
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:7723–7745
https://doi.org/10.1007/s11227-019-02973-9

1 3

Locality‑aware process placement for parallel 
and distributed simulation in cloud data centers

Saad Zaheer1 · Asad Waqar Malik1,2 · Anis Ur Rahman1,2   · Safdar Abbas Khan1

Published online: 28 August 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Cloud is a multi-tenant paradigm providing resources as a service. With its easily 
available computing infrastructure, researchers are adopting cloud for experimental 
purposes. However, using the platform efficiently for parallel and distributed simula-
tions comes with new challenges. One such challenge is that the simulations com-
prise logical processes executing on distributed nodes, traditionally, organized in a 
sequential pattern. This placement strategy leads to delays as frequently communi-
cating processes might get placed farther from one another. In this paper, we pro-
posed a framework to facilitate implementation and evaluation of process placement 
algorithms inside a three-tier cloud data center. Furthermore, we used the frame-
work to test different process placement strategies based on classical clustering tech-
niques, as well as, our proposed efficient locality-aware placement algorithm. Our 
evaluation results show a performance gain of 14.5% for the algorithm in compari-
son with sequential process placement used in practice.

Keywords  Parallel and distributed simulations · Cloud computing · Clustering · 
Process migration

1  Introduction

The domain of parallel and distributed simulations (PDS) has evolved over the last 
few decades to support large-scale complex simulations. In general, traditional sim-
ulation techniques are developed for closed environments such as an HPC cluster. 

 *	 Asad Waqar Malik 
	 asad.malik@seecs.edu.pk

	 Anis Ur Rahman 
	 anis.rahman@seecs.edu.pk

1	 School of Electrical Engineering and Computer Science (SEECS), National University 
of Sciences and Technology (NUST), Islamabad, Pakistan

2	 Department of Information Systems, Faculty of Computer Science and Information Technology, 
University of Malaya, Kuala Lumpur, Malaysia

http://orcid.org/0000-0002-8306-475X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02973-9&domain=pdf


7724	 S. Zaheer et al.

1 3

With the inception of the cloud paradigm, new directions have opened up for the 
PDS community. Researchers can run complex simulations on a pay-as-you-go 
model, as available cloud resources (computing, storage, and network) are accessi-
ble as a service to any IP-enabled device. To efficiently utilize these resources under 
the multi-tenant environment, cloud providers use different techniques including vir-
tual machine (VM) migration, VM consolidation, physical host sharing, dynamic 
bandwidth allocation, and resource scheduling schemes. However, cloud resource 
utilization remains an open area of research [10]. For PDS community, a cloud pro-
vides a different execution platform compared to an HPC cluster environment. Since 
it provides a shared environment with different applications running alongside PDS 
processes. The distributed simulation often comprises a large number of participat-
ing logical processes (LPs) laid out across the data centers, and communicating with 
one another using time-stamped messages. However, in a cloud environment, this 
naive process placement affects the simulation performance as it may be running 
alongside compute-intensive or data-intensive applications [23]. Moreover, there is 
a higher probability that frequently communicating processes are placed at distinct 
physical nodes connected multiple hops apart. This is due to the fact that the process 
is placed randomly without considering their communication patterns.

The execution of traditional PDS frameworks fails to perform well over the 
cloud environment, due to the fact that PDS processes generate a large number of 
time-stamped messages for destination processes connected through multi-hop 
links inside the data center [17]. This inherent nature of such simulations can clog 
the underlying network incurring huge delays, affecting the performance of PDS. 
Over the years, the PDS community has been focused on the cluster environment. 
Recently, the community has started exploring PDS over the cloud, but no well-
known works exist that enhance the distributed simulation performance based on 
data center network characteristics. In fact, many of the existing frameworks are 
designed to improve performance using message aggregation, scheduling techniques 
and/or adoption of a conservative approach. On the contrary, our focus is to reduce 
the multi-hop traffic using process migration and mitigate the communication delays 
incurred due to long-haul communications.

In this paper, we proposed an efficient process placement technique to reduce 
communication delay between frequently communicating processes in PDS. The 
main contributions of the proposed work are as follows:

•	 Provide a framework to simulate PDS over the cloud where processes are exe-
cuted at different physical systems connected to one another through a multi-hop 
link.

•	 Propose a placement algorithm termed as find-rack-mate (FRM). The algorithm 
intelligently placed processes to reduce the overhead in terms of hop count, as 
PDS processes frequently communicate with one another sharing their state 
information. In this work, we use clustering-based placement to reduce this over-
head, in contrast to traditional random placement techniques that place processes 
without considering their communication pattern.

•	 Evaluate PDS over cloud paradigm, we built a data center simulation framework 
in OMNeT++ to support PDS and its process migration.



7725

1 3

Locality-aware process placement for parallel and distributed…

The framework serves as a foundation for researchers to test new approaches 
improving PDS process placement within cloud data center environment.

The remainder of this paper is organized as follows. Related work is presented in 
Sect. 2. Problem formulation is described in Sect. 3. Section 4 details different clus-
tering-based and proposed process placement technique. The results are discussed in 
Sect. 6. Section 7 covers the discussion and future directions. Section 8 concludes 
the research contribution.

2 � Related work

Most of the research work in the domain of PDS is based on energy efficiency, load 
balancing, and simulation performance in a cluster environment. However, com-
munications over the underlying network also play an important role to determine 
the overall efficiency and robustness of a PDS. In this section, we summarize and 
review the relevant works on PDS. The existing contributions are organized into 
cloud-based and cluster-based simulation frameworks.

2.1 � PDS frameworks for cloud environment

There exist few works based on PDS execution in cloud paradigm. The execution 
of PDS over cloud introduces new challenges due to differences from classical clus-
ter environment, such as process synchronization, workload varies at different nodes 
and significant network traffic. However, with no requirement for an initial invest-
ment to use the underlying execution environment, its use to execute simulations is 
getting popular among academics and industry.

Traditional PDS over cloud environment results in many deadlock scenarios 
result in increased execution times. To avoid such scenarios, in [28], the authors pro-
pose a deadlock-free scheduling algorithm for the execution of PDS over a virtual 
environment. Additionally, some techniques tend to exploit data locality by schedul-
ing processes accordingly to reduce data transfers, thus, improving the PDS perfor-
mance. Such data-aware techniques are proposed in [24] mainly focused on work 
stealing to improve the performance of PDS. However, these techniques are suit-
able where the simulation relays on large data chunks. In [17], the authors propose 
a barrier-based protocol to execute an optimistic simulation over the cloud environ-
ment. The objective of the protocol is to dynamically handle the compute resource 
optimization in parallel and distributed simulation.

Over the years, different techniques to improve its performance over the 
cloud have been proposed, for instance, priority-based work consolidation [16], 
resource sharing among parallel jobs using gang scheduling algorithm [25], pro-
cess synchronization based on simulation instances [27] and use of shared event 
queue among cloud multi-core systems [23]. But the techniques lead to bot-
tlenecks when a large number of threads are involved in the simulation. More 
recent approach in [14] proposes a federation-based approach to improve the per-
formance of large-scale simulation in a data center. Here, the proposed design 



7726	 S. Zaheer et al.

1 3

is based on a federation comprising federates grouped into multi-core systems. 
Each federate contains a number of VMs managed by a federate-level coordina-
tor using hierarchical resource management. Most of the aforementioned attempts 
are made to improve PDS performance over the shared multi-tenant environment.

Even though multi-threaded design is useful but poses new challenges due to 
the multi-tenant nature of the cloud environment, for instance, scheduling over-
head due to multiple processes sharing a single node can affect PDS performance. 
Moreover, fault tolerance is important for performance, inadequate fault handling 
mechanisms often leads to re-execution of the entire simulation [6]. A more com-
prehensive study in [3] analyzes existing PDS frameworks in terms of usability 
and adaptability and concludes that the existing techniques have many limitations 
for use in the cloud paradigm. Thus, there is a requirement for new frameworks 
that can efficiently run PDS on the cloud.

2.2 � PDS frameworks for cluster computing environment

In PDS domain, most of the work exist covers the execution in the cluster sys-
tem environment. Here, we have briefly covered a few contributions in PDS. In 
[19], authors presented a master–worker paradigm to support PDS execution of 
simulations in a distributed environment termed as Aurora. The proposed frame-
work provides computation as web services where PDS processes communicate 
with one another using timestamped messages. A master process distributes tasks 
among the workers. After job completion, the workers report back to the master 
process. The framework avoids local causality constraint by using a conserva-
tive synchronization algorithm to achieve high performance and interoperabil-
ity using the gSOAP toolkit. Moreover, to further improve the performance of 
PDS, a multi-threaded framework is proposed, i.e., ROSS-MT [13]. It is designed 
to reduce delays incurred during synchronization. In contrast to standard PDS 
frameworks, the ROSS-MT used threads for communication instead of processes. 
The advantage of using threads is the access to shared memory space to improve 
performance. However, both the contributions Aurora and ROSS-MT have no 
support cloud architecture.

Similarly, to improve the performance of PDS over cluster environment, in 
[8], the authors analyze the overhead of global virtual time (GVT) computations. 
They use a separate thread for communication and computation and only consider 
GVT calculation to enhance the PDS performance over the cluster. Similarly, 
in [26], a framework is proposed that appropriately assigns virtual machines to 
reduce the execution time of PDS. The framework is evaluated in a cluster envi-
ronment against first-in-first-out and max–min allocation algorithms. The results 
demonstrate improved PDS efficiency by reducing the execution time for large-
scale system simulation.

The performance of PDS over cluster systems is still an open area of research 
that demands a new process placement, GVT computation, and task distribu-
tion algorithms that can support large-scale real-time simulations. With the 



7727

1 3

Locality-aware process placement for parallel and distributed…

multi-disciplinary research, the role of distributed simulation in various fields is 
such as high-speed experimentation, and big data analytics are the emerging areas 
of research [21].

Discussion Generally, a huge amount of traffic is generated within the data center. 
The sources of this traffic include maintenance, VM migration, and process repli-
cation. In this study, our proposed framework is designed to support PDS over the 
cloud with the focus to reduce network cost among frequently communicating pro-
cesses, thus, improving the overall performance of PDS. Table 1 lists some contri-
butions targeting the PDS performance. It is worthwhile to mention that no previous 
work exists that provides a cloud data center environment for PDS simulation and 
supports process migration based on network communication. Thus, reducing net-
work communication means improving overall PDS performance. Other work cov-
ers the performance of PDS either using load balancing approach or reducing lock 
times for shared memory space. The former is difficult to manage in a cloud envi-
ronment, while the latter is limited by the number of threads supported.

3 � System model

In PDS, a significantly large number of processes take part in the simulation, which 
is randomly placed on different physical nodes across the network. These processes 
communicate with one another by exchanging messages. Each message has an asso-
ciated time-stamp value. The physical nodes inside the data center are placed in the 
form of racks. All nodes residing within the same rack are connected to the top of 
the rack switch (ToR). Further up the network, multiple racks are connected through 
an aggregate switch while core switches are used to connect the aggregate switches. 
This corresponds to a typical three-tiered data center as illustrated in Fig. 1. Note 
that the separate layer of aggregate switches is added to two-tiered data center archi-
tecture to provide scalability in terms of computing servers. To benchmark the pro-
posed model, we used similar three-tiered data center architecture with � number of 
physical servers placed in every rack, whereas � represents the number of racks in 
the data center.

The number of hops during an exchange of messages between two processes 
depends upon the number of switches the message passes through. Thus, a one-hop 
communication means that the two processes reside on different nodes on the same 
rack. Similarly, a three-hop communication means that the two processes reside on 
different racks with the same aggregate switch. Finally, a five hop message exchange 
means that communication between processes involves a core switch.

The cost of a n hop communication is n times the cost of single hop communica-
tion. Though, negligible it may be, there is a cost associated with the communication 
between processes on the same node. Therefore, it is pertinent to note that irrespective 
of the placement of processes, the cost of a message exchange is invariant to their role 
as a sender or receiver. Thus, a matrix M = [m(i, j)]|P|×|P| representing number of mes-
sages exchange between processes i and j is strictly triangular and for no loss of gener-
ality we shall take it to be upper triangular. The order of the square matrix M is the total 



7728	 S. Zaheer et al.

1 3

Ta
bl

e 
1  

S
um

m
ar

y 
of

 re
ce

nt
 w

or
ks

 in
 p

ar
al

le
l a

nd
 d

ist
rib

ut
ed

 si
m

ul
at

io
n

A
ut

ho
rs

En
er

gy
 e

ffi
c.

N
et

w.
 e

ffi
c.

Si
m

ul
. 

pe
rfo

rm
.

Po
w

er
 e

ffi
c.

Lo
ad

 b
al

-
an

ci
ng

Ex
pl

an
at

io
n

A
lfr

ed
 e

t a
l. 

[1
9]

×
×

✓
×

✓
M

as
te

r w
or

ke
r p

ar
ad

ig
m

C
ai

 e
t a

l. 
[1

4]
×

×
✓

×
✓

H
ie

ra
rc

hi
ca

l r
es

ou
rc

e 
m

an
ag

em
en

t t
o 

au
gm

en
t t

he
 e

xe
cu

tio
n 

of
 

la
rg

e 
si

m
ul

at
io

ns
 o

n 
da

ta
 c

en
te

rs
Li

n 
et

 a
l. 

[1
5]

×
×

✓
×

✓
B

an
dw

id
th

-a
w

ar
e 

di
vi

si
bl

e 
ta

sk
 sc

he
du

lin
g

W
an

g 
et

 a
l. 

[2
4]

×
×

✓
×

✓
D

at
a 

aw
ar

e 
sc

he
du

lin
g 

us
in

g 
da

ta
 aw

ar
e 

te
ch

ni
qu

e 
fo

r w
or

k 
ste

al
in

g
D

’A
ng

el
o 

an
d 

M
ar

zo
lla

 [7
]

×
✓

✓
×

✓
M

ul
ti-

ag
en

t s
ys

te
m

 to
 fa

ci
lit

at
es

 a
da

pt
iv

e 
m

ig
ra

tio
n

W
an

g 
et

 a
l. 

[2
3]

×
✓

✓
×

×
Pr

op
os

ed
 m

ul
ti-

th
re

ad
ed

 P
D

S 
si

m
ul

at
or

D
on

g 
et

 a
l. 

[4
]

×
✓

✓
×

×
V

M
P 

m
et

ho
d 

to
 im

pr
ov

e 
ne

tw
or

k 
effi

ci
en

cy
Ja

gt
ap

 e
t a

l. 
[1

3]
×

×
✓

×
×

Pr
op

os
ed

 R
O

SS
 m

ul
ti-

th
re

ad
ed

 sy
ste

m
Sr

ik
an

th
 e

t a
l. 

[2
8]

×
×

✓
×

×
D

ea
dl

oc
k 

fr
ee

 sc
he

du
lin

g
H

as
sa

n 
et

 a
l. 

[1
2]

×
×

✓
×

×
M

ac
hi

ne
 L

ea
rn

in
g’

s c
la

ss
ifi

ca
tio

n 
te

ch
ni

qu
es

G
ha

rib
i e

t a
l. 

[1
1]

×
×

✓
×

×
Li

ne
ar

 In
te

ge
r p

ro
gr

am
M

al
ik

 a
nd

 M
ah

m
oo

d 
[1

8]
×

×
✓

×
×

Fa
ul

t r
es

ili
en

t f
ra

m
ew

or
k

C
he

n 
et

 a
l. 

[1
]

×
×

✓
×

×
C

or
re

la
tio

n-
aw

ar
e 

vi
rtu

al
 m

ac
hi

ne
 p

la
ce

m
en

t s
ys

te
m

D
uo

ng
-B

a 
et

 a
l. 

[5
]

✓
×

×
×

×
M

ul
ti-

le
ve

l J
oi

nt
 V

M
 p

la
ce

m
en

t a
nd

 m
ig

ra
tio

n 
al

go
rit

hm
s (

M
JP

M
s)

Fu
 e

t a
l. 

[9
]

✓
×

×
×

×
En

er
gy

 aw
ar

e 
in

iti
al

 V
M

 p
la

ce
m

en
t

R
an

jb
ar

i a
nd

 T
or

ke
st

an
i [

20
]

✓
×

×
×

×
Effi

ci
en

t r
es

ou
rc

e 
al

lo
ca

tio
n 

in
 th

e 
cl

ou
d

Ti
an

 e
t a

l. 
[2

2]
✓

×
×

×
×

En
er

gy
-e

ffi
ci

en
t s

ch
ed

ul
in

g 
m

et
ho

d 
fo

r v
irt

ua
l m

ac
hi

ne
 re

se
rv

at
io

ns
D

ai
 e

t a
l. 

[2
]

×
×

×
✓

×
M

in
Po

w
 a

nd
 M

in
C

om
 a

lg
or

ith
m

s



7729

1 3

Locality-aware process placement for parallel and distributed…

number |P| of processes. Let N denote the set of nodes, then the information regarding a 
certain node scheduled with specific processes is the operation:

such that f[N] is the partition of P. Similar to f, the assignments of nodes to racks R, 
and racks to aggregate switches A are, respectively, described as

Note that processes, nodes and racks are referred by their index. For instance, i ∈ P 
means the process Pi and k ∈ N would be the kth node, etc.

To cater for the cost of communication between processes, the number of hops a 
message encounters is modeled with the help of various 2-arity predicates on P as men-
tioned below:

The predicate for the (one-hop) communication of process running on different 
nodes on the same rack is:

when the processes are located on different racks under the same aggregate switch 
(three-hop communication), then the predicate is designed as:

f ∶ N → 2P

g ∶ R → 2N and h ∶ A → 2R

F(i, j) = 1 ⇔ {Pi,Pj} ⊆ f (k) for some k ∈ N

G(i, j) = 1 ⇔F(i, j) = 0 and ∃ k ∈ R, a, b ∈ N

with a ≠ b s.t. {Na,Nb} ⊆ g(k) and

Pi ∈ f (a) and Pj ∈ f (b)

Storage
area

Servers

Top of rack switches

Aggregate switches layer

Core switch

Fig. 1   Traditional three-tier data center architecture



7730	 S. Zaheer et al.

1 3

Lastly, the (five hop) communication involving the core switch happens to be

Here, only one core switch is assumed in the data center, otherwise extension to 
multiple cores follows the same above mentioned pattern.

If � is the cost of communication between processes residing on the same node 
and c is the cost of a single hop communication, then the total cost, T, of communi-
cation eventually depends upon assignment operations f , g, and h

The optimization problem is to find the argument

that minimizes T(f, g, h). The constraints due to hardware in the proposed setup are

Moreover, some additional constraints are the assumption of only two aggregate 
switches, only one core switch and that only one process is run per node.

4 � PDS process placement framework

Execution of PDS without knowledge of process locations can lead to perfor-
mance issues, mainly due to traffic generated by other applications hosted in the 
same data center. Moreover, the performance of optimistic simulations in a cloud 
environment may suffer due to network status with messages stuck on their way 
to destinations, which may lead to a large number of rollbacks. Interestingly, the 
literature lacks any works that propose efficient PDS process placement inside 
the data center to reduce the aforementioned communication delay. Although 

H(i, j) = 1 ⇔F(i, j) = 0 and G(i, j) = 0 and

∃ k ∈ A, a1, a2 ∈ R, b1, b2 ∈ N

with a1 ≠ a2, b1 ≠ b2 s.t. {Ra1,Ra2} ⊆ h(k)

and Nb1 ∈ g(a1) and Nb2 ∈ g(a2)

and Pi ∈ f (b1) and Pj ∈ f (b2)

K(i, j) = 1 ⇔ F(i, j) = G(i, j) = H(i, j) = 0

c

|P|−1∑

i=1

|P|∑

j=i+1

mi,j

(
�

c
Fi,j + Gi,j + 3Hi,j + 5Ki,j

)

(f , g, h) ∈
(
P(P)

)N
×
(
P(N)

)R
×
(
P(R)

)A

g(1) = {1, 2, ..., 5}

g(2) = {6, 7, ..., 10}

g(3) = {11, 12, .., 15}

g(4) = {16, 17, ..., 20}



7731

1 3

Locality-aware process placement for parallel and distributed…

research articles exist on VM migration techniques with a focus to reduce overall 
data center energy consumption; thus, focused on the benefits of cloud provid-
ers. The existing energy-aware migration techniques are not well-suited for PDS 
where LPs are lightweight and frequently generate timestamped messages. There-
fore, in this study, we proposed a framework that provides PDS-based three-tier 
data center environment for process placement. Further, the framework provides 
PDS process states migration by swapping process states variable with other PDS 
processes instead of migrating an entire VM. In general, intra-rack node commu-
nication is more favorable compared with inter-rack node communication—the 
latter incurring more hops. Based on this, we propose a locality-aware criterion 
for process placement, so that to automatically restructure the underlying network 
for efficient placement of processes in the simulation. Traditionally, in PDS, pro-
cesses are placed sequentially without knowing their communication patterns, 
referred to as the random placement method. This is considered the baseline 
placement strategy. As an initial attempt, we used different clustering techniques 
to group processes based on their communication patterns. Later in the study, to 
overcome shortcomings in the mentioned classical clustering techniques, we pro-
posed our locality-aware process placement algorithm.

5 � Implementation details

PDS process placement framework for data center was developed atop 
OMNeT++ and INET framework. The framework comprises two main modules: 
PDS controller and PDS processes, as illustrated in the framework architecture 
(Fig.  2). The framework execution steps are listed in Algorithm  1, while the 
detailed functionality of the two modules is presented below.

PDS Process 1PDS Controller

Simulation
logic

State
variables

Simulation
manager

External
interface

Placement
controller

Execution
logic

FRM
algorithm

Simulation
manager

External
interface

Network
listener

INET Framework

OMNeT++

...

PDS Process n

Simulation
logic

State
variables

Simulation
manager

External
interface

Placement
controller

Cluster
interface

Fig. 2   Proposed framework architecture design



7732	 S. Zaheer et al.

1 3

Algorithm 1 PDS cloud framework

1: Input : list of processes P , controller C and simulation time t0
2: Output : completion status
3: η ← t0 + �t∆ Simulation interval for invoking placement
4: initialize(P ,C)
5: while true do
6: if t0 = η then � t represents current simulation time
7: pause(P )
8: ρ ← invoke(C) � Returns placement pairs
9: placement(P , ρ)
10: reset(η)
11: resume(P )
12: terminate(P ,C)

5.1 � PDS controller

The PDS controller acts as a manager for the entire simulation. It knows the PDS 
process placement and underlying communication among the PDS processes. The 
network listener module is designed to sense all outgoing and incoming traffic 
at the PDS processes. It uses this information to build a communication matrix 
for the processes. The simulation manager module keeps track of the PDS pro-
cess placement in the data center. During the simulation initialization phase, the 
module develops a process table showing process distances in terms of hop count 
from every other process. The simulation manager then activates an execution 
logic module after regular time intervals. The execution module takes the com-
piled communication matrix and implements a policy to generate PDS process 
placements. The new placements are handover to the simulation manager, further 
disseminating them to PDS processes through an external interface.

5.2 � Find‑rack‑mate (FRM) algorithm

The proposed find-rack-mate (FRM) algorithm is designed to find an efficient PDS 
process placement based on frequently communicating processes. The proposed 
algorithm communicates with the execution logic module to acquire all the required 
data for placement recommendations. It takes in the communication pattern from 
the network listener module and generates rack mates for every participating rack 
inside the data center. Initially, the processes are placed at random physical systems 
inside the data center. Based on the initial deployment, the simulation runs for a 
predefined time interval. During this period, the network listener module generates a 
communication matrix based on inter-process communication. After the simulation 
interval ends, the matrix is forwarded to the FRM algorithm to update process place-
ments based on underlying communication pattern.



7733

1 3

Locality-aware process placement for parallel and distributed…

Algorithm 2 describes the overall functionality of the proposed FRM algorithm. 
The algorithm starts off by determining candidates for populating the first rack. First, 
MCP(P) routine finds the highest message-exchanging pair of processes (Pa,Pb) in 
the communication matrix. This pair is assigned to the current rack; that is, pro-
cesses (Pa,Pb) are assigned to the first and second positioned physical nodes in the 
rack. Once done the pair is added to a comparison window W and the current rack 
pointer is updated. Now starting from the updated position to the maximum num-
ber of processes that can reside inside a rack. The routine MFCVP(W(1)) returns a 
process from the communication matrix that communicates most with the first pro-
cess in the highest communicating process pair (Pa,Pb) ; that is, the first value of 
the comparison window W hence W(1). The returned process is termed as Px . Simi-
larly, a process that communicates most with the second process in the comparison 
window is represented as Py . Thus, MCP() finds the highest communicating pair 
in the entire matrix, whereas MFCVP() finds a process that communicates mostly 
with a particular process; therefore, it searches only a single row in the communi-
cation matrix. Since process Pa and Pb are already a part of the rack; therefore, we 
compared Pa communication with Px and Pb communication with Py , whichever is 
higher is added to the current position in the rack and that process is removed from 
the comparison window. The next empty slot in the comparison window is assigned 
to the process that is just added to the rack for further comparisons. Next step is to 

Fig. 3   Find-rack-mate execution model—initially, a pair with the most communications is selected. 
Thereafter, processes are selected based on their communication with already selected processes. At 
every stage, the process becomes the part of cluster based on maximum communication with already 
selected processes. Note that the process id is used to break any ties



7734	 S. Zaheer et al.

1 3

remove all the processes from the unassigned process list that are already added to 
the rack. The sample execution of the algorithm is illustrated in Fig. 3.

Algorithm 2 Find-Rack-Mate()
1: for i = 1 to |R| do
2: (a, b) ← mcp(P )
3: g(i, [1, 2]) ← (a, b)
4: W ← (a, b)
5: for k = 3 to |g(i)| do
6: x ← mfcvp(W (1))
7: y ← mfcvp(W (2))
8: if M(W (1), x) > M(W (2), y) then
9: c ← W (1)
10: else
11: c ← W (2)
12: W ← W\{c}
13: W (2) ← mfcvp(c)
14: g(i, k) ← mfcvp(c)
15: P ← P\g(i, k)
16: P ← P\(a, b)
17: procedure mcp(P )
18: Input : list of processes and Pid

19: Output : (a, b) – most communicating process pairs
20: Find a and b such that
21: M(a, b) = max(M(:)) � Tie break using Pid

22: procedure mfcvp(W )
23: Input : process index
24: Output : b such that
25: M(a, b) = max(M(a, :)) � Tie break using Pid

26: M(a, b) = max(M(:)) � Tie break using Pid

5.3 � PDS process

The PDS process is the actual process that executes on the same or different physi-
cal system while communicating with other processes and the controller. Here, the 
simulation logic module contains the actual simulation logic used to modify state 
variables. The placement controller module receives all the new placements from 
the controller. In the case of the PDS process migration call, the controller commu-
nicates with the simulation manager and performs state swapping. An external inter-
face module is used for communication between the processes and the controller.

5.4 � Clustering module

The proposed framework supports PDS process placement based on different cluster-
ing techniques. Once new placements are computed, the framework external interface 
reads cluster information to place the PDS processes accordingly. In this study, we used 
different cluster techniques to determine similarity between LPs. Here, we used the 



7735

1 3

Locality-aware process placement for parallel and distributed…

sensed communication patterns as the criterion to determine similarity; that is, to iden-
tify frequently communicating LPs. That is, initial PDS processes communication pat-
terns are recorded for a number of iterations, later used as input for cluster formation. 
The clustering techniques used for our initial study are density-based spatial clustering 
of applications with noise (DBSCAN), hierarchical agglomerative clustering (HAC) 
and k-means clustering. The techniques are briefly discussed as follows:

1.	 DBSCAN The DBSCAN algorithm starts by picking an initial unvisited data 
point. A neighborhood of data points is defined for the point based on a distance 
function ( � ). A criterion referred to as minPoints, the minimum number of points 
allowed in a neighborhood, is used to either reject the neighborhood as noise or 
accept it by creating a new cluster. This process is repeated for the data points 
included in the newly created cluster. For the next cluster, a new unvisited data 
point is selected and the same process is repeated.

2.	 Hierarchical agglomerative clustering The hierarchical agglomerative clustering 
(HAC) is a bottom-up clustering approach. It starts off by making every data point 
a cluster. At each iteration, two clusters with the smallest distance are merged 
into a single cluster. Note that the merging is controlled by a predefined distance 
threshold. The merger process is repeated until all the data points fall into one 
cluster or specified number of clusters is reached.

3.	 k-means clustering k-means is the most well-known clustering technique. It starts 
off by initializing the number of required clusters. For each cluster, a central 
point is selected at random. The algorithm starts off by assigning all data points 
to clusters based on a distance function. The mean of all data points assigned to 
a cluster is set as the centroid of that cluster. This process is repeated many times 
until there is no or very small alteration in the resultant clusters.

The proposed framework reads the clustering outcome through its cluster interface 
module. Note that the technique can either be implemented inside the framework or 
used as an external tool for cluster formation. In this work, we used an external tool for 
cluster formation, i.e., Weka. The tool provides a flexible environment to create clus-
ters, which in turn are used for PDS process placement. The next sections cover the 
performance of the PDS processes using different clustering techniques and the pro-
posed FRM algorithm.

6 � Performance evaluation

This section contains a detailed summary of our findings. We implement the proposed 
process placement algorithm presented in the previous sections, and we compare its 
communication cost to different clustering techniques used to solve the placement 
problem in PDS.



7736	 S. Zaheer et al.

1 3

6.1 � Environment and parameters

The proposed PDS process placement framework is used to evaluate the FRM and 
clustering-based techniques. We used different clustering techniques including our 
algorithm to determine clusters within the simulated process communication data. 
These clusters are used for efficient process placement. Initially, the processes are 
placed randomly in the simulated data center where the simulation comprises 1.5 
million events with a total of 1133 messages exchanged between twenty processes. 
As a baseline model for comparison, we ran the entire simulation with random pro-
cess placement and recorded the communication-related statistics. The statistics 
include the number of messages sent by a process, the number of messages received 
by a process, the total number of hops incurred by a process, the total number of 
messages (sent/received), and the mean hop count of a process. On the other hand, 
for the remaining process placement techniques, we ran the simulation for four hun-
dred thousand events using random process placement and recorded the relevant 
statistics. These statistics were used to determine process clusters using different 
clustering techniques. In this study, we kept the number of clusters—groups of pro-
cesses—fixed to four corresponding to the total number of racks in the simulated 
three-tier data center. Table 2 contains the list of parameters used for evaluation.

In the simulated data center, a message is transmitted from one node to another 
took either one, three or five hops. Note that a message consumes less network band-
width when it requires less number of hops to reach its destination. In this work, the 
goal was to minimize the hop count (the total number of hops), as this can improve 
the performance of PDS over cloud environment. Since the cloud charges its users 
based on usage of computing, storage, and bandwidth. Thus, it seems more suitable 
to place frequently communicating processes on the same rack, reducing the total 
network load inside the data center.

6.2 � Efficiency of communication costs

For each technique, we measure the efficiency in terms of total hop count after 
altered process placement. Table  3 summarizes the communication statistics per 
rack. The results show a break down of message communication costs in terms of 
one, three, and five hops, as we consider four racks in the simulated three-tier data 
center. The last column shows the total number of messages, the sum of all one, 
three, and five hop messages. Furthermore, the results for the proposed FRM algo-
rithm are compared against baseline random placement and placement using differ-
ent clustering techniques. Similarly, Fig. 4 illustrates the per rack performance with 
the x-axis representing the four racks and the y-axis representing the number of mes-
sages sent with one hop, three hops, and five hops, respectively.

Generally, in PDS, communicating processes are placed randomly across the simu-
lated network. This strategy results in poor simulation performance because the tech-
nique lacks any locality awareness and hence ends up generating more network traffic. 
Using this strategy, out of the total 1133 messages sent during the simulation, 21.5% 



7737

1 3

Locality-aware process placement for parallel and distributed…

were one hop messages, 26.8% were three hop messages and 51.6% were five hop mes-
sages. It is evident that each rack has more five hop messages compared to messages 
with one hop and three hops. This is a clear case of more traffic across the network.

Table 2   Simulation configuration and system specification

Parameter Value

Simulator OMNeT++/INET
Data center topology Three-tier
Total number of nodes 20
Number of racks 4
Nodes per rack 5
Maximum hops 5
Communication link delay
 Node ↔ ToR switch 1.78814 ms
 ToR ↔ aggregate switch 1.78814 ms
 Aggregate ↔ core switch 0.178814 ms

Link capacity
 Node ↔ ToR switch 1 GE
 ToR ↔ aggregate switch 1 GE
 Aggregate ↔ core switch 10 GE

Total events 1.5 M
Events for training 400,000
Events for testing 1.1 M
Total messages exchanged 1133
Placement techniques Random, k-means, DBSCAN, HAC, proposed 

FRM
Instances 20
Attributes 5 (all numeric)
Initial starting points Random
Number of clusters 4 (maximum)
Maximum number of iterations 6
k-means
 Type Partitional
 (k, init, metric, max-iter) (4, random, Manhattan distance, 6)

DBSCAN
 Type Density-based
 (� , min-samples, metric) (10, 2, Manhattan distance)

HAC
 Type Linkage-based
 (k, linkage, metric) (4, single linkage, Manhattan distance)

CPU 3.1 GHz Intel Core i5
RAM 8 GB
OS Windows 10



7738	 S. Zaheer et al.

1 3

The very first clustering technique used to cluster processes was the DBSCAN 
algorithm. Our results show that each rack sent a higher number of five hop mes-
sages compared to messages sent with one hop and three hops. Using this technique, 
out of the total 1133 messages sent through the simulation, 23.3% messages were 
one hop, 27.7% messages were three hops and 48.8% messages were five hops. This 

Table 3   Quantitative 
comparison of hop counts 
from five different clustering 
algorithms including our 
proposed algorithm

Rack Hops per message Total messages

1 hop 3 hops 5 hops

Random
 #1 61 89 175 325
 #2 43 45 101 189
 #3 62 71 150 283
 #4 78 99 159 336
 Total 244 304 585 1133
 % 21.54 26.83 51.63 –

DBSCAN
 #1 33 51 117 201
 #2 117 137 234 488
 #3 56 54 99 209
 #4 59 72 104 235
 Total 264 314 554 1133
 % 23.39 27.71 48.90 –

HAC
 #1 46 64 101 211
 #2 37 50 107 194
 #3 94 116 147 357
 #4 81 113 177 371
 Total 258 343 532 1133
 % 22.77 30.27 46.95 –

k-means
 #1 42 55 104 201
 #2 161 167 161 489
 #3 65 51 92 208
 #4 70 68 97 235
 Total 338 341 454 1133
 % 29.83 30.10 40.07 –

Proposed
 #1 41 43 108 192
 #2 106 73 90 269
 #3 67 56 94 217
 #4 182 124 149 455
 Total 396 296 441 1133
 % 34.95 26.12 38.92 –



7739

1 3

Locality-aware process placement for parallel and distributed…

represents a minimal improvement with one hop messages increased by only 1.85% 
while five hops messages decreased by just 2.7%.

The next clustering algorithm used to cluster processes into different racks was 
based on a hierarchical clustering algorithm. Using this technique, the increase 
in the number of one hop messages was 1.2% only; however, a decrease of 4.67% 
was observed in messages sent using five hops. This was a significant improve-
ment compared to when using random process placement.

Out of all the traditional clustering algorithms, the best performing algorithm was 
k-means. The algorithm surpassed random process placement method, DBSCAN 
and HAC in terms of performance. The number of messages taking one hop to 
reach their destinations increased by 8.29% , messages taking three hops increased 
by 3.26% and ones taking five hops decreased by 11.56% . These results demonstrate 
an improvement using k-means compared to clustering techniques presented earlier.

The proposed algorithm outperformed the baseline random process placement 
method, and all other techniques discussed including the best performing k-means-based 
process placement. Out of the total messages sent during the simulation, 34.95% of the 
messages took just one hop, 26.12% messages took three hops and 38.92% messages 

0

100

200

#
m

es
sa

ge
s

Random DBSCAN

R1 R2 R3 R4

0

100

200

#
m

es
sa

ge
s

HAC

R1 R2 R3 R4

K-means

R1 R2 R3 R4

0

100

200

#
m

es
sa

ge
s

Ours one hop

two hops

five hops

Fig. 4   Per rack performance of the proposed algorithm against five different clustering techniques



7740	 S. Zaheer et al.

1 3

took five hops to reach their destination. In comparison with the random method, one 
hop messages increased by a significant 13.4% , the messages with three hops increased 
slightly by 0.7% and messages with five hops decreased by a significant 12.71%.

Figure 5 depicts the performance of all the aforementioned techniques in terms 
of hops incurred after newly placed processes at the data center level for the 
entire run of the simulation. Here, the x-axis lists the techniques, whereas the 
y-axis presents the total number of messages sent.

Figure 6 shows the communication delay-based comparison between proposed 
and clustering techniques. The data value shows hop-wise total delay computed 
on a three-tier data center topology with link and communication delay mentioned 
in Table 2. In the proposed work, one hop communication is maximum compared 
to all other techniques; however, the max hop communication is reduced signifi-
cantly and based on that delay is also reduced. The total delay shows a minimum 
3.32% reduction in overall communication delay.

In summary, a total of 1133 messages were sent during the entire run of the simula-
tion. Each message took either one, three or five hops to reach its destination. It is evi-
dent that the simulation performance drops if the majority of messages took five hops. 
On the contrary, the performance is much better if the majority of messages took just 
one hop to reach their destinations. Note that a better scenario is if the majority of five 
hop messages took a lesser number of hops, for instance, three hops. Table 4 shows 
a comparison of hop counts for different process placement techniques including our 
proposed approach. The results show a hop count reduction of 2.5%, 3.28%, 11.02%, 
and 14.50% compared to the baseline random process placement method using 
DBSCAN, hierarchical clustering, k-means, and our proposed method, respectively.

Random DBSCAN HAC K-means Proposed
0

100

200

300

400

500

600

700

244
264 258

338

396

304 314
343 341

296

585
554

532

454 441

#
m

es
sa

ge
s

one hop three hops five hops

Fig. 5   Comparison of the proposed algorithm against five different clustering techniques



7741

1 3

Locality-aware process placement for parallel and distributed…

7 � Discussion

In PDS, random process placement in a data center can affect the performance 
of a distributed simulation. The messages can get delayed inside the network due 
to high network traffic generated by other applications. For instance, in optimis-
tic simulations, network delays can deteriorate the performance due to straggler 
messages. These messages initiate the rollback mechanism. Often this delay is 
caused due to a shared multi-tenant environment where other compute-intensive 
or communication intensive applications are executing. Therefore, placing such 
communicating processes close to one another, not only reduce the rollbacks but 
also the overall cloud usage cost. In other words, long-distance communication 
between processes is considered an infeasible approach for PDS. This is evident 
from our experimental evaluations that process placement, in order to reduce total 
communication hops, can improve the overall performance.

Table 4   Number of hops 
comparison for five clustering-
based process placement 
techniques including our 
proposed approach

The gain is computed as a ratio of clustering technique with the 
baseline random placement technique

Technique Hops Gain (%)

Random 4081 –
DBSCAN 3977 2.54
HAC 3947 3.28
k-means 3631 11.02
Proposed 3489 14.50

Random DBSCAN HAC K-means Proposed
0

2

4

6

8

0.87 0.94 0.92
1.21

1.42

2.17 2.25
2.45 2.44

2.12

4.39
4.16 4

3.41 3.31

7.44 7.35 7.37
7.06

6.85

de
la
y
(s
)

one hop three hops five hops total

Fig. 6   Comparison of the proposed algorithm against five different clustering techniques in terms of 
delay



7742	 S. Zaheer et al.

1 3

•	 Locality-aware clustering Organizing processes based on locality can improve 
performance and reduce network usage. In most of the cases, a process only 
communicates with some predefined processes. This is somewhat based on the 
simulation topology, for instance, in the case of tree-based topology, a root pro-
cess directly communicates with its children. Here, the process can be placed—
based on its locality—along with the directly connected nodes. In our proposed 
approach, we cluster processes based on their communication patterns to reduce 
communication costs.

•	 Online extension of the algorithm The proposed model can be extended to work 
in an online scenario where a master process can track all involved processes to 
identify communication patterns. Similar to the proposed approach, these pat-
terns can be used to migrate the processes. It is worthwhile to mention that this 
can result in frequent migrations, an overhead for the system, which will require 
a mechanism. In the future, we are also interested to use deep learning tech-
niques for PDS process placement. As all these techniques required a significant 
amount of data therefore, our proposed framework can facilitate in generating 
large-scale data sets.

•	 Implementation on a real-world data center We are interested to extend our work 
to support any distributed framework designed for data centers. In the present 
study, cluster size is user-defined—the number of processes residing in a rack. In 
future, an extended controller can automatically balance processed based on the 
underlying computing capacity. Moreover, processes consolidation techniques 
can be adapted to reduce the number of racks used for PDS.

•	 Management implications The proposed work introduces a new research para-
digm to the PDS community, that is PDS process placement based on communi-
cation pattern. Generally, in a data center, VMs are placed to reduce the overall 
energy consumption; however, such placements are managed by the vendors to 
their benefit, with users having no control over the placements. It is worthwhile 
to mention that existing PDS frameworks are not designed to work on such a 
multi-tenant environment, with uneven workloads at physical nodes and net-
work switches due to the execution of different applications. The proposed PDS 
process placement provides a dynamic environment where PDS processes can 
be moved to other physical nodes to improve the efficiency of the simulation 
model. This dynamic movement of the PDS processes can be based on data cent-
ers internal factors such as network congestion at various switches, available link 
capacity, and execution overhead on shared physical nodes. Furthermore, adopt-
ing the cloud paradigm for complex simulation models gives scalability and fault 
resilience when running large simulations. That is, the data center can dynami-
cally manage failures through resource provisioning. However, for successful 
execution of PDS after node failures would require middleware to maintain cau-
sality among the PDS processes to produce correct results.

•	 Time complexity The time complexity of the procedure MCP is O(n2 log n) and 
that of the procedure MFCVP is O(n log n) . The time complexity of the inner for 
loop is O(n2 log n) and consequently the time complexity of the outer for loop 
and hence that of the FRM algorithm O(n3 log n) . The dynamic placement of 
processes is a search problem, i.e., an NP problem. Under the already discussed 



7743

1 3

Locality-aware process placement for parallel and distributed…

constraints, the heuristically proposed process placement technique not only pre-
sents a polynomial time solution, but it also surpasses the existing methods in the 
literature in terms of communication cost minimization as is shown in Fig. 7.

•	 Convergence analysis For the analysis, we used sigma ( � ) convergence inspired 
from economics. In the context of process placement, it refers to the reduction in 
dispersion between hop counts at different racks. For describing this convergence 
tendency, we use a discrete time interval based on the messages communicated 
till t with random placement and thereafter t + T  using the proposed FRM algo-
rithm for process placements. The convergence state at a certain time is meas-
ured using an indicator of variation. In contrast to the concept of convergence, 
this indicator represents one calculated using coefficient of variation � at time t. 

where yit is the hop count at time t and ȳt is the mean hop count at time t. In 
the present context, the degree of convergence increases when � is increasing. 
The higher is the � , the higher is the degree of convergence (i.e., 𝜎t < 𝜎t+T ). 
We observe that � stood at 0.017 by the end of the period t, suggesting a period 
of divergence (i.e., 𝜎t > 𝜎t+T ). This increased to 0.111 by the end of the period 
t + T  , suggesting an evidence for �-convergence. The trend in the � over the full 
time period analyzed (Fig. 7) was negative and statistically significant ( �0 = 0.05 , 
F = 13.276 , p < 0.001).

Though the domain of process placement to improve the efficiency of PDS is rel-
atively unexplored. Many previous works mainly used load balancing, schedul-
ing, and energy to improve the performance of PDS. However, in this study, we 

𝜎t =

√√√√ 1

N − 1

N∑

i=1

(log(yit) − log(ȳt))
2

100 200 300 400 500 600 700 800 900 1000 1100
0

200

400

#messages

#
ho

ps

random
proposed

Fig. 7   Trend in number of hop counts with discrete time interval till t using random placement and there-
after till t + T  using the proposed FRM algorithm



7744	 S. Zaheer et al.

1 3

introduced process placement to improve this performance by reducing the total 
number of communication hops. In future, we intend to extend the work by addi-
tion of dynamic load balancing, process consolidation, and adaptive learning tech-
niques. This will further enhance the performance of PDS under real data center 
environment.

8 � Conclusion

Execution of PDS over the cloud, a multi-tenant computing environment, affects 
its performance. That is, frequently communicating PDS processes get stuck inside 
the network due to the network traffic generated by other applications hosted on the 
cloud, consequently, slowing down the entire simulation. In this work, we demon-
strate the generation of communication data from the framework for a three-tier 
cloud data center, which is used to perform PDS process placement using differ-
ent unsupervised clustering-based techniques. We also proposed FRM algorithm for 
process placement alongside the aforesaid techniques, showing a 14.5% improve-
ment. The proposed PDS process placement in the cloud paradigm provides a 
dynamic environment for running complex simulation models with support for scal-
ability and fault resilience.

References

	 1.	 Chen T, Zhu Y, Gao X, Kong L, Chen G, Wang Y (2018) Improving resource utilization via virtual 
machine placement in data center networks. Mob Netw Appl 23(2):227–238

	 2.	 Dai X, Wang JM, Bensaou B (2014) Energy-efficient virtual machine placement in data centers 
with heterogeneous requirements. In: 2014 IEEE 3rd International Conference on Cloud Network-
ing (CloudNet). IEEE, pp 161–166

	 3.	 D’Angelo G (2011) Parallel and distributed simulation from many cores to the public cloud. In: 
2011 International Conference on High Performance Computing and Simulation. IEEE, pp 14–23

	 4.	 Dong JK, Wang HB, Li YY, Cheng SD (2014) Virtual machine placement optimizing to improve 
network performance in cloud data centers. J China Univ Posts Telecommun 21(3):62–70

	 5.	 Duong-Ba TH, Nguyen T, Bose B, Tran TT (2018) A dynamic virtual machine placement 
and migration scheme for data centers. IEEE Trans Serv Comput. https​://doi.org/10.1109/
TSC.2018.28172​08

	 6.	 D’Angelo G, Ferretti S, Marzolla M (2019) Fault tolerant adaptive parallel and distributed simula-
tion through functional replication. Simul Model Pract Theory 93:192–207

	 7.	 D’Angelo G, Marzolla M (2014) New trends in parallel and distributed simulation: from many-cores 
to cloud computing. Simul Model Pract Theory 49:320–335

	 8.	 Eker A, Williams B, Chiu K, Ponomarev D (2019) Controlled asynchronous GVT: accelerating par-
allel discrete event simulation on many-core clusters. In: 48th International Conference on Parallel 
Processing (ICPP 2019), pp 5–8

	 9.	 Fu X, Zhao Q, Wang J, Zhang L, Qiao L (2018) Energy-aware vm initial placement strategy based 
on bpso in cloud computing. Sci Program. https​://doi.org/10.1155/2018/94713​56

	10.	 Fujimoto RM (2016) Research challenges in parallel and distributed simulation. ACM Trans Model 
Comput Simul (TOMACS) 26(4):22

https://doi.org/10.1109/TSC.2018.2817208
https://doi.org/10.1109/TSC.2018.2817208
https://doi.org/10.1155/2018/9471356


7745

1 3

Locality-aware process placement for parallel and distributed…

	11.	 Ghribi C, Hadji M, Zeghlache D (2013) Energy efficient VM scheduling for cloud data centers: 
exact allocation and migration algorithms. In: 2013 13th IEEE/ACM International Symposium on 
Cluster, Cloud, and Grid Computing. IEEE, pp 671–678

	12.	 Hassan M, Babiker A, Amien M, Hamad M (2018) SLA management for virtual machine live 
migration using machine learning with modified kernel and statistical approach. Eng Technol Appl 
Sci Res 8(1):2459–2463

	13.	 Jagtap D, Abu-Ghazaleh N, Ponomarev D (2012) Optimization of parallel discrete event simulator 
for multi-core systems. In: 2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium. IEEE, pp 520–531

	14.	 Li Z, Li X, Wang L, Cai W (2014) Hierarchical resource management for enhancing performance 
of large-scale simulations on data centers. In: Proceedings of the 2nd ACM SIGSIM Conference on 
Principles of Advanced Discrete Simulation. ACM, pp 187–196

	15.	 Lin W, Liang C, Wang JZ, Buyya R (2014) Bandwidth-aware divisible task scheduling for cloud 
computing. Softw Pract Exp 44(2):163–174

	16.	 Liu X, Wang C, Zhou BB, Chen J, Yang T, Zomaya AY (2012) Priority-based consolidation of par-
allel workloads in the cloud. IEEE Trans Parallel Distrib Syst 24(9):1874–1883

	17.	 Malik A, Park A, Fujimoto R (2009) Optimistic synchronization of parallel simulations in cloud 
computing environments. In: 2009 IEEE International Conference on Cloud Computing. IEEE, pp 
49–56

	18.	 Malik AW, Mahmood I (2017) Crash me inside the cloud: a fault resilient framework for parallel 
and discrete event simulation. In: Proceedings of the Summer Simulation Multi-Conference. Society 
for Computer Simulation International, p 1

	19.	 Park A, Fujimoto RM (2006) Aurora: an approach to high throughput parallel simulation. In: 20th 
Workshop on Principles of Advanced and Distributed Simulation (PADS’06). IEEE, pp 3–10

	20.	 Ranjbari M, Torkestani JA (2018) A learning automata-based algorithm for energy and SLA effi-
cient consolidation of virtual machines in cloud data centers. J Parallel Distrib Comput 113:55–62

	21.	 Taylor SJ (2019) Distributed simulation: state-of-the-art and potential for operational research. Eur J 
Oper Res 273(1):1–19

	22.	 Tian W, He M, Guo W, Huang W, Shi X, Shang M, Toosi AN, Buyya R (2018) On minimizing 
total energy consumption in the scheduling of virtual machine reservations. J Netw Comput Appl 
113:64–74

	23.	 Wang J, Jagtap D, Abu-Ghazaleh N, Ponomarev D (2013) Parallel discrete event simulation for 
multi-core systems: analysis and optimization. IEEE Trans Parallel Distrib Syst 25(6):1574–1584

	24.	 Wang K, Zhou X, Li T, Zhao D, Lang M, Raicu I (2014) Optimizing load balancing and data-local-
ity with data-aware scheduling. In: 2014 IEEE International Conference on Big Data (Big Data). 
IEEE, pp 119–128

	25.	 Wiseman Y, Feitelson DG (2003) Paired gang scheduling. IEEE Trans Parallel Distrib Syst 
14(6):581–592

	26.	 Yao F, Yao Y, Chen H, Li T, Lin M, Zhang X (2019) An efficient virtual machine allocation algo-
rithm for parallel and distributed simulation applications. Concurrency Comput Pract Experience. 
https​://doi.org/10.1002/cpe.5237

	27.	 Yao F, Yao Y, Chen H, Li T, Lin M, Zhang X (2019) An intelligent scheduling algorithm for com-
plex manufacturing system simulation with frequent synchronizations in a cloud environment. 
Memet Comput. https​://doi.org/10.1007/s1229​3-019-00284​-3

	28.	 Yoginath SB, Perumalla KS (2015) Efficient parallel discrete event simulation on cloud/virtual 
machine platforms. ACM Trans Model Comput Simul (TOMACS) 26(1):5

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1002/cpe.5237
https://doi.org/10.1007/s12293-019-00284-3

	Locality-aware process placement for parallel and distributed simulation in cloud data centers
	Abstract
	1 Introduction
	2 Related work
	2.1 PDS frameworks for cloud environment
	2.2 PDS frameworks for cluster computing environment

	3 System model
	4 PDS process placement framework
	5 Implementation details
	5.1 PDS controller
	5.2 Find-rack-mate (FRM) algorithm
	5.3 PDS process
	5.4 Clustering module

	6 Performance evaluation
	6.1 Environment and parameters
	6.2 Efficiency of communication costs

	7 Discussion
	8 Conclusion
	References




