
Vol:.(1234567890)

The Journal of Supercomputing (2020) 76:174–203
https://doi.org/10.1007/s11227-019-03017-y

1 3

Elastic HDFS: interconnected distributed architecture
for availability–scalability enhancement of large‑scale
cloud storages

M. Maghsoudloo1  · N. Khoshavi2

Published online: 14 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper presents an interconnected distributed architecture for storing data and
metadata in large-scale cloud storage systems. The primary goal of the proposed
architecture is to enhance the scalability of namespace directory in large-scale file
systems. Structural shift from distinguished distributed model to interconnected dis-
tributed model and conducting effective coordination among file servers for names-
pace management are two key solutions considered in the context of proposed archi-
tecture. To this intent, a coordination protocol is designed for communication among
file servers, and maintaining user transparency in the presence of different file sys-
tem actions/reactions. The experimental results, obtained via emulations under dif-
ferent network conditions and cloud storage sizes, show up to 43.9% availability and
37.8% connection throughput improvements with negligible storage overhead com-
pared to the latest released version of Hadoop distributed file system.

Keywords  Scalability · Availability · Cloud storage systems · Hadoop distributed
file system · Namespace directory

1  Introduction

Emerging adoption of cloud computing in different aspects of information technol-
ogy such as financial services, social networks, e-health, media and entertainment
is driving the growth demand for cloud storage systems [1]. As content is created

 *	 M. Maghsoudloo
	 mo.maghsoudloo@gu.ac.ir

	 N. Khoshavi
	 nkhoshavinajafabadi@floridapoly.edu

1	 Department of Computer Engineering, Faculty of Engineering, Golestan University, Gorgan,
Iran

2	 Department of Computer Science and Department of Electrical and Computer Engineering,
Florida Polytechnic University, Lakeland, USA

http://orcid.org/0000-0002-1276-9701
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-03017-y&domain=pdf

175

1 3

Elastic HDFS: interconnected distributed architecture for…

anytime and anywhere on billions of end systems, cloud storage infrastructure is
needed to store, manage and retrieve massive amounts of data [1, 2]. Cloud stor-
age market is projected to reach a total market size of $92.488 billion by 2022 with
respect to compound annual growth rate of 53% from 2011 to 2016 [3].

A cloud storage system provides a means of permanent storage of set of data
in the form of files in which clients can access files via a lightweight user agent
[1–3]. Unlike the traditional local file storages, clients and storage resources can be
dispersed over the Internet [1]. Client-side machine splits files into constant-size
objects that are stored on different storage resources. This type of distribution is
transparent from client viewpoint so that it gives an impression that the objects are
present at the same geographical location [3].

Google file system (GFS) and Hadoop distributed file system (HDFS) are two of
the most commonly used cloud storage systems for dealing with huge clusters [3].
GFS and HDFS are similar in many aspects, especially in architecture. GFS contains
single master node (master) and multiple chunk servers (slaves). HDFS contains sin-
gle NameNode (master) and many DataNodes (slaves). In HDFS, chunk location
information is consistently maintained by NameNode, while GFS’s master simply
checks the status of the chunk servers for their information at startup [3]. Since the
Hadoop is an open-source software framework, most research works and innovative
ideas have been applied on the HDFS architecture.

For shared resource management, the centralized approach has two major draw-
backs and centralized NameNode is no exception: the single point of failure (SPOF)
problem and performance bottleneck. As HDFS architectures depend on a single
master node which at times proves to be a SPOF. If it goes down, the slaves will lose
control for blocks [4–8]. Moreover, since all metadata are stored in the NameNode,
client requests to an HDFS cluster must first pass through it [9]. However, the rapid
growth of businesses (such as Uber [10]) made it difficult to scale reliably without
slowing down data analysis for thousands of users who are making millions of que-
ries each week [10]. Therefore, an effective solution to overcome these challenges is
structural shift from centralized to distributed model [9, 11–15].

The latest released version of Hadoop, called HDFS Federation [9], is conducted
based on the above issue. It tries to overcome the scalability limitations of previ-
ous versions by adding support for multiple NameNodes to HDFS. HDFS Federa-
tion improves the existing HDFS architecture through separation of namespace and
storage [9]. All NameNodes work independently and do not require any coordina-
tion with each other. Each NameNode manages a separated part of namespace called
block pool. DataNodes store blocks for all the block pools in the cluster. Conse-
quently, a NameNode failure does not prevent the DataNodes from serving other
NameNodes in the cluster [9]. Adding more NameNodes to the cluster scales the
file system read/write throughput and can overcome the performance bottleneck
problem.

However, the experimental results, presented by this paper, reveal that the un-con-
nected self-ruled NameNodes and static namespace partitioning faces in the HDFS
Federation two serious problems: First, the SPOF problem due to lack of coordina-
tion between independent NameNodes deprives some users of the consistent data
layout; second, limitation of system flexibility in dealing with network dynamics

176	 M. Maghsoudloo, N. Khoshavi

1 3

such as user mobility and migrations, unstable network conditions (node failures
and unpredictable Internet traffic behavior) and unbalanced loads. The experimental
results show that the negative effects of both above issues become more compli-
cated during scaling up the system (increasing number of clients, network size and
utilization).

In order to enhance the scalability/availability of large-scale cloud storages, this
paper presents Elastic HDFS, an interconnected distributed architecture for HDFS
implementation. In the proposed architecture, NameNode is split into slices and geo-
graphically distributed among chunk servers. In contrast to HDFS Federation, chunk
servers are coordinated and a coordination protocol is designed for communication
among chunk servers. A slice of NameNode, associated with a DataNode, contains a
certain part of metadata information of files’ objects. In fact, each NameNode is the
Parent of some client machines which are geographically located in particular area.
Client machines communicate with their Parents for all actions, such as upload, read
and edit files, and chunk servers communicate with each other to commit jobs. In the
case of chunk server failure, unstable network conditions and user mobility, coor-
dination of chunk servers helps clients keep accesses to slaves without significant
disruption. In the absence of active parent, other chunks can issue the client requests
during failover mechanism. Concerning the defined functions and messages of
coordination protocol, all of the chunks are able to redirect the requests to the ones,
which are responsible of them (Parents). Moreover, on the congested networks, the
coordination among different chunk servers conducted by Elastic HDFS can help
distribute the traffic over the network in the favor of overloaded chunks. In a general
view, the cooperation among chunk servers with different roles improves the acces-
sibility of data stored by the DataNodes in the presence of unpleasant events.

In order to compare the effects of design decisions, different network infrastruc-
tures contain 16, 32 and 64 subnets which are emulated via Graphical Network
Simulator 3 (GNS3) [16]. The Intelligent Java IDE (IntelliJ IDEA) [17] is used for
building modified java classes classified into Hadoop packages. To measure the
impact of the HDFS architectures on the performance and availability of Hadoop,
the standard TestDFSIO, TeraGen and TeraSort benchmarks [18] are used. The pri-
mary metric used to measure the performance of HDFS architecture is throughput,
and availability is measured considering the factors causing interruption in clients’
accesses. In order to evaluate the robustness of HDFS architectures against network
congestion, random failures and clients’ movements, the throughput is investigated
in the presence of fake secondary traffic, different numbers of chunk server failures
and client migrations. The experimental results reveal that Elastic HDFS causes that
the descending slopes of throughput decrease by 32.6%, 77.4% and 42.1% during
growth of congestion ratio, failure ratio and migration ratio. The maximum avail-
ability improvements of the proposed architecture during the mentioned scenarios
are about the 43.9%, 25.8% and 22.9% for the networks with different congestion,
migration and failure ratios.

Coordination among HDFS chunks conducted by Elastic HDFS enables other
chunks to deal with client requests in the absence of responsible ones due to high
traffic, failure or client migration. Although the coordination among HDFS chunks
established by Elastic HDFS increases the processing efforts on the server side, it

177

1 3

Elastic HDFS: interconnected distributed architecture for…

can help reduce the dependency of overall server-side operations on the specified
NameNode.

The rest of the paper is organized as follows: Sect. 2 describes the base Hadoop
distributed file system. Section 3 explains the problem and structures of the related
work. The features of proposed HDFS architecture and HDFS coordination protocol
are proposed in Sects. 4 and 5. Section 6 shows the result analysis. Finally, Sect. 7
concludes the paper.

2 � Hadoop distributed file system

The Hadoop distributed file system (HDFS) is a distributed file system built to run
on commercial of the shelf hardware [3]. The main goal of HDFS is to use com-
monly commodity servers in a large cluster, where each server has a set of inexpen-
sive disk drives. It is originally implemented using the Java language for the Apache
Nutch Web search engine [3]. HDFS provides high-throughput access to application
data and is suitable for applications that have large datasets [3].

Figure 1 shows the base architecture of HDFS containing four major software
components: Client Machine, NameNode, DataNodes and Secondary NameNode.
Client machines have Hadoop installed with all the cluster settings, but are neither
a master or a slave. Instead, the role of the Client Machine is to load data into the
cluster via establishing a connection to a configurable TCP port on the NameNode
[19]. An HDFS cluster consists of a single NameNode that manages the file system
namespace, and number of DataNodes that manages storage attached to the clus-
ters [19]. The NameNode executes file system namespace operations like opening,
closing and renaming files. It also determines the mapping of blocks to DataNodes
[19]. The DataNodes perform object creation, deletion and replication under the

Fsimage

Editslog

NameNode

Secondary
NameNode

Fsimage
Checkpoint

Client Machine

DataNode

...
DataNode DataNode DataNode

Fig. 1   Architecture of base distributed file system of Hadoop

178	 M. Maghsoudloo, N. Khoshavi

1 3

management of NameNode [19]. The existence of a single NameNode in a cluster
significantly simplifies the architecture of the system [19]. The NameNode is the
arbitrator and repository for all HDFS metadata [19].

The NameNode stores the metadata of the HDFS. The state of HDFS is stored
in a file called fsimage and is the base of the metadata. During the runtime, modi-
fications are just written to a log file called editslog. On the next startup of the
NameNode, the state is read from fsimage. Then, the changes from editslog are
applied to that and the new state is written back to fsimage. After this, editslog is
cleared and is now ready for new log entries [19].

NameNode restarts are rare which means editslogs can grow very large for the
clusters where NameNode runs for a long period of time. Moreover, in the case of
crash, we will lose huge amount of metadata since fsimage is very old. Therefore,
to overcome this issue, we need a mechanism which will help us reduce the editslog
size containing the most recent fsimage leading to load reduction on NameNode
[20]. The Secondary NameNode helps to overcome the above issues by taking over
the responsibility of merging editslog with fsimage from NameNode. The secondary
NameNode merges fsimage and editslog periodically and restricts the size of edit-
slog while being typically run on a different machine than the primary NameNode.
It receives the editslogs from NameNode in uniform intervals and applies them to
fsimage. Once it has new fsimage, it copies back to NameNode. NameNode will use
this fsimage for the next restart, which will reduce the startup time. The main idea
behind establishing a secondary NameNode is to equip the HDFS with checkpoint
system. It is just a helper node for NameNode, and in the case of NameNode failure,
it will not be employed as a replacement or backup node [20].

3 � The problem statement and related work

One of the most important aspects of any cloud computing solution is the avail-
ability of the cloud [4]. Availability refers to the uptime of a system, a network of
systems, hardware and software that collectively provide a service during its usage
[4–6]. When a cloud solution is not available, it practically does not exist. In effect,
any data or apps that are accessed via the cloud cannot be utilized as long as the
cloud server remains unavailable. Master failure and scalability limitation of con-
ventional HDFS architecture are two factors that can affect the availability of HDFS
as follows:

•	 For any un-planned events such as node failure, the entire cluster is not available
until the NameNode is brought up. For planned events such as hardware or soft-
ware upgrades on NameNode, it would also result in the cluster unavailability
[20].

•	 Single NameNode causes a bottleneck of performance since all the access
requests to the file system have to contact the NameNode [19]. A NameNode is
considered available if it is up and it meets a service-level objective that can be
affected by poor performance [19].

179

1 3

Elastic HDFS: interconnected distributed architecture for…

In Hadoop 1.x, each cluster has a single NameNode, and if that machine fails, the
whole cluster will not be available [19]. In Hadoop 2.x, HDFS feature addresses the
above problem, by providing an option to run two NameNodes in the same cluster in
an active/passive configuration with a hot standby that are completely synchronized
through the shared storage [20]. However, this causes a new SPOF problem because
the shared storage is a single point which stores all edit logs [20]. The next versions
of Hadoop 2.x also have two NameNodes that are configured and synchronized at all
times [21]. Nevertheless, they implement Quorum Journal Manager (QJM), instead
of the shared storage. Using QJM to maintain consistency of active and standby state
requires that both nodes be able to communicate with a group of JournalNodes (JNs)
[21]. When the active node modifies the namespace, it logs a record of the change
to a majority of JournalNodes. The Standby NameNode watches the JNs for changes
to the edit log and applies them to its own namespace [21]. Although the QJM can
overcome the SPOF problem of shared editslog in the former versions of HDFS, two
challenges in achieving high availability of scaled-up HDFS still persist: (1) perfor-
mance bottleneck problem and (2) multiple-failure problem [22].

The main scalability issue of HDFS is the performance and throughput of the
NameNode, the directory tree of all files in the system that tracks where data files are
stored. Since all metadata are stored in the NameNode, client requests to an HDFS
cluster must first pass through it [9]. HDFS was designed as a scalable distributed
file system to support thousands of nodes within a single cluster. With enough hard-
ware, scaling to over 100 petabytes of raw storage capacity in one cluster can be eas-
ily achieved by HDFS.

Furthermore, a StandBy sparing system with two modules can tolerate just one
machine failure. In the event of failure on both Active and StandBy NameNodes,
the availability of HDFS can be compromised again. Considering the fact that avail-
ability is ultimately the holy grail of the cloud storage systems, the StandBy sparing
cannot be enough to minimize the risk of NameNode outages. While the volume of
data in HDFS has been growing exponentially [6], the importance of NameNode
reliability also increases rapidly. Several methods have been reported in the litera-
ture to enhance the NameNode reliability. Most of them are based on using N-Way
Replication mechanisms for metadata replication (such as AVATOR Node [23],
NCluster [24] and KARMA [2]) or applying erasure codes or blockchain mechanism
on metadata for error detection/correction (such as MICS [25] and ASSER [26]).
The basis of ideas used by the aforementioned techniques is to use data redundancy
for NameNode reliability improvement. On very large clusters with many files,
NameNode memory becomes the limiting factor for scaling [11]. Thus, NameNode
will not be able to handle the extra data which makes the scalability issue more
complicated [11]. Even though these techniques enhance NameNode reliability, they
also impose significant bandwidth, performance, energy and area overheads [12].

A limited study has been conducted on the pros and cons of scaling out
NameNode architecture [11–15]. For instance, the focus of [12] is on the names-
pace partitioning among a cluster of NameNodes. Moreover, replicas of each
fragment are dispersed among the clusters. Both of namespace partitioning and
the locations of replicas can be changed dynamically under the management of
a watchdog node, called ZooKeeper [12]. While ZooKeeper adjusts cooperation

180	 M. Maghsoudloo, N. Khoshavi

1 3

among NameNodes and keeps them synchronized, it can also be a new single
point of system failure and potential performance bottleneck.

Finally, Apache Software Foundation triggers to propose a new version of
HDFS to overcome the scalability limitations of previous versions by adding sup-
port for multiple NameNodes. HDFS Federation (Hadoop 2.9) [9] improves the
existing HDFS architecture through a clear separation of namespace and storage
[9]. It enables support for multiple namespaces in the cluster to improve scalabil-
ity. Figure 2 illustrates the architecture of HDFS Federation. As shown in Fig. 2,
NameNodes are federated indicating that all these NameNodes work indepen-
dently and do not require any coordination with each other. Each DataNode reg-
isters with all NameNodes in the cluster. DataNodes send periodic heartbeats and
handle commands from NameNodes. Each NameNode manages a separated part
of namespace called block pool. Therefore, a block pool is a set of blocks that
belong to a single namespace. DataNodes store blocks for all the block pools in
the cluster. Consequently, a NameNode failure does not prevent DataNodes from
serving other NameNodes in the cluster.

Adding more NameNodes to the cluster scales the file system read/write
throughput and can overcome the performance bottleneck problem of architecture
with single NameNode. However, the experimental results explained in Sect. 6
show that the un-connected self-ruled NameNodes and static namespace parti-
tioning results in two serious problems in HDFS Federation:

•	 While multiple NameNodes are being used to manage all DataNodes, failure of
one NameNode cannot affect the data of other ones. However, access of some
users correlated with the failed namespace can still be affected. The failed
namespace is unavailable until the corresponding namenode comes back to the

Fsimage
Name Space 1

Editslog

NameNode 1

DataNode

...
DataNode DataNode DataNode

Fsimage
Name Space n

Editslog

NameNode n

...

HDFS
Name Space

Fig. 2   Architecture of HDFS federation

181

1 3

Elastic HDFS: interconnected distributed architecture for…

cluster. Thus, the SPOF problem due to lack of coordination between independ-
ent NameNodes deprives some users of the consistent data layout.

•	 In HDFS Federation, the geographically closest NameNode serves the requests
of the clients resided in a specific area. Even though the responder NameNode
is physically closest to the client machine, the NameNode that is farther away
from the clients may lead to better response delay. User mobility and migrations,
unstable network conditions (node failures and unpredictable Internet traffic
behavior) and unbalanced load on the federated independent NameNodes cause
that the closest NameNode might not continuously be the best choice for the user
to interact with the file system.

The experimental results (Sect. 6) show that the negative effects of both above
issues become more complicated during scaling up the system (increasing number
of clients, network size and utilization).

4 � Proposed distributed architecture for NameNode availability
enhancement

The centralized model for NameNode implementation is the main cause of scal-
ability challenges and the major barrier to expand metadata directory of HDFS.
NameNode is the key resource of HDFS, shared by client machines as a directory
for file objects. For shared resource management, the centralized architectures can-
not expand effectively.

To address this issue, we propose an interconnected distributed architecture for
metadata directory of HDFS as an alternative solution for federated NameNode. The
key innovation of the proposed architecture is to keep metadata information along
with the file objects in chunk servers. Figure 3 illustrates how distribution can be

...

Client Machine
Application Cache

Client Machine
Application Cache

Internet

DataNode
F-Fsimage

Editslog

NameNode

Coordinator

G-Fsimage

Chunk Server

Socket 2(Public)Socket 1(Public)

Chunk Server

Socket 1(Public) Socket 2(Public)

DataNode
F-Fsimage

Editslog

NameNode

Coordinator

G-Fsimage

Internet

Socket 3(Private) Socket 3(Private)

Fig. 3   Proposed distributed architecture for namenode of HDFS

182	 M. Maghsoudloo, N. Khoshavi

1 3

applied on the HDFS architecture. As shown in Fig. 3, the metadata namespace is
split into fixed-size slices and geographically distributed among chunk servers. Each
chunk server acts like a virtual machine (VM) that can run along with other VMs
on a same physical machine (PM). A chunk server consists of a DataNode asso-
ciated with a slice of directory. Each slice contains a certain part of metadata of
NameNode. Despite HDFS Federation, NameNode slices communicate to each other
for metadata replication, management and migration. Different slices of NameNode
work together under the management of new software module (NameNode Coor-
dinator) via a pre-designed coordination protocol. Coordination protocol involves
messages, actions and reactions for NameNodes collaboration. During normal oper-
ation, each client machine contacts to a slice of NameNode with the help of anycast
networking method, and different slices collaborate with each other to commit the
requests of client machines. With anycast, a single IP address is assigned to the net-
work adapter interfaces of chunks that are bound to the ports (50070 and 50470) lis-
tened by NameNode modules. Anycasting is supported explicitly in IPv6 and by the
BGP (Border Gateway Protocol) in IPv4. By anycast networking method, the same
IP prefix is advertised from multiple NameNodes. Anycast is a network routing and
addressing mechanism which enables multiple topologically diverse servers in the
Internet to share the same IP address to provide service. The shared IP address is
called an anycast address. User requests sent to the anycast address are routed to the
topologically nearest server. This helps cut down on latency and bandwidth costs,
improves load time for users and improves availability. It is important to remember
that topographically closer does not inherently mean geographically closer, though
this is often the case. Anycast is linked with the BGP protocol, which ensures that
all of a router’s neighbors are aware of the networks that can be reached through
that router and the topographical distance to those networks. The main principle of
anycast is that an IP address range is advertised in the BGP messages of multiple
routers. As this propagates across the Internet, routers become aware of which of
their neighbors provides the shortest topographical path to the advertised IP address.
The responder NameNode may not be the closest physically to client machine, how-
ever, the one ‘network-close’ to it. Two distinguished public TCP sockets are estab-
lished on the chunk servers for NameNode and DataNode connections. Regarding
Fig. 3, Socket 1 and Socket 2 are the endpoints of two-way communications for
client machines with NameNode and DataNode, respectively. Moreover, a private
TCP socket (Socket 3 in Fig. 3) is taken into account for message passing between
NameNodes in the context of coordination protocol.

In the proposed architecture, NameNodes can take two different roles:

•	 Parent Each NameNode is the Parent of files uploaded by caller client machines
(which is possibly located in the nearby area of chunk). An image file (F-fsimage
in Fig. 3) is embedded in the structure of the proposed NameNode to keep the
addresses of DataNodes (sharer tags), which is the host of its children’s objects.
All actions requested by a client, such as upload, read and edit files, should be
committed by the Parent. However, it is not necessary for the client machines to
perform all actions on a file just via establishing a direct connection to Parent of
the files.

183

1 3

Elastic HDFS: interconnected distributed architecture for…

•	 Grandparent Each NameNode can also be a Grandparent of some files. In fact,
chunks can store the objects of files that are children of the other NameNodes.
Grandparents are not permitted to serve the requests of client machines for
actions on their Grandchildren. They just perform actions committed by the Par-
ents. Grandparents’ DataNodes store the replicas of objects sent by their Parents.
In order to store addresses of them (owner tags), a separated image file (G-fsim-
age in Fig. 3) is considered in the proposed architecture of NameNode.

In the following, different scenarios are considered to clarify the interactions
among client machines, Parents and Grandparents in the context of proposed
architecture.

4.1 � File uploading/creating

Figure 4 shows the file uploading mechanism intended in the proposed HDFS archi-
tecture. In order to upload files to enhanced HDFS, the client machines act as an
agent for users. Client machine receives file X and splits it into fixed-size objects

NameNode

DataNode

Chunk 1 (C1)

F-fsimage
X.Obj#1 (C1,C2,C3)

G-fsimage

X.Obj#1

NameNode

DataNode

Chunk 2 (C2)

F-fsimage

G-fsimage
Parent(X.Obj#1) C1

X.Obj#1

NameNode

DataNode

Chunk 3 (C3)

F-fsimage

G-fsimage
Parent(X.Obj#1) C1

X.Obj#1

X.Obj#1

X.Obj#1

HDFS Chunk (Parent) HDFS Chunks (Grandparents)

Fig. 4   Proposed file uploading/creating mechanism

184	 M. Maghsoudloo, N. Khoshavi

1 3

(X.Obj#1, X.Obj#2 and X.Obj#3). The client requests are navigated to the most
optimal and closest chunks based on the anycast mechanism and BGP routing pro-
tocol. When the request reaches the server (C1), it is passed to the TCP socket con-
nected to NameNode module as its Parent. Despite the basic file transfer mechanism
of HDFS, the responsibilities of client machine end at this time. After transferring
objects, Parent stores the objects and makes two copies of them. To locate copies in
the file system, the Parent begins to communicate with other NameNodes consider-
ing greater priority for closer chunks (transmission 1). Given the amount of unused
storage of chunks, they can accept or reject the requests of Parent for receiving cop-
ies (transmission 2). In the case of acceptance, the copies are sent to the acceptor
chunks along with the Parent Acknowledgement (transmission 3). From this moment
onward, the acceptor chunks (C2 and C3) play the role of Grandparent to mentioned
file. Finally, F-fsimage of Parent and G-fsimage of Grandparents are updated via
adding Grandparent addresses in the set of objects holder in F-fsimage and insert-
ing Parent address of stored object in G-fsimage of Grandparents. By means of the
proposed mechanism, at least three NameNode slices (one Parent and two Grandpar-
ents) keep the metadata information of each object, stored in DataNodes.

4.2 � File editing/deleting

Hadoop includes various shell-like commands that directly interact with HDFS and
other file systems that Hadoop supports. These commands support most of the nor-
mal files system operations like copying files, changing file permissions and so on.
It also supports a few HDFS-specific operations like changing replication of files.
Editing files at the client side is not supported in basic HDFS, as it works on the
principle of write once/read many [2]. However, nowadays, files can be remotely
edited using a lightweight Web server that permits clients to use Hadoop directly
from the browser [3]. In the context of the proposed distributed HDFS, Parent sends
any updates on files to Grandparents after client machine operations. Moreover, Par-
ent grants permission of specific editing on files to Grandparents, allowing them
to apply updates on the replicas. Permissions will be retrieved after acknowledge-
ment of Grandparent or after passing a specified deadline. While the fsimage file
format is very efficient to read, it is unsuitable for making small incremental updates
like renaming a single file. Thus, rather than writing a new fsimage every time the
namespace is modified, the NameNode instead records the modifying operation in
the editslog for durability [19]. Figure 5 implies the proposed update propagation
mechanism. After each small modification on files, Parent sends updates on editslog
to Grandparents along with its corresponding permissions with a specified time-out
duration. To handle major updates on fsimage, replication-pipelining method can
be effective. When a client is writing data to an HDFS file, its data are first written
to the main copy in the Parent’s DataNode. Suppose the HDFS file has a replica-
tion factor of three. The Parent (C1) then flushes the data block to the Grandpar-
ents (C2 and C3) with anycast (transmission 1) and locks the file until update opera-
tion finishes. The first Grandparent (C2) starts receiving the data in small portions,
writes each portion to its local repository and transfers that portion to the second

185

1 3

Elastic HDFS: interconnected distributed architecture for…

Grandparent (C3). After applying updates on the objects, Grandparents inform the
Parent via an update acknowledgement message considered in the message set of the
proposed coordination protocol (transmission 2 and transmission 4). If for any rea-
son different coordination messages are lost during the update propagation mecha-
nism or applying updates on the objects is not performed completely, the Parent will
not commit the update operation. When Parent receives all the acknowledgement
messages, the update propagation mechanism is completed, the file is unlocked and
commitment messages are sent to the Grandparents (transmission 5).

4.3 � Parent discovery

In order to serve the client requests for different file actions, all of the requests
should be received by the Parent. Figure 6 illustrates the Parent discovery process.
All of the requests, issued by the client machines to satisfy the user’s demands for
file uploading/editing, are sent with the help of anycast addressing mechanism. In
the other words, this type of messages is just routed to one chunk server, which is
the network-closest one, and requests will not be replicated and routed to several
chunk servers in underlying network (as intended in the context of multicast and
broadcast addressing mechanisms). Therefore, the requests issued and sent by the

NameNode

DataNode

Chunk 1 (C1)

F-fsimage
X.Obj#1 (C1,C2,C3)

G-fsimage

X.Obj#1

NameNode

DataNode

Chunk 2 (C2)

F-fsimage

G-fsimage
Parent(X.Obj#1) C1

X.Obj#1

NameNode

DataNode

Chunk 3 (C3)

F-fsimage

G-fsimage
Parent(X.Obj#1) C1

X.Obj#1

HDFS Chunk (Parent) HDFS Chunks (Grandparents)

a

Fig. 5   Proposed file editing/deleting mechanism

186	 M. Maghsoudloo, N. Khoshavi

1 3

clients can be three types of recipients: the Parent, one of the Grandparents or one
of the other chunks that have not taken any role for the file.

The first scenario The client request directly reaches the Parent of the file (transmis-
sion 1). Based on the anycast mechanism, the requests are always navigated to the
closest chunk. As long as there are no topology changes in the network, a stationary
client can keep its connection to HDFS via a unique chunk. In this case, the Parent
of different files of a client can be a same NameNode. Consequently, the Parent is
directly involved in request handling and response preparation mechanisms (trans-
mission 2).

The second scenario The client request reaches one of the Grandparents of the file
(transmission 3). As Grandparent stores address of the objects’ Parent in G-fsimage,
it can redirect the request to the Parent (transmission 4) via reverse proxy mecha-
nisms such as Application Request Routing (ARR) [27] or Nginx [28]. The reverse
proxy server takes requests from the clients and forwards them to one of the servers.
This issue is taken into account transparently from client point of view. Grandparent
analyzes incoming request and delivers it to the right chunk (Parent). Grandparent
establishes an HTTP connection to Parent through private TCP sockets of NameNo-
des. Grandparent caches client requests and redirects them to the Parent. Then, Par-
ent delivers client’s response directly (transmission 5). This condition arises due to
client moving over the Internet or Parent connectivity problems. If the problem per-
sists, it can be concluded that the Parent might no longer the closest chunk to the
client. The circumstances leading to metadata migration are explained in the rest of
this section.

NameNode

DataNode

Chunk 2 (C2)

F-fsimage

G-fsimage
Parent(X.Obj#1) C1

X.Obj#1

4

HDFS Chunk (Parent)HDFS Chunk (Grandparent)

NameNode

DataNode

Chunk 1 (C1)

F-fsimage
X.Obj#1 (C1,C2,C3)

G-fsimage

X.Obj#1

Client Machine
Application Cache

Fig. 6   Proposed Parent discovery mechanism

187

1 3

Elastic HDFS: interconnected distributed architecture for…

The third scenario The client request reaches the other chunks that have not taken
any role for the file. Then, the request is redirected to all private sockets of NameNo-
des via multicasting to ensure that request reaches the Parent. Finally, the Parent can
individually handle the request exactly in the same way explained in the previous
scenario.

An experiment was conducted to extract the probabilities of three above sce-
narios. A network infrastructure with 32 different subnets (under the organization
of different ISPs), 32 client machines and chunk servers (resided in different sub-
nets) was emulated via emulator. More details about the emulation environment is
mentioned in Sect. 6. Moreover, 30 GB data are fairly generated by client machines
spread out over the emulated network. In this case, on average about 18.31% of over-
all links’ bandwidth was used for benchmarks. The results show that the Parent, one
of the Grandparents and other chunk servers, respectively, receives about 42.11%,
25.42% and 32.47% of client’s requests. As the results under normal conditions of
the network, most of the client requests reach the Parent (C1) and are not required to
be redirected to the other chunk.

4.4 � Parent/Grandparent failure

Distribution of metadata among chunks and using a separated file (G-fsimage) for
storing owner tags of each object in NameNodes lead to increased reliability of
HDFS. Because of replication factor of three for storing objects in different chunks’
DataNodes, metadata of a specific object are stored in exactly one F-fsimage of its
Parent (in the format of sharer tag) and in two G-fsimage of its Grandparent (in
the format of owner tag). Consequently, chunk failures can be tolerated via chunks
cooperation.

Figure 7 shows how the proposed architecture can tolerate Parent failure. In the
case of Parent failure, anycast mechanism routes the client requests to the other clos-
est chunk (transition 1). While Grandparents contain metadata of the requested file
along with its objects (in the associated DataNode), Parent failure can be hidden
from user’s point of view via Grandparents’ interactions. If one of the Grandparents
receives the requests, it tries to establish a connection to Parent through private TCP
sockets. Due to the failure, the Parent cannot reply to the request, and the connection
time-out error occurs. Then, the Grandparent, who has received the request, informs
the other chunks of failing one of NameNodes (transition 2). After that, it redirects
the client request to all private sockets of NameNodes via multicasting (transition 3).
Grandparents’ DataNodes store the replicas of objects and store addresses of Par-
ent in G-fsimage of their NameNodes. Therefore, Grandparents can issue the cli-
ent requests in the absence of active Parents and during failover mechanism. If the
client request reaches the other chunks that have not taken any role for the file, the
request is redirected to all private sockets of NameNodes under management of Par-
ent recovery mechanism. Therefore, the request reaches the Grandparents and can be
handled by them. Subsequently, Grandparents reply to the client’s request on behalf
of Parent (transitions 4).

188	 M. Maghsoudloo, N. Khoshavi

1 3

In the case of Grandparent failure, Parent can be aware of this failure during
interactions with Grandparents intended in the context of mentioned scenarios.
Eliminating one of owner tags can be tolerable while the main sharer tag, kept
by the Parent, and the other owner tag, kept by the second Grandparent, are still
alive. After failure detection, Parent begins to communicate with other NameNo-
des for finding new Grandparent for the file, as same as file uploading mechanism.

In the case of both Parent and Grandparent(s) failures, the first reaction of the
proposed architecture is same as its reaction when just the Parent fails. Anycast
mechanism routes the client requests to the other closest chunk, and the remain-
ing Grandparent(s) finally receives the request and informs the other chunks of
failure occurrence. After that, it redirects the client request to all private sockets
of NameNodes. As long as at least one Grandparent remains, they can issue the
client requests in the absence of active Parents and during failover mechanism.

In the experimental evaluation, the throughput of connections between client
machines and chunk servers managed by HDFS Federation and Elastic HDFS in
terms of different numbers of subnets/clients and different failure ratios of chunks
is assessed. To investigate the effects of Parent and Grandparent(s) failures on the
throughput more deeply, the amount of throughput reduction is extracted from the
experiments with respect to the above scenarios for the network with 16 subnets/
clients. In the worst case, the throughput of connection, established for accessing
a file, is degraded about 14.7%, 18.9% and 27.0% in the case of a Parent, a Par-
ent and a Grandparent and a Parent and two Grandparents failures, respectively.
It should be noted that throughput degradation increases as network scale grows
to 32 and 64 subnets, due to increased overhead of anycasting and multicasting
mechanisms issued during failover period.

NameNode

DataNode

Chunk 2 (C2)

F-fsimage

G-fsimage
Parent (X.Obj#1) C1

X.Obj#1

2

HDFS Chunk (Grandparent)HDFS Chunk (Grandparent)

NameNode

DataNode

Chunk 3 (C3)

F-fsimage

G-fsimage
Parent (X.Obj#2) (C1)

X.Obj#2

Client Machine
Application Cache

X.Obj#1
X.Obj#2

3

Fig. 7   Proposed Parent/Grandparent failure handling mechanism

189

1 3

Elastic HDFS: interconnected distributed architecture for…

4.5 � Long‑term migration of users

In order to enable user interaction with the proposed file system, the client
machine should make a connection with the chunks, taken the role of Parent or
Grandparent for the user’s files. In the first contact of the user, the closest HDFS
chunk accepts the responsibility of being Parent of some user’s files in the sys-
tem. The Parent will be the network-closest chunk to client, as long as the net-
work conditions are normal and stationary user does not have any significant
movement over the network. In this case, every time the user tries to access or
work with his/her files in the same geographical area where the files have been
uploaded for the first time, the Parent is the best choice for the user. Figure 8
illustrates the situation where the user migrates to another geographical zone
through the management of different Internet service providers (ISPs), so that the
Parent is not the network-closest chunk to the client machine. After the migration,
communicating with the previous Parent can impose some overheads in terms
of access delay that can lead to degraded system availability. Therefore, in the
event of long-term migration of a user, a new Parent should be selected among
new close chunks for storing objects and metadata of heavily accessed file. While
the location of keeping files and metadata may affect the data integrity, this pro-
cess should be handled with the awareness of the user. As shown in Fig. 8, with
user permissions, the network-closest chunk is selected as the new Parent, and
the new Parent communicates with its neighbor for creating new set of Grandpar-
ents. User grants permission to the new Parent, as a third-party auditor (TPA), for
downloading the file’s objects from previous Parent. The TPA is an entity, which
has all the necessary expertise and capabilities required to act on behalf of the
client [29]. After objects migration, sharer tag/owner tags are created and entered
in the F-fsimage/G-fsimage of Parent/Grandparent. Finally, the client withdraws
the permissions of previous Parent and Grandparents for the mentioned file and
allocated spaces of NameNodes and DataNodes are released for new objects and
metadata.

Fig. 8   Proposed client migration handling mechanism

190	 M. Maghsoudloo, N. Khoshavi

1 3

5 � NameNode coordination protocol

In order to keep distributed directory coherent, a coordination protocol is employed
as the common communication language of different slices. Parent and Grandpar-
ents should communicate with each other to commit the requests so that the uniform
logical view of the storage system is kept for the client.

Table 1 and Fig. 9 show the messages and interactions among different slices of
metadata directory in the context of the proposed coordination protocol. The source
and destination of each message, types of sockets and addressing method are men-
tioned in Table 1 along with a brief description of messages. The numbers, assigned
to each coordination message in Table 1, have been specified via labels on the transi-
tions in Fig. 9. As illustrated by Fig. 9, the clients and HDFS chunks (with different
roles) can issue a coordination message. They can set up a connection to the private
or public sockets of each other for message passing. An issued message can be sent
to the destination over the created connection considering three types of communi-
cation: unicast, multicast and anycast.

The client machines send the clients’ requests (for file locating and processing)
through establishing connections to the public sockets of HDFS chunks. The routing
protocol (with the help of anycast mechanism) delivers the client request to the net-
work-closest HDFS chunk. After receiving a request from a client, the HDFS chunks
collaborate to commit the client’s request. The messages, intended for HDFS chunks
communication, are exchanged over connections established between private sockets
of HDFS slices. Different multicast groups are taken into account to facilitate com-
munication of HDFS chunks, especially between Parent and Grandparents. All the
HDFS chunks are added into a multicast group. Moreover, a number of separated
multicast groups are also considered for Parents and Grandparents communication.
In the case of different events (such as chunks failure, client migration and load bal-
ancing), Parents and Grandparents try to keep almost three replicas for each object
in the network-closest chunks to the client, according to their duties.

6 � Evaluation results

In order to validate the ideas and compare the effects of proposed architecture with
earlier ones, emulation-based verification method is exploited. Emulation-based ver-
ification is the process of imitating the behavior of a system under design with the
help of another real system (machine).

6.1 � Experimental setup

To evaluate design decisions under variable network conditions, different network
infrastructures are emulated via Graphical Network Simulator 3 (GNS3) [16].
GNS3 is an open-source software used to emulate, configure, test and trouble-
shoot virtual and real networks [16]. GNS3 consists of two software components:

191

1 3

Elastic HDFS: interconnected distributed architecture for…

Ta
bl

e 
1  

M
es

sa
ge

s o
f n

am
en

od
e

co
or

di
na

tio
n

pr
ot

oc
ol

N
um

be
r

Re
qu

es
t

So
ur

ce
D

es
tin

at
io

n
So

ck
et

A
dd

re
ss

in
g

D
es

cr
ip

tio
n

1
Fi

le
 lo

ca
tin

g/
pr

oc
es

si
ng

C
lie

nt
A

ll
ch

un
ks

Pu
bl

ic
A

ny
ca

st
M

es
sa

ge
s i

ss
ue

d
by

 th
e

cl
ie

nt
 m

ac
hi

ne
s t

o
sa

tis
fy

 th
e

us
er

’s
 d

em
an

ds
 fo

r fi
le

up

lo
ad

in
g/

ed
iti

ng
2

Pa
re

nt
 o

ffe
r

A
 c

hu
nk

C
lie

nt
Pu

bl
ic

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 a

 H
D

FS
 c

hu
nk

 to
 in

fo
rm

 th
e

cl
ie

nt
 th

at
 is

 re
ad

y
to

 b
e

th
e

Pa
re

nt
 o

f h
is

/h
er

 fi
le

3
Re

pl
ic

a
pl

ac
em

en
t

Pa
re

nt
A

ll
ch

un
ks

Pr
iv

at
e

M
ul

tic
as

t
M

es
sa

ge
s i

ss
ue

d
by

 th
e

Pa
re

nt
s f

or
 lo

ca
tin

g
re

pl
ic

as
 o

f o
bj

ec
ts

 in
 th

e
ot

he
r

H
D

FS
 c

hu
nk

 se
rv

er
s

4
A

dm
is

si
on

So
m

e
ch

un
ks

Pa
re

nt
Pr

iv
at

e
U

ni
ca

st
M

es
sa

ge
s i

ss
ue

d
by

 th
e

po
te

nt
ia

l G
ra

nd
pa

re
nt

s t
o

ad
m

it
re

qu
es

ts
 o

f P
ar

en
t

fo
r s

to
rin

g
ob

je
ct

s
5

Re
je

ct
io

n
So

m
e

ch
un

ks
Pa

re
nt

Pr
iv

at
e

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 th

e
H

D
FS

 c
hu

nk
s t

o
re

je
ct

 th
e

re
qu

es
t o

f P
ar

en
t f

or
 st

or
-

in
g

ob
je

ct
s d

ue
 to

 h
ea

vy
 lo

ad
/lo

w
 sp

ac
e

6
A

CK
Pa

re
nt

G
ra

nd
pa

re
nt

Pr
iv

at
e

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 th

e
Pa

re
nt

s t
o

co
nfi

rm
 th

e
ro

le
 o

f G
ra

nd
pa

re
nt

 fo
r H

D
FS

ch

un
ks

 a
fte

r r
ec

ei
vi

ng
 a

dm
is

si
on

7
N

A
CK

Pa
re

nt
So

m
e

ch
un

ks
Pr

iv
at

e
U

ni
ca

st
M

es
sa

ge
s i

ss
ue

d
by

 th
e

Pa
re

nt
s t

o
re

fu
se

 th
e

ro
le

 o
f G

ra
nd

pa
re

nt
 fo

r H
D

FS

ch
un

ks
 a

fte
r r

ec
ei

vi
ng

 a
dm

is
si

on
8

Fi
le

 p
ro

ce
ss

in
g

pe
rm

is
si

on
s

Pa
re

nt
G

ra
nd

pa
re

nt
s

Pr
iv

at
e

M
ul

tic
as

t
M

es
sa

ge
s i

ss
ue

d
by

 th
e

Pa
re

nt
s t

o
gr

an
t p

er
m

is
si

on
 o

f t
he

 fi
le

 p
ro

ce
ss

in
g

to

th
e

G
ra

nd
pa

re
nt

s
9

Fi
le

 p
ro

ce
ss

in
g

A
CK

G
ra

nd
pa

re
nt

Pa
re

nt
Pr

iv
at

e
U

ni
ca

st
M

es
sa

ge
s i

ss
ue

d
by

 th
e

G
ra

nd
pa

re
nt

s t
o

sh
ow

 th
e

co
nfi

rm
at

io
n

of
 e

nf
or

ci
ng

pe

rm
is

si
on

s o
n

ac
ce

ss
 li

st’
s r

ul
es

10
Fi

le
 p

ro
ce

ss
in

g
co

m
m

itm
en

t
Pa

re
nt

G
ra

nd
pa

re
nt

s
Pr

iv
at

e
M

ul
tic

as
t

M
es

sa
ge

s i
ss

ue
d

by
 th

e
G

ra
nd

pa
re

nt
s t

o
in

fo
rm

 th
e

Pa
re

nt
 o

f f
ul

fil
lin

g
cl

ie
nt

re

qu
es

t f
or

 fi
le

 e
di

tin
g

11
Re

qu
es

t r
ed

ire
ct

#1
G

ra
nd

pa
re

nt
Pa

re
nt

Pr
iv

at
e

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 th

e
G

ra
nd

pa
re

nt
s t

o
re

di
re

ct
 c

lie
nt

’s
 re

qu
es

t t
o

th
e

Pa
re

nt

vi
a

Pa
re

nt
 d

is
co

ve
ry

 m
ec

ha
ni

sm
12

Re
qu

es
t r

ed
ire

ct
#2

A
 c

hu
nk

A
ll

ch
un

ks
Pr

iv
at

e
M

ul
tic

as
t

M
es

sa
ge

s i
ss

ue
d

by
 th

e
H

D
FS

 c
hu

nk
 se

rv
er

s t
o

fin
d

Pa
re

nt
/g

ra
nd

pa
re

nt
 fo

r
Pa

re
nt

 d
is

co
ve

ry
/fa

ilu
re

 h
an

dl
in

g
13

Fa
ilu

re
 a

le
rt

G
ra

nd
pa

re
nt

A
ll

ch
un

ks
Pr

iv
at

e
M

ul
tic

as
t

M
es

sa
ge

s i
ss

ue
d

by
 th

e
G

ra
nd

pa
re

nt
s t

o
fin

d
th

e
ot

he
r G

ra
nd

pa
re

nt
s o

f a
 fi

le

in
 th

e
ca

se
 o

f P
ar

en
t f

ai
lu

re
14

A
ud

iti
ng

 re
qu

es
t

A
 c

hu
nk

C
lie

nt
Pu

bl
ic

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 th

e
H

D
FS

 c
hu

nk
 se

rv
er

s t
o

re
qu

es
t o

f g
ra

nt
in

g
au

di
tin

g
pe

rm
is

si
on

s f
ro

m
 c

lie
nt

192	 M. Maghsoudloo, N. Khoshavi

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
um

be
r

Re
qu

es
t

So
ur

ce
D

es
tin

at
io

n
So

ck
et

A
dd

re
ss

in
g

D
es

cr
ip

tio
n

15
A

ud
iti

ng
 p

er
m

is
si

on
C

lie
nt

C
hu

nk
Pu

bl
ic

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 th

e
cl

ie
nt

 to
 a

ffi
rm

 T
PA

 ro
le

 o
f a

 H
D

FS
 c

hu
nk

 se
rv

er
 fo

r
m

et
ad

at
a

m
ig

ra
tio

n
16

Pe
rm

is
si

on
 w

ith
dr

aw
al

C
lie

nt
TP

A
/p

ar
en

t
Pu

bl
ic

U
ni

ca
st

M
es

sa
ge

s i
ss

ue
d

by
 th

e
cl

ie
nt

 to
 d

en
y

TP
A

/p
ar

en
t r

ol
e

of
 a

 H
D

FS
 c

hu
nk

se

rv
er

 fo
r m

et
ad

at
a

m
ig

ra
tio

n
17

O
bj

ec
t m

ig
ra

tio
n

re
qu

es
t

TP
A

Pa
re

nt
Pr

iv
at

e
U

ni
ca

st
M

es
sa

ge
s i

ss
ue

d
by

 th
e

TP
A

 to
 re

qu
es

t o
f s

en
di

ng
 m

et
ad

at
a

of
 a

 sp
ec

ifi
c

fil
e

fro
m

 it
s P

ar
en

t
18

G
ra

nd
pa

re
nt

 w
ith

dr
aw

al
Pa

re
nt

G
ra

nd
pa

re
nt

s
Pr

iv
at

e
M

ul
tic

as
t

M
es

sa
ge

s i
ss

ue
d

by
 th

e
Pa

re
nt

 to
 ta

ke
 th

e
ro

le
 o

f G
ra

nd
pa

re
nt

 b
ac

k
be

ca
us

e
of

 m
et

ad
at

a
m

ig
ra

tio
n

or
 lo

ad
 b

al
an

ci
ng

193

1 3

Elastic HDFS: interconnected distributed architecture for…

the GNS3 Graphical User Interface (GUI) and the GNS3 virtual machine (VM).
GNS3 GUI is the client part of GNS3 and used to create network topologies con-
sisting of virtual machines and network components.

Client

Public
Socket

Private
Socket

Parent

Public
Socket

Private
Socket

GrandParents

Private
Socket

Public
Socket

Chunks with
no role

1, 15

2, 14

3, 7
4, 5

6, 8, 10, 18
9, 11

13

Fig. 9   Sequence of messages in the structure of coordination protocol

IXP

Internet

ISP A

ISP B

ISP C

ISP D

Client

Chunk Server

Chunk Server

Chunk Server

Chunk ServerClient

Client

Client

Switching
Fabric

Route
Server

BGP Session

BGP Session

BGP Session

BGP Session

Fig. 10   Emulated network topology and infrastructure

194	 M. Maghsoudloo, N. Khoshavi

1 3

Figure 10 illustrates the topology of emulated network. To evaluate the design
decisions, 16, 32 and 64 different subnets are emulated under the organization of
separated Internet service providers (ISPs). One client machine and one HDFS
chunk server are put into each subnet. A PC and a physical machine (PM) are
intended for hosting the client and server sides’ applications, respectively. Therefore,
16, 32 and 64 PMs are emulated during the above emulations. Two virtual machines
(VMs) are configured on each PM with different roles (DataNode and NameNode)
as a HDFS chunk server. The proposed and earlier versions of HDFS are installed
on the mentioned virtual machines. To configure multiple virtual machines as HDFS
chunk servers, the GNS3 VM remotely runs on a real server using VMware ESXi.
The server is HP Proliant DL380 G9 [30]. The proposed and earlier versions of
HDFS are installed on the mentioned virtual machines. Each VM in the cluster has
16 Intel Xeon CPU cores and 96 GB of DRAM running CentOS 7.5. Moreover,
all VMs are connected to the emulated network via 10 GB Ethernet network inter-
face. An 80 SSD GB storage is also used for data storage at each of the DataN-
odes. While 16, 32 and 64 subnets/clients have been emulated, the amount of overall
generated data varies in the range of 160 GB and 3.2 TB. Since each DataNode
contains an 80 SSD GB storage, TeraSort benchmark needs to access at least two
DataNodes (under the management of coordination protocol) for accomplishing its
jobs. Therefore, the overheads of using proposed coordination protocol have been
imposed on different factors during the emulations. Local communication is handled
by 2950 Cisco switches. Moreover, 2651 Cisco router is used as the subnet’s gate-
way for remote communication. A Catalyst 3550 Cisco multilayer switch along with
a route server acts as the Internet exchange point (IXP) for handling communication
between subnets.

VMs can be configured as a conventional NameNode or DataNode. Also, they
can be configured as a proposed chunk server consisting of both a NameNode slice
and a DataNode. Hadoop 1.1.2 is selected as the base architecture for applying
design decisions and ideas. The Intelligent Java IDE (IntelliJ IDEA) [17] is used for
building modified java classes classified into Hadoop packages intended for imple-
mentations of file system for Hadoop over Web.

To measure the performance impact of the proposed architecture on the Hadoop
infrastructure under real workloads, the standard TestDFSIO, TeraGen and TeraSort
benchmarks [18] for different amounts of data are used. TestDFSIO benchmark is a
read and write test for HDFS. It is helpful for tasks such as stress testing HDFS to
discover performance bottlenecks in the network [18]. TeraGen and TeraSort bench-
marks are used to test both MapReduce and HDFS by generating and sorting some
amount of data to measure the capabilities of distributing and mapreducing files in
cluster [18]. The compared HDFS Federation was developed in HDFS-1052 branch
[9]. The new feature (federated NameNode architecture) has been merged into trunk
and is available in 0.23 release [9]. Typically, some v-CPUs (virtual CPUs) should
be allocated to GNS3-vms for configuring virtual machines. In the emulations, the
GNS3 remotely runs on a real server using VMware ESXi. The server is HP Pro-
liant DL380 G9. Each VM in the cluster has 16 Intel Xeon CPU cores and 96 GB
of DRAM running CentOS 7.5. An increasing number of emulated subnets lead to
reduced execution time of emulations due to limitation of infrastructure resources.

195

1 3

Elastic HDFS: interconnected distributed architecture for…

However, the comparison of proposed and earlier architecture of HDFS has been
performed under the same conditions with respect to number of v-CPUs and infra-
structure details. Therefore, the performance of GNS3 and limitation of infrastruc-
ture cannot affect the validation of comparisons.

6.2 � Analysis and results

In this subsection, the results of using the proposed HDFS architecture (Elastic
HDFS) are compared with the latest Apache HDFS distribution (HDFS Federation).
The comparison is made with respect to two factors: performance and availability.
Moreover, 10 GB, 30 GB and 50 GB data are fairly generated by client machines
spread out over the emulated network.

6.2.1 � Performance

In this paper, the primary metric used to measure performance of HDFS architecture
is throughput. Throughput is the rate (bits per time unit) at which bits transferred
between client machines and HDFS chunk servers. In order to compare the perfor-
mance of Elastic HDFS and HDFS Federation in terms of throughput, experiments
are performed under different congestion, failure and migration ratios.

Figure 11 shows the comparison of throughput of connections between client
machines and HDFS chunk servers under the management of Elastic HDFS and
HDFS Federation. The results are obtained with respect to different benchmarks,
different numbers of subnets and different amounts of generated/requested data.
Regarding the results of TestDFSIO read/write operations, read operation is a bit
faster than write because of internal components of SSD disks. On the contrast
of write throughput, the read throughput increases on average about 21.4% as the
amount of data and number of subnets increase. As long as all the network band-
width is allocated to the HDFS communication, the performance bottleneck can
be just the processing delay of chunk servers. The requests received from the cli-
ent machines to read some amount of data (blocks) impose less processing load on
the chunk servers compared to write. The throughputs of TestDFSIO write, Tera-
Gen and TeraSort downgrade about 24.0%, 26.2% and 8.4% while the amount of
transferred data and number of subnets increase. All of the mentioned benchmarks
involving write operation (TestDFSIO write, TeraGen and TeraSort) require more
efforts from HDFS side.

Increasing amount of requested/generated data and number of subnets/clients lead
to increase in network traffic. Under the above condition, the Elastic HDFS works
better than HDFS Federation. The throughput of connections under the manage-
ment of Elastic HDFS improves about 65.9%, 2.9% and 40.0% for TestDFSIO write,
TeraGen and TeraSort, respectively. The coordination conducted by Elastic HDFS
among chunks and its networking mechanism (anycast) are two reasons that can
help shift the load from a congested chunk to the other ones. All of the chunk serv-
ers managed by Elastic HDFS can handle the requests via coordination messages

196	 M. Maghsoudloo, N. Khoshavi

1 3

and protocol. The result is the improved traffic load distribution in the network and
enhanced throughput.

With HDFS Federation, all of the requests should firstly pass through the
NameNode clusters which are unfairly accessed by the nearer client machines. The
cause is network/server overload and throughput degradation. However, the results
indicate that the throughput of connections under the management of HDFS Fed-
eration is sometimes greater than the Elastic HDFS. For less amount of requested/
generated data, the Federation architecture works better than Elastic HDFS. Com-
pared to Elastic HDFS, the HDFS Federation is a no-frills architecture. While Elas-
tic HDFS has been equipped with different mechanisms for tackling unstable net-
work conditions, it imposes more additional traffic into network. In the case of stable
network with low bandwidth usage without any problematic events, less complexity
of Federation architecture has causes that the results are in the favor of Federation.

In the following, three separated analyses have been considered to compare the
performance of Federation and Elastic architectures under different network condi-
tions. The common point is that the Elastic architecture overcomes the Federation

(a) (b)

(c) (d)

0

5

10

15

20

25

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

16 Subnets 32 Subnets 64 Subnets

R
ea

d
Th

ro
ug

hp
ut

 (M
B

/s
) HDFS Federation Elastic HDFS

0

5

10

15

20

25

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

16 Subnets 32 Subnets 64 Subnets

W
rit

e
Th

ro
ug

hp
ut

 (M
B

/s
) HDFS Federation Elastic HDFS

0

5

10

15

20

25

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

16 Subnets 32 Subnets 64 Subnets

Te
ra

G
en

 T
hr

ou
gh

 (M
B

/s
) HDFS Federation Elastic HDFS

0

5

10

15

20

25

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

10
G

B

30
G

B

50
G

B

16 Subnets 32 Subnets 64 Subnets

Te
ra

So
rt

Th
ro

ug
hp

ut
 (M

B
/s

) HDFS Federation Elastic HDFS

Fig. 11   Comparison of throughput of connections between client machines and HDFS chunk servers
under the management of elastic HDFS and HDFS federation considering a TestDFSI read, b TestDF-
SIO write, c TeraGen and d TeraSort benchmarks

197

1 3

Elastic HDFS: interconnected distributed architecture for…

while congestion, migration and failure ratio, as the signs of increased network
instability, increase.

The above study was conducted to compare the throughput of the connections
over a network without any secondary traffic. In order to examine the performance
of the HDFS architectures on the network with different congestion conditions, a
secondary traffic is generated and advertised over the network. Figure 12 shows the
throughput of connections between client machines and chunk servers over the men-
tioned emulated network (16, 32 and 64 subnets) in terms of different congestion
ratios. The TeraGen benchmark is selected for comparison. Considering the results
of this benchmark for maximum number of subnets/clients (64) and maximum
amount of generated data (50 GB), the throughputs of connections under the man-
agement of HDFS Federation and Elastic HDFS are closer to each other. Therefore,
the effect of different levels of congestion on the performance of different HDFS
architectures can be more clearly analyzed with the help of TeraGen. Regarding
Fig. 12a–c, the throughput of connections between clients and chunk servers under
the management of Elastic HDFS descends with lower slope in comparison with the
HDFS Federation. Moreover, the crossover congestion ratio is about 53%, 36% and
32% on the network with 16, 32 and 64 subnets, respectively. As mentioned previ-
ously, the augmented number of subnets/clients leads to increased real traffic along
with generated secondary traffic. Based on the results deduced, the throughput is less
affected by the increased congestion ratio while Elastic HDFS is utilized. The coor-
dination among different chunk servers conducted by Elastic HDFS can help distrib-
ute the traffic over the network in the favor of overloaded chunks. Concerning the
defined functions and messages of coordination protocol, all of the chunks are able
to redirect the requests to the chunks, which are responsible to handle them (Parents
and Grandparents). However, the mentioned coordination is achieved through more
processing efforts on the server side, causing less throughput compared to HDFS
Federation on the un-congested networks.

In order to assess the robustness of different HDFS architectures against ran-
dom failures, the throughput of connections managed by HDFS Federation and
Elastic HDFS is investigated in the presence of different numbers of chunk server

(a) (b) (c)

0
2
4
6
8

10
12
14
16
18
20

10% 20% 30% 40% 50% 60% 70% 80% 90%

Congestion Ratio (%)

Te
ra

G
en

 T
hr

ou
gh

pu
t (

M
B

/s
)

HDFS Federation Elastic HDFS

0
2
4
6
8

10
12
14
16
18
20

10% 20% 30% 40% 50% 60% 70% 80% 90%

Congestion Ratio (%)

Te
ra

G
en

 T
hr

ou
gh

pu
t (

M
B

/s
)

HDFS Federation Elastic HDFS

0
2
4
6
8

10
12
14
16
18
20

10% 20% 30% 40% 50% 60% 70% 80% 90%

Congestion Ratio (%)

Te
ra

G
en

 T
hr

ou
gh

pu
t (

M
B

/s
)

HDFS Federation Elastic HDFS

Fig. 12   Throughput of connections between client machines and chunk servers in terms of different con-
gestion ratios over the mentioned emulated network with a 16 subnets, b 32 subnets and c 64 subnets

198	 M. Maghsoudloo, N. Khoshavi

1 3

failures. Figure 13a–f compares the throughput of connections between client
machines and chunk servers managed by HDFS Federation and Elastic HDFS in
terms of different numbers of subnets/client and different failure ratios of chunks.
Then, the results are compared with those extracted in the absence of failure. The
ideal throughput line (dashed trend line in the charts) shows the throughput of
connections between client machines and chunk servers without injecting any
chunk server failure in the emulated network. The TestDFSIO read benchmark is
selected for requesting 30 GB data from the chunk servers on the network with 16
subnets (Fig. 13a, d), 32 subnets (Fig. 13b, e) and 64 subnets (Fig. 13c, f). This
purely read benchmark completely depends on the data and metadata that were
previously generated and stored on the chunk servers. Consequently, TestDF-
SIO read is the one that is most vulnerable against chunk server failure among
mentioned benchmarks. Regarding Fig. 13, the throughput of HDFS’s connec-
tions managed by HDFS Federation almost linearly decreases when the number
of chunk failures grows. On the other hand, Elastic HDFS shows more robust-
ness against failures. As shown by Fig. 13b, d, the throughput degradation of

(a) (b) (c)

(d) (e) (f)

0
2
4
6
8

10
12
14
16

10% 20% 30% 40% 50%

Failure Ratio (%)

R
ea

d
Th

ro
ug

hp
ut

 (M
B

/s
)

HDFS Federation

HDFS Federation (Ideal)

0
2
4
6
8

10
12
14
16

10% 20% 30% 40% 50%

Failure Ratio (%)
R

ea
d

Th
ro

ug
hp

ut
 (M

B
/s

)

HDFS Federation

HDFS Federation (Ideal)

0
2
4
6
8

10
12
14
16

10% 20% 30% 40% 50%

Failure Ratio (%)

R
ea

d
Th

ro
ug

hp
ut

 (M
B

/s
)

HDFS Federation

HDFS Federation (Ideal)

0
2
4
6
8

10
12
14
16

10% 20% 30% 40% 50%

Failure Ratio (%)

R
ea

d
Th

ro
ug

hp
ut

 (M
B

/s
)

Elastic HDFS

Elastic HDFS (Ideal)

0
2
4
6
8

10
12
14
16

10% 20% 30% 40% 50%

Failure Ratio (%)

R
ea

d
Th

ro
ug

hp
ut

 (M
B

/s
)

Elastic HDFS
Elastic HDFS (Ideal)

0
2
4
6
8

10
12
14
16

10% 20% 30% 40% 50%

Failure Ratio (%)

R
ea

d
Th

ro
ug

hp
ut

 (M
B

/s
)

Elastic HDFS

Elastic HDFS (Ideal)

Fig. 13   Throughput of connections between client machines and chunk servers managed by HDFS fed-
eration and elastic HDFS in terms of different failure ratios of chunks for network with 16 subnets/clients
(a, d), 32 subnets/clients (b, e) and 64 subnets/clients (c, f)

199

1 3

Elastic HDFS: interconnected distributed architecture for…

Elastic HDFS’s connections is about 16.67%, 10.85% and 8.33% for 16, 32 and
64 subnets and worst-case scenario (50% failure ratio). The cooperation among
chunk servers with different roles, implemented in the context of Elastic HDFS,
improves the accessibility of data stored in the slaves in the presence of master
node failure. Furthermore, the gap between the results of Elastic and Federation
increases when the system scales up from 16 subnets/clients to 32 and 64 sub-
nets/clients. In this case, the results of Elastic are also more closer to ideal val-
ues compared to the results of Federation. With the help of Elastic architecture,
all of the chunk servers managed by Elastic HDFS can handle the requests via
coordination messages and protocol, an ability that is not supported by Federa-
tion. Thus, the negative impacts of increasing failure rate on throughput of Elastic
HDFS are smaller than its effects on HDFS Federation.

Finally, the throughput of HDFS connections under the management of Elas-
tic HDFS and Federation architectures is investigated considering different client
migration ratios. Figure 14a–c compares the throughput degradation of connec-
tions using Elastic HDFS and Federation architectures in terms of different num-
ber of client migrations. The results of TeraSort benchmark are selected for the
above comparison in the case of using 16, 32 and 64 subnets/clients. TeraSort
benchmark requires the highest number of client’s accesses to metadata of stored
data per each received request. Therefore, the effect of clients’ movements over
the emulated network on the throughput can be more clearly explainable via run-
ning this benchmark. The dashed trend lines in the charts represent the descend-
ing slope of throughput of connections managed by each architecture during
migration ratio increment. In all scenarios, the throughput of Elastic HDFS’s con-
nections descends with lower slope in comparison with the results of Federation.
The slope of throughput degradation of Federation’s connections is about 1.72,
1.71 and 1.75 times greater than the throughput degradation of Elastic HDFS’s
connections. Therefore, it can be concluded that the Elastic HDFS can effectively
handle a higher number of client migrations over the network.

(a) (b) (c)

0

2

4

6

8

10

12

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Migration Ratio (%)

Te
ra

So
rt

Th
ro

ug
hp

ut
 (M

B
/s

)

HDFS Federation
Elastic HDFS

0

2

4

6

8

10

12

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Migration Ratio (%)

Te
ra

So
rt

Th
ro

ug
hp

ut
 (M

B
/s

)

HDFS Federation
Elastic HDFS

0

2

4

6

8

10

12

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Migration Ratio (%)

Te
ra

So
rt

Th
ro

ug
hp

ut
 (M

B
/s

)

HDFS Federation
Elastic HDFS

Fig. 14   Throughput degradation of connections using elastic HDFS and HDFS federation architectures
in terms of different numbers of client migrations for network with a 16 subnets/clients, b 32 subnets/
clients and c 64 subnets/clients

200	 M. Maghsoudloo, N. Khoshavi

1 3

6.2.2 � System availability

System availability is the probability a system is functioning when needed to, under
normal operating conditions. When the system is alive and well structured, the
organization can continue to produce output and meet orders. In other words, avail-
ability is the ratio of the system uptime to total functional time. From the client’s
viewpoint, the cloud storage should serve the request as quickly as a local storage.
However, interactions between clients and cloud storage system suffer from some
types of delay. The concentration of the following calculations is just on delay fac-
tors observed due to the architecture of cloud storage system. These delays increase
Waiting Time of client for receiving its responses. Therefore, availability of a cloud
storage system from the client’s point of view can be calculated as:

where Total Time is the total amount of time that a client is connected to the cloud
storage system and Waiting Time is the total amount of time a client is waiting for
receiving its responses. In other words, Waiting Time is the total amount of time
intervals between sending requests and receiving corresponding responses. Waiting
Time stems from three types of delays: Processing Delay, Network Delay and Con-
nection Delay. It can be computed as:

Processing Delay is the time required to commit a client’s request by the cloud
storage system. Type of the clients’ requests and architecture of cloud storage system
can increase/decrease the Processing Delay. Network Delay is the delay imposed by
network core elements and depends on network conditions, such as queuing, network
congestion, link failure and router failure. Finally, Connection Delay is the delay
imposed because of the server connection conditions such as distances between
client and chunk servers and congestion on the connections established for HDFS
communications. While the architecture of a cloud storage system can improve and
degrade the Connection and Processing Delays, it cannot affect the Network Delay.

In order to compare the effects of design decisions on the availability under dif-
ferent network conditions, three scenarios are taken into account with respect to
different congestion, failure and migration ratios on the network with 64 subnets/
clients. During the emulations, client machines select random addresses from
namespace and send ten read requests for 1 GB data every 10 s over 1 min emu-
lation process. TestDFSIO read benchmark is selected for availability assessment.
This benchmark has the smallest size of client requests and needs less computing
efforts by the YARN part of Hadoop. Subsequently, the effects of HDFS architec-
tures on the Processing and Connection Delays can be more clearly analyzed via
using this benchmark.

Figure 15a–c compares the availability of HDFS Federation and Elastic HDFS
in terms of different congestion, migration and failure ratios. In the base condi-
tion (network without any secondary traffic and chunk failure), the Computing
Delay imposed by the Elastic HDFS is about 12.3% more than the value imposed

(1)Availability =
Total Time −Waiting Time

Total Time

(2)Waiting Time = Processing Delay + Network Delay + Connection Delay

201

1 3

Elastic HDFS: interconnected distributed architecture for…

by HDFS Federation. This is due to delay of additional methods and messages
designed and issued in the structure of Elastic HDFS for chunk servers’ collabo-
ration. Regarding Fig. 15a, the availability of Elastic HDFS is higher than the
availability of Federation in the congested networks (for congestion ratio greater
than 38.9%). In this case, the Connection Delay observed due to Federation is
about 22.3% more than the Computing Delay imposed by Elastic HDFS. Under
this condition, the Connection Delay imposed by the HDFS Federation increases
significantly. This increment has greater negative impact on availability compared
to the higher Processing Delay that incurs due to Elastic HDFS. While accesses
to each namespace are just managed by one NameNode, congestion on its corre-
sponding subnet leads to increase in number of blocked connections. Increasing
the migration and failure ratios has similar impacts on Waiting Time. Regarding
Fig. 15a, b, the migration ratio of 28.5% and the failure ratio of 23.2% are the
crossover points from which the availability of Elastic HDFS dominates the avail-
ability of HDFS Federation. Coordination among HDFS chunks conducted by
Elastic HDFS architecture causes that other chunks could deal with client requests
in the absence of responsible ones due to failure or client migration. Although
the coordination among HDFS chunks established by Elastic HDFS increases the
processing efforts on the server side, it can help reduce the dependency of over-
all server-side operations on the specified NameNode. The maximum availability
improvements of the proposed architecture during the mentioned scenarios are
about 43.9%, 25.8% and 22.9% for network with different congestion, migration
and failure ratios, respectively. These improvements are observed at about con-
gestion ratio of 79.3%, migration ratio of 58.2% and failure ratio of 50.0%.

Finally, it should be noted that the size of G-fsimage considered for storing
owner tags in Grandparent is, on average, about 33.34% of F-fsimage during
emulations. G-fsimage contains addresses of Parent just for the resided objects
that are children of other chunks. While size of overall namespace directories
in emulations is about 17% of whole data capacity of chunk servers, the stor-
age overhead of Elastic HDFS is, on average, about 5.67% of whole data capac-
ity. Therefore, the aforementioned availability and throughput enhancements are
achieved with negligible storage overhead.

(a) (b) (c)

0
10
20
30
40
50
60
70
80
90

100

10% 20% 30% 40% 50% 60% 70% 80% 90%

Congestion Ratio (%)

A
va

ila
bi

lit
y

(%
)

HDFS Federation Elastic HDFS

0
10
20
30
40
50
60
70
80
90

100

10%20%30%40%50%60%70%80%90%

Migration Ratio (%)

A
va

ila
bi

lit
y

(%
)

HDFS Federation Elastic HDFS

0
10
20
30
40
50
60
70
80
90

100

10% 20% 30% 40% 50% 60% 70% 80% 90%

Failure Ratio (%)

A
va

ila
bi

lit
y

(%
)

HDFS Federation Elastic HDFS

Fig. 15   Comparsion of the availability of HDFS Federation and elastic HDFS in terms of different con-
gestion (a), migration (b) and failure (c) ratios

202	 M. Maghsoudloo, N. Khoshavi

1 3

7 � Conclusion

This paper focuses on the scalability limitation of commercial off-the-shelf (COTS)
storage systems. The main concentration is on enhancement of conventional archi-
tecture to remove the performance bottleneck and single point of failure problem.
To accomplish the goal, a scalable distributed architecture is presented for Hadoop
distributed file system (HDFS) as a common cloud storage system to reduce depend-
ency of overall cloud-side operations on the single master node. The centralized
structure of namespace directory is changed to interconnected distributed model via
splitting namespace directory into slices and distributing over chunk servers. Each
chunk server is responsible for handling some clients’ requests related to its cor-
responding namespace slice. Chunk servers communicate with each other to com-
mit request via a coordination protocol. With the help of proposed architecture, all
of the chunk servers can handle the requests via coordination messages and pro-
tocol, an ability that is not supported by previous version of HDFS. In the case of
chunk server failure and unstable network conditions, coordination of chunk serv-
ers helps clients keep accesses to slaves without significant disruption. The result
is the improved traffic load distribution in the network and enhanced throughput.
The experimental results demonstrate that the proposed architecture causes that
the descending slopes of throughput decrease by 32.6%, 77.4% and 42.1% during
growth of congestion ratio, failure ratio and migration ratio. The maximum availa-
bility improvements of the proposed architecture are about 43.9%, 25.8% and 22.9%
for network with different congestion, migration and failure ratios, respectively.
Future studies could fruitfully explore this issue further by assessment of the effects
of distributed architecture on different factors related to cloud storage systems such
as usability, cost and security. Moreover, future research on the overhead of coor-
dination protocol might extend the explanation of some drawbacks of the intercon-
nected distributed architecture.

Acknowledgements  The present study was supported by Golestan University (Grant 981871), Gorgan,
Iran.

References

	 1.	 Cai H et al (2016) IoT-based big data storage systems in cloud computing: perspectives and chal-
lenges. IEEE Internet Things J 4(1):75–78

	 2.	 Mahmood T et al (2018) Karma: cost-effective geo-replicated cloud storage with dynamic enforce-
ment of causal consistency. IEEE Trans Cloud Comput 1(1):18–28

	 3.	 Mittal A et al (2015) Google file system and Hadoop distributed file system: an analogy. Int J Innov
Adv Comput Sci 4(1):29–43

	 4.	 Hu D et al (2015) Research on reliability of Hadoop distributed file system. Int J Multimed Ubiqui-
tous Eng 10(11):42–54

	 5.	 Iliadis I et al (2014) Reliability of geo-replicated cloud storage systems. In: 2014 IEEE Pacific Rim
International Symposium on Dependable Computing, Singapore, pp 169–179

	 6.	 Asif Khan M et al (2012) Highly available Hadoop namenode architecture. In: 2012 International
Conference on Advanced Computer Science Applications and Technologies, Malaysia, pp 167–172

203

1 3

Elastic HDFS: interconnected distributed architecture for…

	 7.	 Liu J et al (2016) Reliable and confidential cloud storage with efficient data forwarding functional-
ity. IET Commun J 10(6):661–668

	 8.	 Xing L et al (2017) Reliability modeling of mesh storage area networks for Internet of Things. IEEE
Internet Things J 4(6):2047–2057

	 9.	 HDFS Federation (2018) Retrieved 1 Mar 2019 from https​://hadoo​p.apach​e.org/docs/r2.7.7/hadoo​
p-proje​ct-dist/hadoo​p-hdfs/Feder​ation​.html

	10.	 Uber (2018) Retrieved 1 Mar 2019 from https​://www.uber.com/
	11.	 Hakimzadeh K et al (2014) Scaling HDFS with a strongly consistent relational model for metadata.

In: 2014 IFIP International Conference on Distributed Applications and Interoperable Systems, Ger-
many, pp 19–31

	12.	 Huang Z (2014) DNN: a distributed namenode filesystem for Hadoop. In partial fulfilment of
requirements for the degree of Master of Science, University of Nebraska–Lincoln

	13.	 Kim Y et al (2014) A distributed namenode cluster for a highly-available Hadoop distributed
file system. In: 2014 IEEE International Symposium on Reliable Distributed Systems, Japan, pp
835–851

	14.	 Xue R et al (2014) Partitioner: a distributed HDFS metadata server cluster. In: 2014 International
Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, China, pp
167–174

	15.	 Wang Y et al (2012) Clover: a distributed file system of expandable metadata service derived from
HDFS. In: 2012 IEEE International Conference on Cluster Computing, USA, pp 126–134

	16.	 Graphical Network Simulator 3 (2018) Retrieved 20 Sep 2018 from https​://www.gns3.com/
	17.	 Intelligent Java IDE (2016) Retrieved 15 Feb 2019 from https​://www.jetbr​ains.com/idea/
	18.	 R. Nayak (2018) Hadoop performance evaluation by benchmarking and stress testing with Tera-

Sort and TestDFSIO, Retrieved 1 Mar 2019 from https​://mediu​m.com/ymedi​alabs​-innov​ation​/hadoo​
p-perfo​rmanc​e-evalu​ation​-by-bench​marki​ng-and-stres​s-testi​ng-with-teras​ort-and-testd​fsio-444b2​
2c77d​b2

	19.	 Apache Hadoop version 1.x.y (2012) Retrieved 2 Mar 2019 from https​://hadoo​p.apach​e.org/docs/
r1.2.1/hdfs_desig​n.html

	20.	 Apache Hadoop version 2.x.y (2015) Retrieved 2 Mar 2019 from https​://hadoo​p.apach​e.org/docs/
r2.7.2/

	21.	 HDFS High Availability Using the Quorum Journal Manager (2017) Retrieved 1 Mar 2019 from
https​://hadoo​p.apach​e.org/docs/r2.7.7/hadoo​p-proje​ct-dist/hadoo​p-hdfs/HDFSH​ighAv​ailab​ility​
WithQ​JM.html

	22.	 Apache Hadoop version 3.x.y (2017) Retrieved 1 Mar 2019 from https​://hadoo​p.apach​e.org/docs/
r3.0.0/

	23.	 Gupta T et al (2015) An extended HDFS with an AVATAR NODE to handle both small files and to
eliminate single point of Failure. In: 2015 International Conference on Soft Computing Techniques
and Implementations, India, pp 67–71

	24.	 Wang Z et al (2013) NCluster: using multiple active namenodes to achieve high availability for
HDFS. In: 2013 IEEE International Conference on High Performance Computing and Communica-
tions, China, pp 2291–2297

	25.	 Tang Y et al (2015) MICS: mingling chained storage combining replication and erasure coding. In:
2015 IEEE Symposium on Reliable Distributed Systems, Canada, pp 192–201

	26.	 Yin J et al (2017) ASSER: an efficient, reliable, and cost-effective storage scheme for object-based
cloud storage systems. IEEE Trans Comput 66(8):1326–1340

	27.	 Application Request Routing (2018) Retrieved 10 Dec 2018 from https​://www.iis.net/downl​oads/
micro​soft/appli​catio​n-reque​st-routi​ng

	28.	 NGINX (2018) Retrieved 10 Dec 2018 from https​://nginx​.org/en/
	29.	 Wang C et al (2013) Privacy-preserving public auditing for secure cloud storage. IEEE Trans Com-

put 62(2):362–375
	30.	 HPE ProLiant DL380 Gen9 Server (2017) Retrieved 20 Feb 2019 from https​://www.hpe.com/us/en/

produ​ct-catal​og/serve​rs/proli​ant-serve​rs/pip.hpe-proli​ant-dl380​-gen9-serve​r.72712​41.html

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://hadoop.apache.org/docs/r2.7.7/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.7.7/hadoop-project-dist/hadoop-hdfs/Federation.html
https://www.uber.com/
https://www.gns3.com/
https://www.jetbrains.com/idea/
https://medium.com/ymedialabs-innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-testing-with-terasort-and-testdfsio-444b22c77db2
https://medium.com/ymedialabs-innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-testing-with-terasort-and-testdfsio-444b22c77db2
https://medium.com/ymedialabs-innovation/hadoop-performance-evaluation-by-benchmarking-and-stress-testing-with-terasort-and-testdfsio-444b22c77db2
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r2.7.2/
https://hadoop.apache.org/docs/r2.7.2/
https://hadoop.apache.org/docs/r2.7.7/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/r2.7.7/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/r3.0.0/
https://hadoop.apache.org/docs/r3.0.0/
https://www.iis.net/downloads/microsoft/application-request-routing
https://www.iis.net/downloads/microsoft/application-request-routing
https://nginx.org/en/
https://www.hpe.com/us/en/product-catalog/servers/proliant-servers/pip.hpe-proliant-dl380-gen9-server.7271241.html
https://www.hpe.com/us/en/product-catalog/servers/proliant-servers/pip.hpe-proliant-dl380-gen9-server.7271241.html

	Elastic HDFS: interconnected distributed architecture for availability–scalability enhancement of large-scale cloud storages
	Abstract
	1 Introduction
	2 Hadoop distributed file system
	3 The problem statement and related work
	4 Proposed distributed architecture for NameNode availability enhancement
	4.1 File uploadingcreating
	4.2 File editingdeleting
	4.3 Parent discovery
	4.4 ParentGrandparent failure
	4.5 Long-term migration of users

	5 NameNode coordination protocol
	6 Evaluation results
	6.1 Experimental setup
	6.2 Analysis and results
	6.2.1 Performance
	6.2.2 System availability

	7 Conclusion
	Acknowledgements
	References

