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Abstract
Designing economic pricing mechanisms have recently attracted a great deal of 
attention in the context of cloud computing. We believe that microeconomics theory 
is a good candidate to model the resource reservation operations in cloud networks. 
Producer–consumer theory of microeconomics guarantees the maximization of 
social welfare of the customers, conditional that the particular consideration con-
cerning customers and producers are met. As is the case in real-world cloud data-
centers, the workload associated with each user is fed into the system and then the 
user is bound to a virtual machine (VM). In this research, we propose a microe-
conomic-inspired resource reservation scheme for cloud computing. The designed 
mechanism includes two steps: in the first step, we seek to find a Pareto efficient 
reservation set concerning bandwidth of VMs, and in the second step, our goal is to 
place VMs’ reserved bandwidth rates on physical hosts. In our modeling, VMs and 
the cloud network are considered as consumers and producers of the market, respec-
tively. Also, the bandwidth of requested services is considered as commodity. As is 
the case in microeconomics, we prove that the aggregation of users’ utilities (users’ 
social welfare in microeconomics terminology) could reach to global maximum, 
known as Pareto efficiency. After finding the best set of reserved bandwidth rates 
in the first step of mechanism, in the second step, the mechanism seeks to find the 
best placement for VMs on physical hosts. The placement operation is performed in 
such a way that results in minimization of total consumed power in datacenter. Since 
the VM placement problem has been proven to be NP-hard, we use a metaheuristic 
cuckoo search optimization approach to solve the optimization problem. Simulation 
results, obtained through the CloudSim framework, established the robustness of the 
proposed method in terms of significant criteria such as users’ welfare, consumed 
power and Pareto optimality.
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1 Introduction

Recently, the most organizations and corporations have started to invest on cloud 
computing, leveraging the advantages of service virtualization [1]. In fact, the aim 
of cloud computing is to optimize the aggregation of resources based on the concept 
of infrastructures as a service or in abbreviation IaaS. On the other hand, service 
virtualization is used as a supplementary technology in datacenter (DC) in order to 
reach a better utilization of network resources. Using virtualization approaches, the 
resources locating on physical hosts could serve multiple virtual machines (VMs). 
In fact, virtualization is the heart of cloud computing and has a lot of benefits such 
as resource utilization, system security capability, near to full efficiency, simple 
management, and so on [2]. In cloud-based DCs, the controlling operation in order 
to associate VMs to the appropriate physical hosts is carried out by a central entity, 
namely broker. Also, the information concerning physical hosts is stored in another 
entity, namely cloud service provider (CSP). This resource management process 
is called VM placement and is one of the most crucial issues in context of cloud 
computing. Interested readers can refer to [3] for a comprehensive survey on cloud 
brokerage.

Resource management in a typical cloud network includes two major steps: The 
first step comprises scheduling and workflow operations concerning the task which 
are submitted by users. As is the case in real-world cloud datacenters, the workload 
originated from each user is fed into the DC. Each user (known as cloudlet) is bound 
to a VM. This operation is done by cloud broker. Our research in this paper is not 
relevant to scheduling step. Interested readers can refer to [4, 5] to study more on 
this topic. The second step, itself comprises “resource reservation” and “VM place-
ment” operations in which potential players are VMs and physical hosts. Concern-
ing the resource reservation step, a large number of research activities have been 
carried out in the literature. The goal of many of these researches is to maximize the 
utilization of resources [6]. Recently, pricing approaches have attracted significant 
attention of researchers for managing the resource reservation step [7–17]. Any eco-
nomic-inspired mechanism should address the way in which users’ demands (equiv-
alently VMs’ demands) are met. Here, the goal is to provide maximum welfare for 
VMs, taking into account minimum power consumption in the DC. The most sig-
nificant metrics in the context of pricing approaches are economic parameters such 
as revenue, cost, profit, fairness, economic equilibrium, and so on.

Concerning the VM placement step, significantly, heuristic and metaheuristic 
approaches have attracted the most attention of researchers [7–9, 18–22]. The VM 
placement is a crucial task and if is done improperly, may degrade the performance 
of the cloud network. So, almost all researchers have investigated the effects of their 
modeling on key performance indicators of the DC such as the level of consumed 
power, latency, CPU usage, memory, bandwidth, and so on.

Actually, the scope of our research in this paper is the second step of cloud 
computing, namely resource reservation and VM placement. We believe that the 
mathematical theories of microeconomics are good candidates in order to model 
the dynamics of VMs in the resource reservation step. To this end, we model the 
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interactions between users and the DC using a pricing approach leveraging the the-
ory of producer–consumer and particularly, the concept of Walrasian equilibrium.

Our contribution is two-fold: First, subject to the resource reservation step, we 
design a price-based microeconomic mechanism which maximizes the social 
welfare of VMs by applying the theory of producer–consumer. In the proposed 
approach, users (or equivalently, VMs associated with users) are considered as con-
sumers of the economic market, and the physical hosts are considered as produc-
ers. Also, the bandwidth of requested services plays the role of market commodities. 
Roughly speaking, by assuming the players as price-taker agents and also by equat-
ing the amount of demand and supply, we get the amount of resource (bandwidth) 
which should be reserved for each VM. In Sect. 3, we will prove that the aggregated 
utility of all users (the users’ social welfare in microeconomics terminology) could 
reach to global maximum, known as Pareto efficient point. Then, in the second step, 
leveraging the identified reserved bandwidth rates in the first step, VMs should be 
placed on appropriate physical hosts. The placement is done with the aim of mini-
mizing the consumed power. Since the VM placement problem has been proven to 
be NP-hard, we have used metaheuristic cuckoo search optimization (CSO) algo-
rithm to optimize the placement problem.

To the best of our knowledge, this research is the first work in which the theory 
of producer–consumer (and the concept of Walrasian equilibrium) has been used 
in order to optimize the reserved bandwidth in cloud networks. We summarize the 
main contributions of our research as following:

• We model the resource reservation phase of cloud network based on producer–
consumer theory of microeconomics. All reserved allocations have Walrasian 
equilibrium property which will be discussed in depth in Sect. 3.

• For each VM, we consider real-world necessary conditions in order to attain 
Pareto efficiency concerning the reserved resources.

• Based on identified reserved resources, our algorithm finds a low-power low-
overhead placement solution for VMs.

Due to self-organizing nature of our proposed approach, from industry point of 
view, it can be used by the owners of cloud providers, especially for long-live ser-
vices. For example, the users in cloud gaming can be charged based on this approach. 
Note that in cloud gaming, each gamer session may last for tens of minutes.

The organization of this paper is as follows: In Sect. 2, significant studies related 
to priced-based approaches and also placement algorithms are described; in Sect. 3, 
the proposed mechanism is presented and discussed in detail; in Sect. 4, the sim-
ulation of this mechanism on the CloudSim testbed and the evaluation results are 
elaborated; finally, Sect.  5 provides the conclusions and sketches future research 
directions.
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2  Related researches

So far, many studies have been performed on resource reservation and VM place-
ment in cloud networks. In this section, at first, we will review research works related 
to the subject of resource reservation, and then we will review the works related to 
VM placement. Some research works have tried to apply pricing approaches, tak-
ing into account CSPs and also the geographical location of DCs [23, 24]. Also, 
interested readers can refer to [7, 14, 15] for comprehensive surveys on pricing 
approaches in cloud computing. Generally, these pricing mechanisms fail to con-
sider significant factors such as external stakeholders of the market, pricing strate-
gies of other DCs, and the payment tendencies of clients. In cloud networks, “dif-
ferential pricing” approach is used for allocating bandwidth among some groups 
of users with different demands in order to maximize profit [8]. This approach is 
unfair because some users might pay more than the others. Dabbagh et al. [9], pro-
posed a pricing scheme in which the goal is to maximize the profit of a given VM 
subject to the available budget, while minimizing energy consumption. The pro-
posed approach suffers the lack of considering market competition for determining 
the price. Wanis et al. [25] used Ramsey pricing to maximize the social welfare of 
users with respect to this limitation that the profit should not be less than a predeter-
mined threshold value. This pricing scheme has been proposed for allocating virtu-
alized resources in DCs. In some researches like [18], non-cooperative game theory 
approaches, for example auctions, has been used for maximizing the profit of CSPs. 
Since Nash equilibrium prerequisite is not guaranteed in all times, investigating the 
essential conditions of such non-cooperative games is a challenging issue. In the 
literature, other game-theoretic approaches such as “Stackelberg” games and “bar-
gaining” games have been used for allocating the bandwidth to VMs and satisfying 
users’ demands [19, 26]. In these categories of games, various bidding approaches 
such as English, Dutch and Vickrey–Clarke–Groves (VCG) auctions have been used 
for resource management. The most important disadvantage of these auction-based 
methods is that they merely consider the satisfaction of one player against the other 
players, without taking into account the network capacity constraints! Mohammadi 
and Rezvani [20] are the first who applied the microeconomics theory to model the 
interactions between VMs and the physical hosts in cloud networks. Their idea, in 
contrast to game-theoretic approaches, falls into the category of non-strategic eco-
nomic mechanisms in the sense that the actions of VMs associated with the users do 
not affect by the actions of other VMs. One of the significant works in the context of 
pricing is presented by Wu et al. [13]. They proposed a value-based pricing model, 
namely hedonic pricing model which takes into account both imposed service cost 
to CSP and willingness of customers to pay. Interested readers can refer to [11, 12, 
16, 17] to see other researches in the context of cloud pricing schemes.

Now, we proceed to review the major related works subject to VM placement. 
The ever-increasing growth of modern DCs turns the VM placement problem a fun-
damental challenge in the context of cloud computing. According to the previous 
researches, the VM placement problem falls into the category of NP-hard problems. 
In the literature, there exist numerous heuristic and metaheuristic approaches for 
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solving these types of problems. For example, in first-fit decreasing (FFD) algo-
rithm, which is presented in [27], the VMs are ordered in descending manner based 
on requirements and then the host with the least consumed power is selected for 
placing VMs on it. Jamali et al. [28] used imperialist competitive algorithm to place 
VMs. In this approach, any possible solution is considered as a country. Imperialist 
countries will overcome the colonies according to the intermediate countries. The 
most challenging disadvantage of this metaheuristic scheme is its complexity for 
selecting initial possible solutions and also the complexity for setting up parameters. 
Also, Tavakoli-Someh and Rezvani [29] proposed a VM placement solution based 
on non-dominated sorting genetic algorithm II (NSGA-II) to maximize utilization 
and minimize energy. As stated in the previous section, the CSO algorithm is an 
interesting metaheuristic approach which is used for solving VM placement prob-
lem. In general, the performance of CSO is better than those of particle swarm opti-
mization (PSO) and genetic algorithm (GA) [27]. Sait et al. [30] used the CSO algo-
rithm for reducing the consumed power and improving the resource utilization of 
physical hosts. Inspiring Levy flight of cuckoos, the VMs located on physical hosts 
may migrate to new locations in a best-fit (BF) manner. However, a major weak 
point of the CSO scheme is its slow convergence speed to find the optimal solution. 
In order to mitigate this limitation, we have combined CSO with simulated anneal-
ing (SA) approach. We will explain details of this, later in Sect. 3.

In the literature, some authors have paid attention to the role of energy consid-
erations in solving the VM placement problem. However, they have not been dis-
cussed here in detail due to space limitations. Interested readers can refer to [31–34] 
to study more on this topic.

Eventually, it is worth mentioning that in this paper, we have not pay attention to 
security issues at all. Clearly, the mechanism could be enhanced if such real-world 
requirements are considered. For example, Feng et al. [35] proposed a joint pricing 
and security model for insurance cloud networks. Also, Negi et al. [36] proposed a 
filtering method for cloud computing environments to prevent some kinds of attacks. 
Interested readers can refer to [37–41] to study more on this topic.

3  Proposed method

3.1  VM bandwidth reservation problem

In this section, we propose the microeconomics-based modeling of interactions in 
the DC. We use one of the most significant theories in “competitive markets” of 
microeconomics, known as “producer–consumer theory.” The main characteristic 
of the competitive economy is that the behaviors of players of the market, i.e., pro-
ducers and consumers, are influenced by their selfishness. The consumers in this 
economy have no predetermined tendency to buy the commodities. In other words, 
the market players accept the price of commodities as they are. It means that they 
cannot change the prices themselves. In microeconomics terminology, this fact can 
be expressed as follows: “in competitive economic, the potential players of the mar-
ket are price-takers not price-setters [42].” Clearly, the competitive economy model 
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is disturbed in nature. As stated before, the producer–consumer theory falls into 
the category of “non-strategic” mechanisms in the sense that each consumer has 
complete knowledge about current prices and ignores the demand rates of the other 
consumers. In other words, the consumer pursues only his/her own optimal demand 
according to his/her budget constraints. In fact, consumers assure that the com-
modities are sufficiently available in the market. Similarly, producers have complete 
knowledge of current prices concerning commodities and are ignoring the demand 
rate issued by the other producers. Roughly speaking, the producers only choose 
the levels of production which may create maximum profit for them. The produc-
ers believe that commodities will eventually be sold. Regard to the aforementioned 
discussions, it can be said that the competitive economy has a distributed nature, 
so that any agent looks for his/her desires and ignores others preferences. In this 
research, we model interactions of the DC as a competitive economy. In our mod-
eling, physical hosts of the DC are considered as producers of the market. In a simi-
lar manner, users (or equivalently, VMs associated with the users) are considered 
as consumers and the bandwidth unit (bps) of the requested services is considered 
as the commodities. We name our proposed microeconomic mechanism as “Cloud 
Network with Competitive Economic,” or in abbreviation CNCE. We summarize the 
main assumptions of our model as following:

• Upon joining the network, each customer is endowed a fix amount of budget.
• The cloud network provides multiple services simultaneously.
• For each service, the price of bandwidth unit is a predetermined value. These 

prices are set by service owners.
• The physical hosts of the DC play the role of producers.
• The users (VMs) play the role of consumers.
• The bandwidth unit of each service plays the role of commodity.

Table 1 shows the description of mathematical symbols and notations which are 
used in this section. We denote the set of VMs by VM = {vm1, vm2,… , vmNVM

} 
in which NVM represents the total number of VMs. Similarly, the set of physical 
hosts is denoted by H = {h1, h2,… , hNH

} in which NH represents the total num-
ber of physical hosts. Also, the set of services provided in CNCE is denoted by 
S = {s1, s2,… , sNS

} in which NS represents the total number of services. Also, func-
tion uvmi

 denotes the preferences of every VM in domain ℝN
+

 . The uvmi
 function 

reveals the utility of virtual machine vmi concerning its demanded services. This 
function meets the conditions in Assumption 1.

Assumption 1 (Social welfare of VMs) Function uvmi
 is continuous, strictly increas-

ing and quasi-concave [42].

In order to meet conditions of Assumption 1, we have designed uvmi
 as a logarith-

mic function. This type of utility function is another form of increasing and concave 
function called Cobb–Douglas function. Cobb–Douglas function is the most com-
monly used function in microeconomics and is influenced by demanded bandwidth 
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rate of each consumer. The utility function of virtual machine vmi is in the form of 
Eq. (1). It is equal to weighted sum of utilities resulted from reservation rates of vir-
tual machine vmi subject to its demanded services:

In the above equation, wsj
vmi

 denotes the weight (importance) of service sj for each 
virtual machine vmi . These weights are determined by the network owner and are 
generally application-specific. Clearly, for each virtual machine vmi , it must be that ∑NS

j=1
w
sj
vmi

= 1 . Also, dsjvmi
 denotes the rate of service sj which is demanded by virtual 

machine vmi.
As mentioned above, each physical host hl plays the role of producer in CNCE. 

Let gsj
h l

 denote the rate of service sj which is generated by physical host hl . It is clear 
that the domain of generated services for each host hl is ℝNS . Also, we assume that 
each host hl has a possible service set. The characteristics of possible service set will 
be introduced later in Assumption 2.

Now, we proceed to formulate the optimization problem of VMs in the CNCE. 
As explained in Eq.  (2), our problem is to maximize the aggregation of utilities 
concerning all VMs. In microeconomics terminology, it means that we want to 

(1)uvm
i

=

NS∑

j=1

w
sj
vmi

× Ln(1 + d
sj
vmi

), 1 ≤ i ≤ NVM

Table 1  Mathematical symbols and notations used in reservation step

Symbol Symbol description

NVM Total number of virtual machines
NH Total number of physical machines (hosts)
NS Total number of services which are provided by DC
VM = {vm1, vm2,… , vmNVM

} The set of virtual machines
H = {h1, h2,… , hNH

} The set of hosts
S = {s1, s2,… , sNS

} The set of services provided by DC
uvmi

Utility function associated with virtual machine vmi

d
sj
vmi

The rate of the demanded service sj which is requested by 
virtual machine vmi

d
sj
max

Maximum allowed rate of service sj for each VM

d
sj

min
Minimum allowed rate of service sj for each VM

bvmi
Budget associated with virtual machine vmi

psj The price of service sj
� = (ps1 , ps2 ,… , psNS

) Vector of prices associated with network services
p∗
sj

Walrasian equilibrium price for service sj
g
sj

h l

The rate of service sj which is provided by physical host hl
gmax
h l

The maximum rate (capacity) provided by physical host hl
�
∗ = (p∗

s1
, p∗

s1
,… , p∗

sNS
) Vector of Walrasian equilibrium price

EDsj
(�), 1 ≤ j ≤ NS Excess demand of service sj

EDsj
(�∗) Excess demand of service sj at Walrasian equilibrium price
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maximize the social welfare of VMs. This problem is expressed in Eq. (2) subject to 
constraints of Eqs. (3)–(5):

The expression in Eq. (3) represents the budget constraint of virtual machine vmi . 
The condition in left-hand side of Eq. (3) represents expenditure of virtual machine 
vmi which is the multiplication of rates of its demanded services by the prices of 
those services. This equation simply states that the expenditure of virtual machine 
vmi should not exceed its budget, bvmi

 . For each virtual machine vmi , the budget bvmi
 

and the demand bandwidth rate dsjvmi
 are determined a priori. These two parameters 

are determined by the users in the cloud network. Equation  (4) is an application-
specific constraint. It states that for each virtual machine vmi , rates of the demand 
for each service sj should be in a range between a minimum and maximum. Equa-
tion  (5) states that for each service sj , total demands issued by VMs (actually the 
users) should not exceed the total supply of the hosts. Clearly, the possible areas 
concerning constraints in Eqs. (3)–(5) are compact. Therefore, the above nonlinear 
optimization problem will have a global optimum solution. The solution of optimi-
zation problem of Eq. (2) is the optimum rates of the demanded services for all vir-
tual machines, i.e., {dsjvmi

, 1 ≤ j ≤ NS} . These types of problems can be easily solved 
by optimization approaches such as gradient methods using Kahn–Tucker conditions 
and by means of common mathematical software tools such as JOM [43].

Now, we proceed to explain the producer problem. The characteristics of possible 
service set were introduced in Assumption 2.

Assumption 2 (Characteristics of possible service set) Let gsj
h l

 denote the rate of 
service sj which is provided by physical host hl . Then, the possible service supply, 
g
sj

h l
 , should have properties as following [42]:

(a) � ∈ g
sj

hl
⊆ ℝ

NS

(b) g
sj

h l
 is closed and bounded.

(c) g
sj

h l
 is convex.

(2)Max f1 =

NVM∑

i=1

uvmi
,

(3)s.t.

NS∑

j=1

(
d
sj
vmi

× psj

)
≤ bvmi

, 1 ≤ i ≤ NVM

(4)d
sj

min
≤ d

sj
vmi

≤ d
sj
max, 1 ≤ j ≤ NS

(5)
NVM∑

i=1

d
sj
vmi

≤

NH∑

l=1

g
sj

hl
, 1 ≤ j ≤ NS
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The condition (a) guarantees the boundedness of service production rate from 
below, i.e., zero boundedness. The condition (b) guarantees the continuity of service 
production by physical host hl . The condition (c) assures that the provided service 
from physical host hl is unique. Therefore, every physical host hl forms a convex 
solution area.

As stated before, 
∑NH

l=1
g
sj

hl
 denotes the total supply of hosts concerning the service 

sj in which NH denotes the number of physical hosts and 1 ≤ j ≤ NS . Now, let us for-
mulate the optimization problem of physical hosts, as producers of the market:

The expression in Eq. (6) represents the total revenue earned by producers con-
cerning NS services. Equation (7) states that for each physical host hl , the total pro-
duction bandwidth rate of all services should not exceed the host’s maximum per-
missible production, gmax

h l
 . Here, gmax

h l
 denotes uploading bandwidth of host hl . The 

solution for optimization problem in Eq. (6) represents the optimum bandwidth rates 
concerning the generated services by all hosts, i.e., {gsj

hl
, 1 ≤ j ≤ NS}.

As stated before, in equilibrium point of competitive economy, the demands of 
consumers are met and also the supplied commodities are sold completely. There-
fore, for every agent, movements of the other agents can be ignored, and hence the 
only information the consumer and the producer need is the current price of the mar-
ket. This fact is the core of Walrasian equilibrium theory. Leon Walras (1834–1910), 
a French mathematical economist, presented the Walrasian supply and demand equi-
librium theory for the first time. The general equilibrium theory attempts to find a 
vector of prices at which the total demand rates of each commodity is equal to its 
total supply rates. In the following, we will prove that any reservation in Walrasian 
equilibrium is a Pareto efficient solution for CNCE and, hence may lead to optimiza-
tion of VMs’ rates [42].

It is common in microeconomics to show the difference between total demand 
and total supply of any commodity by a function, named “excess demand.” Before 
proceed, let us denote the vector of service prices by � = (ps1 , ps2 ,… , psNS

) . As men-
tioned before, the number of services provided by the cloud is denoted by NS . 
Clearly, the price vector � is NS-dimensional. Now, the excess demand of service sj 
can be represented as following:

(6)Max Rev =

NS∑

j=1

NH∑

l=1

(
g
sj

hl
× psj

)

(7)s.t.

NS∑

j=1

g
sj

hl
≤ gmax

hl

(8)EDsj
(�) =

NVM∑

i=1

d
sj
vmi

(�) −

NH∑

l=1

g
sj

hl
(�), 1 ≤ j ≤ NS
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If EDsj
(�) > 0 , then we have extra demand for bandwidth of service sj and if 

EDsj
(�) < 0 , then we will have extra supply for bandwidth of service sj . In microeco-

nomic, extra demand and extra supply are considered as instability of market. The 
Walrasian equilibrium price, �∗ occurs when EDsj

(�∗) ≫ 0 for all 1 ≤ j ≤ NS . Here, 
the notation ≫ means “equal or very close to.” According to Assumptions 1 and 2, the 
existence of equilibrium price vector �∗ is guaranteed by the following theorem [42]:

Theorem  1 (Walrasian equilibrium in CNCE) If any virtual machine vmi meets 
Assumption (1) and any physical host hl meets conditions in Assumption (2), then 
there exists at least one price vector �∗ in which EDsj

(�∗) ≫ 0 for all 1 ≤ j ≤ NS.

Proof Before we proceed, let us emphasize on two important facts. The first is that 
although Cobb–Douglas utility function is not strongly increasing on ℝNS

+  , it guaran-
tees the existence of Walrasian equilibrium. Second, when utilities satisfy Assump-
tion 1, the excess demand vector will be homogeneous of degree zero. Interested 
readers can refer to pages 204–212 of [42] to see the proof of these theories. The key 
importance of homogeneity is that only relative prices matter in VMs’ choices. 
Thus, subject to homogeneity property, we will have EDsj

(�∗) = EDsj
(� ⋅ �

∗) = � 
for all 𝜆 > 0 . So, should there exist some set of prices at which all markets clear. 
Also, any price vector which is obtained from multiplying that price by � will also 
clear the CNCE market. This fact can simplify the calculations.□

Example 1 Let us consider a two-person two-service CNCE and solve it to get a 
Walrasian equilibrium. We assume that VMs (users) vm1 and vm2 have identical 
utility functions, 

where 0 < 𝜌 < 1 . In microeconomics, the above function is known as constant elas-
ticity of substitution (CES) utility function. It can easily be verified that Eq. (9) is 
strictly monotonic and strictly convex. Suppose there be 1 unit of each service and 
each consumer owns all of one service, so initial endowments concerning the con-
sumers are �vm

1

(1, 0) and �vm
2

(0, 1) . Because the total endowment of each service is 
strictly positive and Eq. (9) is strongly increasing and strictly quasi-concave on ℝNS

+  
when 0 < 𝜌 < 1 , the requirements of Theorem 1 are satisfied, so we make sure that a 
Walrasian equilibrium exists in this economy. Now in order to obtain the demand 
functions concerning users, let us define the following optimization problem inspir-
ing from Eqs. (2)–(3):

(9)uvmi

(
d
s1
vmi

, d
s2
vmi

)
=
(
d
s1
vmi

�
+ d

s2
vmi

�) 1

� i = 1, 2,

(10)Max uvm
i

(
d
s1
vmi

, d
s2
vmi

)
=
(
d
s1
vmi

�
+ d

s2
vmi

�) 1

� i = 1, 2

(11)s.t. d
s1
vmi

⋅ ps1 + d
s2
vmi

⋅ ps2 ≤ bvmi
i = 1, 2
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To solve the above nonlinear optimization problem, at first, we define Lagrangian 
function:

Now, we form the first-order Lagrangian Kuhn–Tucker conditions as following:

As is evident, we have three equations in three unknowns. After rearranging and 
simplifying Eqs. (13)–(15), we have:

After substituting Eq. (16) in Eq. (17), we have:

By solving Eq. (18) for ds2vmi
 , we have:

(12)L
(
d
s1
vmi

, d
s2
vmi

, �
)
=
(
d
s1
vmi

�
+ d

s2
vmi

�) 1

� − � ⋅

(
d
s1
vmi

⋅ ps1 + d
s2
vmi

⋅ ps2 − bvmi

)

(13)
�L

�d
s1
vmi

=
(
d
s1
vmi

�
+ d

s2
vmi

�) 1

�
−1

⋅ d
s1
vmi

�−1
−� ⋅ ps1 = 0,

(14)
�L

�d
s2
vmi

=
(
d
s1
vmi

�
+ d

s2
vmi

�) 1

�
−1

⋅ d
s2
vmi

�−1
−� ⋅ ps2 = 0,

(15)
�L

��
= ps1 ⋅ d

s1
vmi

+ ps2 ⋅ d
s2
vmi

− bvmi
= 0,

(16)d
s1
vmi

= d
s2
vmi

⋅

(
ps1

ps2

) 1

�−1

,

(17)bvmi
= ps1 ⋅ d

s1
vmi

+ ps2 ⋅ d
s2
vmi

,

(18)
bvmi

= ps1 ⋅ d
s1
vmi

⋅

(
ps1

ps2

) 1

�−1

+ ps2 ⋅ d
s2
vmi

,

= d
s2
vmi

(

p

�

�−1

s1
+ p

�

�−1

s2

)

⋅ p

−1

�−1

s2

(19)d
s2
vmi

=
p

1

�−1

s2
⋅ bvmi

p

�

�−1

s1
+ p

�

�−1

s2

,
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Now, substituting from (19) into (16) gives us ds1vmi
:

Equations  (19) and (20) are known as Marshallian demand functions. By defining 
r = �∕(� − 1) , we can rewrite the final Marshallian demands regard to two VMs, 
namely vm1 and vm2 as:

As can be seen from the above equations, the solution to the problem of each con-
sumer vmi in CNCE only depends on the prices of services, namely ps1 , ps2 , and 
also the initial budget of customer, namely bvmi

.Now, let us assume that the budget 
of each user is equal to the market value of the endowment, so bvm1

= � ⋅ �vm1
= ps1 

and bvm2
= � ⋅ �vm2

= ps2 . Recall from Theorem 1 that there exists an equilibrium in 
which all prices are strictly positive. Taking this into account and also regard to this 
fact that only relative prices matter, leads us to choose a convenient normalization 
to simplify calculations. Let �̄ ≡ (1∕ps2 ) ⋅ � . Here, p̄s1 ≡ ps1∕ps2 and p̄s2 ≡ 1 . So, ps1 
is just the relative price of the service s1 . Because each consumer’s demand at � is 
the same as the demand at �̄ , our problem is equivalent with problem of finding an 
equilibrium set of relative prices, �̄ . Now, consider the market for service s1 . Assum-
ing an interior solution, the necessary condition to establish the equilibrium is that 
the total supply equates the total demand at price �̄∗ . In other words, we must have

Considering Eqs. (21)–(22) and the above discussion, this requires

(20)d
s1
vmi

=
p

1

�−1

s1
⋅ bvmi

p

�

�−1

s1
+ p

�

�−1

s2

,

(21)d
s1
vmi

(�, bvmi
) =

pr−1
s1

⋅ bvmi

pr
s1
+ pr

s2

,

(22)d
s2
vmi

(�, bvmi
) =

pr−1
s2

⋅ bvmi

pr
s1
+ pr

s2

,

(23)d
s1
vm1

(�̄∗, �̄∗
⋅ �vm1

) + d
s1
vm2

(�̄∗, �̄∗
⋅ �vm2

) = e
s1
vm1

+ e
s1
vm2

,

(24)
p̄∗
s1

r−1
⋅p̄∗

s1

p̄∗
s1

r +1
+

p̄∗
s1

r−1

p̄∗
s1

r +1
= 1,
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Solving, we obtain p̄∗
s1
= 1 . We conclude that any vector �∗ where p∗

s1
= p∗

s2
 , equates 

demand and supply in market s1 . By Walras’ law, those same prices must equate 
demand and supply in market s2 , so we are done.□

Based on above explanations, in order to reach the Walrasian equilibrium price 
vector �∗ , the controller of CNCE should increase the price of each service sj gradu-
ally when EDsj

(�) > 0 . In contrast, the controller should decrease the price of each 
service sj gradually when EDsj

(�) < 0 . In this way, after finite number of iterations 
the market will reach to equilibrium price vector �∗ in which EDsj

(�∗) ≫ 0 for all 
1 ≤ j ≤ NS.

Definition 1 (Walrasian Equilibrium Allocations (WEAs)) Let �∗ be a Walrasian 
equilibrium for CNCE with initial endowments � , and let 

where each element �vmi
(�∗,�∗

⋅ �vmi
) denotes the demand of virtual machine vmi 

subject to NS services at prices �∗ . The term �(�∗) in Eq. (25) denotes a Walrasian 
equilibrium allocation, or WEA.

Now, let us assume that CNCE is a competitive economy with initial endowments 
e as following:

Also, let F(�) denote feasible allocations in CNCE:

Now, we outline two significant lemmas without proof. These lemmas will be 
used in proof of Pareto optimality later.

Lemma 1 Let �∗ be a Walrasian equilibrium for CNCE with initial endowments � 
as defined in Eq. (26). Also, let �(�∗) be the WEA of CNCE as defined in Eq. (25). 
Then �(�∗) ∈ F(�).

Lemma 2 Suppose the demand function of virtual machine vmi , namely uvm
i

 , is 
well-defined at � ≥ � and is strictly increasing on ℝNS

+  . Also suppose that it is equal 
to �̂vmi

 , and that �vmi
∈ ℝ

NS

+ .

1. if uvm
i

(�vmi
) > uvm

i

(�̂vmi
) , then � ⋅ �vmi

> � ⋅ �̂vmi
.

2. if uvm
i

(�vmi
) ≥ uvm

i

(�̂vmi
) , then � ⋅ �vmi

≥ � ⋅ �̂vmi
.

(25)
�(�∗) ≡

(
�vm1

(
�
∗,�∗

⋅ �vm1
, �vm2

(�∗,�∗
⋅ �vm2

)
,… , �vmNVM

(
�
∗,�∗

⋅ �vmNVM

))
,

(26)� ≡ (�vm1
, �vm2

,… , �vmNVM

)

(27)F(�) ≡

{

�

|||
|||

NVM∑

i=1

�vmi
=

NVM∑

i=1

�vmi

}
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In microeconomics, the WEAs include allocations of services to users that lie on 
the core of those economies. Our goal at this moment is to prove that WEAs have 
this property in arbitrary economies such as CNCE. Let C(�) denote the set of allo-
cations in the core.

Theorem  2 (Core and Equilibria in Competitive CNCE Economies) Consider an 
exchange economy (uvm

i

, �vmi
), 1 ≤ i ≤ NVM . If each user’s utility function, uvm

i

, is 
strictly increasing on ℝNS

+ , then every WEA is in the core. Formally speaking, 

Proof Simply speaking, the theorem says that if �(�∗) is a WEA for equilibrium 
prices �∗ , then �(�∗) ∈ C(�) . To prove it, we use proof by contradiction. So, let us 
suppose �(�∗) is a WEA, and �(�∗) ∉ C(�) . Since �(�∗) is a WEA, from Lemma 1 it 
must be that �(�∗) ∈ F(�) , so �(�∗) is feasible. However, because �(�∗) ∉ C(�) , we 
can find a coalition S and a new allocation �′ such that

And,

Equation (29) implies

Now from Eq. (30) and Lemma 2, we know that for each i ∈ S , we must have

Integrating over all users in S, we have

Equation (33) contradicts Eq. (31). Thus, assuming the proposition to be false leads 
to a contradiction. Finally, it is concluded that �(�∗) ∈ C(�) and the theorem is 
proved.□

Now, we proceed to state the most important theory which proves that the com-
petitive outcomes, such as CNCE, are Pareto efficient! In microeconomics, this is 
known as First Welfare Theorem.

(28)W(�) ⊂ C(�)

(29)
∑

i∈ S

�
�
vmi

=
∑

i∈S

�vmi

(30)uvm
i

(��
vmi

) ≥ uvm
i

(�vm1
(�∗,�∗

⋅ �vm1
), i ∈ S

(31)�
∗
⋅

∑

i∈S

�
�
vmi

= �
∗
⋅

∑

i∈S

�vmi

(32)�
∗
⋅ �

�
vmi

≥ �
∗
⋅ �vm1

(�∗,�∗
⋅ �vm1

) = �
∗
⋅ �vm1

.

(33)�
∗
⋅

∑

i∈S

�
�
vmi

> �
∗
⋅

∑

i∈S

�vmi
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Theorem  3 (First Welfare Theorem) Under the hypotheses of Theorem 2, every 
WEA is Pareto efficient.

Proof In Theorem  2, we proved that every WEA is in the core. Taking this into 
account and also with respect to this fact that all core allocations are Pareto efficient, 
immediately proves the theorem!□

Figure 1 demonstrates the CNCE architecture along with the main activities in 
microeconomic-based bandwidth reservation scheme. As is evident in Fig.  1, in 
order to control the CNCE market, we have used an entity, named “broker.” The 
broker node is responsible for computing Walrasian equilibrium price and informing 
that price to all physical hosts and all VMs. To this end, the broker at first gathers 
the required information concerning VMs and hosts. This information includes the 
service demand, budget, and downloading capacity of VMs. Note that the informa-
tion concerning physical hosts is typically sored on broker. After calculating Walra-
sian equilibrium Pareto efficient bandwidth rates, the broker sends the demand res-
ervation rates back to VMs.

We now proceed to explain the messaging of the proposed algorithm. Figure 2 
shows the primitives and transferred messages between network entities in resource 
reservation step of CNCE (see upper half of the figure). In summary, it can be said 
that in the first step of mechanism, the optimal reserved bandwidth rate for every 
VM is obtained based on the concept of Walrasian general equilibrium. Table  2 
represents the bandwidth reservation messages in CNCE with their description 
and direction among VMs, broker and physical hosts. Also contents of messages 
are shown in Table  3. As stated before, every virtual machine has a demand rate 
function which is based on service price. Every virtual machine vmi sends a VJR 

Fig. 1  Major activities in the CNCE architecture
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Fig. 2  Primitives of CNCE in both steps: bandwidth reservation step and VM placement step

Table 2  Description and direction of CNCE messages in bandwidth reservation step

Message Message description Direction

VJR Virtual machine joining request From any virtual machine vmi to broker
PJR Provider joining request From cloud service provider (CSP) to the broker 

(the entity CSP, holds information of physical 
hosts)

WPM Walrasian Pareto message From broker to CSP and all VMs

Table 3  Contents of CNCE messages in bandwidth reservation step

Message Message content Comments

VJR ⟨{d
sj
vmi

�sj ∈ S}⟩,
⟨bvmi

⟩,
⟨d

sj
max⟩ , ⟨d

sj

min
⟩

Contains service demand, budget, and downloading 
capacity of any virtual machine vmi

PJR
⟨
NH∑

l=1

g
sj

hl
, 1 ≤ j ≤ NS⟩

Contains the aggregation of services production func-
tions concerning all physical hosts

WPM ⟨d
sj
vmi

(�∗), 1 ≤ j ≤ NS⟩,
⟨g

sj

h l
(�∗) , 1 ≤ j ≤ NS⟩,

⟨�∗⟩

Contains the calculated demands and new price vector 
for Walrasian general equilibrium
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message to the broker. A VJR message contains parameters like service demand, 
budget, and downloading capacity of virtual machine vmi . On the other hand, CSP 
node sends a PJR message to the broker. As is the case in real-world cloud data-
centers, the CSP node stores all required parameters of physical hosts. A PJR mes-
sage contains parameters like the aggregation of production functions subject to all 
physical hosts. From this point forward, the broker identifies the characteristics of 
VMs and hosts and indeed can compute the Walrasian general equilibrium optimum 
price for demands of VMs and hosts. The broker sends the calculated demands to all 
nodes using WPM message and also modifies the price vector for upcoming requests 
using the excess demand, as described before in Eq. (8). The CSP, in turn, will send 
the equilibrium price and other required information back to physical hosts. At this 
point, the bandwidth reservation step is finished. From this point forward, the VM 
placement routine will be started.

3.2  VM placement problem

We now proceed to describe the VM placement step and its protocol. As discussed 
before, the bandwidth reservation step uses the producer–consumer theory and also 
leverages the concept of Walrasian equilibrium. This process determines the optimal 
demands of bandwidth rates for all VMs. Now, in second step, we aim to place VMs 
on appropriate hosts in such a way that the consumed power in the DC is minimized. 
In order to solve the VM placement problem, we use the approach of [28] with some 
modifications. The description of mathematical symbols and notations which are 
used in this section is given in Table 4.

Let �i denote the CPU utilization concerning the physical host h i . Similar to [28], 
we can compute �i as following:

(34)�i =

∑NVM

j=1
xij ⋅ cpuj

cpumax
i

, xij ∈ {0, 1}, 1 ≤ i ≤ NH,

Table 4  Mathematical symbols and notations used in VM placement step

Symbol Symbol description

x
ij

A binary variable which equals 1 if any virtual machine vmj is placed on the physical 
host h i and is zero otherwise

y
i

A binary variable which equals 1 if the physical host h i is selected, and is zero otherwise
cpuj CPU usage of virtual machine vmj

cpumax
i

Maximum affordable CPU by the host h i

�i CPU utilization concerning the physical host h i.

pow
busy

i
Consumed power of physical host h i in active mode

powidle
i

Consumed power of physical host h i in passive mode
powi Consumed power of physical host h i

memj Memory usage of virtual machine vmj

memmax
i

Maximum affordable memory by the physical host h i

bwmax
i

Maximum affordable capacity (bandwidth rate) by the physical host h i
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where x
ij
 denotes a binary variable which equals 1 if virtual machine vmj is placed 

on the physical host h i and is zero otherwise. Simply, Eq. (34) aggregates the total 
CPU usage of all VMs running on physical host h i , and then divides the total CPU 
usage by maximum affordable CPU in host h i.

Previous studies, for example [28], have shown that the consumed power of a 
real-world server scales linearly with CPU utilization. So, we define the consumed 
power of physical host h i with the following equation:

where powbusy

i
 and powidle

i
 denote consumed power of physical host h i in active 

mode and passive mode, respectively.
Now, we outline the power-aware VM placement problem:

The problem defined in Eq.  (36) seeks to minimize the aggregation consumed 
power of all selected physical hosts. As stated before, x

ij
 denotes a binary variable 

which equals 1 if any virtual machine vmj is placed on the physical host h i and is 
zero otherwise. Similarly,y

i
 denotes a binary variable which equals 1 if the physical 

host h i is selected, and is zero otherwise. The constraint in Eq. (37) guarantees that 
each VM is merely placed on exactly one physical host. The constraint in Eq. (38) 
refers to the CPU usage limitation. The left-hand side expression in Eq. (38) calcu-
lates the aggregation of CPU usages subject to all virtual machines which are placed 
on the same physical host h i . The right-hand side expression represents the 

(35)powi =
(
pow

busy

i
− powidle

i

)
⋅ �i + powidle

i

(36)Min f2 =

NH∑

i=1

yi ⋅ powi

(37)s.t.

NVM∑

j=1

xij = 1, 1 ≤ i ≤ NH

(38)
NVM∑

j=1

xij ⋅ cpuj ≤ yi ⋅ cpu
max
i

, 1 ≤ i ≤ NH

(39)
NVM∑

j=1

xij ⋅memj ≤ yi ⋅memmax
i

, 1 ≤ i ≤ NH

(40)
NVM∑

j=1

xij ⋅

NS∑

k=1

d
sk
vmj

≤ yi ⋅ bw
max
i

, 1 ≤ i ≤ NH

(41)xij, yi ∈ {0, 1}, 1 ≤ i ≤ NH, 1 ≤ j ≤ NVM



7409

1 3

A novel optimized approach for resource reservation in cloud…

maximum CPU which is affordable by the designated host h i . Constraints in 
Eqs.  (39) and (40) are similar to Eq.  (38), but subject to memory usage and 
demanded bandwidth, respectively. The term 

∑NS

k=1
d
sk
vmj

 in Eq.  (40) calculates the 
aggregation of required bandwidth which is demanded by virtual machine vmj con-
cerning all services. In order to remember the explanations about dskvmj

 , refer to 
Sect. 3.1 and Eqs. (2)–(5).

It has been proven previously that the VM placement problem is NP-hard [44]. 
Metaheuristic approaches are used extensively to reduce the time complexity of 
NP-hard problems. In the previous researches like [30], the advantages of cuckoo 
search optimization (CSO) algorithm, as an efficient metaheuristic approach have 
been investigated. Authors in [27] showed that the performance of CSO is better 
than PSO and GA approaches [27]. Therefore, we have used CSO algorithm to solve 
the VM placement step. As explained in detail in Sect. 3.1, the major contribution of 
this research is in designing microeconomics-based bandwidth reservation mecha-
nism. However, our minor contribution is modifications which we have applied to 
CSO for the VM placement step. Due to space limitations, we omit detailed descrip-
tions of VM placement with CSO. Interested readers can refer to [30] to see the 
full procedure. Here, we only highlight the modifications which we have made to 
VM placement with CSO. In the CSO algorithm, determination of initial radius of 
cuckoos (VMs) for oviparity in nests (hosts) is carried out in random space. The ran-
domness of initial radius of cuckoos’ nests may force them not to place their eggs in 
a uniform search space. Therefore, it is likely for a group of cuckoos to locate in the 
same radius, which in turn, results in slow convergence of the CSO algorithm. We 
have made some modifications in initial random selection of cuckoos’ nests which 
results in more fairness in distribution of the nests. For this purpose, at first, we 
determine the number of cuckoos at bootstrap. Then, we divide the search space by 
the number of initial cuckoos in order to determine the radius for cuckoo oviparity. 
Using Eq.  (42), the difference between upper bound and lower bound is obtained 
and is divided by the number of cuckoos.

The search space should be changed using the oviparity distance obtained from 
Eq. (42). Note that the lower bound threshold should not be changed but the upper 
bound threshold will be equal to lower bound plus the oviparity radius. So, we have:

As shown in Fig.  3, for new coming cuckoos, the calculated distance will be 
added to the upper bound and the lower bound thresholds:

Based on the CSO algorithm, VMs are fairly distributed in search space and after 
oviparity, some of eggs are destroyed. One of the important sections of the CSO 

(42)Dist =
(
UBold − LBold

)
∕NumCuckoos

(43)LBNew = LBold

(44)UBNew = LBNew + Dist

(45)LBNew = LBNew + Dist

(46)UBNew = UBNew + Dist
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algorithm is levy flight of cuckoos for immigration after eggs maturation. Authors 
in [44] proposed an approach which combines GA with simulated annealing (SA) in 
order to minimize the energy consumption of the cloud datacenter. This algorithm 
falls into the category of metaheuristic approaches. Typically, metaheuristic opti-
mization approaches help to avoid trapping in local optima. The main concept of 
SA has been inspired from annealing process of metals in metallurgy [44]. Figure 4 
demonstrates the modifications which we have made in CSO by SA algorithm in 
order to place VMs optimally.

Some examples of placements in levy flight are demonstrated in Figs.  5 and 6 
based on SA algorithm. In each figure, the upper array is resulted from previous 
steps of CSO algorithm (the number of eggs, oviparity radius and nest selection). 
In this array, the index of each cell represents the identification of associated VM. 
Also, the content of each cell shows the identification of physical host.

(a) VM migration based on transition operator as is shown in Fig. 5, by applying 
transition operator in the modified CSO algorithm, at first, one of VMs located 
on physical machine “1” is migrated to physical machine “2,” and then one of 
VMs located on physical machine “3” is migrated to physical machine “1.”

(b) VM migration based on swap operator: as it is shown in Fig. 6, by applying swap 
operator in the modified CSO algorithm, physical machines “3” and “5” swap 
VMs located on themselves with each other. This placement comes up when 
these two physical machines do not have enough resources (e.g., capacity) to 

Fig. 3  Illustration of the proposed idea for fair distribution of cuckoo eggs across search space before 
oviparity
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admit new virtual machines. The only benefit of swap operation in this state is 
reducing the consumed power of physical hosts.

We now proceed to explain our modifications to CSO algorithm: if the value of 
fitness function in the new physical host is better than that of the previous location, 
the correspondent array will be fed into the levy flight step of CSO algorithm. In this 

Fig. 4  Flowchart of modified cuckoo search optimization (CSO&SA) algorithm combined with simu-
lated annealing (SA) for VM placement step

Fig. 5  Random placement and 
migration using “transition” 
operator with modified CSO 
algorithm

2153143121

2151143221

Fig. 6  Random placement and 
migration using “swap” operator 
with modified CSO algorithm

2153143121

2133145121
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way, the likelihood of attaining global optimum placements will be raised and CSO 
algorithm won’t be trapped in local optima.

We explained the reservation step of the mechanism, before, in Sect. 3.1 (upper 
half of Fig. 2). Now, in the lower half of Fig. 2, we represent primitives and trans-
ferred messages between network entities in placement step of CNCE. Note that in 
the second step of the mechanism, each VM can find its appropriate place on physical 
machines using modified CSO placement algorithm. From now on, we refer to the 
modified algorithm as CSO&SA. The description of messages transferred between 
entities in placement step of CNCE is shown in Table 5. Also, the contents of the 
messages are shown in Table 6. As shown in Fig. 6, in the placement step, the cloud 
service provider sends HAD messages to VMs. These messages contain the addresses 
of appropriate physical hosts subject to the optimization goals. Now, each VM refers 
to the corresponding physical host by GSV message. This message contains the 
amount of demanded service. The Walrasian equilibrium allocation (resource reser-
vation) and VM placement operations in CNCE are shown in Algorithm 1.

Table 5  Description and 
direction of CNCE messages in 
VM placement step

Message Message description Message direction

HAD Host address From cloud ser-
vice provider to 
virtual machine

GSV Give service virtual machine From virtual 
machine to 
physical host

Table 6  Contents of CNCE 
messages in VM placement step

Message Message content Comments

HAD ⟨Hl⟩ Contains host address
GSV ⟨

�
Demand

sj
vmi

�sj�S
�
⟩ Contains the amount 

of demanded 
service
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Algorithm 1 Walrasian equilibrium allocation (resource reservation) and VM placement operations in 

CNCE  

VM: 

1: Send VJR message to broker                                              /*  VJR contains virtual machine joining request */

2: On Receiving HAD message from CSP /* HAD contains host address  < >*/

2.1: Send GSV message to host                                      /*  GSV contains the amount of demanded service*/

broker: 

1: On receiving PJR message from CSP /*  WPM contains Walrasian Pareto allocation message */

1.1:  calculate WEA using Eqs. (6)-(7)
1.1:  send WPM message to CSP 

2: On receiving VJR message from VM /*  WPM contains Walrasian Pareto allocation message */

2.1:  calculate WEA using Eqs. (2)-(5)
2.2:  send WPM message to VM 

CSP: 

1: Send PJR message to broker                                               /*  PJR contains provider joining request */

2: On Receiving WPM message from broker

2.1:  Send HAD message to VMs                                         /*  HAD contains host address < >*/

host: 

1: On Receiving GSV message from VM 

1.1: find best placement using Eqs. (36)-(41)                             /*  calculating best placement with CSO&SA algorithm */

1.2: allocate the resource to VMs based on calculated CSO&SA algorithm

  

4  Performance evaluation

In this section, the performance evaluation of the proposed microeconomics-based 
system is explained using the well-known CloudSim tool (version 3.03) running on 
a 64-bit  Intel® Core™ i5-8269U Processor with 6 MB Cache, 4 Cores, 4.20 GHz 
CPU frequency, and 8 GB RAM. The CloudSim was first developed with the aim 
of modeling and simulating cloud computing systems in Melbourne University 
[45]. As stated before in Sect. 3, the proposed CNCE system comprises two steps: 
in the first step the bandwidth reservation is carried out and in the second step, the 
placement of VMs on physical hosts is carried out. In order to simulate the first 
and second steps, we use the simulation settings which were introduced before in 
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[8, 27], respectively. The number of physical hosts in our simulation is fixed at 10. 
The number of VMs varies according to four scenarios as 20, 30, 45, and 65 virtual 
machines. The CPU processing rate of each VM varies using a uniform distribution 
in the interval (400, 700) MIPS. The required memory is chosen as 512 Mega Bytes. 
The physical hosts of cloud are considered heterogeneous in nature and uniformly 
distributed in the interval (9000, 10,000) MIPS. Also, the provided bandwidth of 
physical hosts is considered uniformly distributed in the interval (4000, 5000) bps. 
Since the CloudSim is a Java-based simulator, we imported Java Optimization Mod-
eler (JOM) library [43] into the CloudSim to solve the above-mentioned optimiza-
tion problem.

One of the significant metrics in microeconomics is the social welfare of the users 
(or equivalently the welfare of VMs). In fact, the concept of social welfare reflects 
the level of quality of service (QOS) in CNCE system. Equation (47) represents the 
aggregate social welfare ( ASW ) of VMs:

Clearly, the social welfare of each VM depends on its utility value which in turn, 
depends on its reserved bandwidth. By dividing ASW to the total number of VMs, 
we can obtain the mean social welfare ( MSW ) of VMs in CNCE as the following:

As stated before in Sect.  2, our proposal falls into the category of non-strate-
gic pricing models in the sense that the action of a particular VM in a given time 
does not affect the actions of other VMs. Clearly, it is better to compare the per-
formance of the proposed method with the research activities carried out in non-
strategic scope. For this purpose, we compare the performance of the system with 
that of CloudSim simulator. This simulator has not any predetermined mechanism 
for pricing the cloud resources. In Fig. 7, the value of ASW of VMs in CNCE has 
been compared with that of the non-priced approach of CloudSim using Eq.  (47). 
According to the figure, it is obvious that the value of ASW of VMs increases as the 
number of VMs increases.

In Fig. 8, the value of MSW of VMs in CNCE has been compared with that of 
the non-priced approach using Eq. (48). As is evident in Fig. 8, the amount of social 
welfare is remarkable using CNCE method. The interesting thing in the figure is that 
the value of MSW in CNCE decreases slightly after a pick with 30 VMs! From the 
viewpoint of producer–consumer theory, the reason behind this phenomenon is quite 
clear: Since resources on physical hosts (actually, the producers in CNCE) are lim-
ited, when the number of VMs (the consumers in CNCE) exceeds 30, the economic 
system slightly enters into the saturation state where the resources are no longer suf-
ficient to serve VMs with initial levels of qualities. This, in turn, results in decreas-
ing the demanded bandwidth rates of VMs and decreasing their utility level subject 
to Eq. (1). Also, regard to Eq. (8) it is clear that as the number of VMs increases, the 

(47)ASW = f1 =

NVM∑

i=1

uvmi
,

(48)MSW =
ASW

NVM
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service prices will experience a gradual rise too. In order to make a better sense of 
what CNCE mechanism does, in Fig. 9 we have depicted the service price against 
VMs’ social welfare in the form of radar diagram. As is evident in the figure, when 
settings of 45 and 65 virtual machines are used, the price of services drastically rises 
(red color) while, changes in VMs’ social welfare are not noticeable (green color). In 
other words, CNCE mechanism is scalable in the sense that the system performance 
does not degrade drastically with the increase in traffic load.

In statistics, Mann–Whitney U is a rank-order test. This test is used for assessing 
the distribution of two independent experimental approaches. It merges two inde-
pendent dataset and ranks data elements in ascending order, irrespective of their 
original group. In this manner, the Mann–Whitney U test could determine the loca-
tion and range of each data element within the merged dataset [46]. We have used 
the well-known SPSS, statistical software tool (version 22), in order to analyze the 
simulation results [47]. Figure 10 shows the mean rank for two approaches. Note 
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Fig. 7  Aggregate social welfares of VMs in CNCE in comparison with that of non-priced case

Fig. 8  Average social welfares 
of VMs in CNCE in comparison 
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that for each approach, we have run the experiments 40 times on CloudSim simula-
tor. As is evident in Fig. 10, CNCE has higher mean rank compared to non-priced 
case. It means that CNCE has a positive and remarkable effect on social welfare of 
users and succeeds to get more shares.

Figure 11 shows the aggregate revenue of hosts in CNCE in comparison with that 
of non-priced approach for different number of VMs. Recall from Eq. (6) that physi-
cal hosts have the role of producers in CNCE. Clearly, CNCE attains considerably 
large amounts of revenue compared to that of non-priced case. This is in accord-
ance with Eqs. (6)–(7), where the providers in CNCE try to regulate their production 
level in such a way that leads to maximization in their revenue.

Fig. 9  Scalability of CNCE: system performance does not degrade drastically with the increase in traffic 
load

Fig. 10  Mann–Whitney U test: CNCE gets more shares of social welfare compared to non-priced case
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Now, let us evaluate the fairness (or distributive justice) in CNCE. Literature sur-
vey in microeconomics shows that there exist numerous definitions subject to fair-
ness. Here, we use a simple definition of fairness. For this purpose, at first we define 
the variance of social welfare concerning virtual machines in CNCE as following:

Clearly, the less is �2 value, the more justice there exists in the society. In other 
words, fairness in CNCE indicates the amount of variations of VMs’ social welfare 
from the average social welfare. Regarding the dependence of this parameter to the 
rate of social welfare, it can be compared with other mechanisms like Ramsey pric-
ing [25]. Figure 12 shows �2 value obtained from CNCE in comparison with those 
of the non-priced and Ramsey mechanisms for different number of VMs. As it can 
be seen from the figure, the proposed method has the least variance in all settings. It 
is worth mentioning that in Ramsey pricing, there are different prices and hence, the 
social welfare of VMs have more fluctuations.

Results which we have presented until now belong to the first step of the proposed 
system. Now, we proceed to discuss the simulation results concerning the second 
step, namely VM placement. We defined the power-aware VM placement problem, 
before, in Eqs. (36)–(41). The consumed power of each physical host is considered 
to be 1000 W and 400 W in active and passive modes, respectively. Figure 13 shows 
the comparison of average power consumption for different number of VMs and 
different placement strategies. It is worth mentioning that the developers of Cloud-
Sim implemented the instrument using a number of VM placement approaches, the 
most famous of which are first-fit decreasing (FFD) and best-fit decreasing (BFD) 
schemes. FFD starts with the most active host and tries to pack every VM in it 
before going to the next host. If no suitable space is found for the VM, the following 

(49)�2 =
1

NVM

NVM∑

i=1

(uvmi
−MSW)2,
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Fig. 11  Aggregate revenue of hosts in CNCE in comparison with those of the non-priced case for differ-
ent number of VMs
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host is selected to be put in the new space. Like FFD, BFD arranges VMs in non-
increasing order. Subsequently, it picks up a bin that entails minimum empty space 
once the VM is packed [48]. We have compared our proposed placement approach 
(CSO&SA) with original CSO as well as FFD and BFD approaches. Note that since 
metaheuristic approaches find extensive Pareto efficient solution points in different 
runs, we have sketched the figure by averaging over 40 runs of the algorithms. The 
simulation results show that our proposed placement algorithm has less consumed 
power in comparison with other approaches for all settings of VMs. As discussed 
before in Sect. 3-2, the reason lies in good distribution of cuckoos as well as creating 
new opportunities due to applying the SA scheme.

In statistics, analysis of variances (ANOVA) test is used to determine the sig-
nificant difference between the averages of multiple (more than two) experimental 

60.3 61 60.66

70.9

53.05 51.74 50.25 48.37

59.06 58.06
54.02 53.35

20 VMs 30 VMs 45 VMs 65 VMs

variance of social welfares
Non-Priced Mechanism CNCE Ramsey Pricing

Fig. 12  Variance of social welfares (fairness) in CNCE in comparison with those of the non-priced and 
Ramsey mechanisms for different number of VMs
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Fig. 13  Comparison of mean power consumption for different number of VMs and different placement 
strategies
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approaches. The SPSS uses default value of 95% confidence interval. So, if signifi-
cance value (abbreviated “Sig.”) is larger than .05 we accept null (basic) hypoth-
esis H0 . The null hypothesis indicates that the averages of all four approaches (FFD, 
BFD, CSO, and CSO&SA) are almost equal. Table 7 shows the descriptive statistics 
of the ANOVA analysis subject to power consumption.

Since Sig. value is greater than .05, the hypothesis H0 is rejected. It means that 
there exists at least one approach which its average power consumption differs 
from that of other approaches! Now, we refer to Table 8, namely Post Hoc analy-
sis. The Post Hoc analysis in Table 8 represents pairwise comparisons among four 
approaches. Here, we have used Fisher’s least significant difference (LSD) method 
which is one of Post Hoc test methods [49]. In the first row of Table 8, the FFD 
approach is denoted by I and other approaches are denoted by J. As is evident from 
the first row of Table 8, the value of I − J (I minus J) is positive for all comparisons. 
So, it is concluded that the FFD approach consumes more power compared to other 
approaches.

Figure 14 shows the average power consumption for all approaches. As is evi-
dent from the figure, the proposed approach has the least value of consumed power 
among all.

Figure 15 shows the Pareto front diagram subject to two objective functions, f1 
and f2 for different number of VMs and different placement strategies. Recall from 

Table 7  The ANOVA table for 
power consumption

Sum of squares df Mean square F Sig.

Between groups 108653.400 3 36217.800 .106 .955
Within groups 4101046.358 12 341753.863
Total 4209699.758 15

Table 8  LSD pairwise comparisons subject to consumed power for different approaches: FFD, BFD, 
CSO, and CSO&SA (Dependent variable: Power consumption, LSD)

(I) Approach (II) Approach Mean difference (I − J) SE Sig. 95% Confidence interval

Lower bound Upper bound

FFD BFD 54.11000 413.37263 .898 − 846.5516 954.7716
CSO 144.83500 413.37263 .732 − 755.8266 1045.4966
CSO & SA 214.42000 413.37263 .613 − 686.2416 1115.0816

BFD FFD − 54.11000 413.37263 .898 − 954.7716 846.5516
CSO 90.72500 413.37263 .830 − 809.9366 991.3866
CSO & SA 160.31000 413.37263 .705 − 740.3516 1060.9716

CSO FFD − 144.83500 413.37263 .732 − 1045.4966 755.8266
BFD − 90.72500 413.37263 .830 − 991.3866 809.9366
CSO & SA 69.58500 413.37263 .869 − 831.0766 970.2466

CSO & SA FFD − 214.42000 413.37263 .613 − 1115.0816 686.2416
BFD − 160.31000 413.37263 .705 − 1060.9716 740.3516
CSO − 69.58500 413.37263 .869 − 970.2466 831.0766
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Eqs. (2) and (36) that f1 and f2 represent the aggregate social welfare and the con-
sumed power, respectively. As is evident from Fig. 15, our proposed method suc-
ceeds to find more Pareto optima points in comparison with other approaches. Also, 
note that the consumed power decreases with decreasing the number of VMs. The 
reason behind this phenomenon is that when the number of VMs decreases, the sys-
tem probably needs to switch on fewer numbers of physical hosts.

Figure 16 shows the comparison of number of required migrations for different 
number of VMs. As it can be seen from the figure, the proposed placement approach 
requires fewer numbers of migrations in order to converge to optimum points.

Finally, we present our last evaluation subject to the proposed algorithm. Fig-
ure 17 shows the comparison of time complexity for different number of VMs. As 
it can be seen from the figure, the proposed placement approach has less time com-
plexity in order to converge to optimum points. This type of complexity is based 
on the time required by each mechanism such as creating initial population and 
updating solution. The most evolutionary algorithms (EAs) have, at each iteration, 
a complexity of  O(d ⋅ s + c ⋅ s) , where d is the dimension of the problem,  s is the 
population size, and   c   is the cost of the objective function. The time complexity 
of the most objective functions is O(d) or even higher. So, usually is the second 
term which plays the significant role to determine the total time complexity. Fur-
thermore, EAs usually perform   e iterations, where e   is the maximum number of 
evaluations performed by the objective function. Thus, the time complexity becomes 

Fig. 14  Average power consumption for different approaches: FFD, BFD, CSO, and CSO&SA
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O(d ⋅ e + c ⋅ e) . Once again, the second term tends to determine the total time com-
plexity. That’s why in EAs, the quality of an algorithm is frequently measured by the 
amount of evaluations it performs. As discussed previously, we made some modi-
fications in CSO algorithm which reduces the parameters c and e . That is why our 
proposed approach attains lower time complexity in Fig. 17.

5  Concluding remarks and future trends

In this paper, we targeted one of the most practical concepts of cloud computing, 
namely the resource management. This process, itself comprises “resource reser-
vation” and “VM placement” operations in which potential players are VMs and 
physical hosts. We made a comprehensive review of previous research activities as 
well as outlining their goals, limitations and criteria. We formulated the resource 
reservation problem using the theory of producer–consumer of microeconomics. 

Fig. 15  Pareto front for different number of VMs and different placement strategies
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The designed mechanism at first identifies the required bandwidth of VMs subject 
to Walrasian equilibrium concept, and then tries to find a near-optimal placement 
for each VM over physical hosts using metaheuristic approach. We proved that the 
aggregation of users’ social welfare is Pareto efficient. The proposed economic sys-
tem results in maximizing the users’ welfare and minimizing the consumed power in 
physical hosts. The proposed economic system falls into the category of non-strate-
gic economic mechanisms in the sense that the actions of VMs associated with the 
users do not affect by the actions of other VMs.

In microeconomics, there exist other interesting and challenging non-strategic 
pricing mechanisms. One of the possible lines of research is to model the interac-
tions between VMs, brokers, and physical hosts by the theory of “exchange econ-
omy.” Another important field of research in the future is attention to the type of 
VMs. This will lead to more realistic modeling of cloud entities.
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