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Abstract
Existing programming models tend to tightly interleave algorithm and optimization 
in HPC simulation codes. This requires scientists to become experts in both the sim-
ulated domain and the optimization process and makes the code difficult to maintain 
or port to new architectures. In this paper, we propose the INKS programming model 
that decouples these concerns with two distinct languages: INKS��� to express the 
simulation algorithm and INKS��� for optimizations. We define INKS��� and evaluate 
the feasibility of defining INKS��� with three test languages: INKS�∕�++ , INKS�∕���� 
and INKS�∕��� . We evaluate the approach on synthetic benchmarks (NAS and heat 
equation) as well as on a more complex example (6D Vlasov–Poisson solver). Our 
evaluation demonstrates the soundness of the approach as it improves the separation 
of algorithmic and optimization concerns at no performance cost. We also identify a 
set of guidelines for the later full definition of the INKS��� language.

Keywords  Programming model · Separation of concerns · HPC · DSL

1  Introduction

It is more and more common to identify simulation as the third pillar of science 
together with theory and experimentation. Parallel computers provide the comput-
ing power required by the more demanding of these simulations. The complexity 
and heterogeneity of these architectures do, however, force scientists to write com-
plex code (using vectorization, parallelization, accelerator-specific languages, etc.). 
These optimizations heavily depend on the target machine, and the code has to be 
adapted whenever it is ported to a new architecture.

As a result, scientists have to become experts in the art of computer optimiza-
tions in addition to their own domain of expertise. It is very difficult in practice to 
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maintain a code targeting multiple distinct architectures. One fundamental cause for 
this situation is the tight interleaving of two distinct concerns imposed by most pro-
gramming models. On the one hand, the algorithm comes from the expertise of the 
domain scientists and does not depend on the target architecture. On the other hand, 
optimizations form another domain of expertise and have to be adapted for a given 
architecture. Therefore, both algorithm and optimizations concerns are expressed 
within a single code. This mix impedes simulation code’s maintainability and read-
ability while hindering developer’s productivity.

Many approaches have been proposed to improve this situation in the form of 
libraries or languages [4, 17, 19, 20]. Approaches based on automated optimization 
processes typically isolate the algorithmic aspects well, but restrict their domain 
of applicability and/or the range of supported optimizations. Approaches based on 
optimization tools and libraries enable optimization specialists to express common 
optimizations efficiently but leave others mixed with the algorithm.

In this paper, we propose the independent kernel scheduling ( INKS ) program-
ming model to separate algorithm from optimization choices in HPC simulation 
codes. We define the INKS��� language used to express the algorithm of an applica-
tion independently of its optimization. This separation aims to improve the read-
ability and maintainability of codes while easing portability and new optimization 
expression. This approach is used for common optimizations, while INKS�∕�++ is 
used for less common optimizations. Such a program can then be optimized using 
INKS�∕��� and INKS�∕���� , two domain-specific languages (DSLs) which ask for 
optimization information only. While these DSLs target some common optimiza-
tions, INKS�∕�++ can be used for less common ones.

This paper makes the following contributions: (1) it defines the INKS program-
ming model and its platform-independent algorithmic language INKS��� ; (2) it pro-
poses an implementation of INKS and tests the INKS��� approach with three opti-
mization DSLs, INKS�∕�++ , INKS�∕���� and INKS�∕��� ; and (3) it evaluates the 
approach on the synthetic NAS parallel benchmarks [3] and on the 6D Vlasov–Pois-
son solving with a semi-Lagrangian method.

The remaining of the paper is organized as follows. Section 2 analyzes related 
works. Section 3 describes INKS and its implementation. Section 4 shows the use of 
INKS on a 6D Vlasov–Poisson solver. Section 5 evaluates our approach. Section 6 
concludes the paper.

2 � Related work

We now present approaches currently available to scientific programmers to help 
implementing simulation applications. A first widely used approach is based on 
imperative languages such as Fortran or C. Libraries like MPI extend this to dis-
tributed memory with message passing. Abstractions very close to the execution 
machine make fine-tuning possible to achieve good performance on any specific 
architecture. It does, however, require encoding complex optimizations directly in 
the code. As there is no language support to separate the algorithm and architecture-
specific optimizations, tedious efforts have to be applied [13] to support performance 
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portability. Algorithm and optimizations are instead often tightly bound together in 
codes.

A second approach is offered by tools (libraries, frameworks or language exten-
sions) that encode classical optimizations. OpenMP [5], REPARA​  [8] or Kokkos 
[4] supports common shared memory parallelization patterns. For example, Kok-
kos offers multidimensional arrays and iterators for which efficient memory map-
pings and iteration orders are selected independently. UPC [9] or XMP [17] sup-
port the partitioned global address space paradigm. For example, in XMP, directives 
describe array distribution and communications between nodes. These tools offer 
gains of productivity when the optimization patterns they offer fit the requirements. 
The separation of optimizations from the main code base also eases porting between 
architectures. Even if expressed more compactly, optimizations do, however, remain 
mixed with the algorithm. For instance, in OpenMP or REPARA, parallel concerns 
are specified on top of an existing code which already carries optimization choices, 
such as loop order.

A third approach pushes this further with tools that automate the optimization 
process. For example, PaRSEC [12] or StarPU [1] supports the multitask paradigm. 
In StarPU, the user expresses its code as a directed acyclic graph (DAG) of tasks 
with data dependencies that is automatically scheduled at runtime depending on the 
available resources. Other examples are SkeTo [21] or Lift [19] that offer algorithmic 
skeletons. Lift offers a limited set of parallel patterns whose combinations are auto-
matically transformed by an optimizing compiler. Automating optimization improves 
productivity and clearly separates these optimizations which improves portability. 
The tools do, however, not cover the whole range of potential optimizations such as 
the choice of work granularity inside tasks in StarPU, for example. The algorithm 
remains largely interleaved with optimization choices even with this approach.

A last approach is based on DSLs that restrict the developer to the expression of 
the algorithm only, while optimizations are handled independently, such as Pochoir 
[20] or PATUS [6], DSLs for stencil problems. In Pochoir, the user specifies a sten-
cil (computation kernel and access pattern), boundary conditions and a space–time 
domain, while all optimizations are handled by a compiler. These approaches ensure 
a very good separation of concerns. The narrower the target domain is, the more 
efficient domain and architecture-specific optimizations are possible. However, it 
makes it less likely for the tool to cover the needs of a whole application. On the 
contrary, the wider the target domain is, the less efficient optimizations are possible.

To summarize, one can consider a continuum of approaches from very general 
approaches where the optimization process is manual to more and more domain-spe-
cific where the optimization process can be automated. The more general approaches 
support a large range of optimizations and application domains but yield high imple-
mentation costs and low separation of concerns and portability. The more automated 
approaches reduce implementation costs and offer good separation of concerns and 
portability but restrain the range of supported domains and optimizations. Ideally, 
one would like to combine all these advantages: (1) the domain generality of imper-
ative languages, (2) the ease of optimization offered by dedicated tools and (3) the 
separation of concerns and performance portability offered by DSLs with (4) the 
possibilities of fine and manual optimizations offered by both imperative languages 
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and dedicated tools. The following section describes the INKS programming model 
that aims to combine these approaches to offer such a solution.

3 � The INKS programming model

This section first introduces the design of our INKS programming model, based 
on the use of distinct languages to express the algorithm and optimization choices 
separately. It then presents a prototype implementation of the model composed of 
INKS��� , the algorithm language, and two INKS��� optimization languages. The 
simulation algorithm consists in the set of values computed, the formula used to 
produce them as well as the simulation inputs and outputs. Optimization choices 
include all that is not the algorithm: e.g., the computing unit selected for each com-
putation, their ordering, the memory location for each value, etc. Multiple optimiza-
tion choices can differ in performance, but simulation results depend on the algo-
rithm only. The INKS approach is summarized in Fig. 1. The INKS��� language is 
used to express the algorithm with no concern for optimization choices. A compiler 
can automatically generate non-optimized choices from an INKS��� specification, 
mostly for testing purposes. The INKS��� language is used to define optimizations 

Fig. 1   INKS model
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only, while other information is gathered from the INKS��� code. Many versions of 
the optimization choices can be devised for a single algorithm, for example to opti-
mize for multiple targets.

We now describe the INKS��� language and propose three preliminary DSLs 
to validate strategies for the design of the INKS��� language: INKS�∕��� handles 
domain decomposition, INKS�∕���� focuses on efficient loop nest and INKS�∕�++ 
enables to use C++ and write arbitrary complex optimization.

3.1 � The INKS��� language

In InKS��� [2], values are stored in infinite multidimensional arrays based on dynamic 
single assignment (DSA, each coordinate can only be written once). Memory place-
ment of each coordinate is left unspecified. Computations are specified by kernel 
procedures that (1) take as parameter data arrays and integer coordinates; (2) specify 
the coordinate they might read and will write in each array; and (3) define either 
a C++ or INKS implementation. An INKS implementation defines kernels validity 
domains: coordinates where C++ kernels can generate values in arrays. Kernel exe-
cution order is left unspecified. The simulation entry point is a kernel marked pub-
lic. Listing 1 presents a simple INKS��� code: a 1D 3-point stencil computation. The 
simulation consists of one 2D logical array, Array (line 12), two kernels, sten-
cil3 (line  1) and boundary (line  6), and is parameterized by two integers, X 
and T (line 11). Line 12 specifies that the simulation starts with a subset of Array 
(every values in the space dimension, at the first time step) and expects, as output, 
another subset: every values in the space dimension at the last time step. To do so, 
it can call the stencil3 and boundary kernels with a specific set of values for 
their integer parameters x and t (validity domain) and with Array as their logical 
array parameter, as expressed on line 15 and 16.

A INKS��� code specifies a parameterized task graph (PTG) [7]. This graph is 
encoded using the polyhedron model [10]. It provides a compact representation of 
static control programs. This representation covers a large range of problems but 
imposes a few limitations. Mostly, all the problem parameters must be known at 
launch time, and it does, for example, not support adaptive mesh or time steps. It is 
still possible to express these concerns outside INKS��� and call the INKS implemen-
tation multiple times with different parameters.

Once the algorithm is specified in INKS��� , the goal is to write the optimization 
choices meaning choosing a memory layout and a scheduling of the kernels. Two 
approaches exist to produce these choices: the automatic compiler or INKS��� . All 
approaches rely on the kernel file. This file is generated by the INKS��� compiler 
which translates the INKS��� kernels into C++ functions. The INKS��� compiler can 
produce generic optimization choices with a valid but non-optimized computations 
scheduling and memory allocations to execute them. Scheduling and memory lay-
outs are computed using the Integer Set Library [22] and recent works on modular 
mapping in the polyhedron model [14]. Arbitrarily complex versions of optimization 
choices can also be written manually in plain C++. These functions can be called 
from any existing code whose language supports the C calling convention. However, 
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that approach requires information present in INKS��� to be repeated. The INKS��� 
DSL thus interfaces the optimization process with INKS��� , offering the optimization 
specialists to specify optimization only.

3.2 � INKS��� DSL implementation

Implementing a complete optimization DSL for the INKS model is a long-term 
objective. In this study, we present the two DSLs: INKS�∕��� and INKS�∕���� . Both 
DSLs solely describe optimizations and get missing information from INKS��� code.
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INKS�∕��� (illustrated in Listing  2) handles distributed memory domain 
decomposition by combining C and directives based on XMP and adapted for 
INKS . The compiler replaces these directives by C and XMP code. The inks 
decompose directive supports static or dynamic allocation of logical arrays 
described in the algorithm. The domain size is extracted from INKS��� source, and 
the user only has to specify its mapping onto memory. As in XMP, INKS�∕��� 
supports domain decomposition mapped onto an XMP topology. In INKS��� code, 
there are no concerns for memory optimization such as dimension ordering or 
memory reuse. Therefore, INKS�∕��� supports dimension reordering and folding 
which consists in reusing the same memory address for subsequent indices in a 
given dimension. The exchange directive supports halo exchanges. The user 
specifies which dimension should be exchanged and which computational kernel 
will be executed after the exchange. From this information and the INKS��� kernel 
specification, the INKS�∕��� compiler then computes the halo size. While XMP 
requires halo values to be stored contiguously with the domain, INKS�∕��� sup-
ports a dynamic halo extension where halo values are stored in dedicated, dynam-
ically allocated buffers to reduce memory footprint.

INKS�∕���� (illustrated in Listing 3) offers to specify manually loop nests for which 
the compiler generates plain C++ loops. Plain C++ is usable in combination with 
INKS�∕���� . The loop keyword introduces a nest optimization with a name, the list of 
parameters from the algorithm on which the loop bounds depend and a reference to the 
optimized kernel. Loop bounds can be automatically extracted from INKS��� , but the 
Set keyword makes it possible to restrict these bounds. The Order keyword speci-
fies the iteration order on the dimensions named according to the INKS��� code. The 
Block keyword enables the user to implement blocking. It takes as parameters the size 
of block for the loops starting from the innermost one. If there are less block sizes than 
loops, the remaining loops are not blocked. The Buffer keyword supports copying 
data in a local buffer before computation and back after to ensure data continuity and 
improve vectorization. The compiler uses data dependencies from the INKS��� code 
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to check the validity of the loop order and generate vectorization directives whenever 
possible.

4 � The 6D Vlasov/Poisson problem

The 6D Vlasov–Poisson equation, presented in (1), describes the movement of particles 
in a plasma and the resulting electric field. We study its resolution for a single species 
on a 6D Cartesian mesh with periodic boundary conditions. We solve the Poisson part 
using a fast Fourier transform (FFT) and rely on a Strang splitting (order 2 in time) for 
the Vlasov part. This leads to 6 1D advections: 3 in space dimensions ( x1, x2, x3 ) and 
3 in velocity dimensions ( v1, v2, v3 ). Each 1D advection relies on a Lagrange interpola-
tion of degree 4. In the space dimensions, we use a semi-Lagrangian approach where 
the stencil is not applied around the destination point but at the foot of characteristics, 
only known at runtime, as described in more details in [18].

The main unknown is f (f6D in the code), the distribution function of particles in 
6D phase space. Due to the Strang splitting, a first half time step of advections is 
required after f6D initialization but before the main time loop. These advections 
need the electric field E as input. E is obtained through the FFT-based Poisson 
solver that in turn needs the charge density � as input. � is computed by a reduction 
of f6D. The main time loop is composed of 4 steps: advections in space dimensions, 
computation of the charge density (reduction) and electric field (Poisson solver) and 
advections in velocity dimensions. The algorithm of the simulation is presented in 
Fig. 2.

The remaining of the section presents two optimizations implemented in the 
Selalib [16] version of the 6D Vlasov–Poisson problem.

The 6D nature of f6D requires a lot of memory, but the regularity of the prob-
lem means it can be distributed in blocks with good load balancing. Halos are 
required to hold values of neighbors for the advections. Connected halo zones 
would increase the number of points in all dimensions and consume too much 
memory. Split advections mean that halos are required in a single dimension at 
a time though. We therefore use dynamic halos composed of two buffers, one for 
each boundary of the advected dimension (denoted “right” and “left”). Figure 3 
shows this optimization on a 2D domain. Listing 4 shows the INKS�∕��� imple-
mentation of this strategy on 6D Vlasov–Poisson.

(1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�f (t, x, v)

�t
+ v.∇xf (t, x, v) − E(t, x).∇vf (t, x, v) = 0

− ��(t, x) = 1 − �(t, x)

E(t, x) = −∇�(t, x)

�(t, x) = ∫ f (t, x, v)dv
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Advections account for the main computational cost of the problem, up to for 
95% of the sequential execution time. Six loops surround the stencil computation 
of each advection, and in a naive version, the use of a modulo to handle periodicity 
and application along non-contiguous dimensions slow down the computation. To 
enable vectorization and improve cache use, we copy f6D elements into contiguous 
buffers along with the left and right halos. Advections are applied on these buffers 

Fig. 2   6D Vlasov–Poisson algorithm

Fig. 3   Dynamic halo exchange representation on a 2D domain
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before copying them back into f6D. Blocking further improves performance by cop-
ying multiple elements at a time. Listing 5 corresponds to the INKS�∕���� implemen-
tation of these optimizations in a sequential version and presents the generated code. 
The Poisson solver relies on a remapping scheme, where the domain decomposition 
is modified between each FFT execution.

5 � Evaluation

This section evaluates the INKS model on the NAS benchmark, a simple stencil 
code and the 6D Vlasov–Poisson problem. We have implemented the algorithm of 
the following programs using INKS���.

–	 4 sequential NAS kernels (IS, FT, EP and MG), C++ version [11] as reference;
–	 finite difference 3D heat resolution (7-point stencil) ([15] as reference);
–	 6D Vlasov–Poisson, using Fortran/MPI Selalib [16] as reference.

For the 3D heat equation solver, two strategies were implemented: One uses dou-
ble buffering (Heat/Buf) and the other implements a cache-oblivious strategy (Heat/
Obl). To evaluate the INKS programming model on Vlasov–Poisson 6D, we have 
conduct three experiments. The first one is based on optimization choices writ-
ten in plain C++ and cover the whole simulation. Then, we evaluate INKS�∕��� 
and INKS�∕���� on Vlasov–Poisson separately as they target different optimizations 
and are not usable together currently. A first experiment focuses on the sequential 
aspects with the intra-node optimization of the v1 advection using either INKS�∕���� 
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or INKS�∕�++ . A second experiment focuses on the parallel aspects with the charge 
density computation, the Poisson solver and a halo exchange optimized either with 
C/XMP or with INKS�∕��� . Table 1 summarizes the optimization choices we have 
implemented. All codes are compiled with Intel 18 compiler (-O3 -xHost), Intel 
MPI 2018 and executed on the Irene cluster (TGCC, France) equipped with 192 GB 
RAM, two Skylake 8168 CPUs per node and a EDR InfiniBand interconnect. 
Table 2 summarizes the optimization choices we have implemented.

The NAS CG kernel relies on indirections not expressible in the polyhedron model 
of INKS��� . Its implementation would thus have to rely on a large C++ kernel whose 
optimization would be mixed with the algorithm. For the same reason, the NAS FT 
kernels was only partially implemented.INKS��� can, however, be used to express 
all other NAS kernels, the 3D heat equation solver as well as the 6D Vlasov–Pois-
son algorithm. Even if not as expressive as C or Fortran, INKS��� , through the poly-
hedron model, handles static controls programs. This covers the needs of a wide 
range of simulation domains and offers abstractions close to the execution machine 
rather than from a specific simulation domain. More specifically, it supports pro-
grams expressible as parameterized task graphs [7]: a directed acyclic graph of tasks 
(here kernels) in a compact representation whose dependence and scheduling are 
parameterized by integers fixed at the INKS entry point execution. Among others, it 
can express computations such as FFTs or stencils with input coordinates unknown 
at compile time, as in 6D Vlasov–Poisson.

INKS separates the specification of algorithm and optimization in distinct files. 
Multiple optimization strategies can be implemented for a single algorithm, as 
shown for the 3D heat equation where each relies on a specific memory layout and 
scheduling. Similarly, based on the INKS��� algorithm implemented for the IS, EP 
and MG NAS kernels, we have developed multiple optimization choices based on 
INKS�∕�++ and either INKS�∕���� or INKS�∕��� . For more complex cases such as 
the 6D Vlasov–Poisson problem, we were able to develop four optimization choices 
based on one INKS��� algorithm: (1) INKS�∕��� , (2) C with XMP, (3) INKS�∕���� 
and (4) INKS�∕�++ . This proves, to some extent, that the separation of concerns is 
respected.

Finding the right metric to evaluate the easiness of writing a code is a diffi-
cult question. As illustrated in Listings 1 and 5, however, algorithm expression in 
INKS��� is close to the most naive C implementation where loops are replaced by 
INKS validity domains with no worry for optimization. The polyhedron model used 
to represent the INKS��� code is compatible with a subset of the C language. There-
fore, we could have chosen the C as the algorithm language. However, the optimiza-
tion process would have suffer from such a choice. Indeed, while INKS��� is designed 
to remove optimizations through the use of DSA and fine granularity kernels, C ena-
bles its users to reuse memory and specify a total scheduling. Although it is possible 
to analyze the code and to retrieve the DSA form and the partial order of the code 
using the polyhedron model, it will be complicated for optimization specialists to 
find which loops can be broken or which arrays can be expended from a C code.

Concerning the specification of optimization choices, it is close to their expres-
sion in C++. Table 2 compares the GNU complexity score of INKS optimizations to 
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the reference code. INKS scores are slightly better, which indicates that our language 
is not more complex than C++. The difference comes from the extraction of the 
computational kernels, placed in the algorithm, which hides parts of the complexity. 
In addition, the use of INKS�∕�++ to write optimizations let optimization specialists 
reuse their preexisting knowledge of this language. Similarly writing the INKS�∕�++ 
version of optimization choices for the INKS��� version of Vlasov–Poisson 6D is 
close to the expression to the same optimization in Fortran, in the reference version. 
These considerations should not hide the fact that some information has to be speci-
fied in both the INKS��� and INKS�∕�++ files with this approach leading to more code 
overall.

Table 1   Summary of the INKS�∕�++ , INKS�∕���� and INKS�∕��� optimization choices implemented 
based on six INKS��� algorithm: the 3D heat solver, 4 NAS kernels (EP, FT, MG, IS) and the Vlasov–
Poisson 6D solver

Table 2   Execution time of the INKS�∕�++ , INKS�∕���� and INKS�∕��� implementations of the sequential 
NAS benchmark, class B—time/iteration of the 3D heat equation (7-point stencil), size (10243)—time/
iteration of the INKS�∕�++ and Fortran implementation of the sequential 6D Vlasov–Poisson, size (326)

Median and standard deviation of 10 executions-GNU Complexity score of the implementation

Benchmark Execution time (second) Complexity

Reference INKS�∕�++ Rel. 
dev.

Ref. INKS

NAS/FT 49.16 ( ±0.16) 44.00 ( ±0.05) 11.66% 6 5
NAS/IS 1.91 ( ±0.00) 1.90 ( ±0.01) 0.53% 55 52
NAS/MG 4.61 ( ±0.02) 4.29 ( ±0.01) 7.46% 20 12
NAS/EP 53.52 ( ±0.02) 55.35 ( ±0.37) − 3.30% 19 19
Heat/Buf 2.76 ( ±2.78) 2.93 ( ±3.53) − 6.22% 5 3
Heat/Obl 1.20 ( ±1.16) 1.18 ( ±0.96) 1.81% 22 13
VP6D 25.92 ( ±0.21) 21.92 ( ±0.16) 18.28% N/A N/A

Benchmark Reference 
(C++)

INKS�∕���� Rel. dev. Reference (Fortran)

NAS/IS 1.91 ( ±0.00) 1.91 ( ±0.01) 0.00% N/A
NAS/MG 4.61 ( ±0.02) 4.32 ( ±0.02) 6.84% N/A
VP6D 4.18 ( ±0.05) 4.23 ( ±0.06) −1.10% 3.63 ( ±0.09)

Benchmark Reference INKS�∕��� Efficiency (# cores)

NAS/EP 53.52 ( ±0.02) 14.00 ( ±0.13) 70.5% (4 cores)
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On the contrary, INKS�∕��� and INKS�∕���� enable the developer to specify opti-
mization choices only, while algorithmic information is extracted from INKS��� 
code. This is illustrated in Listing 2 presenting the INKS�∕��� 6D domain decom-
position and the XMP result. Both are equivalent, but the INKS�∕��� expects only 
optimization choices parameters. Hence, one can test another memory layout, such 
as a different dimension ordering, by changing only a few parameters, while multi-
ple directives must be modified in XMP. Moreover, using the domain decomposi-
tion directive offered by INKS�∕��� and XMP code, one can derive a simple parallel 
code from a INKS��� algorithm, as we did with the 3D Heat solver. Note that since 
INKS�∕��� is a wrapper for XMP using INKS��� to retrieve some information, it is 
usable in any codes that can be expressed using INKS��� and optimized with XMP. 
Similarly, with INKS�∕���� (Listing  5), developers can easily test different optimi-
zation choices that would be tedious in plain C++. This is what we did with the 
3D Heat solver based on the double buffering technique. As shown in Fig. 1, using 
INKS�∕���� , we have implemented 3 versions of the loops: the same as reference, one 
based on a 2D cache blocking and a last one using a 3D cache blocking by modi-
fying almost nothing in the INKS�∕���� code. Since INKS�∕��� and INKS�∕���� are, 
respectively, usable with C and C++, INKS does not restrict the expressible optimi-
zation choices: One can still implement optimizations not handled by our DSLs in 
C/C++. Moreover, operations such as halo size computation or vectorization capa-
bilities detection are automatized using the INKS��� code. In summary, the approach 
enables optimization specialists to focus on their specialty which make the develop-
ment easier.

Regarding performance, the INKS approach makes it possible to express opti-
mizations that do not change the algorithm. Optimizations of the four NAS paral-
lel benchmarks and 3D heat equation solver in INKS were trivial to implement and 
their performance matches or improves upon the reference as presented in Table 2. 
Investigation has shown that Intel ICC 18 does not vectorize properly the reference 
versions of MG and FT. The use of the Intel ivdep directive as done on the INKS 
versions leads to slightly better performance.

For the full Vlasov–Poisson 6D problem, INKS��� and C++ enable us to imple-
ment the same complex optimization strategies written in the reference version. 
Therefore, our implementation match the reference in terms of performance, as 
shown in Table 2. For the v1 advection, both the INKS�∕�++ and INKS�∕���� optimi-
zations of the INKS code achieve performance similar to the reference as shown in 
Table  2. For the parallel aspects, the INKS�∕��� optimization offers performance 
similar to XMP as shown in Fig.  4. MPI is faster on all cases compared to both 
XMP and INKS�∕��� . At the moment, it seems that XMP does not optimize local 
copies which slow down the Poisson solver. Besides, some XMP directives are 
based on MPI RMA which makes the comparison with MPI Send/Receive complex. 
Still, MPI is much harder to program: More than 350 lines of MPI and Fortran are 
required to handle domain decomposition, remapping for FFT and halo exchange in 
Selalib, while 50 lines in XMP and 15 in INKS�∕���.

However, INKS��� , INKS�∕���� and INKS�∕��� have limitations. As mentioned ear-
lier, INKS��� cannot be used to express non-static control program, such as the CG 
or the full FT NAS kernel. It also makes more complex the optimization of arrays 
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passed in parameters (as input or output). INKS�∕���� offers very limited option, mak-
ing it unusable with complex loops such as the one in the 3D heat solver optimized 
using the cache-oblivious strategy. Similarly, loop nests calling multiple INKS��� 
computational kernels cannot be expressed using INKS�∕���� . Moreover, it cannot 
respect the constraints imposed by a specific memory mapping and offers only a 
few optimization. Adding new optimization strategies would require to add new key-
words, such as unrolling and loop fusion. INKS�∕��� offers memory allocations but 
no controls on the access to this memory, letting optimization specialists in charge 
of the good use of this memory. Besides, it is usable only with XMP.

Although we want to address some issues in the INKS��� language, INKS�∕���� 
and INKS�∕��� were preliminary tests before a real INKS��� implementation. The 
goal was to propose a way to express optimizations and retrieving the algorithmic 
information in INKS��� code. These two DSLs enable us to highlight a set of guide-
lines for the full definition of the INKS��� language. First, this definition must be 
based on the concepts that INKS��� must express, i.e., the optimizations related to 
memory (allocations and layouts) and to computations scheduling. With INKS�∕��� , 
we tried some tests on the memory aspects, providing a directive to allocate a logi-
cal array and to reorder its dimensions. INKS�∕���� focuses on computations schedul-
ing by adding strong constraint on the order of the computations. Secondly, in order 
to express these optimization concepts only, it must be bound to its algorithmic 
counterpart, express in INKS��� . In INKS�∕��� , the domain decomposition directive 
makes reference directly to logical arrays described in INKS��� , making possible the 
computation of the size of each dimension and the halo size depending on the data 
being accessed. In INKS�∕���� , the Order keyword refers to the structuring variable 
of a computational kernel defined in INKS��� . Finally, we must work on the mean to 
express these optimization concepts with the most generality. For this part, we think 
that working with existing tools is probably mandatory for most complex strategy, 
such as XMP for the domain decomposition. Thus, using another existing tool for 
computation scheduling would make �∕���� more general. Similarly, a declarative 
language such as INKS�∕���� may not be the best strategy: To handle the interaction 
between memory and computation, an imperative language could be easier.

(a) (b) (c)

Fig. 4   Weak and strong scaling for 3 parts of the Vlasov–Poisson solver up to 64 nodes (1 process/node) 
on a 326 grid divided among processes (strong scaling) or 166 grid per process (weak scaling). Median of 
10 executions
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6 � Conclusion and future works

In this paper, we have presented the INKS programming model to separate the algo-
rithm and the optimization choices and its implementation supporting two DSLs: 
INKS�∕���� for loop optimizations and INKS�∕��� for domain decomposition. We 
have evaluated INKS on synthetic benchmarks and on the Vlasov–Poisson solving. 
We have demonstrated its generality and advantages in terms of separation of con-
cerns to improve maintainability and portability while offering performance on a par 
with existing approaches.

While this paper demonstrates the interest of the INKS model, it still requires some 
work to further develop it. We will improve the optimization DSLs; base INKS�∕���� 
on existing tools and ensure interactions with INKS�∕��� . This will be done within 
the scope of the development of a complete INKS��� DSL enabling its users to man-
age memory placement and computations scheduling. This planed DSL will truly 
separate algorithm from optimization choices in static programs, while its compiler 
could offer static analysis of the program to ensure correctness. We also want to tar-
get different architectures to demonstrate the portability gains of the INKS model.
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