
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:7665–7689
https://doi.org/10.1007/s11227-019-02974-8

1 3

Effective metadata management in exascale file system

Myung‑Hoon Cha1 · Sang‑Min Lee1 · Hong‑Yeon Kim1 · Young‑Kyun Kim1

Published online: 22 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper presents an effective method of managing metadata in exascale file sys-
tems. In order to store exponentially growing numbers of files, numerous methods
for distributing and managing metadata have been suggested and developed. How-
ever, these methods have not provided an appropriate solution for managing a very
large amount of metadata because they do not overcome two significant challenges
in exascale file systems: (1) nonlinear performance scalability and (2) performance
degradation over time. We propose an effective metadata management model and
high-performance metadata management system that not only overcome these limi-
tations but also provide a foundation for managing exascale metadata in a distrib-
uted file system. The resulting implementation of our metadata management sys-
tem is the core of EEFS, an exascale distributed file system by the Electronics and
Telecommunications Research Institute. The evaluation results show that the critical
challenges of existing metadata management technologies are overcome and par-
ticularly that the performance is not degraded even when the amount of accumulated
metadata increases with time.

Keywords Metadata management · Exascale · Storage

 * Myung-Hoon Cha
 mhcha@etri.re.kr

 Sang-Min Lee
 sangmin2@etri.re.kr

 Hong-Yeon Kim
 kimhy@etri.re.kr

 Young-Kyun Kim
 kimyoung@etri.re.kr

1 High Performance Computing Research Group, Infra/Core Software Technology Research
Division, Electronics and Telecommunications Research Institute, Daejeon, Korea

http://orcid.org/0000-0001-8817-2365
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02974-8&domain=pdf

7666 M.-H. Cha et al.

1 3

1 Introduction

Petascale storage systems have been actively used for supercomputing, cloud
storage and big-data analysis. However, the amount of data generated is currently
expanding to the exascale, resulting in various technical issues, such as low scal-
able metadata generation performance. Managing exascale data requires break-
through improvements in the capacity and performance capabilities of existing
petascale-distributed file systems by a factor of 100 or more, but several signifi-
cant challenges have not been overcome. These include nonlinear performance
scalability and performance degradation over time. As a result, instead of directly
managing exascale data, several petascale storage systems are built independently
and run without integration. Given the considerable amount of data to be gen-
erated in the future IoT devices, it is essential to develop a highly scalable and
high-performance file system that supports exascale storage space and consistent
performance without degradation over time.

Thus far, exascale file systems have not solved the critical issues in metadata
distribution and management, such as linear scalability of the metadata process-
ing performance. Modern distributed file systems, as exemplified by HDFS [1]
and Lustre [2], which have been applied successfully to both business and indus-
try, use metadata management techniques based on a single metadata server.
Because these file systems use only one metadata server, the storage capacity of
metadata depends on the single metadata server’s resource limits, i.e., the disk
space or the amount of RAM.

In one study [3], a metadata storage scalability problem is illustrated using an
HDFS-installed metadata server which stores metadata of 100 million files using
60 GB of RAM. The HDFS constraints that all metadata is loaded into the RAM
of the metadata server force enough RAM capacity to accommodate all metadata.
Because, however, the RAM size cannot be increased infinitely, the number of
files that can be managed by the metadata server is very limited.

The greater problem arising due to the use of a single metadata server is the
limit of metadata performance scalability, which relates to whether the perfor-
mance of metadata operations, such as opening a file to process its metadata
before I/O operations, is linearly scalable. In a typical distributed file system with
one metadata server and many data servers, metadata operations cause a bottle-
neck [4] because they are processed by only one metadata server, and an increase
in the number of data servers in this case has no effect on the performance. Thus,
the number of file I/O operations that can be processed per unit of time is also not
linearly scalable.

As mentioned above, regardless of how much the performance of the single
metadata server of modern distributed file systems is improved, the metadata
server does not have the potential to deliver both higher performance and a large
enough capacity appropriate for exascale metadata management owing to its
structural limitations. However, in order to overcome this issue, research on meta-
data distribution and management of distributed file systems with many meta-
data servers is currently extensive, and a variety of technical problems have been

7667

1 3

Effective metadata management in exascale file system

discussed. For example, against all expectations, even if the number of metadata
servers increases, the performance does not increase linearly; rather, it deterio-
rates as the metadata for files accumulates. In addition, the complexity caused by
the increased number of metadata servers leads to instability in distributed file
systems.

The contributions of this paper are threefold:

1. We propose a distributed directory-based metadata clustering method that pro-
vides not only a very good locality of reference but also has excellent potential
to realize balanced utilization of all metadata servers.

2. A high-performance metadata management system that supports fast transactions
is presented. This is a metadata-specific management system for quickly storing
and retrieving inodes and namespaces. It performs simple, space-efficient meta-
data allocation and memory management, and supports high-speed inode fetch
operations.

3. We address the performance degradation issue associated with metadata server
clusters, which arises when the number of metadata servers in use increases and
metadata accumulates. As a solution of this issue, we propose a performance
degradation prevention method based on the efficient memory-buffer management
of metadata servers.

The composition of this paper is as follows. Metadata server cluster technologies
in large-scale distributed file systems are analyzed in Sect. 2. Our directory-based
metadata clustering method and the implementation details of the high-performance
metadata management system is presented, and our solutions regarding how to
prevent the performance degradation in a metadata server cluster are described in
Sect. 3. We evaluate the performance of the proposed method in Sect. 4 and then
conclude this paper in Sect. 5.

2 Related works

Instead of centrally managing metadata in a single server in order to store exascale
data such as social media service data of the type generated worldwide at every
moment, changing the architecture of distributed file systems such that metadata is
distributed and managed in many metadata servers is inevitable. Methods for meta-
data distribution and management are divided into three categories: First, canonical
types based on subtree partitioning or hashing exist. Ceph [5, 6] and Gluster [7] are
archetypes to which this technique is applied. Second, as a more practical approach,
there are workload-specific, dedicated distributed file systems that simply restrict
the types of metadata operations to lower the complexity of the system. Hence, they
operate effectively with a particular category of operations. Haystack [8], f4 [9] and
TAO [10] are representative examples of distributed file systems specific to Face-
book workloads. Third, recent attempts have been made to use a distributed DBMS
as an engine for managing metadata [11, 12]. Through the use of a distributed

7668 M.-H. Cha et al.

1 3

DBMS, located outside of the distributed file system, the complexity of implemen-
tation is reduced but there are limitations such that both the functions and perfor-
mance of distributed file systems depend on the interface and performance of the
underlying distributed DBMS. In addition, there are various results based on modifi-
cations of other metadata management structures [13–17]. These include attempts to
reduce metadata storage by optimizing the metadata management scheme [16].

In this section, the current status and limitations of each of these three categories
of methods are discussed.

2.1 Canonical management of metadata

The canonical methods of distributing and managing metadata are further divided
into two categories: subtree partitioning and hashing. In subtree partitioning, meta-
data is distributed in a unit known as a subtree which has large granularity, with the
aim of providing great locality of reference. For instance, if there is a need to check
the permissions of each component of a path while traversing it, the costs of these
operations are offset by access patterns in which those files in the same directory
continue to be used. However, future performance depends on how the namespace
is initially partitioned, and the load distribution among metadata servers becomes
increasingly uneven over time [18–20].

There are also modifications [18] of subtree partitioning that relocate partitioned
subtrees dynamically according to the load variation and move the corresponding
metadata. With such a method, it is very difficult to decide when to relocate meta-
data and how to move metadata efficiently.

Hashing distributes metadata to metadata servers according to the hash func-
tion, thereby intending to have an evenly distributed metadata. However, because
the location of the metadata is determined by the hash function, it is unrelated to the
directory hierarchy. As a result, the locality of reference is not preserved. In addi-
tion, when a metadata server cluster changes, the output range of the hash func-
tion also changes. This change causes the subsequent migration of metadata, which
places a considerable burden on the long-term management of the metadata server
cluster [18–20]. The difficulty of changing the metadata server cluster is illustrated
by Gluster, a leading distributed file system based on hashing. It was implemented
to send broadcast lookups to all servers every time a file is created. This is done to
avoid false negatives arising from changes of its cluster.

Managing metadata in a canonical way introduces critical problems such as lim-
ited file creation performance and instability in operations. In this paper, we propose
a metadata management system which resolves the constraints of existing distrib-
uted file systems.

2.2 Workload‑specific management of metadata

In the development of distributed file systems, there are major research trends that
address the issue with practical approaches such as simplifying the types of meta-
data operations and reducing the complexity of implementing the system, with the

7669

1 3

Effective metadata management in exascale file system

aim of avoiding the difficulties of large-scale metadata management by sacrificing
POSIX compliance. Workload-specific distributed file systems developed to accept
every moment of social media service traffic, such as Facebook’s Haystack, f4, TAO
and LinkedIn’s Ambry [21], represent such research trends. These systems focus on
simple workloads with no updates, group large blobs of immutable data into parti-
tions or volumes and provide a minimal API.

Haystack is used as Facebook’s photograph storage system, which relieves the
system complexity by supporting only limited operations, i.e., read, write and delete.
Haystack focuses on storing data that is read many times without being modified
once it is saved. By keeping multiple photographs in a single file and storing them,
Haystack basically manages very large files. The cost of reading metadata from
disks is reduced by allowing the metadata lookup to be performed in memory [8].

As Facebook grows, its storage system has evolved into a hybrid type where hot
data is processed by Haystack and warm data is stored in dedicated storage called f4.
Data that is above the threshold is migrated from Haystack to f4, which also stores
blobs but uses erasure coding instead of triple replication as used in Haystack [9].

In the overall architecture of Facebook, while the large immutable collections of
data, called blobs, are stored in Haystack and f4, the handle to such data is stored
in a separate graph store called TAO. Facebook initially stores the social graph in
MySQL and uses Memcache [22] as its cache, but Memcache is soon replaced by a
read-optimized graph data store which is a direct implementation of a graph-aware
cache [10].

LinkedIn’s Ambry, another system for storing blobs, supports only three types of
operations: put, get and delete. Because a very large blob can cause a load imbal-
ance, such a blob is split and managed in chunk units. Special metadata blobs are
used to manage these chunks [21].

As illustrated above, there are many constraints that must be resolved when pro-
viding both POSIX semantics and distributed transactions, but they can be relaxed
by supporting a limited set of operations and only a specific workload when devel-
oping large-scale distributed file systems. However, these specialized distributed
file systems are not suitable when there is a change in the workload or when new
applications are to be deployed. In this paper, we propose methods that fully support
POSIX semantics and that are appropriate for clustering metadata servers in a large
distributed file system, overcoming all of the aforementioned disadvantages.

2.3 Other variations on metadata management

Various methods of metadata management schemes have also been studied. First,
the use of distributed DBMS as an engine for managing metadata is increasing [11,
23, 24]. The StoreAll [12] file system, implemented for the purpose of managing
metadata, is an application which runs on the LazyBase [25] distributed DBMS.
Because one characteristic of LazyBase is to collect and upload updated data in
batches, this asynchronous update mechanism can give rise to inconsistent reads of
old data values. Thus, scanning for updates that have not yet been applied is required
to read the most recent data values [25]. In addition, the greater the freshness of the

7670 M.-H. Cha et al.

1 3

data, the higher the processing cost. For this reason, the use of this system is limited
to specialized applications rather than to general forms.

Second, there is a method which reduces the amount of metadata by sharing the
metadata of multiple files via a deduplication method [16]. However, even if the
amount of metadata is reduced, there still remains to be solved the fundamental
problem of having to use a large number of metadata servers, because a single meta-
data server cannot overcome exascale memory constraints.

Third, to avoid distributed transactions, all relevant metadata can be moved and
processed on a specific metadata server before the transaction processing step [17].
Whenever, however, a metadata operation is performed, the high cost of migrating
metadata to a single server and the degraded concurrency issues that arise during the
process of coordinating such migrations must be addressed.

Fourth, there have been attempts to reduce the cost of the path name resolution by
using a hash-based distribution of metadata while also copying the namespace to all
metadata servers [13]. In addition, there have also been techniques proposed to man-
age the access control list (ACL) for each instance of metadata instead of the names-
pace, although metadata is distributed based on hashing [15]. These approaches
aim both to provide a uniform distribution of metadata and to reduce the cost of the
pathname resolution, but a serious burden arises when either updating the replicated
namespace or managing ACLs whenever the namespace is changed. Furthermore,
there remains a subsequent processing burden when the metadata server configura-
tion is changed in hashing-based metadata server cluster.

Fifth, instead of storing the location information of fixed-size pieces of a file,
referred to as chunks, permanently in the metadata server, the chunk location infor-
mation can be queried by all of the chunk storage servers and the acquired infor-
mation can then be stored in the memory of the metadata server when the server
initially starts [14]. This is suggested simply to manage the synchronization between
metadata servers and chunk storage servers so that they do not need to be synchro-
nized with each other. As a result, there is no need to manage and implement the
entire system via a difficult process for the purpose of processing various synchro-
nization cases that occur frequently, such as resuming a failed storage server in a
system composed of a large number of storage servers. Nevertheless, this approach
is linked to the problem of no longer being able to extend the scalability of a single
metadata server.

3 Fast and reliable metadata management system

When managing exascale metadata, it is very challenging to solve the linear scal-
ability issues of the storage space and performance, as well as the problem of per-
formance degradation over time. As a solution to these problems, we propose (1) a
model that provides good locality of reference while keeping metadata servers in
balance, (2) a metadata management system that efficiently supports transactions as
a base for the fast execution of the model and finally (3) a method for solving a
sudden performance drop due to interference among metadata servers in a metadata
server cluster on which the metadata management system runs.

7671

1 3

Effective metadata management in exascale file system

3.1 Effective metadata management based on the directory distribution

As shown in Fig. 1, when metadata is distributed and managed on a per-subtree
basis, it is advantageous to maintain the locality of reference because the unit
being distributed is very large while the metadata is not evenly distributed across
the metadata servers. If therefore the subtree managed by a specific metadata
server grows, the performance of such a metadata server can detrimentally affect
the performance of the entire cluster. On the other hand, hashing-based manage-
ment evenly distributes metadata, as shown in Fig. 2, but it is difficult to maintain
the locality of reference. In addition, when a new metadata server is added or an
existing server is removed, a significant amount of metadata movement occurs
during a subsequent process of handling the modification to the hash function.

In this paper, we propose a directory-based distribution as a means of enabling
an even distribution while maintaining sufficiently good locality of reference.
Figure 3 illustrates the concept of the directory-based distribution, which uses
a directory as the metadata distribution unit. By making the degree of metadata
distribution much finer than that of a subtree, it becomes possible to maintain
the balance among metadata servers relatively evenly and, therefore, the meta-
data server cluster can continue to operate in a balanced manner. Such a balance
among metadata servers is a property that cannot be achieved with the subtree
approach. Furthermore, though a directory-based distribution can have somewhat
less locality than its subtree-based counterpart, it still preserves relatively large-
scale locality such that a high level of locality of reference, which can never be
provided by a hashing-based method, is guaranteed.

Fig. 1 Subtree-based metadata distribution

Fig. 2 Hashing-based metadata
distribution

7672 M.-H. Cha et al.

1 3

The directory-based distribution model consists of (1) clients that request meta-
data operations, (2) metadata servers that receive and process metadata operations,
(3) a directory placement algorithm that uniformly distributes directories across
metadata servers and (4) metadata processing algorithms that obey POSIX seman-
tics while recognizing the directory-based distribution and placement.

The client sends metadata servers a request to create, query, modify or delete
metadata. Metadata is distributed and stored across metadata servers in accordance
with the directory-based distribution model. A new directory is created in a suitable
metadata server by the directory placement algorithm that chooses the best metadata
server to be used. The metadata server that receives the client’s request processes
metadata operation considering the directory-based distribution semantics. Figure 4
shows a representative architecture using this directory-based distribution model.

For the purpose of laying the foundation of a directory-based distribution, each
metadata server provides both inode storage and multi-purpose storage, as shown
in Fig. 5. When a directory is placed on a specific metadata server, all of the inodes
for files or subdirectories that directly belong to the directory, as well as the inode
representing the directory itself, are placed on that metadata server. In particular,
each directory entry for directory also contains ‘metadata server address’ informa-
tion which indicates the location of the metadata server that owns the directory.

For example, if a directory A is determined to be created on the metadata server 2
(MDS2), the creation of A and its children belonging to A, such as a file f1, proceed
as follows. The inode of the directory A is made by allocating one inode resource

Fig. 3 Directory-based metadata distribution

Fig. 4 Architecture of a metadata server cluster using the directory-based distribution model

7673

1 3

Effective metadata management in exascale file system

from the inode storage of MDS2. The multi-purpose storage then stores information
about ‘.’ and ‘..’ to represent the directory entries for A. If you want to create a file
f1 as a child of the directory A, the inode of the file 1 is made by allocating an inode
resource from the inode storage of MDS2, which is the same metadata server as the
parent directory A, and the entry for f1 is added to the multi-purpose storage where
the entries for the directory A are already stored. The results of this process can be
seen in Fig. 5. Section 3.2 contains more information on inode storage and multi-
purpose storage.

In performing metadata operations that recognize a directory-based distribu-
tion model, most metadata operations, e.g., file search and creation operations, are
performed as a single transaction on a specific single metadata server because files
and symbolic links are stored and managed on the same metadata server that con-
tains their parent directory. However, it is also possible to have metadata operations
whose transactions are processed across multiple metadata servers because, in this
case, the parent directory may use a storage different from that of the child directory.
Most metadata operations that recognize the directory distribution are processed by
transactions with one or two metadata server accesses, but there are also rare cases
in which some metadata operations require four or more metadata server accesses.
Table 1 shows the classification according to the access count of metadata servers
when processing metadata operations as transactions.

In Type-(A) of Table 1, metadata operations are processed as a single transaction,
but Type-(B) and Type-(C) operations require distributed transactions. Considering
an actual workload pattern [20] that generates a large number of file I/O operations,
it is very rare for metadata operations to be processed as distributed transactions
because Type-(A) metadata operations such as getfilelayout, getattr, setattr and creat
account for 99% of all metadata operations. As a result, with so much metadata
being managed, running a metadata processing protocol that minimizes distributed
transactions and handles a directory-based distribution makes the predicted disad-
vantages of lower locality than that of the subtree much less meaningful.

Fig. 5 Directory-based metadata distribution structure

7674 M.-H. Cha et al.

1 3

Algorithm 1 is the directory creation algorithm that performs the directory-based
distribution and placement operations.

Algorithm 1 Make_directory(P, N)
Input: P – the identification number of parent inode at which the new directory will

be made
N – the name of the directory to be made

Begin Procedure

Table 1 Categorizing metadata operations based on the total number of metadata servers accessed

Type Metadata operation type Total number of
metadata servers
accessed

Type-(A) creat, unlink, setattr, getattr, lookup, readlink, symlink,
getfilelayout

1

Type-(B) mkdir, rmdir, hardlink, lookup (remote dir) 2
Type-(C) rename ≥ 4

7675

1 3

Effective metadata management in exascale file system

In Algorithms 1, lines 3–8 present the process of selecting the metadata server to be
used as the target for a new directory: With a list of all metadata servers prepared, the
next metadata server which is placed after the metadata server in which the most recent
directory is created in the traversal order of the list is used as the target where a new
directory will be created. If a directory is created on the very same metadata server that
initially received the directory creation request, the new directory’s inode and directory
entries are processed as a single transaction and created on that metadata server. How-
ever, if a directory is created on a remote metadata server other than that which origi-
nally received the directory creation request, the local metadata server on which the
first request arrived sends a second request to create an inode for the new directory to
a remote metadata server, and if the second request succeeds, the local metadata server
creates a directory entry with which the newly created directory’s inode is connected.

In a situation with a large number of metadata servers running, a new metadata
server can be added to the cluster of metadata servers and existing metadata serv-
ers can be removed. In the hashing-based model, this situation has a significantly
negative effect, such as the migration of already deployed metadata, whereas the
directory-based distribution model does not have this problem.

Algorithm 2 shows the procedure used to obtain the metadata of a file. This algo-
rithm uses the inode identification number to find the target metadata server in the
list of metadata servers and then obtains the desired metadata from the target meta-
data server. Due to a lack of space, the details of other algorithms are omitted.

The following effects can be realized by using the directory-based distribution model:
(1) The most frequently used metadata operations, such as file retrieval, file creation and
file deletion, are processed by a single metadata server. (2) Metadata operations such as
directory browsing, directory creation and directory deletion involve at most two meta-
data servers. (3) The directory-based metadata distribution enables metadata to be evenly
stored across multiple metadata servers. (4) Even though the metadata server cluster
changes, expensive post-processing steps such as metadata re-migration are not required.

3.2 High‑performance metadata management system with transaction support

In this paper, we propose a high-performance metadata management system whose
special feature is that it processes transactions very rapidly to support the efficient
management of metadata. This system’s architecture consists of (1) inode storage,
(2) multi-purpose storage and (3) log storage, as shown in Fig. 6.

7676 M.-H. Cha et al.

1 3

Inode storage is a table that stores file inodes and directory inodes, and each
inode is represented by a fixed-size record. The position of a record in the table
serves as the identifier of the record, and this position is used as the inode identi-
fier. Inode storage, therefore, can store inodes without indexes and inodes can be
retrieved instantly. Because, intrinsically, inode storage is a big array that stores
inodes, where each element of the array is one inode and its size is 128 bytes,
a specific inode can be retrieved immediately with the inode number as a key,
which has O(1) complexity.

Multi-purpose storage can store various types of data structures. It is mainly
used as space for storing the contents of a directory. In this case, pairs of <inode
identifier, name> of child entries belonging to a specific directory are collected
and stored. The space of multi-purpose storage is managed in fixed-size extent
units, and the extent size is relatively larger than that of the record in inode stor-
age. Directory contents are stored initially in one extent, and if the extent space
then becomes insufficient, a new extent is allocated and used. The contents of the
extent are managed as B + trees. Because, in essence, multi-purpose storage is
also a big array that stores extents, where each element of the array is one extent
with a size of 4 KB, a specific extent can be retrieved immediately with the extent
number as a key, which has O(1) complexity too. In summary, as the retrieval
complexity at the level of a single metadata server consisting of inode storage and
multi-purpose storage is O(1) and directories are balanced across metadata serv-
ers, each metadata is chosen and run evenly on average.

Log storage is a write-ahead log for transaction processing which consists of a
log flush thread and two log buffers, as shown in Fig. 7. One log buffer is used as
the source of the flushing operation, which is performed by the log flush thread,
and the other log buffer accepts the logging contents that are appended at that
moment. When the flushing of a log buffer is completed, the role of the log buffer
is alternately switched, and a group commit especially is provided to increase the
flushing efficiency.

The metadata management system runs a plurality of threads dedicated to pro-
cessing metadata operations, and it provides strict two-phase locking as a means
of concurrency control. In addition, as a buffer management policy, NO-STEAL/
NO-FORCE is supported.

Fig. 6 Architecture of the metadata management system

7677

1 3

Effective metadata management in exascale file system

There are several advantages of operating a dedicated metadata management
system for each metadata server. First, the caching efficiency of each metadata
server’s memory is maximized because the number of inodes that can be cached
in the metadata server’s memory is maximized by managing one inode as a very
small unit of 128 bytes, resulting in metadata information being retrieved more
quickly compared to that when using other file systems.

Second, the amount of metadata that can be stored on each metadata server is
also maximized, resulting in the minimization of the number of metadata servers.

For example, Fig. 8a illustrates an inefficient use of space in a typical distributed
file system where only one file metadata is stored in a 4 KB page. However, as shown
in Fig. 8b, the metadata management system introduced here can contain information
pertaining to 32 inodes in a single 4 KB page. Suppose a 4 TB hard disk is mounted
per metadata server; at least 1125 metadata servers are required to store 1 trillion files
under the mechanism shown in Fig. 8a, but at least 32 metadata servers are needed
when using the case shown in Fig. 8b. Such an efficient caching and storage mecha-
nism for large-scale metadata is critical when building an exascale file system.

3.3 Resolving interference among metadata servers

The use of the directory-based distribution mechanism increases the performance of
metadata operations in proportion to the number of metadata servers. However, if
hard disks are used as the storage media of metadata servers, the performance of the
entire metadata server cluster will fluctuate heavily as the number of metadata serv-
ers increases. For example, if a metadata server cluster is continuously requested to
create metadata, the initial performance of the metadata creation is not maintained,
and the performance soon fluctuates up and down. As the number of metadata

Fig. 7 Architecture of log storage

7678 M.-H. Cha et al.

1 3

servers increases, this phenomenon worsens. In this paper, we refer to this as the
problem of performance interference among metadata servers.

As a background knowledge before explaining the performance interference
problem, the processing of metadata operations as transactions on metadata servers
will be described. While metadata operations essentially create metadata or change
them in inode and multi-purpose storage, the changes that are made to process these
metadata operations as transactions are initially written into log storage and then
reflected in inode storage and multi-purpose storage. However, in order to process
metadata operations at a high speed, the contents to be reflected in inode storage and
multi-purpose storage are not immediately written to the disk but are reflected first
in the memory buffer managed by the operating system. This is done to collect the
results of multiple operations to the greatest extent possible so as to perform high-
speed processing at the same time, without dispersing expensive disk writes, and to
maintain the consistency of the metadata. Dirty data reflected in the memory buffer
is flushed to disks at a fixed cycle by the flushing thread of the operating system,
such as pdflush of Linux, or when a certain memory condition is met.

Figure 9 illustrates a situation in which a large-scale flush operation occurs while
log write operations continue to be done to process each metadata operation as a
transaction. In a of Fig. 9, because a large flush does not occur in the operating sys-
tem of the metadata server, the log write operations are not disturbed; as a result, the
metadata operations are processed at a high speed. In b of Fig. 9, on the other hand,
all dirty data in the memory buffer, corresponding to inode and multi-purpose stor-
age, are flushed to disks at one time such that the log write operations slow down

Fig. 8 Metadata storage layout based on a 4 KB page versus a 128B record

Fig. 9 Metadata disk usage over time when the operating system uses a flush mechanism

7679

1 3

Effective metadata management in exascale file system

due to this bottleneck. In this paper, b of Fig. 9 is termed the processing delay zone.
Because a delay during log write operations means that the corresponding metadata
operations are also delayed, running a disk-based metadata server in which a large
amount of metadata is written causes frequent delays on the metadata server.

The effect of the pdflush-like flushing mechanism by an individual metadata
server is a critical issue that cannot be ignored in clustering metadata servers. The
higher the number of metadata servers, the more interference of performance the
metadata servers will encounter due to the reasons mentioned above. Thus, in an
environment where a very-large-scale metadata processing is required, such as at
the exascale, effective techniques are needed to minimize the performance inter-
ference caused by multiple metadata servers running simultaneously. Detailed
tests and analyses of the causes of these phenomena are described in Sect. 4.

In this section, we introduce a new memory-buffer-manager algorithm as a
solution to the performance interference problem among metadata servers. This
algorithm efficiently manages the temporary memory buffer before storing meta-
data in inode and multi-purpose storage, and it is run on each metadata server.
The memory buffer is an area where resources of inode and multi-purpose storage
are kept before being flushed to disk. One memory buffer is divided into a plural-
ity of fixed-size blocks, and multiple resources like inodes are kept temporarily in
a block. The use of the memory-buffer manager is intended to prevent the perfor-
mance degradation of the entire metadata server cluster by using each memory-
buffer manager’s unique behavior based on Algorithms 3 and 4.

Each memory-buffer manager periodically performs the Manage_Block function,
as described in Algorithm 3. The Manage_Block function manages a block which is
an in-memory management unit for metadata storage, i.e., inode and multi-purpose
storage. It is a key algorithm in the memory-buffer manager mechanism, perform-
ing two key functions as described in Algorithm 4: (1) The blocks to be written are
grouped into clustered block groups in consideration of minimizing the block writ-
ing cost. (2) These clustered block groups are written in short intervals.

7680 M.-H. Cha et al.

1 3

The effect of the above algorithm is to have the memory-buffer manager replace the
operating system’s pdflush-like flushing mechanism so that the large flush is split into

7681

1 3

Effective metadata management in exascale file system

smaller flushes, as shown in Fig. 10. Transaction logging, therefore, progresses stead-
ily without interruptions, and the metadata server’s processing delay is eliminated such
that the corresponding metadata operation continues to be processed immediately.

The most dominant algorithm, Manage_Block(), has the feature of sorting out the
dirty blocks of the blocks managed by the memory-buffer manager. The complexity
varies depending on the sorting algorithm. In the implementation of this paper, the
quick sort algorithm is used, and if the number of dirty blocks is k, then the sorting
complexity is O(k log k). Thus, the complexity of Manage_Block() is bound to O(k log
k).

The parameter values of Algorithms 3 and 4 depend on the memory size of the
metadata server, the load imposed on the metadata server and the I/O performance of
the metadata server. Taking these factors into account, we can optimize the parameter
values so that the metadata operations per seconds have the best performance.

4 Analysis and evaluation

In this section, the performance of the proposed metadata management system on
which the directory-based distribution model is applied is evaluated when many meta-
data servers are run. In addition, the metadata performance interference problem is
illustrated through tests and analyses, after which the test results pertaining to how the
memory-buffer manager affects the solution to the interference problem are presented.

4.1 Experimental setup

The metadata management system proposed in this paper is implemented in EEFS, an
Exascale File System developed by the Electronics and telecommunications research
institute in Korea. EEFS consists of (1) clients providing POSIX interfaces based on
low-level FUSE, (2) metadata management servers where the metadata management
system of this paper is applied and (3) data servers that store data. The storage area
controlled by EEFS is mounted on all client machines prior to the running of the tests
in this chapter. The operation requested at the mount point is, therefore, interpreted by
the metadata management system of EEFS and processed as a metadata operation so
that its performance can be measured.

The test environment is as follows. One-to-sixty-four Dell PowerEdge R530
servers with Intel Xeon CPUs were used as metadata management servers.
Each metadata management server uses a 6 TB Seagate hard disk as its storage
medium, and 10 G Ethernet is used as the network among the servers. The operat-
ing system of each machine is CentOS 7.0, and our metadata management system
was installed on each metadata server. Client machines also use 1–64 machines
with the same specifications.

To generate POSIX operations on the mount points of the distributed file sys-
tem, we implemented a metadata workload generator, the structure of which is
shown in Fig. 11.

7682 M.-H. Cha et al.

1 3

Multiple agents of the workload generator are started on each client machine,
and all of the agents wait for a control command from one controller. Only one
controller is run in the workload generator cluster, and it can enable all agents of
the workload generator to start or stop repeatedly sending requests for a specific
metadata operation, such as metadata creation, to all EEFS mount points. Given
that each agent acts as a single thread and considering that multiple agents can be
run per client machine, a large number of metadata operations can be requested at
the same time. Once a specific type of metadata operation is started, it is repeated
until the specified number is reached.

A full path consisting of a deep directory hierarchy is used when request-
ing metadata operations. For example, if an agent issues a POSIX operation
such as “creat(path, 0666),” a very long absolute path, such as “/mnt/posix1/
hostname/1/0000000000/0000000004/00-00-00-04@etri.re.kr/U[B@174fa
0ef11953158889485628922-283.dat” is randomly generated and assigned to the
first argument of creat(). If there is no directory belonging to the absolute path,
commands to make such directory components are repeatedly sent to the meta-
data server cluster, after which a command to create the last file component of the
path is transmitted to the metadata server cluster.

If a large number of clients exist and numerous agents per clients are run, a
workload generator can be a very appropriate tool for a large-scale stress test on
a distributed file system because a great number of POSIX operations containing

Fig. 10 Metadata disk usage over time when our memory-buffer manager mechanism is applied

Fig. 11 Architecture of the metadata workload generator

7683

1 3

Effective metadata management in exascale file system

a deep hierarchical path, which is randomly generated, can be sent to the file
system.

4.2 Metadata operation performance

We installed the proposed metadata management system software on metadata
servers and measured the performance of metadata operations while changing the
number of metadata servers. The test results are shown in Fig. 12.

Figure 12a shows the metadata generation performance per second when a
creat() request whose argument has a random path is continuously sent to the
metadata servers. As the number of metadata servers increases, the maximum
performance also increases proportionally, whereas the average performance does
not. Identical phenomena are observed in the cases of unlink() and mkdir() shown
in Fig. 12c, d respectively. However, in the case of open(), in which metadata is
neither generated nor changed, both the maximum and the average performances
increase in proportion to the number of metadata servers, as shown in Fig. 12b.

This phenomenon arises due to the metadata performance interference prob-
lem, which is analyzed in Sect. 4.3.

Fig. 12 Performance measured in operations per second

7684 M.-H. Cha et al.

1 3

4.3 Metadata performance interference and analysis results

As preparation for identifying cases of metadata performance interference, we
repeatedly created metadata on a single metadata server. This workload was cho-
sen because it is the dominant pattern in the real workload [20]. The test result is
shown in Fig. 13, indicating the general performance of 4600 create/s. However,
there are some significantly degraded sections.

Figure 14 shows the result when measuring the metadata generation per-
formance on eight metadata servers where directories are distributed by the
directory-based distribution model. Peak performance of 43,000 create/sec is
measured, but this performance level is not maintained and the performance deg-
radations occur frequently. Compared to the results of the single metadata server
shown in Fig. 13, it is confirmed that more serious performance degradation
occurs in Fig. 14.

Henceforth, if one of the metadata servers flushes, we analyze whether clients expe-
rience poor performance of metadata services. In a situation with m metadata servers,
the probability P that a metadata server doing a flush is not selected i times in a row as
the target metadata server for a request sent by a client is given by Eq. (1).

Suppose the number of requests per second made from clients is k; in this case, the
probability Q that a metadata server that is flushing is not selected i times in a row as
the metadata server to process k requests per second made from the clients is given by
Eq. (2).

(1)P(i) =

(

m − 1

m

)i

(2)Q(i) =

(

m − 1

m

)ki

Fig. 13 Performance changes over time on a single metadata server

7685

1 3

Effective metadata management in exascale file system

According to Eq. (2), the greater the number of requests to metadata servers, the
sooner a client’s metadata request is always delivered to a metadata server that is flushing.

In other words, even when only one metadata server is flushing in a large cluster of
metadata servers, a client’s request is delivered to the metadata server after only a few
requests. The meaning of this phenomenon is as follows.

When a metadata server enters a processing delay zone, the processing of meta-
data operations sent to the metadata server is delayed. Thus, a client who sent a meta-
data request to such a metadata server cannot immediately receive the result of the
request and must wait for a significant amount of time. In contrast, metadata requests
sent to other metadata servers that are not in a processing delay zone are immediately
processed.

If a client sends metadata requests to all metadata servers with equal probabili-
ties, the requests that were sent to the metadata server that did not enter the process-
ing delay zone are answered immediately, and the client that receives the processing
results can afford to generate new metadata requests. However, the newly generated
requests become more likely to go to the metadata server that has entered the process-
ing delay zone and is now delaying the processing of the previously received requests.
As a result, despite the fact that most of the metadata servers have no processing delay,
some of the operations newly requested by clients are repeatedly delivered to the meta-
data server that is in the processing delay zone such that the situation deteriorates fur-
ther and such clients cannot request new operations in proportion to the amount of the
already delayed operations whose results are being waited for. Thus, the quality of the
metadata service is seriously degraded.

Each metadata server performs a periodic flush, and if there are n metadata servers
performing such a flush, the probability R that a request of a client will be forwarded to
a metadata server that is flushing is expressed by Eq. (3), where x represents how many
times metadata servers that are flushing is not selected x times in a row as the target of
a metadata request.

(3)R(x) =

i
∑

x=0

(

1 −
n

m

)x

×
n

m

Fig. 14 Performance changes over time on eight metadata servers

7686 M.-H. Cha et al.

1 3

As n approaches m, Eq. (3) converges to 1. That is, the greater the number of
metadata servers that are performing a flush, the closer the probability of access-
ing such metadata servers is. Because each metadata server flushes periodically,
the frequency of a metadata server entering a processing delay zone becomes
much greater as the number of metadata servers increases. As a result, the prob-
lem of the performance of the entire metadata server cluster becoming degraded
occurs more frequently.

If the period of a large flush that blocks the I/O is T, the probability S that a
metadata server maintains a normal state in which flushing does not occur while
requests for metadata operations, starting at an arbitrary time t, are repeated i
times is expressed by Eq. (4).

According to Eq. (4), even if requests of clients are repeated but T is suffi-
ciently large, metadata servers are more likely to remain in a normal state. In
conclusion, to avoid performance interference among metadata servers, the key
is to reduce the probability of a large amount of flushing that may cause a service
failure.

4.4 Test results of the metadata management system with the memory‑buffer
manager

Based on the analysis results in Sect. 4.3, we applied our memory-buffer-man-
ager algorithm to the metadata management system to prevent large flushes from
occurring. Figure 15 shows the test results. Each test in Fig. 15 served to examine
how much the performance interference among metadata servers is reduced in a
situation in which requests to generate metadata are continuously thrown to the
metadata servers.

With 16 metadata servers, as shown in Fig. 15a, it takes 3119 s to create 100
million instances of metadata without the memory-buffer manager and, in this
case, it can also be seen that the performance outcomes fluctuate greatly. How-
ever, when the memory-buffer manager is applied, it takes 1274 s, as indicated
in Fig. 15b, achieving roughly a 2× performance improvement. In addition, the
fluctuation is also minor.

The results tested on a more expanded scale are similar to those shown above.
Figure 15c shows that it takes 10,092 s without the memory-buffer manager to
create 1 billion instances of metadata from 64 metadata servers, but the pres-
ence of the memory-buffer manager reduces this time to only 4845 s for the same
amount of metadata, as shown in Fig. 15d.

The small fluctuations shown in both Fig. 15b, d imply that with the help of
the memory-buffer manager, the performance interference among metadata serv-
ers can be greatly reduced and thus a very large cluster of metadata servers can be
run stably, achieving consistent performance.

(4)S(i) =

(

1 −
1

T

)i

7687

1 3

Effective metadata management in exascale file system

Fig. 15 Comparison of test results without or with the memory-buffer manager

7688 M.-H. Cha et al.

1 3

5 Conclusion

Because a very large number of files, such as those on the exasacle, are beyond
the manageable limits of a single metadata server, many techniques involving
the use of a large-scale metadata server cluster have been presented, but existing
methods have numerous problems.

In this paper, first we proposed directory-based distribution model which
ensures excellent locality while maintaining a sufficient balance among servers.
Second, an effective architecture of a high-performance metadata management
system was proposed and implemented, enabling efficient metadata placement
and memory management while also enabling the rapid processing of metadata.
Finally, we found that the performance capabilities of a cluster of metadata serv-
ers are degraded due to interference among metadata servers as the number of
metadata servers increases. On the basis of this fact, the cause of the performance
degradation was analyzed, and a memory-buffer manager algorithm was proposed
and tested to resolve this performance interference problem.

The three methods presented here enable the realization of metadata process-
ing performance proportional to the scale of the metadata server cluster in use,
allowing the efficient management of significantly large amounts of metadata on
the exascale.

Acknowledgements This work was supported by Institute for Information and communications Technol-
ogy Promotion (IITP) Grant funded by the Korea government (MSIP) (No. 2015-0-00262, Management
of Developing ICBMS (IoT, Cloud, Bigdata, Mobile, Security) Core Technologies and Development of
Exascale Cloud Storage Technology).

References

 1. Konstantin S, Hairong K, Sanjay R, Robert C (2010) The hadoop distributed file system. In: Pro-
ceedings of the 26th IEEE Symposium on Mass Storage Systems and Technologies (MSST’10), pp
1–10

 2. Oracle (2010) Lustre 2.0 operations manual. Oracle corporation. https ://docs.oracl e.com/cd/E1952
7-01/821-2076-10/821-2076-10.pdf. Accessed June 2017

 3. Konstantin S (2010) HDFS scalability: the limits to growth. USENIX; login 35(2):6–16
 4. Sadaf RA, Hussein NEH, Kristopher H, Neil S, Fabio V (2011) Parallel I/O and the metadata wall.

In: Proceedings of the 6th Workshop on Parallel Data Storage (PDSW’11), pp 13–18
 5. Sage AW (2007) Ceph: reliable, scalable, and high-performance distributed storage. Doctoral dis-

sertation, University of California
 6. Sage AW, Scott AB, Ethan LM, Darrell DEL, Carlos M (2006) Ceph: a scalable, high-performance

distributed file system. In: Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’06), pp 307–320

 7. Redhat (2018) Architecture. Redhat, Inc. http://glust er.readt hedoc s.io/en/lates t/Quick -Start -Guide /
Archi tectu re. Accessed October 2018

 8. Beaver D, Kumar S, Li H, Sobel J, Vajgel P (2010) Finding a needle in Haystack: Facebook’s photo
storage. In: Proceedings of the 9th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’10), pp 47–60

 9. Muralidhar S, Llyod W, Roy S, Hill C, Lin E, Liu W, Pan S, Shankar S, Sivakumar V, Tang L,
Kumar S (2014) f4: Facebook’s warm BLOB storage system. In: Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’14), pp 383–398

https://docs.oracle.com/cd/E19527-01/821-2076-10/821-2076-10.pdf
https://docs.oracle.com/cd/E19527-01/821-2076-10/821-2076-10.pdf
http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Architecture
http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Architecture

7689

1 3

Effective metadata management in exascale file system

 10. Bronson N, Amsden Z, Cabrera G, Chakka P, Dimov P, Ding H, Ferris J, Giardullo A, Kulkarni S,
Li H, Marchukov M, Petrov D, Puzar L, Song Y, Venkataramani V (2013) TAO: Facebook’s dis-
tributed data store for the social graph. In: Proceedings of USENIX Annual Technical Conference
(USENIX ATC’13), pp 49–60

 11. Alexander T, Daniel JA (2015) CalvinFS: consistent WAN replication and scalable metadata man-
agement for distributed file systems. In: Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST’15), pp 1–14

 12. Johnson C, Keeton K, Morrey III C, Soules C, Veitch A, Bacon S, Batuner O, Condotta M, Coutinho
H, Doyle P, Eichelberger R, Kiehl H, Magalhaes G, McEvoy J, Nagarajan P, Osborne P, Souza J,
Sparkes A, Spitzer M, Tandel S, Thomas L, Zangaro S (2014) From research to practice: experi-
ences engineering a production metadata database for a scale out file system. In: Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST’14), pp 191–198

 13. Xiao L, Ren K, Zheng Q, Gibson G (2015) ShardFS vs. IndexFS: replication vs. caching strategies
for distributed metadata management in cloud storage systems. In: Proceedings of the 6th ACM
Symposium on Cloud Computing (SoCC’15), pp 236–249

 14. Ghemawat S, Gobioff H, Leung S (2003) The Google file system. In: Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP’03), pp 29–43

 15. Brandt S, Miller E, Long D, Xue L (2003) Efficient metadata management in large distributed stor-
age systems. In: Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST’03), pp 290–298

 16. Zhang S, Catanese H, Wang A (2016) The composite-file file system: decoupling the one-to-one
mapping of files and metadata for better performance. In: Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST’16), pp 15–22

 17. Sinnamohideen S, Sambasivan R, Hendricks J, Liu L, Ganger G (2010) A transparently-scalable
metadata service for the ursa minor storage system. In: Proceedings of USENIX Annual Technical
Conference (USENIX ATC’10)

 18. Weil S, Pollack K, Brandt S, Miller E (2004) Dynamic metadata management for petabyte-scale file
systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing (SC’04)

 19. Xiong J, Hu Y, Li G, Tang R, Fan Z (2011) Metadata distribution and consistency techniques for
large-scale cluster file systems. IEEE Trans Parallel Distrib Syst 22(5):803–816

 20. Cha M, Kim D, Kim H, Kim Y (2017) Adaptive metadata rebalance in exascale file system. J Super-
comput 73:1337–1359

 21. Noghabi S, Subramanian S, Narayanan P, Narayanan S, Holla G, Zadeh M, Li T, Gupta I, Campbell
R (2016) Ambry: LinkedIn’s scalable geo-distributed object store. In: Proceedings of the 2016 Inter-
national Conference on Management of Data (SIGMOD’16), pp 253–265

 22. Memcachee (2018) https ://memca ched.org. Accessed July 2018
 23. Thomson A, Diamond T, Weng S, Ren K, Shao P, Abadi D (2014) Fast distributed transactions and

strongly consistent replication for OLTP database systems. ACM T Database Syst 39(2):11–49
 24. Ren K, Thomson A, Abadi D (2014) An evaluation of the advantages and disadvantages of deter-

ministic database systems. Proc VLDB Endow 7(10):821–832
 25. Cipar J, Ganger G, Keeton K, Morrey III C, Soules C, Veitch A (2012) LazyBase: trading freshness

for performance in a scalable database. In: Proceedings of the 7th ACM European Conference on
Computer Systems (EuroSys’12), pp 169–182

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://memcached.org

	Effective metadata management in exascale file system
	Abstract
	1 Introduction
	2 Related works
	2.1 Canonical management of metadata
	2.2 Workload-specific management of metadata
	2.3 Other variations on metadata management

	3 Fast and reliable metadata management system
	3.1 Effective metadata management based on the directory distribution
	3.2 High-performance metadata management system with transaction support
	3.3 Resolving interference among metadata servers

	4 Analysis and evaluation
	4.1 Experimental setup
	4.2 Metadata operation performance
	4.3 Metadata performance interference and analysis results
	4.4 Test results of the metadata management system with the memory-buffer manager

	5 Conclusion
	Acknowledgements
	References

