
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:3499–3520
https://doi.org/10.1007/s11227-019-02859-w

1 3

Optimized cloud‑based scheduling for protein secondary
structure analysis

Marco Ferretti1 · Luigi Santangelo1 · Mirto Musci1

Published online: 25 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019, corrected publication 2019

Abstract
In the domain of proteomics, an in-depth analysis of the 3D structure of a protein is
of paramount importance for many biological studies and applications. At the sec-
ondary level, protein structure can be described in terms of motifs, recurrent patterns
of smaller biological structures called secondary structure elements. In this paper,
the focus is on the identification of geometrical motifs in different proteins using the
Cross Motif Search (CMS) algorithm. Such task, due to the high computational cost
of CMS with respect to traditional alignment algorithms, is very demanding, and
thus, parallel processing is mandatory. In previous papers, CMS parallelization has
been already studied from the HPC standpoint. Since cloud computing is emerging
as an alternative to on-premise HPC systems, it is worthwhile examining the feasi-
bility and possible advantages in terms of both performance and costs, of migrating
to a cloud implementation. This paper is an extension of a preliminary work car-
ried out on the cloud parallelization of CMS. The paper has two main contributions.
First of all, an analytic model of the communication pattern of CMS is described, in
order to get insights on the performance of the application when executed on a cloud
infrastructure. Secondly, an optimized “location-aware” scheduling policy to assign
workload to the application workers is introduced, in order to minimize internode
communication in a cloud setting. Experiments are presented in order to validate the
newly introduced scheduling policy and assess the performance of the cloud imple-
mentation of CMS. The results presented in this paper are general, in the sense that
they can be applied to any other algorithm with a communication pattern similar to
the one of the target applications.

Keywords Proteomics · Cloud computing · HPC · Cross Motif Search · CINECA ·
Google Cloud · pLogP

 * Luigi Santangelo
 luigi.santangelo@unipv.it

 Marco Ferretti
 marco.ferretti@unipv.it

1 Department of Electrical, Computer and Biological Engineering, University of Pavia, Pavia,
Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02859-w&domain=pdf

3500 M. Ferretti et al.

1 3

1 Introduction

Cloud computing is a new paradigm for sharing computational resources in a geo-
graphically distributed way, using virtualization layers in order to hide the under-
lying hardware. Cloud computing is an on-demand service, which does not need
human interaction; it is broadly available on the Internet; it allows for composite
pools of hardware resources; it can be quickly scaled in or out and it is based on a
“pay-as-you-go” cost model. For all of these reasons, cloud computing is a prom-
ising environment for running parallel applications, even scientific ones which are
usually very expensive in terms of computations and are traditionally executed on
HPC systems [2, 3].

The main difference between cloud and HPC is that HPC systems provide a
more direct contact to the bare metal (i.e., the underlying physical hardware) which
instead is hidden within a cloud solution and thus allow for better performance opti-
mization. However, cloud computing dynamic scaling and broad availability can
bridge and even overcome this gap.

According to the literature, migrating an existing HPC application to the cloud
could be beneficial in terms of performance, costs or other factors. However, several
migration failures have also been reported, mostly due to the high volume of com-
munication of the target application [4–9]. Generally speaking, neither infrastructure
is inherently better than the other, and an informed choice must be made, on a case-
by-case instance.

This work focuses on the migration of the Cross Motif Search (CMS) applica-
tion to the cloud, and it is an extension of a preliminary work presented at the PBIO
2018 conference [1]. CMS is a proteomics application (see Sect. 2), with the focus
on geometrical motif identification, which the authors have already extensively
analyzed in its parallel implementations for on-premise infrastructures [10–16]. In
particular, we report on an advanced modeling effort designed to characterize the
master/worker communication protocol of CMS for cloud deployment. The model
will be used to asses the feasibility of the migration and to design an optimization to
reduce the impact of communication on performance.

With respect to the preliminary work [1], the present contribution introduces a
new scheduling policy which can significantly reduce internode communication
while keeping good load balancing, and then compares the global execution of
Cross Motif Search in HPC and in Cloud systems, giving a measure of the applica-
tion’s scalability and speedup.

1.1 Related works

In the past, researchers have proposed different methodologies to address load bal-
ancing issues. A good taxonomy of all load balancing strategies can be found in
[17–20]. Many of these algorithms have also been compared and optimized for
cloud infrastructure [21–23]. The authors of [24] present a model that shows how
heterogeneity in the cloud can result in a performance degradation. In [25], instead,

3501

1 3

Optimized cloud-based scheduling for protein secondary…

authors present a middleware technology which implements load balancing and
reduces communication cost. Dynamic load balancing methods for HPC proteomics
applications are described in [26, 27]. A very interesting related work is the one pre-
sented by Mrozek at al. [28] which develops a highly scalable cloud-based system,
named Cloud4Psi, to support researchers in the cloud execution of several protein
alignment tools. However, Cloud4Psi is mostly concerned in using the cloud as a
service, rather than as a computing infrastructure.

The authors have already performed a similar extensive analysis on a different
bioinformatics application, namely BloodFlow, used by surgeons and doctors to
model and simulate the global hemodynamic phenomena [29–32]. In this case, the
migration to the cloud was proven to be detrimental: The main reason is that Blood-
Flow is based on a communication pattern which is much more complex than CMS.
Generally speaking, many parallel applications are based on similar communication
patterns as the one exposed by either CMS and BloodFlow, and thus, we believe that
our results can be considered as representative for a wide range of applications.

1.2 Structure of the paper

The paper is structured as follows. Section 2 describes the Cross Motif Search algo-
rithm and its HPC implementation and performance. Section 3 identifies all the
necessary elements for a cloud migration of CMS, describes the target cloud infra-
structure and builds the communication model of CMS in order to assess the feasi-
bility of a cloud implementation. Section 4 describes a new scheduling policy for
the workload allocation of CMS, designed to minimize internode communication in
a cloud setting. Section 5 presents several experiments that analyze the application
scalability on the cloud, validates the communication models presented in Sect. 3
and assesses the load balancing of the application following the introduction of the
policy described in Sect. 4. Section 6 discusses the experimental results and con-
cludes the paper.

2 Cross Motif Search

2.1 Overview and related works

From the biological point of view, looking for similarities in both close and distant
evolutionary-related proteins is critical to assess structure–functionality relation-
ships. Comparisons could be made at different levels of the protein structure. For the
purpose of this paper, we are only interested in the analysis at the secondary level
and in particular in the identification of recurring patterns of secondary structure
elements (SSEs) called motifs.

In the literature, many techniques have been studied for motif identification. A
comprehensive review is presented in [33]. In this paper, however, our focus is on
Cross Motif Search, a radically different algorithm for motif identification with
respect to the state of the art.

3502 M. Ferretti et al.

1 3

The novelty of CMS is the focus that it puts on the geometrical description of
the structural motifs, which could be simply viewed as line segments, rather than on
the topological/biological description employed by well-known algorithms such as
DALI [34], ProSMoS [35, 36], PROMOTIF [37] or MASS [38].

With respect to other geometrical algorithms, such as secondary structure match-
ing (SSM) [39], CMS is much more precise, as SSM only gives a similarity score
for the geometrical structures of pair of proteins, while CMS provides a complete
geometrical characterization for each match. The geometrical search performed by
CMS is an exhaustive combinatorial process (Sect. 2.2). For this reason, the main
shortcoming of CMS with respect to the state of the art is performance, as precise
geometrical approaches are inherently slower. Thus, efficient parallel implementa-
tions become extremely important (Sect. 2.3).

The relevance of CMS with respect to the state of the art, even with sub-optimal
performance, is due to the fact it has been designed with a different goal in mind
with respect to other algorithms, that is, to look for previously unknown common
geometrical structures in “unfamiliar,” evolutionary distant proteins (Sect. 2.4). This
means that CMS cannot be entirely substituted by well-known and extremely effi-
cient alignment tools.

CMS shares a similar goal with [40]. However, even if the authors start from a
geometrical approach, they use statistics during the search phase. This approach
allows for a great speedup in execution time, but, at the same time, makes them
loose the geometrical information that CMS is able to retrieve. The automatic and
meaningful analysis of the similarities indentified by CMS is still an open problem
(see, for instance, [41–43]). An in-depth analysis of CMS providing an extended
bibliography on motif extraction can be found in [15, 16].

2.2 The algorithm

As stated above, CMS is based on a simple geometric model of the secondary struc-
ture of proteins [15]. In particular, it assumes that each secondary structure element
(SSE) can be modeled as a simple line segment in 3D space (Fig. 1) with length,
direction and barycenter computed from the constituent amino acids. Consequently,
for the purpose of CMS, a motif is a collection of line segment recurring among
several proteins.

For simplicity, only the two most common types of SSEs, namely � helices and
� strands, are considered in the geometric model. The key idea of CMS is to apply
computer vision techniques to the geometric model of a protein, and in particular
a variant form of the generalized Hough transform [44] to find recurring patterns
among different proteins.

The CMS algorithm works exhaustively among a pair of proteins, called, respec-
tively, source and search proteins, and tries to find each possible geometrical simi-
larity between them. A simplified illustration of the inner workings of CMS is
presented in Fig. 1. For each pair of SSEs in the source protein, a selected set of
geometrical features are identified, namely the angle between the segment � , the
normal distance between the segments Ma and the distance between the segment

3503

1 3

Optimized cloud-based scheduling for protein secondary…

barycenters Md . The algorithm then groups each possible set of SSEs in template
motifs, such as the one constituted by SSE1, SSE2 and SSE3 in the figure. This set
is not yet a match, but simply a candidate that needs still to be matched. A “reference
table” (RT) is assigned to each template. Each possible pair of SSEs in the template
contributes a line to the table, containing Md , phi and Ma . From the table a transfor-
mation T is derived, so that for each line in the table, the same reference point (RP)
can be identified. In the figure, given that the template is made of three SSEs, the
RT has three lines, one each for the pair (SSE1, SSE2), (SSE1, SSE3) and (SSE2,
SSE3). The transformation T is then inverted (T−1) to define a voting rule. Once the
RT has been defined, the algorithm moves to the search protein. Each possible motif
template is analyzed in turn. The figure shows the analysis on the search template
made of SSE1’, SSE2’ and SSE3’. The voting rule is then applied to each pair in the
search template order to define a point (called vote) in the 3D space. According to
the property of the Hough transform, if all the votes in the search template are close
enough to each other, then the current template is similar to the one that generated
the reference table. In the figure, as the two templates are similar to each other, the
votes will be clustered together; thus, we can conclude that (SSE1, SSE2, SSE3) is
geometrically similar to (SSE1’, SSE2’, SSE3’). Repeating this entire process for
each source template and for each search template yields the complete characteriza-
tion of the geometrical similarities between the source and the search protein, which

Fig. 1 A simplified illustration of the algorithmic kernel of CMS. For each motif template in a source
protein (left), a reference table (RT) is created (bottom) using the distance between barycenter, the nor-
mal distance and angle among any pair of SSEs in the template. The RT is used to define a linear trans-
formation that allows to retrieve a single reference point for all the pairs on the left. Finally, all the SSE
pairs in a search protein (right) are compared to the RT. A point—called vote—is computed in the search
space for each row. A match is found if all votes are close to each other. This is the case in the figure: The
set (SSE1, SSE2, SSE3) matches with (SSE1’, SSE2’ SSE3’) and thus is a candidate to be a motif

3504 M. Ferretti et al.

1 3

also includes the exact position of each match, and all of its biological and geo-
metrical features. The authors have also developed a tool1 to analyze a given pair of
proteins in real time and graphically visualize all the similarities found by CMS. The
tool, named MotifVisualizer, is shown in Fig. 2 [45].

2.3 HPC implementation

Being based on the exhaustive combinatorial approach described in the previous sec-
tion, it is clear that CMS is a very computational intensive algorithm, even for a sin-
gle pair of proteins. Furthermore, in order to characterize a given dataset of proteins,
the entire CMS algorithm kernel described in the previous section must be repeated
all-to-all for each protein pair in the set. Thus, a massive parallel implementation is
needed. A hybrid OpenMP-MPI HPC implementation of CMS was described in [10]
in order to execute the application on a distributed and shared memory system.

Given a dataset containing m protein files, the hybrid CMS parallel implementa-
tion executes a number of kernels equal to:

(1)K =
m × (m − 1)

2

Fig. 2 A snapshot of the MotifVisualizer application that allows to visualize the output of a CMS run on
a pair of proteins (1ad1 and 1ag1 in the figure). � helices are highlighted in red, and � strands are high-
lighted in blue. Among the many similarities that CMS has identified between the two proteins, only an
exemplary one is shown. Note that even if CMS is optimized to work on evolutionary distant proteins,
the example in figure shows that CMS works also with proteins with high alignment scores (56% accord-
ing to SSM [39])

1 https ://visio n.unipv .it/bioin forma tics/conte nts/tools .php.

https://vision.unipv.it/bioinformatics/contents/tools.php

3505

1 3

Optimized cloud-based scheduling for protein secondary…

In the implementation, CMS kernels on single pair of proteins are modeled as tasks
and are executed concurrently by all the MPI processes in order to complete the
whole job, that is, the CMS analysis of an entire dataset of proteins. At the applica-
tion outset, two different sets of processes are created. The first set contains just one
master process; the other set contains n − 1 worker processes. Master and workers
exchange information by using point-to-point MPI functions, such as MPI_Send and
MPI_Recv.

The communication pattern of the CMS HPC implementation is quite trivial, as it
is the case for many parallel bioinformatics applications. As shown in Fig. 3, indeed,
only data exchanges between master and workers are allowed. No interworker com-
munication happens during the whole execution, and no collective operation is used
to gather and scatter data. However, load balancing is non-trivial, as it will become
clearer later (see in particular Sect. 4).

Fig. 3 The master–workers communication pattern of the HPC implementation of CMS. There are a total
of N workers, one running concurrently on the master, the other N − 1 running on different distributed
tasks, each running an OpenMP instance of the CMS kernel (using four threads in the figure). Workers
send a 4-byte message (dark gray envelope) when they are ready to process a new task; the master sends
back a 6-KByte reply message (light gray envelope) when work is available. The reply message contains
the name of the proteins to be retrieved from a centralized dataset and then processed by the worker

3506 M. Ferretti et al.

1 3

With reference to the figure, when a worker is ready, it sends a 4-byte message to
the master asking for the next task (i.e., which CMS kernel) to compute. When the
master receives the message, it sends back to the worker a 6-Kbyte message contain-
ing the name of a yet unprocessed protein pair. When the worker gets the reply mes-
sage, it starts an OpenMP parallel computation of the CMS kernel on the two pro-
teins. After completing the task, the worker asks again for a new task and the cycle
begins anew. When all protein pairs have been exhausted, the master broadcasts an
EOF message to all workers, which thus complete their execution. The load balancer
algorithm used by the master process can be classified as dynamic, synchronous,
demand-driven, centralized and one-time assignment. More details can be found in
[11].

In order to further improve performance, the master is implemented in multi-
threaded mode too. After starting the application, the master process spawns into
two concurrent OpenMP threads. The first one, named primary master, waits for
the requests coming from the workers; the secondary master instead behaves as any
other worker, but differently from such worker processes, it communicates with the
primary master by using the shared memory instead of sending and receiving MPI
messages through the network.

2.4 Datasets

The main source for protein information is the Protein Data Bank (PDB) [46], where
data are kept in a textual format. The PDBML format [47] has been proposed as an
XML translation for PDB files. Traditional database management systems are not
well suited for storing and processing biological data in this format. Several works
[48, 49] extend the traditional SQL query language with a new one for allowing
biologists to formulate queries. Others [50, 51] directly translate the motif identifi-
cation problem to DB queries.

The solution adopted for CMS is to drop the PDB format and SQL entirely: Each
protein file retrieved from the PDB is automatically transformed in a custom XML
format and stored in a non-relational database [42]. The CMSXML format describes
the simplified geometrical model of line segments described in Sect. 2.2. Similari-
ties identified by a CMS kernels are stored in a similar format.

For all the experiments discussed in this paper, CMS has been executed on a
selected dataset containing 1,549 CMSXML files. The dataset has been built by
picking up one protein for each superfamily in PDB. In particular, we selected from
the structural classification of proteins (SCOP) dataset [52] the first member in lexi-
cographic order of each protein superfamily. A complete list of all proteins can be
found in [10]. The rationale of this choice stems from the primary goal of CMS, as
stated in Sect. 2, that is, the identification of previously unknown motifs in “unfa-
miliar” proteins.

According to Eq. 1, having a dataset with 1549 protein files, the number of all
possible comparisons and thus of tasks executed by any parallel implementation is
equal to (1549 × 1548)∕2 = 1, 198, 926.

3507

1 3

Optimized cloud-based scheduling for protein secondary…

2.5 HPC experimental results

Experiments have shown that the HPC implementation of CMS is able to scale
very well when it runs on a on-premise cluster and on Marconi [10, 12], which is a
powerful HPC system provided by Cineca [53]. Several profiling activities, carried
out with tools such as Intel VTune, Intel Trace Analyzer and Intel Advisory, were
employed to improve application performance [12]. By large the most relevant limit-
ing factor to the performance was the high unbalance in the workload, as different
protein pairs could take very different amounts of time to be processed. Indeed, as
shown in [12], a CMS run on the fastest protein pair (2b1y.xml and 2hep.xml) took
just 3 × 10−5 s, while the slowest one (on 1k32.xml and 1bgl.xml) took almost 103 s.2
To make things worse, the standard deviation of execution times was equal to 2.44 s,
ten times greater than the mean time.

Although it is not possible to accurately predict the completion time of a task,
in [11] we showed that there is a good correlation (� = 0.653) between the size of
a protein pair (as the product of the number of secondary structures in both protein
files) and the final execution time. By leveraging on the above results, the initial ran-
dom selection was replaced by a new workload distribution policy, named Longest
Job First [12], which selects the next task to be sent for computation by predicting
the task completion time. By introducing this feature, we reduced the global execu-
tion time and task idleness, and we were able to increase the Global Load Balancing
factor from 0.64597 to 0.99976.

3 Migrating CMS to the cloud

As migrating a complex HPC application to the cloud is neither easy nor effortless,
any migration attempt should start by modeling the communication pattern of the
target application. Even if such model cannot be used to predict the exact commu-
nication time of the application, it can give useful hints to predict the application
behavior and understand if a cloud migration is indeed worth doing.

For building a communication model, two different sets of parameters are needed:
some application-related parameters, in order to characterize the communication
model; and some network-related parameters, in order to characterize the intercon-
nection network. While the application-related parameters are invariant with respect
to the infrastructure on which the application is executed on, the network-related
parameters are strictly related to the network infrastructure and need to be gathered
on all different network layers. For this reason, a preliminary step is the identifica-
tion of the target cloud architecture (Sect. 3.1).

For the purpose of this work, the number of MPI function calls and the amount
of data transferred by each function were selected as application-related parameters

2 Note that 1k32 and 1bgl share identical chains; using a priori biological information would greatly
reduce the computational time. As stated before, however, CMS only focuses on geometrical informa-
tion.

3508 M. Ferretti et al.

1 3

and collected using profiling tools such as Intel Trace Analyzer on the HPC imple-
mentation of CMS (Sect. 2.3). On the other hand, network-related parameters were
measured used a pLogP [54] model (see Sect. 3.2) on both the HPC and the cloud
environments (Sect. 3.3). Finally, the selected application-related and network-
related parameters were combined together in order to actually build the communi-
cation model (Sect. 3.4).

3.1 Target cloud architecture

For the purpose of this work, we decided to build a cluster of Virtual Instances using
Google as the cloud provider. As the economic aspect of cloud migration is not
investigated in this paper, the choice of a particular provider is irrelevant. In order
to provide a fair comparison, each virtual instance was configured to match as much
as possible the node configuration available on Marconi, the HPC system running
the HPC implementation of CMS. In particular, we built a virtual cluster with three
virtual instances, each equipped with eight virtual CPUs (vCPUs). Each vCPU was
mapped to a single hardware hyperthread on an Intel Xeon E5 v5 (Broadwell) run-
ning at 2.2 GHz. Each virtual instance was given 24 GB of RAM and 56 MB of L3
cache [55]. All virtual instances belonged to the same geographical zone and were
interconnected together by using a private cloud network with a 2GB bandwidth
guarantee for each vCPU [56, 57].

3.2 The plogP model

In order to build a complete communication model, a characterization of a point-to-
point communication is need as a basic building brick. In the literature, several mod-
els were proposed for the purpose [58–63]. In this work, the choice fell on param-
eterized LogP, or pLogP [54]. This model is able to capture the relevant aspects of
message passing in distributed systems, by describing a point-to-point communica-
tion with five simple parameters:

1. P is the number of processors;
2. L is the end-to-end latency from process to process; it includes all contributing

factors such as copying data to and from network interfaces and the transfer over
the physical network;

3. os(m) is the send overhead for a message of size m;
4. or(m) is the receive overhead for a message of size m;
5. g(m) or gap is the minimum time between consecutive message transmissions or

receptions; it is the reciprocal value of the end-to-end bandwidth from process to
process.

A graphical representation of all pLogP parameters is shown in Fig. 4. As shown
in the figure, the time spent to send a m-byte message can be computed as [64].

(2)T = L + g(m)

3509

1 3

Optimized cloud-based scheduling for protein secondary…

This formula can be used to accurately predict the time spent by a sender to send a
message to a receiver. For collective operations, the formula needs to be extended
[30].

3.3 Network characterization

Once a migration target has been defined (Sect. 3.1) and a proper model has been
chosen (Sect. 3.2), it is possible to get a complete characterization of the intercon-
nection network on the target.

Using a custom test application and the tool provided by pLogP, we discovered
that: (1) the given interconnection network is symmetric and (2) the cores (i.e.,
the virtual CPUs) can be grouped together according to the node (i.e., the virtual
instance) they belong to. According to these observations, we were able to classify
all communications in two classes: intranode and internode. Intranode communi-
cation describes a communication between two processes running on two cores
belonging to the same virtual instance; on the other hand, internode communication
describes a communication between two processes running on two cores belonging
to two different virtual instances. For a complete characterization of the interconnec-
tion network, both types of communications need to be profiled.

Table 1 shows the pLogP parameters, gathered running the tool on the cloud
interconnection network. All these values have been gathered by choosing the

Fig. 4 The pLogP parameters: L is the end-to-end latency; o
s
(m) is the send overhead; o

r
(m) is the

receive overhead; g(m) is the minimum time between consecutive transmissions

Table 1 pLogP parameters (in
s) for intranode and internode
communications collected on
the Google Cloud Infrastructure

Internode Intranode

L 0.0000517 0.0000001
g (4 B) 0.0000226 0.0000007
g (6 KB) 0.0000370 0.0000026

3510 M. Ferretti et al.

1 3

median computed on ten different runs. We decided to use the median instead of
the mean in order to ignore any outlier. From the table, it is clear that parameters
describing the internode communication are several times higher than the corre-
sponding parameters of intranode communication.

For comparison, Table 2 shows the pLogP parameters gathered running the tool
on Marconi, the HPC infrastructure running the HPC implementation of CMS. Of
course, even on a real HPC system the internode communication is more expensive
than the intranode one, but, as shown in the table, their relative ratio is smaller on
the HPC system, and thus, internode communication has a much larger effect on the
cloud implementation.

3.4 The communication model

Once both application and network parameters have been collected, a complete com-
munication model can be built. Under the simplifying but yet realistic assumption
that all tasks are uniformly distributed across all processes, it is possible to predict
the communication time T of CMS with a simple extension of Eq. 2:

where n is the number of times the MPI_Send has been invoked, L is the latency and
g() is the gap function.

Table 3 estimates both internode and intranode communication times by
imputing the values of Table 1 in Eqs. 4 and 5. As shown in the table, sending a
6-Kbyte message between two processes belonging the same virtual instance is
more than 33 times faster than sending the same message between two internode

(3)T = Tintra + Tinter

(4)Tintra = nintra × [L + gintra(4B) + L + gintra(6KB)]

(5)Tinter = ninter × [L + ginter(4B) + L + ginter(6KB)]

Table 2 pLogP parameters (in
s) for intranode and internode
communications collected on
the Marconi HPC system

Internode Intranode

L 0.0000025 0.0000004
g (4 B) 0.0000010 0.0000009
g (6 KB) 0.0000026 0.0000015

Table 3 Estimation of the communication time (in s) of the CMS implementation on Google Cloud,
using the data of Table 1 in Eqs. 4 and 5

Internode Intranode Total

Communication number 799,284 399,642 1,198,926
Time spent to send a 4-byte message 0.0000743 0.0000075
Time spent to send a 6-Kbyte message 0.0000887 0.0000265
Time spent in communication 130.283292 13.587828 143.871120

3511

1 3

Optimized cloud-based scheduling for protein secondary…

processes. The ratio becomes 99 for small messages, where latency is the domi-
nant factor in the communication time. It becomes clear that, in order to improve
the application performance, internode communication needs to be reduced. The
same analysis has also been performed on Marconi and is presented in Table 4.
The table shows that all parameters on Marconi are lower than the correspond-
ing parameters on the cloud and the ratio among them is smaller.

Summarizing, sending a message having a fixed size always takes more time
on the cloud than on Marconi. Furthermore, on both architectures, as expected,
internode communication is more expensive than the intranode one, but the
ratio between internode communication time and intranode communication time
is much higher on the cloud than on Marconi. Reducing internode communi-
cations, then, is of course useful for both architecture but more beneficial for
the cloud implementation, where internode communication is more expensive.
However, it is critical to note that the communication time is, in both scenarios,
much smaller than the total execution time (see Sect. 5).

According to the analysis just described, we can speculate that Cross Motif
Search could be successfully executed on the cloud with a negligible loss of
performance, especially so, if the amount of internode communication could be
reduced.

4 Location‑aware scheduling policy

As shown in the previous section, internode communication in the cloud is sig-
nificantly more expensive than intranode one. In order to optimize the commu-
nication time and reduce the performance gap between cloud and HPC imple-
mentations, we have identified a new, location-aware scheduling policy for
distributing tasks among the processes which will minimize internode commu-
nication and maximize intranode one.

The Longest Job First policy, defined in [12] and briefly described in
Sect. 2.5, took in account only one factor: the predicted completion time of task.
On the other hand, the new policy takes also into account the worker position
within the virtual cluster.

Table 4 Estimation of the communication time (in s) of the CMS implementation on Marconi, using the
data of Table 2 in Eqs. 4 and 5

Internode Intranode Total

Communication number 799,284 399,642 1,198,926
Time spent to send a 4-byte message 0.0000035 0.0000013
Time spent to send a 6-Kbyte message 0.0000051 0.000001
Time spent in communication 6.8738424 1.2388902 8.1127326

3512 M. Ferretti et al.

1 3

4.1 Implementation

In order to implement the new policy, master and workers must establish a prelimi-
nary negotiation—an handshake—before any actual computation. In particular, each
worker must send to the master its position, i.e., the identification of the virtual node
on which it is running. This information is stored in a table by the master, and it is
used to understand whether the worker belongs to the master instance or to a differ-
ent one.

After completing the handshake phase, the computation phase starts. Exactly
as in the previous implementation (Sect. 2.3), each worker sends to the master a
4-byte ready message. However, according to new policy, the master uses the data
exchanged during the handshake to decide which task (i.e., which protein pair) to
assign to the asking worker. If the worker belongs to the same virtual instance as the
master, the protein pair having the lowest predicted computation time is sent back.
Otherwise, the master sends back a protein pair having the highest predicted compu-
tation time. The rationale of the policy is to reduce as much as possible communica-
tion overhead, by placing short, frequent tasks close-by to the master.

Before introducing the new policy, the tasks were uniformly distributed across
all processes. Figure 5 shows the number of tasks assigned to each process using
the old, Longest Job First policy. As the scheduling algorithm is on-demand, it is
impossible to predict in advance how many protein couples a process might receive
and this amount changes in different runs, but it is easy to notice that the tasks were
distributed quite uniformly among all processes.

According to the model presented in previous section, intranode and internode
communication is directly proportional to the number of tasks, respectively, sent by

Fig. 5 Number of messages (i.e., protein pairs) received by each worker with the old scheduling policy.
Processes from 0 to 7 belong to the same virtual instance of the master process; the others belong to dif-
ferent virtual instances

3513

1 3

Optimized cloud-based scheduling for protein secondary…

the master to the same or to a different virtual node. For this reason, by simply sum-
ming up the amount of tasks received by each worker in Fig. 5, it is easy to compute
the number of intranode and internode messages, as shown in Fig. 6.

From the figure, it is clear that the number of the internode messages is twice
the number of the intranode ones. This behavior might be considered negligible
for application running on a real HPC system, such as on Marconi, where the ratio
between intranode and internode communication is quite low. However, for a cloud
implementation, the unbalance between intranode and internode communication
might compromise the application performance. Figure 7 shows how messages are

Fig. 6 Total number of intranode and internode messages sent by the master with the old scheduling
policy

Fig. 7 Number of messages (i.e., protein pairs) received by each worker with the new location-aware
scheduling policy. Processes from 0 to 7 belong to the same virtual instance of the master process; the
others belong to different virtual instances

3514 M. Ferretti et al.

1 3

distributed to the workers according to new scheduling policy. Clearly, the internode
communication has been heavily reduced, as shown in Fig. 8.

Table 5 shows the estimated values for intranode and internode communication,
using the new scheduling policy. The values in the table have been obtained using
the pLogP model and the results in Table 1. As shown in Table 5, the time spent in
communication with the new policy is more than seven times lower than before and
could greatly benefit both HPC and cloud implementation. In Sect. 5, the effects of
new scheduling policy on the global load balancing will be evaluated through sev-
eral experiments.

5 Experiments

5.1 Global load balancing factor

The location-aware policy introduced in Sect. 4 completely changes the workload
distribution strategy, and this might bring to the conclusion that an imbalance
among processes might arise. In a previous work, we evaluated the efficiency of the
balancing algorithm using the Global Load Balancing Factor [11]. We showed that

Fig. 8 Total number of intranode and internode messages sent by the master with the new, location-
aware scheduling policy

Table 5 Communication time (in s), as predicted by the pLogP model, before and after introducing the
new scheduling policy

Old scheduling New scheduling

4 B message 6 KB message 4 B message 6 KB message

Intranode 0.29 1.01 0.84 2.96
Internode 60.53 72.27 6.14 7.33
Total 134.11 17.26

3515

1 3

Optimized cloud-based scheduling for protein secondary…

after introducing the Longest Job First policy, the target application achieved a very
good balance, with the balancing factor very close to the ideal value of 1.

To compare the effectiveness of the new scheduler, we can compute the Global
Load Balancing Factor for the location-aware implementation, using a reference
cloud implementation with 24 MPI processes running on the target infrastructure
described in Sect. 3.1. Figure 9 shows the completion time of the 24 MPI processes.
Depending on the last task received by each process, the completion time can be dif-
ferent. However, the figure shows that all MPI processes are well balanced even with
the location-aware policy, and the Global Load Balancing Factor is still very close to
the ideal value:

where Tp is the time spent by a process p to compute all the received tasks.

5.2 Scalability and speedup

Finally, as for the HPC implementation, we studied the application scalability on
the cloud infrastructure as well, increasing the number of concurrent MPI processes
used to compute the dataset. As shown in Fig. 10, our application shows a good
scalability. More formally, using as a baseline benchmark the performance on 16
processors, the ideal speedup for a run with 256 MPI processes will obviously be
256∕16 = 16 . The actual speedup s is:

where T(16) and T(256) are the global execution times using, respectively, 16 and
256 MPI processes.

(6)LB = avg(Tp)∕max(Tp) = 10833.88∕10841.01 = 0.99934

(7)s = T(16)∕T(256) = 17, 565.48∕1, 182.12 ≈ 14.86

Fig. 9 Completion time of the 24 MPI processes running on the cloud

3516 M. Ferretti et al.

1 3

The location-aware implementation of Cross Motif Search has also been tested on
Marconi. Figure 11 shows the comparison of the performance results obtained run-
ning the application on both architectures. Although the cloud infrastructure was set up
to be very close to the HPC configuration, Marconi is slightly superior in raw perfor-
mance. The reason is mainly due to the overhead introduced by the communication, to

Fig. 10 Scalability analysis for the cloud implementation, running 16 to 256 MPI processes. The meas-
ured scalability (dark gray) is compared with an ideal scenario (light gray), created by applying linear
scalability to the 16-core execution baseline

Fig. 11 Comparing global execution time of CMS between HPC and Cloud systems

3517

1 3

Optimized cloud-based scheduling for protein secondary…

the virtualization layer and to the interfering jobs being run on the same physical bare
metal.

6 Discussion and conclusions

Cross Motif Search is a computational intensive algorithm for the geometrical motif
retrieval in the secondary structure of proteins, which can greatly benefit from an opti-
mized parallel implementation.

In this paper, we have presented an in-depth analysis on the migration of the HPC
implementation of Cross Motif Search to a cloud infrastructure. A complete commu-
nication model for the application has been presented, tested and compared in both the
HPC and the cloud scenario. A new scheduling policy, based on the location of the task
on each virtual node, has been presented and validated, in order to minimize internode
communication in the cloud implementation.

The migration has been assessed through several experiments. Overall, the experi-
ments show that the cloud implementation has a global performance profile that is not
too dissimilar from the HPC implementation one. In particular, the global execution
times are very close to each other using very similar node configurations and they are
both able to achieve a very good scalability. Experiments also showed that the new
scheduling policy is able to reduce the communication time in both implementation,
without sacrificing the global load balancing.

The communication time penalty for cloud execution predicted by the model in
Sect. 3.4 has been shown to be negligible, due to the low communication intensity
of the CMS implementation, where message payloads are very small, infrequent, and
there is no interworker communication.

The paper has surely proven that a cloud implementation for CMS is feasible. How-
ever, from the raw performance standpoint, the HPC implementation seems to be supe-
rior. Nonetheless, cloud migration could be the best choice after all for reasons beyond
the performance standpoint. First of all, the assumption that the cloud vCPUs are on
par with the HPC one is biased against cloud computing, because the raw computing
power of a single cloud vCPU might be higher than the one of a single HPC core.
Moreover, generally speaking, HPC access is time limited and may require long wait-
ing times for each job.

A complete analysis, which is going to be our next work, should also include a com-
plete cost comparison, which should also include an estimation of the turn-around time.
Finally, we would like to note that the results presented in the paper are typical of any
application which has a similar master/worker communication paradigm and thus are
not limited to the specifics of the target application, but can be profitably applied to
other similar cases.

3518 M. Ferretti et al.

1 3

References

 1. Ferretti M, Santangelo L (2018) Protein secondary structure analysis in the cloud. In: Vega-Rodr-
guez MA, Santander-Jimnez S, Granado-Criado JM, Badia RM (eds) Proceedings of the 6th Inter-
national Workshop on Parallelism in Bioinformatics (PBio 2018). ACM, New York, pp 63–70

 2. Yang H, Tate M (2012) A descriptive literature review and classification of cloud computing
research. CAIS 31:2

 3. Mell P, Grance T (2011) The NIST definition of cloud computing. Retrieved from http://facul
ty.winth rop.edu/doman m/csci4 11/Hando uts/NIST.pdf

 4. Carlyle G, Harrell SL, Smith PM (2010) Cost-effective HPC: the community or the cloud? In: IEEE
2nd International Conference on Cloud Computing Technology and Science, Indianapolis, IN, 2010,
pp 169–176

 5. Hassani R, Aiatullah Md, Luksch P (2014) Improving HPC application performance in public
cloud. In: IERI Procedia 10:169–176, ISSN 2212-6678

 6. Mancini M, Aloisio G (2015) How advanced cloud technologies can impact and change HPC envi-
ronments for simulation. In: International Conference on High Performance Computing & Simula-
tion (HPCS), Amsterdam, 2015, pp 667–668

 7. Yang T, Ma X, Mueller F (2005) Predicting parallel applications performance across platforms
using partial execution. In: ACM/IEEE Supercomputing Conference

 8. Chakthranont N, Khunphet P, Takano R, Ikegami T (2014) Exploring the performance impact of
virtualization on an HPC cloud. In: IEEE 6th International Conference on Cloud Computing Tech-
nology and Science (CloudCom). IEEE, pp 426–432

 9. Expsito RR, Taboada GL, Ramos S, Tourino J, Doallo R (2013) Performance analysis of HPC
applications in the cloud. Fut Gen Comput Syst 29(1):218–229

 10. Ferretti M, Musci M, Santangelo L (2014) A hybrid OpenMP and OpenMPI approach to geometri-
cal motif search in proteins. In: Proceedings of the IEEE International Conference on Cluster Com-
puting (IEEE Cluster 2014), IEEE Computer Society, 2014, pp 298–304

 11. Ferretti M, Musci M, Santangelo L (2015) MPI-CMS: a hybrid parallel approach to geometrical
motif search in proteins. Concurr Comput Pract Exp 27(18):5500–5516

 12. Ferretti M, Santangelo L (2018) Hybrid OpenMP-MPI parallelism: porting experiments from small
to large clusters. In: 26th Euromicro International Conference on Parallel, Distributed and Network-
based Processing, PDP 2018, Cambridge, UK, March 21–23, 2018. IEEE Computer Society 2018,
pp 297–301

 13. Ferretti M, Musci M (2013) Entire motifs search of secondary structures in proteins: a paralleliza-
tion study. In: Proceedings of the 20th European MPI Users’ Group Meeting. ACM

 14. Drago G, Ferretti M, Musci M (2013) CCMS: A greedy approach to motif extraction. In: Interna-
tional Conference on Image Analysis and Processing. Springer, Berlin

 15. Ferretti M, Musci M (2015) Geometrical motifs search in proteins: a parallel approach. Paral Com-
put 42:60–74

 16. Cantoni V et al (2016) Structural motifs identification and retrieval: a geometrical approach. In: Pat-
tern Recognition in Computational Molecular Biology: Techniques and Approaches. Wiley

 17. Casavant TL, Kuhl JG (1998) A taxonomy of scheduling in general-purpose distributed computing
systems. IEEE Trans Soft Eng 14:141–154

 18. Plastino A, Ribeiro CC, Rodriguez NR (2001) Load balancing algorithms for SPMD applications.
Retrieved from https ://pdfs.seman ticsc holar .org/f5d0/edd1e 1e426 8549e 1f28f 14134 7482e e56fe a.pdf

 19. Osman A, Ammar H (2002) Dynamic load balancing strategies for parallel computers. Sci Ann
Cuza Univ 11:110–120

 20. Amandeep K, Pawan LM (2018) A review on load balancing in cloud environment. Int J Comput
Technol 17(1):7120–7125

 21. Sarood O, Gupta A, Kal LV (2012) Cloud friendly load balancing for hpc applications: Preliminary
work. In: 41st International Conference on Parallel Processing Workshops. IEEE

 22. Rathore J, Keswani B, Rathore VS (2019) Analysis of load balancing algorithms using cloud ana-
lyst. In: Rathore V, Worring M, Mishra D, Joshi A, Maheshwari S (eds) Emerging Trends in Expert
Applications and Security. Advances in Intelligent Systems and Computing, vol 841. Springer,
Singapore

 23. Hota A, Mohapatra S, Mohanty S (2019) Survey of different load balancing approach-based algo-
rithms in cloud computing: a comprehensive review. In: Behera H, Nayak J, Naik B, Abraham A

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://pdfs.semanticscholar.org/f5d0/edd1e1e4268549e1f28f141347482ee56fea.pdf

3519

1 3

Optimized cloud-based scheduling for protein secondary…

(eds) Computational Intelligence in Data Mining. Advances in Intelligent Systems and Computing,
vol 711. Springer, Singapore

 24. Gupta A et al (2013) Improving HPC application performance in cloud through dynamic load bal-
ancing. In: 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing.
IEEE

 25. Benchara FZ et al (2016) A new efficient distributed computing middleware based on cloud
micro-services for HPC. In: 5th International Conference on Multimedia Computing and Systems
(ICMCS). IEEE

 26. Suh E, Narahari B, Simha R (1998) Dynamic load balancing schemes for computing accessible sur-
face area of Protein molecules. In: Proceedings of the 5th International Conference on High Perfor-
mance Computing (Cat. No. 98EX238). IEEE

 27. Young WS, Brooks III CL (1995) Dynamic load balancing algorithms for replicated data molecular
dynamics. J Comput Chem 16(6):715–722

 28. Mrozek D, Maysiak-Mrozek B, Kapciski A (2014) Cloud4Psi: cloud computing for 3D protein
structure similarity searching. Bioinformatics 30(19):2822–2825

 29. Auricchio F et al (2018) Benchmarking a hemodynamics application on Intel based HPC systems.
Paral Comput Everywhere 32:57

 30. Ferretti M, Santangelo L (2019) Profiling hemodynamic application for parallel computing in the
cloud. in: 27th Euromicro International Conference on Parallel, Distributed and Network-based Pro-
cessing (PDP2019)

 31. Auricchio F et al (2018) Parallelizing a finite element solver in computational hemodynamics: a
black box approach. Int J High Perform Comput Appl 32(3):351–362

 32. Auricchio F et al (2015) Assessment of a black-box approach for a parallel finite elements solver in
computational hemodynamics. In: IEEE Trustcom/BigDataSE/ISPA, vol 3. IEEE

 33. Do Chuong B, Katoh K (2009) Protein multiple sequence alignment. In: Functional Proteomics.
Humana Press, pp 379–413

 34. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol
Biol 233(1):123–138

 35. Shi S et al (2007) Searching for three-dimensional secondary structural patterns in proteins with
ProSMoS. Bioinformatics 23(11):1331–1338

 36. Shi S, Chitturi B, Grishin NV (2009) ProSMoS server: a pattern-based search using interaction
matrix representation of protein structures. Nucl Acids Res 37(suppl2):W526–W531

 37. Hutchinson EG, Thornton Janet M (1996) PROMOTIF—a program to identify and analyze struc-
tural motifs in proteins. Prot Sci 5(2):212–220

 38. Dror O et al (2003) MASS: multiple structural alignment by secondary structures. Bioinformatics
19(suppl1):i95–i104

 39. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein
structure alignment in three dimensions. Acta Crystallogr Sect D 60(12):2256–2268

 40. Aung Z, Li J (2007) Mining super-secondary structure motifs from 3d protein structures: a sequence
order independent approach. Genome Inform 19:1526

 41. Cantoni V et al (2014) Protein motif retrieval by secondary structure element geometry and bio-
logical features saliency. In: 25th International Workshop on Database and Expert Systems Applica-
tions. IEEE

 42. Argentieri T, Cantoni V, Musci M (2017) Extending cross motif search with heuristic data mining.
In: 28th International Workshop on Database and Expert Systems Applications (DEXA). IEEE

 43. Musci M, Ferretti M (2018) Mining geometrical motifs co-occurrences in the CMS dataset. In:
International Conference on Database and Expert Systems Applications. Springer, Cham

 44. Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit
13(2):111–122, ISSN 0031-3203,

 45. Argentieri T, Cantoni V, Musci M (2016) MotifVisualizer: an interdisciplinary GUI for geometrical
motif retrieval in proteins. In: 27th International Workshop on Database and Expert Systems Appli-
cations (DEXA). IEEE

 46. Protein Data Bank. 2019, March 6. Retrieved from https ://www.rcsb.org
 47. Wesbrook J, Ito N, Nakamura H, Henrick K, Berman HM (2004) PDBML: the representation of

archival macromolecular structure data in XML. Bioinformatics 21(7):988–992
 48. Tata S, Friedman JS, Swaroop A (2006) Declarative querying for biological sequences. In: 22nd

International Conference on Data Engineering (ICDE’06). IEEE

https://www.rcsb.org

3520 M. Ferretti et al.

1 3

 49. Mrozek D et al (2016) An efficient and flexible scanning of databases of protein secondary struc-
tures. J Intell Inform Syst 46(1):213–233

 50. Hammel L, Patel JM (2002) Searching on the secondary structure of protein sequences. In:
VLDB’02: Proceedings of the 28th International Conference on Very Large Databases. Morgan
Kaufmann

 51. Wang Y, Sunderraman Rr, Tian H (2006) A domain specific data management architecture for pro-
tein structure data. In: International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE

 52. Murzin Alexey G et al (1995) SCOP: a structural classification of proteins database for the investi-
gation of sequences and structures. J Mol Biol 247(4):536–540

 53. Marconi (2017) the new Tier-0 system. 2017, July 21. Retrieved from http://hpc.cinec a.it/hardw are/
marco ni

 54. Kielmann T, Bal H E, Verstoep K (2000) Fast measurement of LogP parameters for message pass-
ing platforms. In: International Parallel and Distributed Processing Symposium. Springer, Berlin

 55. Machined types. 2018, May 16. Retrieved from https ://cloud .googl e.com/compu te/docs/machi
ne-types

 56. Advanced VPC Concept. 2018, December 17. Retrieved from https ://cloud .googl e.com/vpc/docs/
advan ced-vpc

 57. Quota. 2019, March 06. Retrieved from https ://cloud .googl e.com/vpc/docs/quota
 58. Nomura A, Matsuba H, Ishikawa Y (2007) Network performance model for TCP/IP based clus-

ter computing. In: IEEE International Conference on Cluster Computing, Austin, TX, 2007, pp
194–203

 59. Li L, Zhang X, Feng J, Dong X (2010) mPlogP: a parallel computation model for heterogeneous
multi-core computer. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, Melbourne, VIC, 2010, pp 679–684

 60. Hoefler T, Mehlan T, Lumsdaine A, Rehm W (2007) Netgauge: a network performance measure-
ment framework. In: Perrott R, Chapman BM, Subhlok J, de Mello RF, Yang LT (eds) High Per-
formance Computing and Communications. HPCC 2007. Lecture Notes in Computer Science, vol
4782. Springer, Berlin

 61. Hockney R (1994) The communication challenge for MPP: Intel Paragon and Meiko CS-2. Parallel
Comput 20(3):389–398

 62. Alexandrov A, Ionescu MF, Schauser KE, Scheiman C (1995) LogGP: incorporating long messages
into the LogP model. In: Proceedings of the 7th Annual ACM Symposium on Parallel Algorithms
and Architectures. ACM Press, New York, pp 95–105

 63. Culler D, Karp R, Patterson D, Sahay A, Schauser KE, Santos E, Subramonian R, von Eicken T
(1993) LogP: towards a realistic model of parallel computation. In: Proceedings of the 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM Press, New York,
p 112

 64. Steffenel LA, Mounie G (2008) A framework for adaptive collective communications for heteroge-
neous hierarchical computing systems. J Comput Syst Sci 74(6):1082–1093

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://hpc.cineca.it/hardware/marconi
http://hpc.cineca.it/hardware/marconi
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/vpc/docs/advanced-vpc
https://cloud.google.com/vpc/docs/advanced-vpc
https://cloud.google.com/vpc/docs/quota

	Optimized cloud-based scheduling for protein secondary structure analysis
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Structure of the paper

	2 Cross Motif Search
	2.1 Overview and related works
	2.2 The algorithm
	2.3 HPC implementation
	2.4 Datasets
	2.5 HPC experimental results

	3 Migrating CMS to the cloud
	3.1 Target cloud architecture
	3.2 The plogP model
	3.3 Network characterization
	3.4 The communication model

	4 Location-aware scheduling policy
	4.1 Implementation

	5 Experiments
	5.1 Global load balancing factor
	5.2 Scalability and speedup

	6 Discussion and conclusions
	References

