by using three multi-objec-
tive algorithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We
can see that the hypervolume values obtained by using EnMORL are always higher
than those obtained by using NSGA-II and MOPSO. If hypervolume is very low or
equals to 0, it indicates that the weight tuple in use is inappropriate.

6.5.3 � CyberShake workflow

The experimental results of the CyberShake workflow with different budget factors
are shown in Figs. 5c, 6c and 7c.

Figure 5c shows the results of the makespan. On the whole, the values of makes-
pan generally decline with the rise of budget factors. In the case of kBG = 0.1 , the
values of makespan obtained by using EnMORL are 48.54% and 37.75% lower than
those obtained by using NSGA-II and MOPSO, respectively. When kBG increases to
0.9, the values of the makespan obtained by using EnMORL become 41.53% and
19.09% lower than those obtained by using NSGA-II and MOPSO, respectively.

0

100

200

300

400

500

600

700

800

0.80.60.40.2

H
yp

er
vo

lu
m

e

kBG

NSGA-II
MOPSO
EnMORL

(a) Montage

0

200

400

600

800

1000

1200

H
yp

er
vo

lu
m

e

kBG

NSGA-II
MOPSO
EnMORL

0.80.60.40.2

(b) EpiGenomics

0
100
200
300
400
500
600
700
800
900

H
yp

er
vo

lu
m

e

kBG

NSGA-II
MOPSO
EnMORL

0.80.60.40.2

(c) CyberShake

0

100

200

300

400

500

600

700
H

yp
er

vo
lu

m
e

kBG

NSGA-II
MOPSO
EnMORL

0.80.60.40.2

(d) SIPHT

Fig. 7   Hypervolume of three multi-objective algorithms under different k
BG

 in the case of a Montage, b
EpiGenomics, c CyberShake and d SIPHT

477

1 3

An energy-aware scheduling algorithm for budget-constrained…

As we can see from Fig. 6c, energy consumption generally increases with the
increase in budget factors. In the case of kBG = 0.1 , the values of the energy con-
sumption by using EnMORL are 29.60% and 16.87% lower than those obtained by
using NSGA-II and MOPSO, respectively. When the value of kBG increases to 0.9,
the values of the energy consumption obtained by using EnMORL become 49.09%
and 31.36% lower than those obtained by using NSGA-II and MOPSO, respectively.

Figure 7c shows the hypervolume values obtained by using three multi-objective
algorithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We can
see that the hypervolume values obtained by using EnMORL are always higher than
those obtained by using NSGA-II and MOPSO. If the hypervolume value is very
low or equals to 0, it indicates that the weight tuple in use is inappropriate.

6.5.4 � SIPHT workflow

The experimental results of the SIPHT workflow with different budget factors are
shown in Figs. 5d, 6d and 7d.

The results of the makespan are shown in Fig. 5d. On the whole, the values of
makespan generally decline with the rise of budget factors. In the case of kBG = 0.1 ,
the values of makespan obtained by using EnMORL are 54.82% and 47.92% lower
than those obtained by using NSGA-II and MOPSO, respectively. When kBG
increases to 0.9, the values of the makespan obtained by using EnMORL become
48.73% and 36.34% lower than those obtained by using NSGA-II and MOPSO,
respectively.

As we can see from Fig. 6d, the values of energy consumption generally increase
with the increase in budget factors. In the case of kBG = 0.1 , the values of the energy
consumption by using EnMORL are 15.61% and 12.49% lower than those obtained
by using NSGA-II and MOPSO, respectively. When the value of kBG increases to
0.9, the values of the energy consumption obtained by using EnMORL become
37.07% and 25.29% lower than those obtained by using NSGA-II and MOPSO,
respectively.

Figure 7d shows the hypervolume values obtained by using three multi-objective
algorithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We can
see that the hypervolume values obtained by using EnMORL are always higher than
those obtained by using NSGA-II and MOPSO. If the hypervolume value is very
low or equals to 0, it means that the weight tuple in use is inappropriate.

In conclusion, the comparison results show that the EnMORL algorithm outper-
forms the other two algorithms in terms of makespan, energy consumption, and the
hypervolume indicator.

7 � Conclusion

Workflow scheduling has been a major energy consumer in clouds. This paper con-
siders a multi-objective workflow scheduling problem with the budget constraint.
Our goal is to simultaneously minimize the makespan and energy consumption
while meeting the budget constraint. This paper focuses on the weight selection

478	 Y. Qin et al.

1 3

problem and how to satisfy the budget constraint. Both of them were seldom consid-
ered in related works.

We propose a multi-objective RL algorithm called EnMORL. In EnMORL, we
propose a simple new method to satisfy the budget constraint and guarantee the
feasibility of solutions. This method is based on RCB and can be applied to other
workflow scheduling problems with the budget constraint. EnMORL is based on the
Chebyshev scalarization function, which can efficiently solve the weight selection
problem. The experimental results show EnMORL outperforms these algorithms in
the case of four workflows.

In future work, we will extend our algorithm to solve the dynamic workflow
scheduling problem. We intend to use the conditional variational auto-encoder
(CVAE) to predict the current situation according to the historical data.

Acknowledgements  We would like to thank anonymous referees for their helpful suggestions to improve
this paper. This work was supported in part by the National Natural Science Foundation of China under
Grant NSFC 61672323, in part by the Fundamental Research Funds of Shandong University under Grant
2017JC043, in part by the Key Research and Development Program of Shandong Province under Grant
2017GGX10122 and Grant 2017GGX10142, and in part by the Natural Science Foundation of Shandong
Province Grant ZR2019MF072.

References

	 1.	 Senyo PK, Addae E, Boateng R (2018) Cloud computing research: a review of research themes,
frameworks, methods and future research directions. Int J Inf Manag 38(1):128–139

	 2.	 Khattar N, Sidhu J, Singh J (2019) Toward energy-efficient cloud computing: a survey of dynamic
power management and heuristics-based optimization techniques. J Supercomput 75(8):4750–4810

	 3.	 Kintsakis AM, Psomopoulos FE, Mitkas PA (2019) Reinforcement learning based scheduling in a
workflow management system. Eng Appl Artif Intell 81:94–106

	 4.	 Andrae ASG, Edler T (2015) On global electricity usage of communication technology: trends to
2030. Challenges 6(1):117–157

	 5.	 Ismayilov G, Topcuoglu HR (2020) Neural network based multi-objective evolutionary algorithm
for dynamic workflow scheduling in cloud computing. Futur Gener Comput Syst 102:307–322

	 6.	 Belkhir L, Elmeligi A (2018) Assessing ict global emissions footprint: trends to 2040 and recom-
mendations. J Clean Prod 177:448–463

	 7.	 Zhangjun W, Liu X, Ni Z, Yuan D, Yang Y (2013) A market-oriented hierarchical scheduling strat-
egy in cloud workflow systems. J Supercomput 63(1):256–293

	 8.	 Verma A, Kaushal S (2017) A hybrid multi-objective particle swarm optimization for scientific
workflow scheduling. Parallel Comput 62:1–19

	 9.	 Arabnejad H, Barbosa JG (2014) A budget constrained scheduling algorithm for workflow applica-
tions. J Grid Comput 12(4):665–679

	10.	 Garg R, Singh AK (2014) Multi-objective workflow grid scheduling using �-fuzzy dominance sort
based discrete particle swarm optimization. J Supercomput 68(2):709–732

	11.	 Wu CQ, Lin X, Yu D, Xu W, Li L (2014) End-to-end delay minimization for scientific workflows in
clouds under budget constraint. IEEE Trans Cloud Comput 3(2):169–181

	12.	 Chen W, Xie G, Li R, Bai Y, Fan C, Li K (2017) Efficient task scheduling for budget constrained
parallel applications on heterogeneous cloud computing systems. Futur Gener Comput Syst 74:1–11

	13.	 Sofia AS, GaneshKumar P (2018) Multi-objective task scheduling to minimize energy consumption
and makespan of cloud computing using NSGA-ii. J Netw Syst Manag 26(2):463–485

	14.	 Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for
pareto set generation in multicriteria optimization problems. Struct Optim 14(1):63–69

479

1 3

An energy-aware scheduling algorithm for budget-constrained…

	15.	 Van Moffaert K, Drugan MM, Nowé A (2013) Scalarized multi-objective reinforcement learning:
Novel design techniques. In: 2013 IEEE symposium on adaptive dynamic programming and rein-
forcement learning (ADPRL), IEEE, pp 191–199

	16.	 Zhu D, Melhem R, Childers BR (2003) Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multiprocessor real-time systems. IEEE Trans Parallel Distrib Syst
14(7):686–700

	17.	 Zhou J, Wang T, Cong P, Lu P, Wei T, Chen M (2019) Cost and makespan-aware workflow schedul-
ing in hybrid clouds. J Syst Arch. https​://doi.org/10.1016/j.sysar​c.2019.08.004

	18.	 Gábor Z, Kalmár Z, Szepesvári C (1998) Multi-criteria reinforcement learning. In: Proceedings of
the Fifteenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc,
San Francisco, CA, USA, pp 197–205

	19.	 Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca GV (2002) Performance assessment of
multiobjective optimizers: an analysis and review. TIK-Report, vol 139

	20.	 Li Z, Ge J, Haiyang H, Song W, Hao H, Luo B (2015) Cost and energy aware scheduling algorithm
for scientific workflows with deadline constraint in clouds. IEEE Trans Serv Comput 11(4):713–726

	21.	 Qureshi B (2019) Profile-based power-aware workflow scheduling framework for energy-efficient
data centers. Futur Gener Comput Syst 94:453–467

	22.	 Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-ii. IEEE Trans Evolut Comput 6(2):182–197

	23.	 Topcuoglu H, Hariri S, Min-you W (2002) Performance-effective and low-complexity task schedul-
ing for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274

	24.	 Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm
optimization. IEEE Trans Evolut Comput 8(3):256–279

	25.	 Mossalam H, Assael YM, Roijers DM, Shimon W (2016) Multi-objective deep reinforcement learn-
ing. arXiv preprint arXiv​:1610.02707​

	26.	 Van Moffaert K, Nowé A (2014) Multi-objective reinforcement learning using sets of pareto domi-
nating policies. J Mach Learn Res 15(1):3483–3512

	27.	 Lee YC, Zomaya AY (2010) Energy conscious scheduling for distributed computing systems under
different operating conditions. IEEE Trans Parallel Distrib Syst 22(8):1374–1381

	28.	 Atkinson M, Gesing S, Montagnat J (2017) and Ian Taylor. Past, present and future, Scientific
workflows

	29.	 Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, New York
	30.	 Watkins CJCH (1989) Learning from delayed rewards
	31.	 Tsitsiklis JN (1994) Asynchronous stochastic approximation and q-learning. Mach Learn

16((3):185–202
	32.	 Wiering MA, De Jong ED (2007) Computing optimal stationary policies for multi-objective Markov

decision processes. In: 2007 IEEE International Symposium on Approximate Dynamic Program-
ming and Reinforcement Learning, IEEE, pp 158–165

	33.	 Vamplew P, Yearwood J, Dazeley R, Berry A (2008) On the limitations of scalarisation for multi-
objective reinforcement learning of pareto fronts. In: Australasian Joint Conference on Artificial
Intelligence, Springer, New York, pp 372–378

	34.	 Voß T, Beume N, Rudolph G, Igel C(2008) Scalarization versus indicator-based selection in multi-
objective CMA evolution strategies. In: 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence), IEEE, pp 3036–3043

	35.	 Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H, Vahi K (2008) Characterization of scien-
tific workflows. In: 2008 Third Workshop on Workflows in Support of Large-Scale Science, IEEE,
pp 1–10

	36.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) Cloudsim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.sysarc.2019.08.004
http://arxiv.org/abs/1610.02707

480	 Y. Qin et al.

1 3

Affiliations

Yao Qin1  · Hua Wang2 · Shanwen Yi1 · Xiaole Li3 · Linbo Zhai4

	 Yao Qin
	 sword93@mail.sdu.edu.cn

1	 School of Computer Science and Technology, Shandong University, Jinan 250101, China
2	 School of Software, Shandong University, Jinan 250101, China
3	 School of Information Science and Engineering, Linyi University, Linyi 276005, China
4	 School of Information Science and Engineering, Shandong Normal University, Jinan 250014,

China

http://orcid.org/0000-0003-3062-4052

	An energy-aware scheduling algorithm for budget-constrained scientific workflows based on multi-objective reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Multi-objective optimization
	4 System models and mathematical formulation
	4.1 Workflow model
	4.2 Cloud data center model
	4.3 Makespan model
	4.4 Energy model
	4.5 Mathematical formulation

	5 The proposed EnMORL algorithm
	5.1 Reinforcement learning
	5.2 The Chebyshev scalarization function
	5.3 The learning agent of EnMORL
	5.3.1 The state space
	5.3.2 The available action set
	5.3.3 The reward vector

	5.4 The description of EnMORL

	6 Performance evaluation
	6.1 Workflow structure
	6.2 Simulation setup
	6.3 Weight selection
	6.4 Solution selection
	6.5 Experimental results
	6.5.1 Montage workflow
	6.5.2 EpiGenomics workflow
	6.5.3 CyberShake workflow
	6.5.4 SIPHT workflow

	7 Conclusion
	Acknowledgements
	References

