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Abstract
Since scientific workflow scheduling becomes a major energy contributor in clouds, 
much attention has been paid to reduce the energy consumed by workflows. This 
paper considers a multi-objective workflow scheduling problem with the budget 
constraint. Most existing works of budget-constrained workflow scheduling can-
not always satisfy the budget constraint and guarantee the feasibility of solutions. 
Instead, they discuss the success rate in the experiments. Only a few works can 
always figure out feasible solutions. These methods work, but they are too compli-
cated. In workflow scheduling, it has been a trend to consider more than one objec-
tive. However, the weight selection is usually ignored in these works. The inap-
propriate weights will reduce the quality of solutions. In this paper, we propose an 
energy-aware multi-objective reinforcement learning (EnMORL) algorithm. We 
design a much simpler method to ensure the feasibility of solutions. This method is 
based on the remaining cheapest budget. Reinforcement learning based on the Che-
byshev scalarization function is a new framework, which is effective in solving the 
weight selection problem. Therefore, we design EnMORL based on it. Our goal is to 
minimize the makespan and energy consumption of the workflow. Finally, we com-
pare EnMORL with two state-of-the-art multi-objective meta-heuristics in the case 
of four different workflows. The results show that our proposed EnMORL outper-
forms these existing methods.
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1  Introduction

Cloud computing has been an important computing paradigm, which can provide 
computing resources through the Internet [1]. For cloud consumers, cloud com-
puting can provide an infinite amount of resources and has the advantages of reli-
ability, scalability, and flexibility [2].

The increasing demand for cloud computing has made the energy problem be 
one of the major concerns in clouds [3]. It is reported that the energy consump-
tion of cloud data centers accounted for 1% of global electricity usage in 2010, 
and this rate is expected to increase to 3–13% in 2030 [4]. High energy consump-
tion of data centers also increases global greenhouse gas emissions (GHGE) [5]. 
Data centers have been the largest culprit in the information and communication 
technology (ICT), which grew from 33% in 2010 to 45% of global ICT emissions 
by 2020 [6]. Due to its advantages, cloud computing has been widely used to 
execute scientific workflow applications [7]. Over the last few years, scientific 
workflow scheduling has been one of the primary energy consumers in clouds 
[8]. As a result, we should consider energy saving when designing the workflow 
scheduling algorithm.

This paper considers a multi-objective workflow scheduling problem with the 
budget constraint. Budget-constrained workflow scheduling is one of the main 
research directions in the field of workflow scheduling. However, most exist-
ing works of budget-constrained workflow scheduling cannot always satisfy the 
budget constraint and guarantee the feasibility of solutions. Instead, they discuss 
the success rate of scheduling in the experiments [8–10]. Unlike these works, 
[11] and [12] propose methods to guarantee the feasibility. These two methods 
are based on a concept called the budget level. They convert the budget constraint 
of the whole workflow into the budget constraints of tasks. The existing methods 
can always figure out feasible solutions, but they are complicated. What’s more, 
the budget constraints of tasks are just the sufficient conditions of the original 
budget constraint. In this paper, we propose a much simpler way to guarantee the 
feasibility of solutions. We directly use the original budget constraint instead of 
converting it. Our method is proposed based on a concept called the remaining 
cheapest budget (RCB) [9].

In workflow scheduling, it has been a trend to consider more than one objective 
[13]. However, the weight selection problem is usually ignored in these works. It 
is an acknowledged difficult problem to determine the appropriate weight for each 
objective in multi-objective optimization [14]. If the weights are inappropriate, it 
will reduce the quality of solutions. From the literature, we find that the combina-
tion of reinforcement learning (RL) and the Chebyshev scalarization function can 
efficiently solve the weight selection problem [15]. RL based on the Chebyshev 
scalarization function is a new algorithm framework, which provides a general 
solution to multi-objective optimization. As a result, we design the scheduling 
algorithm based on it.

In this paper, we propose an energy-aware multi-objective RL (EnMORL) 
algorithm. Our goal is to find a set of Pareto approximations, which can 
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simultaneously minimize the makespan and energy consumption of the work-
flow under the specified budget. The energy model in this paper is based on the 
dynamic voltage/frequency scaling (DVFS) technique [16]. Like most list-based 
scheduling algorithms [17], EnMORL consists of a ranking phase and a mapping 
phase. In EnMORL, we first assign a priority to each task in the workflow and 
then select a virtual machine (VM) of the appropriate type for each task in the 
order of priority. Finally, we compare EnMORL with two state-of-the-art multi-
objective meta-heuristics in the case of four workflows, which come from dif-
ferent scientific applications. The experimental results show that our proposed 
EnMORL outperforms these existing methods.

The main contributions of this paper can be summarized as follows:

1.	 RL is capable of solving difficult multi-step decision-making problems [18]. It is 
very suitable for solving the workflow scheduling problem in this paper.

2.	 We propose a new method based on RCB to satisfy the budget constraint and 
guarantee the feasibility of solutions. This method is much simpler than those in 
[11] and [12].

3.	 We propose the EnMORL algorithm based on the Chebyshev scalarization func-
tion, which is efficient in solving the weight selection problem.

4.	 The experimental results demonstrate that EnMORL can compete efficiently with 
two state-of-the-art multi-objective meta-heuristics in terms of makespan, energy 
consumption, and the hypervolume indicator [19].

The remainder of this paper is organized as follows: We introduce related works 
from two aspects in Sect. 2. We briefly introduce the multi-objective optimization in 
Sect. 3. We give the mathematical formulation of the scheduling problem in Sect. 4. 
We present our proposed EnMORL algorithm in Sect.  5. We evaluate the perfor-
mance in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 � Related work

In this section, we first introduce some representative works of budget-constrained 
workflow scheduling, and then the related works of energy-aware workflow 
scheduling.

The quality of service (QoS) requirements, such as the makespan and cost, are 
the traditional optimization objectives in workflow scheduling. In this area, budget-
constrained workflow scheduling is one of the major research hot spots.

Most existing works of budget-constrained workflow scheduling do not guar-
antee the feasibility of the solution. Instead, they discuss the success rate or the 
failure rate of the scheduling in the experiments. Arabnejad et  al. [9] propose 
a heterogeneous budget-constrained scheduling (HBCS) algorithm. The authors 
aim to minimize the makespan under the specified budget. In their algorithm, 
they use the combination of the time and cost factors to select the processor for 
the current task. Garg et al. [10] propose a �-fuzzy dominance sort-based discrete 
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particle swarm optimization (PSO) algorithm called �-FDPSO to solve the work-
flow scheduling in grid computing. Their goal is to optimize makespan, cost, and 
reliability objectives simultaneously under deadline and budget constraints. The 
authors use the �-fuzzy dominance-based sorting procedure to select the particle 
with a lower rank.

Unlike the above works, Wu et al. [11] aim to find feasible solutions in budget-
constrained workflow scheduling. Their proposed critical-greedy (CG) algorithm 
preassigns tasks with the budget level to meet the budget constraint. However, 
this algorithm only applies to homogeneous data centers. In [12], Chen et  al. 
extend the concept of the budget level to heterogeneous environments. They 
propose an efficient algorithm called minimizing the schedule length using the 
budget level (MSLBL). The authors aim to minimize the makespan of the work-
flow while satisfying the budget constraint. To meet the budget constraint, the 
authors convert the budget constraint of the whole workflow into those of tasks. 
When using the budgets of tasks, MSLBL can at least assign each task assign to 
the processor with the minimum cost. The methods in [11] and [12] are complex. 
The budget constraints of tasks are just the sufficient conditions of the original 
budget constraint. In this paper, we will use a much simpler way to guarantee the 
feasibility of solutions. We design our method based on the original budget con-
straint instead of converting it.

An increasing number of scientific workflows are migrating into clouds. As 
a result, workflow scheduling has been one of the primary energy consumers in 
data centers. In recent years, much attention has been paid to reduce the energy 
consumption of workflow scheduling.

In, Li et  al. [20] propose a cost and energy-aware scheduling (CEAS) algo-
rithm to solve workflow scheduling in clouds. CEAS is composed of five sub-
algorithms. Their goal is to minimize the execution cost and energy consumption 
under the deadline constraint. To meet the deadline constraint, they propose the 
concept of sub-makespan. In, Qureshi et al. [21] introduce the concept of power-
aware application profiles (APs). The authors use APs to compute the execution 
cost of a workflow according to the energy consumption requirements. Their 
scheduling algorithm considers CPU, memory, I/O, and energy consumption 
requirements.

To reduce the makespan and energy consumption, Sofia et  al. [13] propose 
a multi-objective algorithm based on non-dominated sorting genetic algorithm 
(NSGA-II) [22]. The authors also propose two single-objective genetic algorithms 
(GA) to minimize energy consumption and makespan individually. Verma et  al. 
[8] propose a hybrid PSO (HPSO) algorithm to handle the workflow scheduling 
problem in clouds. HPSO is the combination of heterogeneous earliest finish time 
(HEFT) [23] and multi-objective PSO (MOPSO) [24]. Their objectives include time 
minimization, cost minimization, and energy saving. The authors consider both the 
bi-objective workflow scheduling problem as well as the tri-objective workflow 
scheduling problem in their work.

We notice that the energy models in the above works are all based on the DVFS 
technique. This technique has been widely used in energy-aware workflow schedul-
ing problems.
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3 � Multi‑objective optimization

A maximization multi-objective problem with m decision variables and n objec-
tives can be defined as [25]:

where �⃗x is the decision vector, X is the search space, f⃗  is the objective vector, and Y 
is the objective space.

A solution ��⃗x1 is said to dominate another solution ��⃗x2 , ( ��⃗x1 ≻ ��⃗x2 ), if and only if 
both of the following two conditions are true [26]:

1.	 The solution ��⃗x1 is not worse than ��⃗x2 in any objective.
2.	 The solution ��⃗x1 is strictly better than ��⃗x2 in at least one objective.

The points that are not dominated by any other points are called the non-domi-
nated points, and the corresponding decision variables are called non-dominated 
solutions or Pareto optimal solutions. The Pareto optimal front is defined as the 
set of all non-dominated points. Similarly, the Pareto optimal set is the set of all 
non-dominated solutions.

The concept of Pareto optimal set is used to optimize problems with multi-
ple objectives. The multi-objective algorithm aims to find a Pareto approximate 
set that can approximate the true Pareto optimal set. In this paper, the set of 
non-dominated solutions will be updated after the construction of each feasible 
solution.

4 � System models and mathematical formulation

Our algorithm aims to schedule a budget-constrained workflow on a set of avail-
able heterogeneous resources, which are in the form of VMs in clouds. This sec-
tion consists of five parts, namely the workflow model, cloud data center model, 
makespan model, energy model, and mathematical formulation.

4.1 � Workflow model

In general, a workflow application is represented by a directed acyclic graph 
(DAG). A DAG can be modeled as a tuple G(T, D), where T = {t1,… , tm} is the 
set of m tasks in the workflow, and D is the set of directed edges between tasks. 
Directed edges represent the task-dependency constraints. If there exists an edge 

(1)
max f⃗ (�⃗x) = [f1(x1, x2,… , xm),… , fn(x1, x2,… , xm)]

s.t.

�⃗x = (x1, x2,… , xm) ∈ X

(2)f⃗ = (f1, f2,… , fn) ∈ Y ,
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(ti, tj) ∈ D , then ti is called an immediate predecessor of tj , and tj is called an 
immediate successor of ti . We use pre(ti) to denote the set of all immediate pre-
decessors of task ti , and succ(ti) to denote the set of all immediate successors of 
task ti . A task can only start after all of its predecessors complete their execution. 
The task with no predecessors is called the entry task, which can be denoted as 
tentry . The task with no successors is called the exit task, which can be denoted as 
texit . The size of data processed by task ti is denoted by ini , which is expressed in 
Millions of Instructions (MI). The size of data transferred between task ti and tj is 
denoted by trani,j , which is expressed in MB.

4.2 � Cloud data center model

In the cloud data center, the computing resources are usually provided in the form of 
homogeneous VMs. We assume that the cloud data center offers n types of VMs, which 
have different prices with different performance. We use V = {v1,… , vn} to denote the 
set of VM types. For simplicity, we assume that each VM type vj can provide an infinite 
number of VMs to execute all the tasks of a workflow.

In this paper, the cloud service is charged based on the number of time intervals that 
the VM has been used. The consumers have to pay for the whole time interval even if 
it is not completely used. We use cj to denote the unit price or cost of using the VM 
type vj for each time interval, and pj to denote the processing speed of type vj for each 
time interval. The processing speed pj is expressed in million instructions per second 
(MIPS).

Let xi,j be a binary variable, which represents whether task ti is executed on the VM 
type vj (xi,j = 1) or not (xi,j = 0) . Each task ti ∈ T is executed exactly once, so there 
exists the equation 

∑n

j=1
xi,j = 1 , where n is the number of VM types in the data center.

4.3 � Makespan model

Without loss of generality, we assume that each task can be executed on any VM in 
the data center. If task ti is assigned to VM type vj , the execution time ET(ti, vj) of 
task ti is expressed as follows:

When considering the decision variable xi,j , the actual execution time ET(ti) of task 
ti can be calculated as:

We have assumed that all the VMs are in the same data center, which means the 
storage cost and the transmission cost can be ignored. Let EC(ti) denote the cost of 
executing task ti , which can be calculated as follows:

(3)ET(ti, vj) =
ini

pj

(4)ET(ti) =

n∑

j=1

ET(ti, vj) ⋅ xi,j =

n∑

j=1

ini

pj
⋅ xi,j
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We have assumed that each VM type vj can provide a sufficient number of VMs to 
execute all the tasks of a workflow. We assume that all the VMs in the cloud data 
center have the same communication bandwidth, the value of which is set to a con-
stant b. Then, the actual finish time FT(ti) of task ti can be calculated as:

The makespan MS of the workflow is defined as the maximum actual finish time of 
the exit tasks:

4.4 � Energy model

The energy consumption in this paper is calculated based on the DVFS technique 
[16]. The dynamic power consumption is the most important factor, so we ignore 
the static energy consumption [27]. The dynamic power capability Pd is expressed 
as follows:

where B is the number of switches per clock cycle, C is the total capacitance load, V 
is the supply voltage, and f is the frequency. From Eq. (8), we know that the supply 
voltage is the dominant factor. The total energy consumed by the whole workflow 
can be calculated as follows [8]:

where Vi denotes the supply voltage of the VM on which task ti is executed. It is 
often assumed that VMs are operating at the maximum voltage level when they are 
busy [8]. The VM type with higher performance has a higher supply voltage. With-
out loss of generality, we assume that a VM with higher performance consumes 
more energy.

4.5 � Mathematical formulation

The two objectives in this paper are to minimize makespan and energy consumption. 
Besides, the scheduling problem subjects to a budget constraint. Based on Eqs. (7) 
and (9), the scheduling problem is formulated as follows:

(5)EC(ti) = ET(ti) ⋅ cj =

n∑

j=1

ini

pj
cj ⋅ xi,j

(6)FT(ti) =

{
ET(ti), pre(ti) = �

max
tp∈pre(ti)

{
FT(tp) +

tranp,i

b

}
+ ET(ti), pre(ti) ≠ �

(7)MS = max{FT(texit)}

(8)Pd = BCV2f ,

(9)E =

m∑

i=1

BC(Vi)
2f ⋅ ET(ti) =

m∑

i=1

�(Vi)
2
⋅ ET(ti),
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where m and n is the number of all tasks and VM types respectively, and BG denotes 
the budget.

The constraint (10) ensures that the cost of the workflow must be smaller than the 
budget. The constraint (11) ensures that each task is executed only once. The constraint 
(12) defines the decision variables. What’s more, it is quite remarkable that the task-
dependency constraint is reflected by Eq. (6), and xi,j can be found in all objectives and 
constraints.

A consumer can determine the budget within the range provided by the following 
equation [9]:

where Cc denotes the cost of the cheapest scheduling, Ch denotes the cost of the 
most expensive scheduling, and kBG is the budget factor, which is determined by the 
consumer. When kBG < 0 , there exists the inequation BG < Cc . It means that the 
consumer cannot afford to pay the cost of the workflow. When kBG ≥ 1 , BG ≥ Ch . 
There will be no budget constraint anymore. Only when 0 ≤ kBG < 1 , the schedul-
ing problem is budget-constrained. If kBG = 0 , the consumer can only choose the 
cheapest scheduling. In the experiments, we set kBG in the range of 0.1–0.9. The step 
length is set to 0.1.

Without loss of generality, we assume that a VM with higher computing perfor-
mance charges more in the data center. Given ti ∈ T and vj, vk ∈ V , if processing 
speeds satisfy pj < pk , then there exists the inequation ET(ti, vj) ⋅ cj < ET(ti, vk) ⋅ ck . 
After reducing the above inequation, we obtain:

The cheapest cost Cc is obtained by selecting the VM with the lowest performance 
to execute each of the tasks. And the highest cost Ch is obtained by selecting the VM 
with the highest performance to execute each of the tasks.

In conclusion, the problem in this paper is about the multi-objective scientific work-
flow scheduling, in which the makespan and energy consumption are optimized under 

(10)

Goals:

min MS and min E

Constraints:

m∑

i=1

EC(ti) ≤ BG

(11)
n∑

j=1

xi,j = 1, ∀ti ∈ T

(12)xi,j ∈ {0, 1}, ∀ti ∈ T , vj ∈ V ,

(13)BG = Cc + kBG ⋅ (Ch − Cc),

(14)
cj

pj
<

ck

pk
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a budget constraint. Workflow scheduling is NP-hard [28]. In the next section, we will 
apply a multi-objective RL algorithm based on the Chebyshev scalarization method to 
the scientific workflow scheduling problems.

5 � The proposed EnMORL algorithm

This section consists of four parts, namely reinforcement learning, the Cheby-
shev scalarization function, the learning agent of EnMORL, and the description of 
EnMORL.

5.1 � Reinforcement learning

Single-objective RL is usually described in the form of a Markov decision process 
(MDP) [29]. We use S = {s1,… , sM} to denote the state space, and A = {a1,… , aN} 
to denote the set of N actions, which are available in the current state. For each com-
bination of current state s, an available action a ∈ A and a next state s′ , there always 
exists a transition probability p(s�|s, a) and a reward signal r(s, a).

RL aims to find an optimal policy � , which maximizes the expected discounted 
reward �[

∑∞

i=0
� iri] , where � ∈ (0, 1] is the discount factor, and ri is the reward signal 

at time step i. This goal can be expressed using Q values which record the expected 
discounted reward for each state-action pair. We use Q�(s, a) to denote the Q value 
of taking action a ∈ A in state s under policy � , and Q∗ to denote the optimal Q 
value.

In a famous RL algorithm called Q-learning [30], Q̂(s, a) was proposed to itera-
tively approximate Q∗ . The Q̂(s, a) value is updated accordingly to following update 
rule:

where 0 < 𝛼i ≤ 1 denotes the learning rate at time step i, and r is the reward of tak-
ing action a in state s. The Q̂(s, a) value will converge to Q∗(s, a) if visiting all state-
action pairs infinitely using an appropriate learning rate [31].

In a multi-objective RL algorithm, the MDP is usually extended to a multi-
objective MDP, and the reward signal is extended to a reward vector [32]. The 
vector of reward signals in a multi-objective RL algorithm can be denoted as 
r⃗(s, a) = {r1(s, a),… , rk(s, a)} , where k is the number of objectives.

5.2 � The Chebyshev scalarization function

The linear scalarization function is widely used in multi-objective algorithms, 
including RL, PSO, and Ant Colony Optimization (ACO) [15]. However, it can 
only discover solutions in convex regions of the Pareto front [33]. Besides, it is an 
acknowledged difficult problem to determine the appropriate weights when using 

(15)Q̂(s, a) = (1 − �i)Q̂(s, a) + �i

(
r + � max

a�
Q̂(s�, a�)

)
,
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the linear scalarization function [14]. The inappropriate weights will affect the qual-
ity of solutions. Therefore, we use the Chebyshev scalarization method in our pro-
posed algorithm.

The Chebyshev scalarization function is categorized as a nonlinear scalari-
zation method, which overcomes the shortcomings of the linear scalarization 
function. It can discover Pareto optimal solutions regardless of the front shape. 
Besides, the Chebyshev scalarization function is not particularly dependent on 
the actual weights used. We can select a relative optimal weight tuple from sev-
eral randomly generated ones in preliminary experiments [15].

The Chebyshev scalarization function evaluates actions using the metric Lp . 
This metric is defined as the distance between a point in the objective space and a 
utopian point z∗ , which records the best value for each objective [34]. During the 
learning process, z∗ is constantly updated. The value of z∗

i
 for objective i can be 

calculated as follows:

where fi denotes the function of objective i, f best
i

(x) denotes the best value so far for 
objective i of the solution x, and � denotes a small constant. We set � to 2.0. We use 
Lp(x) to denote the distance between the corresponding point of solution x and the 
utopian point z∗ and it can be expressed as follows:

where p ≥ 1 . We use k to denote the number of objectives, and 0 ≤ wi ≤ 1 to denote 
the weight of each objective i, which satisfies the equation 

∑k

i=1
wi = 1 . When 

p = ∞ , the metric will be called the Chebyshev metric. It can be expressed as 
follows:

In multi-objective RL, fi(x) is replaced by Q̂i(s, a) , which denotes the Q̂ value for 
each objective i. Then, the ŜQ value or the scalarized Q̂ value of a state-action pair 
(s, a) can be calculated as follows:

The above equation describes the scalarization of Q̂ values when using the Cheby-
shev scalarization function in RL. The action corresponding to the smallest ŜQ value 
will be chosen as the greedy action in state s. In other words, the greedy strategy can 
be expressed as follows:

(16)z∗
i
= f best

i
(x) + �,

(17)Lp(x) =

(
k∑

i=1

wi|fi(x) − z∗
i
|p
)1∕p

,

(18)L∞(x) = max
i=1⋯k

wi|fi(x) − z∗
i
|

(19)ŜQ(s, a) = max
i=1⋯k

wi|Q̂i(s, a) − z∗
i
|

(20)greedya(s) = argmin
a∈A

ŜQi(s, a),
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where A is the available action set in state s. Algorithm  1 shows the scalarized �
-greedy strategy for a multi-objective RL algorithm, where ��⃗w is the vector of 
weights for multiple objectives. 

5.3 � The learning agent of EnMORL

In this part, we introduce the learning agent of EnMORL in terms of the state space, 
the available action set, and the reward vector.

5.3.1 � The state space

The state space in the EnMORL algorithm describes the usage of all VM types at 
each time step, which is denoted by S = {s1,… , sq} . Apart from the final state, each 
state corresponds to a time step.

The state si ∈ S denotes the usage of all VM types at time step i. The above state 
can be expressed as si = {s1

i
,… , sn

i
} , where n is the number of all VM types, and 

s
j

i
∈ si is the set of all tasks which have been assigned to VM type vj ∈ V  at time 

step i. In our implementation, the usage of all VM types and the task assignments 
in the current state si is figured out using the current values of decision variables. It 
should be noted that the constraint (11) can only be satisfied after the construction 
of a solution.

At each time step, we only schedule one task based on the available action set. 
The maximum time step is determined by the number of tasks in the workflow. 
There exists the equation q = m + 1 , where m is the number of tasks. In particular, 
sm+1 is the final state, in which all tasks have been assigned to a VM.

5.3.2 � The available action set

The set of available actions at time step i is denoted by Ai . Tasks are sorted and 
scheduled in descending order of their priorities, which are calculated according to 
Eq. (26). We denote the task to be scheduled at time step i as ti.
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As described above, most existing works of budget-constrained workflow sched-
uling cannot ensure the feasibility of solutions. Instead, they discuss the success rate 
or the failure rate of the scheduling in the experiments. Only a few works, like [11] 
and [12], can guarantee the feasibility. However, their methods are too complex.

To guarantee the feasibility of solutions, we use a concept called the RCB in our 
algorithm. This concept is initially proposed in [9] to select computing resources for 
tasks. RCB is defined as the remaining cheapest cost for unscheduled tasks excluding 
the current task ti , which updates using the following equation:

where ECc(ti) is the least cost of executing task ti . In this paper, we define a concept 
called the possible remaining budget. If task ti is assigned to VM type vj at time step 
i, then the possible remaining budget PRB(ti, vj) can be calculated as:

where 
∑i−1

u=1
EC(tu) denotes the total cost of tasks that have been assigned before, and 

EC(tu) is calculated according to Eq. (5). In EnMORL, taking action means select-
ing an appropriate VM type to execute the current task. Then, the available action 
set Ai at time step i can be represented as follows:

Our core idea is to ensure that the actual remaining budget (ARB) is never less 
than the RCB during the mapping phase. In other words, always keep the remain-
ing budget enough. This method can even be used to enable the feasibility of the 
solution in the worst case when the budget factor kBG = 0 . At each time step i, only 
when task i is assigned to the cheapest VM type, the inequation PRB(ti, vj) ≥ RCB 
holds. We do not consider kBG = 0 in the experiments, because there is only one fea-
sible solution in that case.

5.3.3 � The reward vector

In multi-objective RL algorithms, we use a vector of reward signals instead of a single 
reward signal. Let r⃗ = [r1, r2]

T denote the reward vector, where r1 is the reward of the 
first objective, and r2 is the reward of the second objective.

If the action selected at time step i is ai ∈ Ai , the reward of the first objective can be 
calculated as follows:

where FTbest(ti) denotes the finish time of task ti when it is executed on a VM with 
the highest performance, and FT(ti, ai) denotes the finish time of task ti when it is 
executed on VM type ai . Similarly, the reward of the second objective can be calcu-
lated as follows:

(21)RCB = RCB − ECc(ti),

(22)PRB(ti, vj) =

�
BG − ET(ti, vj) ⋅ cj, i = 1

BG −
∑i−1

u=1
EC(tu) − ET(ti, vj) ⋅ cj, i > 1,

(23)Ai = {vj ∈ V|PRB(ti, vj) ≥ RCB}

(24)r1(si, ai) =
FTbest(ti)

FT(ti, ai)
,
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where Ebest(ti) denotes the energy consumption of task ti when it is executed on a 
VM with the lowest power capability, and E(ti, ai) denotes the energy consumption 
of task ti when it is executed on VM type ai.

5.4 � The description of EnMORL

Like other list-based algorithms, EnMORL includes a ranking phase and a mapping 
phase.

In the ranking phase, each task ti in the workflow is assigned a priority [23], 
which is denoted by pr(ti) . And the value of pr(ti) can be calculated as follows:

where ET(ti) is the average execution time of task ti over all types of VMs. The 
priority pr(ti) represents the length of the longest path from task ti to the exit node. 
In the ranking phase, we do not know where the tasks will run. As a result, the aver-
age value is considered in the Eq.  (26). In the mapping phase, tasks are sorted in 
descending order of their priorities and assigned according to Algorithm 2.

Algorithm 2 shows the pseudocode of the EnMORL algorithm. This algorithm 
can also be described in the following five steps.

Step 1:	 The ranking phase. In this step, we assign a priority to each task ti ∈ T  and 
then sort all tasks in descending order of their priorities.

Step 2:	 The initialization phase. In this step, we initialize the Pareto approximate set 
Sp and the Q̂ value for each objective.

Step 3:	 The mapping phase. In this step, the learning agent constructs a feasible 
solution or a trajectory according to the scalarized �-greedy strategy shown in 
Algorithm 1. After taking action, the Q̂ values will be updated according to Eq. 
(15).

Step 4:	 Update of the Pareto approximate set. After a solution has been constructed, 
the Pareto approximate set Sp will be updated. If the solution in the current itera-
tion is not dominated by any other solutions in Sp , it will be added to the set. All 
solutions dominated by the newly added one will be eliminated from the set.

Step 5:	 The termination check. If the maximum number of iterations is reached, the 
algorithm terminates and returns the Pareto set Sp . Otherwise, go to Step 2.

(25)r2(si, ai) =
Ebest(ti)

E(ti, ai)
,

(26)pr(ti) = ET(ti) + max
ts∈succ(ti)

{
trani,s

b
+ pr(ts)

}
,
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More specifically, Step 1 corresponds to lines 1–4 in Algorithm 2, Step 2 corre-
sponds to lines 5, 6, Step 3 corresponds to lines 8–29, Step 4 corresponds to line 31, 
and Step 5 corresponds to line 32.

6 � Performance evaluation

In the section of experiments, we present performance comparisons of our EnMORL 
algorithm with some state-of-the-art scheduling algorithms in terms of makespan, 
energy consumption, and the quality of the Pareto approximate set. This section con-
sists of five parts, namely workflow structure, simulation setup, weight selection, 
solution selection, and experimental results.
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6.1 � Workflow structure

In simulation experiments, we use four different synthetic workflows, which are 
described in [35], to evaluate the performance of our proposed algorithm. These 
synthetic workflows are based on realistic workflow structures from different scien-
tific areas, which are as follows:

1.	 Montage: Astronomy
2.	 EpiGenomics: Biology
3.	 CyberShake: Earthquake
4.	 SIPHT: Biology

The characterization of the above workflows, including their structure, data, and 
computational requirements, is described in detail in [35]. The corresponding work-
flow structures are shown in Fig. 1.

6.2 � Simulation setup

In simulations, all algorithms are implemented in the Java language and run on a PC 
with an Intel Core i5-9400F CPU at 2.90 GHz and 8 GB RAM.

In this paper, we use CloudSim [36], which is a widely used framework, to simu-
late the environment of a cloud data center. Cloudsim can offer a repeatable and 
controllable experimental environment, which enables the users to pay no attention 
to the hardware details.

The cloud data center provides computing resources in the form of 10 differ-
ent VM types. In this paper, each VM type is dynamic voltage scaling (DVS) ena-
bled, and each of them is generated using a method similar to those in [27] and 
[8]. For each VM type vj , a set of voltage supply levels (VSLs) is random and 
uniformly distributed among three different sets of VSLs, which are shown in 
Table 1. The processing speed of each VM type is chosen at random in the range of 
1000–5000 MIPS. The VM type with the highest performance is five times faster 
than the type of lowest performance. In this paper, a VM is operating at the maxi-
mum voltage level when there exists a task executing on it. When a VM is in the 
idle state, the supply voltage drops to the minimum level [8]. The bandwidth of each 

(a) Montage (b) EpiGenomics (c) CyberShake (d) SIPHT

Fig. 1   Overview of four workflow structures
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communication link between VMs is equal, and the value is set to 25 Mbps. What’s 
more, the pricing model similar to Amazon EC2 is used in the experiments, and we 
assume that the unit price of each VM type is proportional to its performance.

In Pareto-based RL algorithms, the convergence time or the time to get the opti-
mized solution is usually figured out according to a quality indicator called hyper-
volume [15, 25, 26].

As shown in Fig. 2, hypervolume is defined as the volume of the area between 
solution points and the reference point [19]. In the case of a maximization prob-
lem, a suitable reference point can be obtained by determining the lower limit of 
each objective and then subtracting a small constant. In the case of a minimization 
problem, the reference point can be obtained by determining the upper limit of each 
objective and then adding a small constant. If there is only one solution in the Pareto 
approximate set, the value of hypervolume will be 0. For the Pareto approximate set, 
a higher hypervolume means better quality.

The Q-learning algorithm will converge to the optimal policy if each action 
and state is sufficiently sampled [31]. For example, Fig. 3 shows the convergence 

Fig. 2   Given a reference point 
R, the gray area represents the 
hypervolume obtained for a 
Pareto approximate set in a bi-
objective environment

objective 1

ob
je

ct
iv

e 
2

S4

S1

S3

S2

R

S1

Table 1   Voltage–relative speed pairs

Level Pair 1 Pair 2 Pair 3

Voltage (V
k
) Relative 

speed (%)
Voltage (V

k
) Relative 

speed (%)
Voltage (V

k
) Relative 

speed 
(%)

0 2.20 100 1.75 100 1.50 100
1 1.90 85 1.40 80 1.20 80
2 1.60 65 1.20 60 0.90 50
3 1.30 50 0.90 40
4 1.00 35
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of EnMORL with respect to hypervolume in the case of Montage and kBG = 0.4 . 
The convergence time here is expressed in the iterations. With the increase of the 
iterations, hypervolume tends to converge to a fixed value.

Due to the importance of parameters for RL, we conduct experiments to con-
figure them. These parameter values are often used in RL algorithms. Table  2 
shows a set of experiments in the case of Montage workflow and kBG = 0.4 . The 
columns “hyper” and “ Icon ” represent the hypervolume value and the convergence 
iteration, respectively. From the table, we find that the variation of parameters has 
a greater influence on the convergence time. In other cases, we have similar find-
ings. Therefore, the parameter configurations are mainly based on convergence 
time. In all experiments, the parameter configurations for EnMORL are entirely 
identical. The parameter � in the �-greedy strategy is set to 0.1. The learning rate 
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Fig. 3   The hypervolume value relative to the iterations in the case of Montage and k
BG

= 0.4

Table 2   Parameter configuration 
in the case of Montage and 
k
BG

= 0.4

Number � �
i

� Hyper I
con

1 0.1 0.1 0.9 441.33 119
2 0.1 0.2 0.8 448.12 131
3 0.1 0.3 0.7 439.34 127
4 0.2 0.1 0.8 454.87 134
5 0.2 0.2 0.7 460.23 145
6 0.2 0.3 0.9 469.56 149
7 0.3 0.1 0.7 481.24 157
8 0.3 0.2 0.9 477.50 165
9 0.3 0.3 0.8 489.62 163
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�i is fixed to 0.1 at any time step and the discount factor � is set to 0.9. Results are 
collected and averaged over 30 trials of each 500 iterations.

6.3 � Weight selection

The weight selection is very important for the multi-objective problems. The inap-
propriate weights have a terrible impact on the quality of the solution set. However, 
it is an acknowledged difficult problem to determine the weights in multi-objective 
algorithms [14]. Moffaert et al. [15] find that the combination of RL and the Cheby-
shev scalarization function is not particularly dependent on the weights used.

When applying the Chebyshev scalarization function to RL, most weight tuples 
can achieve good results. We can choose a relatively optimal weight tuple from ran-
domly generated ones. The weight selection in the Chebyshev scalarization method 
is based on hypervolume.

In preliminary experiments, we select the relatively optimal weight tuple from 
randomly generated ones for each workflow according to the value of hypervolume. 
For instance, we present the weight selection in the case of the Montage workflow 
and kBG = 0.4 . We randomly generate 10 scalarization weights w1 , which are in the 
range (0,  1), of the makespan objective. Then, the corresponding weights of the 
energy objective are calculated by w2 = 1 − w1 . We collect and average the hyper-
volume of each weight tuple over 20 trials. Figure 4 shows the hypervolume value 
corresponding to 10 weight tuples in the case of Montage and kBG = 0.4 . In particu-
lar, EnMORL returns only one solution in the case of the fourth tuple. So the cor-
responding hypervolume value is 0. We choose the third one, which corresponds to 
the largest hypervolume.
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Weight tuples

Fig. 4   The obtained hypervolume corresponding to the policies learned for each of the 10 weight tuples 
in the case of Montage and k

BG
= 0.4
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6.4 � Solution selection

There are multiple different solutions in the Pareto approximate set. Our goal is to 
minimize the makespan and energy consumption. As a result, we select the solution, 
which is closest to the origin, to evaluate the performance. We propose a metric to 
select such a solution from the approximate set. We first normalize the values of two 
objectives and then calculate the Euclidean distance between each normalized solu-
tion point and the origin. The Euclidean distance De(x) in terms of solution x can be 
calculated as follows:

where NM(x) = f1(x)∕MSc is the normalized makespan, NE(x) = f2(x)∕Eh is the nor-
malized energy consumption, f is the objective function, f1(x) is the actual makespan 
of solution x, MSc is the makespan when all tasks are executed on the cheapest VM 
type, f2(x) is the actual energy consumption of solution x, and Eh is the energy con-
sumption when all tasks are executed on the most expensive VM type.

6.5 � Experimental results

In this section, EnMORL is compared with two popular multi-objective meta-heu-
ristics, which are called NSGA-II [22] and MOPSO [24], in terms of makespan, 
energy consumption, and the hypervolume indicator. More specifically, NSGA-II 
used for comparison is the multi-objective algorithm in [13], MOPSO used for com-
parison is a new version called HSPO [8].

The experiments consist of four parts in the case of four different workflows, 
namely Montage, EpiGenomics, CyberShake, and SIPHT. They are representative 
and reasonable examples of workflows.

6.5.1 � Montage workflow

The experimental results of the Montage workflow with different budget factors are 
shown in Figs. 5a, 6a, and 7a.

Figure 5a shows the results of the makespan. On the whole, the values of makes-
pan generally decline with the rise of budget factors. When kBG = 0.1 , the values of 
the makespan by using EnMORL are 29.33% and 20.36% lower than those obtained 
by using NSGA-II and MOPSO, respectively. When kBG increases to 0.9, the values 
of the makespan obtained by using EnMORL become 16.93% and 7.55% lower than 
those obtained by using NSGA-II and MOPSO, respectively.

As we can see from Fig.  6a, energy consumption generally increases with the 
increase in budget factors. The main reason is that more tasks will be assigned to the 
VM types, which have higher performance when the budget increases. When a task 
is executed on a VM with higher performance, it consumes more energy. In the case 
of kBG = 0.1 , the values of the energy consumption by using EnMORL are 16.02% 
and 5.71% lower than those obtained by using NSGA-II and MOPSO, respectively. 
When the value of kBG increases to 0.9, the values of the energy consumption obtained 

(27)De(x) =
√
NM(x)2 + NE(x)2,
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by using EnMORL become 38.24% and 29.01% lower than those obtained by using 
NSGA-II and MOPSO, respectively.

Hypervolume is a commonly accepted quality indicator in multi-objective RL [15]. 
Figure 7a shows the hypervolume values obtained by using three multi-objective algo-
rithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We find that the 
hypervolume values obtained by EnMORL are higher than those obtained by NSGA-II 
and MOPSO. It is because that the weights used in EnMORL are selected according to 
hypervolume, while the weights used in NSGA-II and MOPSO are simply set to 0.5. 
NSGA-II and MOPSO are all scalarized based on the linear scalarization function. It 
is an acknowledged difficult problem to determine the weights in the linear scalariza-
tion function [14]. As a result, the weight tuple is often seen as the preference for each 
objective. If the hypervolume value is very low or equals to 0, the weight tuple in use is 
inappropriate.
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6.5.2 � EpiGenomics workflow

The experimental results of the EpiGenomics workflow with different budget fac-
tors are shown in Figs. 5b, 6b and 7b.

Figure  5b shows the results of the makespan. On the whole, the values of 
makespan generally decline with the rise of budget factors. When kBG = 0.1 , 
the values of the makespan by using EnMORL are 45.95% and 37.22% lower 
than those obtained by using NSGA-II and MOPSO, respectively. When kBG 
increases to 0.9, the values of the makespan obtained by using EnMORL become 
48.36% and 25.29% lower than those obtained by using NSGA-II and MOPSO, 
respectively.

As we can see from Fig. 6b, the values of energy consumption generally increase 
with the increase in budget. In the case of kBG = 0.1 , the values of the energy con-
sumption by using EnMORL are 23.63% and 7.37% lower than those obtained by 
using NSGA-II and MOPSO, respectively. When the value of kBG increases to 0.9, 
the values of the energy consumption obtained by using EnMORL become 34.54% 
and 21.55% lower than those obtained by using NSGA-II and MOPSO, respectively.
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Figure  7b shows the hypervolume values obtained by using three multi-objec-
tive algorithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We 
can see that the hypervolume values obtained by using EnMORL are always higher 
than those obtained by using NSGA-II and MOPSO. If hypervolume is very low or 
equals to 0, it indicates that the weight tuple in use is inappropriate.

6.5.3 � CyberShake workflow

The experimental results of the CyberShake workflow with different budget factors 
are shown in Figs. 5c, 6c and 7c.

Figure 5c shows the results of the makespan. On the whole, the values of makes-
pan generally decline with the rise of budget factors. In the case of kBG = 0.1 , the 
values of makespan obtained by using EnMORL are 48.54% and 37.75% lower than 
those obtained by using NSGA-II and MOPSO, respectively. When kBG increases to 
0.9, the values of the makespan obtained by using EnMORL become 41.53% and 
19.09% lower than those obtained by using NSGA-II and MOPSO, respectively.
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As we can see from Fig.  6c, energy consumption generally increases with the 
increase in budget factors. In the case of kBG = 0.1 , the values of the energy con-
sumption by using EnMORL are 29.60% and 16.87% lower than those obtained by 
using NSGA-II and MOPSO, respectively. When the value of kBG increases to 0.9, 
the values of the energy consumption obtained by using EnMORL become 49.09% 
and 31.36% lower than those obtained by using NSGA-II and MOPSO, respectively.

Figure 7c shows the hypervolume values obtained by using three multi-objective 
algorithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We can 
see that the hypervolume values obtained by using EnMORL are always higher than 
those obtained by using NSGA-II and MOPSO. If the hypervolume value is very 
low or equals to 0, it indicates that the weight tuple in use is inappropriate.

6.5.4 � SIPHT workflow

The experimental results of the SIPHT workflow with different budget factors are 
shown in Figs. 5d, 6d and 7d.

The results of the makespan are shown in Fig. 5d. On the whole, the values of 
makespan generally decline with the rise of budget factors. In the case of kBG = 0.1 , 
the values of makespan obtained by using EnMORL are 54.82% and 47.92% lower 
than those obtained by using NSGA-II and MOPSO, respectively. When kBG 
increases to 0.9, the values of the makespan obtained by using EnMORL become 
48.73% and 36.34% lower than those obtained by using NSGA-II and MOPSO, 
respectively.

As we can see from Fig. 6d, the values of energy consumption generally increase 
with the increase in budget factors. In the case of kBG = 0.1 , the values of the energy 
consumption by using EnMORL are 15.61% and 12.49% lower than those obtained 
by using NSGA-II and MOPSO, respectively. When the value of kBG increases to 
0.9, the values of the energy consumption obtained by using EnMORL become 
37.07% and 25.29% lower than those obtained by using NSGA-II and MOPSO, 
respectively.

Figure 7d shows the hypervolume values obtained by using three multi-objective 
algorithms when the values of budget factor kBG are 0.2, 0.4, 0.6, and 0.8. We can 
see that the hypervolume values obtained by using EnMORL are always higher than 
those obtained by using NSGA-II and MOPSO. If the hypervolume value is very 
low or equals to 0, it means that the weight tuple in use is inappropriate.

In conclusion, the comparison results show that the EnMORL algorithm outper-
forms the other two algorithms in terms of makespan, energy consumption, and the 
hypervolume indicator.

7 � Conclusion

Workflow scheduling has been a major energy consumer in clouds. This paper con-
siders a multi-objective workflow scheduling problem with the budget constraint. 
Our goal is to simultaneously minimize the makespan and energy consumption 
while meeting the budget constraint. This paper focuses on the weight selection 
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problem and how to satisfy the budget constraint. Both of them were seldom consid-
ered in related works.

We propose a multi-objective RL algorithm called EnMORL. In EnMORL, we 
propose a simple new method to satisfy the budget constraint and guarantee the 
feasibility of solutions. This method is based on RCB and can be applied to other 
workflow scheduling problems with the budget constraint. EnMORL is based on the 
Chebyshev scalarization function, which can efficiently solve the weight selection 
problem. The experimental results show EnMORL outperforms these algorithms in 
the case of four workflows.

In future work, we will extend our algorithm to solve the dynamic workflow 
scheduling problem. We intend to use the conditional variational auto-encoder 
(CVAE) to predict the current situation according to the historical data.
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