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Abstract
Performance, i.e., execution times, is one of the most important features of HPC 
software, but energy consumption is also growing in importance if we intend to 
extend application to Exascale. This is the case of HPC software used in weather 
forecasting, in which every ounce of performance is critical in order to increase the 
accuracy and precision of its results. In this work, we study the performance-energy 
balance of an OpenPOWER processor, which is designed for the high workloads 
typically seen on data servers and HPC environments. Our results show that the 
OpenPOWER processor is superior in performance in weather forecast workloads 
compared to other processors commonly used in HPC, but at the expense of con-
suming more energy. Furthermore, the highest hyperthreading modes available on 
OpenPOWER processors do not perform well with HPC workloads and are even 
detrimental to performance.

Keywords OpenPOWER · Performance · Energy consumption · Compilers · 
Weather research and forecasting

1 Introduction

Processors evolved over recent years, following different development paths related 
to different goals. Many processor architectures have focused on providing com-
putational capacity to the widely known big data [19], a paradigm in which peak 
performance is not as important as the data throughput needed. These targets do 
not always fit well with the capabilities of a general-purpose processor and need 
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the better-fitted capabilities offered by accelerators such as GPUs, driving enhance-
ments in processor architectures as host processors for these accelerators.

High-performance computing (HPC) is another of the previously mentioned 
paths, which has not attracted as much attention as its big data counterpart. HPC 
seeks peak performance for software that is not always well-fitted to an accelerator 
and needs all the computing capacity that the processor can provide. Weather fore-
casting software is an example of these high demanding types of HPC software, in 
which every ounce of performance is crucial to increase the resolution and accuracy 
of its results.

Furthermore, HPC is a strategic resource for Europe in order to improve enter-
prise competitiveness and science, dealing with complex computational problems1 
such as: accelerating genome sequencing by two orders of magnitude, enabling sci-
entists to defeat cancer diseases, develop new drugs or study the human brain.2

The European HPC strategy plans to reach Exascale by 2022, which means hav-
ing supercomputers capable of executing one trillion ( 1018 ) operations per second. 
However, entering the Exascale era has a price [2], this mainly being energy con-
sumption. Exascale platforms will consist of thousands of processors, meaning that 
a slight reduction in energy consumption on each of them would substantially reduce 
the energy consumption of the whole platform. Therefore, the need to reduce energy 
consumption is even more important than computing performance, not only from 
an economic point of view, but also to preserve our planet. More than ever, we need 
to squeeze every drop of performance per Watt consumed in order to advance in 
HPC-related fields. For this reason, HPC-focused processor architectures are evolv-
ing to increase their performance without increasing their energy footprint, rather 
even reducing it.

The IBM OpenPOWER3 architecture is partially designed for HPC workloads, 
and its performance is indeed good, but at the expense of relatively high energy con-
sumption compared to other architectures. In the present work, we summarize the 
problems that arose when we used the POWER8 architecture, described by Sinharoy 
et al. [28], to execute our reference weather forecasting software. Summarizing, we:

– Studied the balance between performance and energy consumption achieved by a 
POWER8 processor and its different hyperthreading (SMT) modes.

– Analyzed how good this balance is compared to another Intel-based processor.
– Two different compilers for the POWER8 are also compared.
– Identified ways in which the OpenPOWER architecture could be improved to 

achieve better performance-energy balance in order to reach the Exascale on the 
weather forecasting field.

In Sect.  2, we summarize some of the works that have used an OpenPOWER 
architecture as their target platform for solving big data and HPC problems. In 

1 https ://ec.europ a.eu/digit al-singl e-marke t/en/polic ies/high-perfo rmanc e-compu ting.
2 https ://ec.europ a.eu/digit al-singl e-marke t/en/news/high-perfo rmanc e-compu ting-best-use-examp les.
3 https ://openp owerf ounda tion.org/.

https://ec.europa.eu/digital-single-market/en/policies/high-performance-computing
https://ec.europa.eu/digital-single-market/en/news/high-performance-computing-best-use-examples
https://openpowerfoundation.org/
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Sect. 3, we present the POWER8 architecture and the weather forecast simulations 
we performed on it. The performance/energy balance when using two different com-
pilers is studied in this section, including the power saving method implemented in 
the POWER8 architecture. Moreover, we offer some thoughts about how the simula-
tions would improve when using the POWER9 architecture. Finally, in Sect. 5, we 
provide some insights into the results of this work.

2  Precedents and related work

In this section, we first review part of the literature on the great suitability of Open-
POWER architectures for accelerators and for Big Data. However, there are not so 
many works that study how good the OpenPOWER architecture is for non-accel-
erated HPC, i.e., multiprocessor platforms or supercomputers. In the last part of 
this section, we review some works that studied the behavior of hyperthreading in 
HPC environments with different processor architectures. However, none of these 
works studies whether the hyperthreading capabilities of the OpenPOWER archi-
tecture could be beneficial in an HPC environment. Besides, we could not find any 
reference that characterized the performance-energy balance of the OpenPOWER 
architectures.

2.1  OpenPOWER benefits when using accelerators

Köhler and Saak [18] studied how different clock frequencies in a POWER8 influ-
ence the Gauss–Jordan elimination scheme when using General Purpose GPU 
(GPGPU) programming. The vast majority of the work was performed on the GPUs 
attached to the system, and the POWER8 processor role was to compute the first 
part of the algorithm, whose resulting matrices were feed to the GPUs on the second 
part. The algorithm is iterative, so they overlapped the second part of the algorithm 
(performed in the GPUs) in parallel with the first part of the next iteration (per-
formed in the CPU). The authors observed that the CPU finished earlier than the 
GPUs and had to wait for the GPUs to finish, and thus they lowered the POWER8 
clock frequency. The result was lower power consumption (14.2%) without increas-
ing the overall wall time of the whole algorithm.

Wei et  al. [32] studied portability issues when using accelerators in HPC pro-
grams. They proposed the use of OpenACC to increase the portability of their case 
study software based on a Particle-In-Cell (PIC) algorithm. They ported their PIC 
algorithm to OpenACC and executed it successfully on GPUs, × 86 and Open-
POWER processors. This work shows there are no inherent architectural problems 
when porting software from an x86 architecture to an OpenPOWER architecture, 
even when using a GPGPU configuration. Some problems may arise if the target 
software is hard-coded to a specific architecture, i.e., using tailored-to-architecture 
compiler intrinsics.

In Zenker et  al. [33], the OpenPOWER memory architecture, along with 
the improved CPU-GPU communications, is used to complement the memory 
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limitations of the GPUs, in a GPGPU environment. The authors focused on the 
portability of a PIC algorithm when using multiple CPU architectures and NVIDIA 
GPUs, finally creating an abstraction of the CUDA programming language. Algo-
rithm performance was not improved although portability was enhanced.

2.2  OpenPOWER benefits in big data processing

Lu et  al. [21] illustrated how the OpenPOWER memory architecture can improve 
the performance of the latest generation of Remote Direct Memory Access (RDMA) 
software over Infiniband networks. In their study, they achieved a 2.73× perfor-
mance improvement when using Hadoop’s remote call procedures with RDMA over 
OpenPOWER processors. These results show how future big data processing can 
benefit from OpenPOWER.

2.3  Other OpenPOWER works

Adinetz et  al. [1] explored the POWER8 architecture features over three different 
scientific programs. Their methodology is based on the performance hardware coun-
ters implemented in the OpenPOWER processor. In summary, their conclusion is 
that the POWER8 is a processor that is designed to be the CPU of a GPU-acceler-
ated system, tackling the weaknesses present in a GPU such as integer performance, 
out-of-order execution and memory bandwidth. Additionally, they were unable to 
efficiently use the higher SMT modes of POWER8 CPU with the tested scientific 
software. The results showed that the SMT2 mode is the ideal case, the SMT4 is 
equal to the SMT2 in terms of performance, and the SMT8 is always inferior to the 
others.

Few works exist in the literature that seek an efficient usage of the high SMT 
modes provided by the OpenPOWER architecture. Sudheer and Srinivasan [30] 
highlight the importance of synchronization barriers in POWER8 when there is a 
large amount of thread parallelism, i.e., higher SMT modes. In their study the MPI, 
POSIX and OpenMP barriers are compared. They leveraged the memory hierarchy 
present in the OpenPOWER architecture and proposed a k-ary tree based barrier, 
greatly improving synchronization latencies.

Feliu et al. [9] proposed a novel scheduling method based on process symbiosis. 
They pack complementary processes from the point of view of processor core ele-
ments in such a way that the interference between them is minimal. This scheduling 
is useful for multiple process placement such as that used with Cloud containers 
(e.g., Docker), but is at application level, so cannot be used to improve the efficient 
placement of the threads of the same process, e.g., an OpenMP program.

2.4  High SMT modes in HPC

Problems with high SMT modes when using HPC applications are not only related 
to OpenPOWER architectures, which usually use low SMT modes for achieving bet-
ter performance on highly loaded cores [13, 17]. Leng et al. [20] studied the effects 



6182 R. Moreno et al.

1 3

of Intel Hyper-Threading technology on different HPC applications. They dem-
onstrated that computationally intensive applications may not benefit from SMT 
because the resources of each CPU core are already being used to the maximum by 
a single thread.

Kaliszan et al. [16] tested several HPC applications with different computational 
requirements (time, memory and I/O) on different state-of-the-art HPC architec-
tures (Intel, AMD, ARM and POWER8). Their results showed that the best times 
are obtained when the number of processes coincides with the number of physical 
cores, i.e., without SMT. In fact, the use of SMT would decrease the performance 
of these applications. WRF was one of the applications tested, but due to problems 
with compilation, they could not test it on the ARM and POWER8 systems. There-
fore, we do not know how it could behave with the high SMT modes of POWER8.

3  POWER8: OpenPOWER for HPC weather forecasting

The POWER8 is a Reduced Instruction Set Computer (RISC) processor commer-
cialized by IBM, with 22 nm integration technology. It can achieve a frequency of 
4.5 Ghz, having up to 12 processing cores with 8MB of L3 cache memory each. It 
also features four multithreading modes with 1 thread (SMT1), 2 threads (SMT2), 4 
threads (SMT4) and 8 threads (SMT8) per core. IBM concentrated their efforts on 
the branch prediction and out-of-order execution features of this processor.

Most of the works summarized in the previous section focused on using the 
OpenPOWER architecture as a CPU host for a GPGPU (or accelerator-based) sys-
tem. This is because its memory architecture is well suited to hosting accelerators 
and their energy management features, along with the improved communication 
network between the accelerator and the processor. Therefore, and based on the lit-
erature, we can state that the OpenPOWER architecture is highly appropriate for a 
GPGPU environment.

Nonetheless, the 8-way hyperthreading capabilities in previous works remain 
mostly ignored. At first sight, hyperthreading might be a desirable feature to increase 
the number of processing units and therefore increase computing performance in a 
non-GPU-supported HPC applications. It might also be interesting to know how the 
different hyperthreading levels affect the energy consumption of the processor.

Energy consumption is also a current concern. For a processing unit, it is not only 
important to achieve the best performance when processing data, but also to do so 
with the minimal energy footprint, especially in the case of an HPC system which 
could have thousands of these processing units. There are some ways to measure 
how energy efficient a system is, e.g., using the inverse ( J−1 ) of the energy con-
sumption [25]. Also, it can be possible to compare the relative energy consumption 
between two different systems [12]. However, these metrics do not tell us about how 
the performance-energy balance of an individual system is. Other works compare 
performance efficiency and energy efficiency separately and then evaluate the bal-
ance by hand (using graphical methods) [3, 4], but these works do not provide a 
simple metric to measure that balance.
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A simple metric for evaluating the performance-energy balance of a system is the 
Energy-Delay-Product (EDP) concept proposed by Freeh et al. [11] and defined as:

in which J is the energy consumed in Joules and t the total time of simulation. 
The lower the value of the EDP, the better is the balance between the execution time 
and energy consumption. For the sake of clarity, all the EDPs collected in this work 
are represented divided by 109.

3.1  Collected data

Our case study is based on the WRF [29] software, a commonly used HPC software 
for weather forecasting and atmospheric research. WRF is an example of an HPC 
application that is CPU-bounded, so high-resolution simulations run on a supercom-
puter [8, 31]. For parallel performance, WRF implements a hybrid MPI-OpenMP 
implementation for the calculations. Many distributed computing adaptations of 
WRF exist in the literature, including an adaptation to Grid computing by Davidovic 
et  al. [6], or another adaptation by Fernandez et  al. [10] to hybrid Cluster-Grid-
Cloud distributed systems. GPU support could also be added to some WRF routines 
to achieve greater parallelism [7, 27], which could benefit from the GPGPU capa-
bilities of OpenPOWER architectures.

We used a high-resolution configuration for our simulations, using three nested 
grids with dimensions (199 × 199 × 70) , (103 × 103 × 70) and (60 × 60 × 70) , and 
cell resolutions of 300, 900 and 2700 meters, respectively. A graphic representation 
of the domains is shown in Fig. 1.

Nesting in WRF [5, 15, 29] allows resolution to be focused over a region of 
interest, by using additional high-resolution domains (child domains) inside other 

(1)EDP = J ⋅ t

Fig. 1  Graphic representation 
of WRF domains used in this 
study. The D01, D02 and D03 
are, respectively, the low-, 
middle- and high-resolution 
domains
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low-resolution domains (parents) that maintain the boundary conditions for their 
children domains. This approach yields similar results in the region of interest than 
the alternative, i.e., simulating the whole boundary region with a single high-resolu-
tion domain, without greatly increasing computational requirements. Therefore, it is 
common in WRF to nest high-resolution domains, such as the D03 domain, inside 
other lower resolution domains, e.g., D02 and D01 domains.

Also, note the difference in the size of the problem between the high-resolution 
domain D03 with approximately 3 million cells and the low-resolution domain D01 
with approximately 250k cells. The complexity of the physics used in the simulation 
combined with the size of the problem of the high-resolution domain is directly pro-
portional to the amount of processing power needed for the simulation. The size of 
the problem not only demands computing speed, but also determines the amount of 
memory required to host the simulation.

This study utilized the WRF-ARW version 3.9.1, using P3 microphysics [23], 
the Rapid Radiative Transfer Model [22] scheme and the Noah Land Surface Model 
[24]. WRF simulations were performed on a POWER8 platform (8335-GCA model, 
4.5 GHz), having one processor with 10 cores and another processor with 9 cores 
on the same motherboard. The operating system was Ubuntu Linux and the plat-
form mounted 128GB of RAM. On this platform, two versions of WRF were com-
piled, one with the IBM XL 16.1 Community Edition compilers and the other with 
the IBM Advanced Toolchain 11 (AT), the latter based on GNU v7.3.1 compilers. 
Additionally, simulations for every SMT mode of the POWER8 processor were per-
formed in order to profile the behavior of the system with different hyperthread-
ing levels. For best performance, we used the compilation options summarized in 
Table  1. Note that best performance does not mean better forecast results, so we 
attempted to use the best compilation options to obtain performance without sacri-
ficing too much precision.

As a reference point, we also executed the same simulations on an Intel-based 
platform with two 8-core processors (Xeon E5-2650, 2.2 GHz) on the same moth-
erboard, a widely used setup in HPC systems. To be specific, this system is a com-
puting node of a private supercomputer that we isolated to perform the simulations 
for our study. On this platform, we used the Intel Compilers (v18) to compile the 
software, Red Hat Enterprise Linux 6 and 64GB of RAM. A WRF simulation with 

Table 1  High-performance compilation options used in our simulations for every compiler

System Compiler Compiler options

Intel Intel compilers 18 -O3 -ipo -xHost -qopenmp -fpp 
-auto

POWER8 IBM XL Community edition 16.1 -O5 -q64 -qhot -qaltivec 
-qsmp=omp

POWER8 IBM Advanced toolchain 11 (GNU v7.3.1) -Ofast -flto -mtune=power8 
-mcpu=power8 -mpowerpc64 
-maltivec -mvsx -ftree-
vectorize -funroll-loops 
-fvect-cost-model -fopenmp
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the selected configuration uses about 4GB of RAM so, even though the available 
memory of the Intel-based platform is half that of the POWER8 platform, it was 
enough for the simulations and no disk swapping occurred.

In order to avoid outliers, the computing times and energy consumption were 
obtained from the average of ten executions in each case. Table 2 shows all the data 
obtained from the executions, including wall time, energy and power consumption, 
and EDP.

3.2  Energy‑performance balance

Regardless of the compiler, if we compare the Intel platform with the best cases 
of the POWER8, we can see that the EDP is very similar, meaning that both plat-
forms are equally efficient in “squeezing” performance from the energy they con-
sume. From the perspective of energy-performance balance, EDP for the POWER8 
processors with AT compilers was very similar to the Intel processors. The SMT4 
mode, when used with the AT compilers, was the only case in which the EDP of the 
POWER8 was slightly lower than that of the Intel. In this case, the execution time 
was similar to the other cases, but the energy consumed was significantly lower, 
reducing the EDP to 1.96.

The POWER8 processor is well suited to handle petitions from 2 threads at the 
same time. This is supported by the slight increase in performance and energy con-
sumption of the SMT2 mode with respect to the SMT1, meaning that the processor 
is being used more extensively by two threads. In addition, an interesting phenom-
enon emerges when using the SMT4 mode. In this mode, the energy footprint was 
the lowest of all the SMT modes, and without loss of performance in the case of 
using the AT compilers.

Note the increased energy consumption when using the XL compilers, meaning 
that these compilers were using more processor components and functionality than 
the AT compiler. However, as we can see, more did not mean better, as the AT com-
piler produced simpler code that significantly reduced power consumption with a 

Table 2  Time and energy consumption values for POWER8 and Intel platforms with different compilers 
and hyperthreading (SMT) modes

Speedup respect to the Intel case (Intel time divided by POWER8 time) and the EDP are shown too

System Cores Thrs t (s) Avg. (W) Energy (MJ) Sp EDP ( ∕109)

Intel (IC) 16 (8 + 8) 16 3043 235 0.70 1.00 2.13
SMT1 (XL) 19 (10 + 9) 19 1669 814 1.36 1.82 2.27
SMT2 (XL) 19 (10 + 9) 38 1624 916 1.49 1.87 2.42
SMT4 (XL) 19 (10 + 9) 76 1952 764 1.49 1.56 2.91
SMT8 (XL) 19 (10 + 9) 152 2683 800 2.15 1.13 5.77
SMT1 (AT) 19 (10 + 9) 19 1887 745 1.40 1.61 2.64
SMT2 (AT) 19 (10 + 9) 38 1644 799 1.31 1.85 2.15
SMT4 (AT) 19 (10 + 9) 76 1648 723 1.19 1.85 1.96
SMT8 (AT) 19 (10 + 9) 152 1876 743 1.39 1.62 2.61
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similar performance to the XL compilers. Therefore, increasing the SMT mode with 
the XL compilers meant increasing energy consumption without a clear gain in the 
performance for SMT2, and a substantial decrease in performance for higher SMT 
modes. Moreover, the AT compilers exhibited a lower energy footprint which, com-
bined with their overall performance, reduced their EDP values and made them a 
better option than the XL cases.

All in all, and despite their energy consumption, the best times were achieved 
when using the XL compilers with SMT2.

3.3  Power saving mode

Compared to the Intel processors, the POWER8 processors used more energy for 
the same simulation, but, in exchange, they yielded higher computing performance. 
The OpenPOWER architecture features power saving and management modes in 
which their unused processors and cores are put to sleep to save energy when not 
in use. The clock frequency of the processor can be easily set from the operating 
system. The simulation times previously shown were obtained with the maximum 
frequency available in the cores used, while those not used were adjusted in energy 
saving mode. This is equivalent to setting the processor power management policy 
to on demand mode.

In order to compare the Intel and IBM processors, we set up simulations in the 
POWER8 processors with a lower power consumption and performance. The AT 
compiler was chosen for these tests due to its reduced energy consumption in the 
previously conducted tests. The objective was to equal simulation times and com-
pare their energy consumption. We lowered the power consumption of the POWER8 
processor by reducing its frequency to the minimum (2.5 GHz), i.e., setting all the 
processor cores to power saving (PS) mode, regardless of their usage. This 
action had the effect of reducing the simulation energy consumption at the expense 
of increasing the computing times, obtaining the results in Table 3.

Even in their lowest frequency, the POWER8 achieved better performance 
(1.37X) than its Intel counterpart, which was running at a comparable clock fre-
quency. The power consumption was also reduced by a 1.19 × factor with respect to 
its analogous full frequency case, even though the Intel processor consumption was 
once again lower.

Table 3  Time and energy consumption values for POWER8 (AT compilers) and Intel platforms with dif-
ferent hyperthreading (SMT) modes

System Cores Thrs t (s) Avg. (W) Energy (MJ) Sp EDP ( ∕109)

Intel 16 (8 + 8) 16 3043 235 0.70 1.00 2.13
SMT1 (PS-AT) 19 (10 + 9) 19 2765 420 1.16 1.10 3.21
SMT2 (PS-AT) 19 (10 + 9) 38 2304 434 1.00 1.32 2.30
SMT4 (PS-AT) 19 (10 + 9) 76 2229 445 0.99 1.37 2.21
SMT8 (PS-AT) 19 (10 + 9) 152 2585 453 1.17 1.18 3.02
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The POWER8 has more cores per processor than the Intel, so we compared 
the execution time divided by the number of cores. The POWER8 obtained 117 s 
per core, while the Intel processor took 190 s per core. Again, the POWER8 cores 
achieved higher performance per core even at the same clock frequency.

From the perspective of energy-performance balance, the EDP with the power 
saving mode was slightly higher for the best cases (SMT2 and SMT4) than the EDP 
from Table 2. This meant a significant reduction in the power consumption with a 
proportional decrease in performance.

3.3.1  CPU and cache efficiency

In the previous sections, we looked at the achievable performance and power con-
sumption of POWER8 architecture compared to an Intel one. The results showed 
much better performance of the POWER8 architecture. We examined processor per-
formance statistics in order to determine the reason for this better performance.

Both processor architectures used in this work had hardware counters at their dis-
posal for profiling processor events. We used the Linux utility perf for handling 
these counters and measured some important metrics for performance such as the 
CPU usage, cycles, branch prediction misses and last level cache (L3) misses. The 
performance metrics obtained are summarized in Table 4.

A look at the Intel architecture metrics shows that the CPU usage was near 100%, 
so the processor was busy all the time. Moreover, the Cycles Per Instruction (CPI), 
which gives an estimation of how costly it is to execute an instruction in this sim-
ulation, was very efficient. The problematic metric with this architecture was the 
high usage of the L3 cache coupled with nearly half the petitions being a miss. The 
amount of L3 cache available in each of the Intel processors was 20 MB (2.5 MB 
per core), which represents a great disadvantage compared to the POWER8 proces-
sor (8 MB per core). Despite this high cache-missing rate, the CPI was relatively 
low, which means that the Intel architecture exhibited a low penalty on accessing 
main memory.

In the case of the POWER8 architecture, the CPU usage depended on the 
SMT mode. As expected, the SMT1 and SMT2 modes kept the CPU busy most 
of the time, while in the SMT4 and SMT8 modes the CPU was used at approxi-
mately 80% of capacity. The SMT1 mode achieved a similar CPI to the Intel pro-
cessor (2.2 GHz), but doubled the processor clock frequency (4.5 GHz), doubling 

Table 4  Performance stats obtained from the POWER8 SMT modes (19 cores) and the Intel platform. 
The values corresponding to branching and cache loads were divided by 109

CPU% CPI GBranch / GMisses (%) L3 GLoads / GMisses(%)

Intel 0.98 1.22 9989 / 044 (0.45%) 1948 / 855 (44%)
SMT1 0.99 1.02 11144 / 197 (1.77%) 145 / 021 (15%)
SMT2 0.88 1.45 16671 / 220 (1.32%) 176 / 020 (12%)
SMT4 0.82 2.33 27578 / 239 (0.87%) 304 / 062 (21%)
SMT8 0.83 4.35 44944 / 280 (0.62%) 482 / 140 (29%)
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the performance. The POWER8 had 8MB of L3 cache for every core, resulting in 
80MB in the processor with 10 cores and 72MB in the 9-core processor. Compared 
to the Intel processor’s cache, the POWER8 had four times more cache memory, 
including the first two cache levels. This high amount of cache was reflected in the 
significantly fewer accesses to L3 cache and even fewer misses, 15% compared to 
the Intel’s 44%. Similar metrics were obtained with the SMT2 mode.

When using the SMT4 mode, the CPI rose significantly, making the instructions 
more costly in terms of processor cycles. This was due to the increase in the over-
all branch and cache misses, especially the latter. The POWER8 has an advanced 
branch predictor, but the percentage of branch prediction misses is still much higher 
than Intel. Even though all the metrics were worse compared to the SMT1 mode, 4 
threads are processing in parallel, which ultimately makes the execution as fast as the 
SMT2 mode (see Table 2). In fact, the reduced CPU usage of the SMT4 mode while 
achieving the same simulation time was causing this reduction in power consump-
tion. Furthermore, the decrease in performance per thread observed in the SMT4 
mode was magnified in the SMT8 mode. In this mode, the metrics were significantly 
lower, doubling the cache misses with respect to the SMT4 mode. In this case, the 
number of threads could not compensate for the performance degradation produced 
by the misses in the cache. From these results, we can see that the POWER8 perfor-
mance was very susceptible to cache misses, i.e., accessing main memory, unlike its 
Intel counterpart which maintained a low CPI.

From these results, we can state that the OpenPOWER memory architecture per-
formed well under SMT1 and SMT2 modes, but was not sufficient for higher SMT 
modes. Many HPC programs (such as WRF) make use of nearly 100% of the thread 
computing time, while the SMT4 and SMT8 modes in OpenPOWER are currently 
designed for light threads with variable workload, i.e., throughput focused.

We propose two design options to improve the OpenPOWER architecture and 
achieve higher HPC efficiency:

– Increasing the duplicity of the intra-core hardware elements to access the mem-
ory hierarchy, reducing cache missing and its associated penalty.

– Reducing the core complexity by removing the SMT4 and SMT8 modes and 
removing other features related to accelerators. Simpler cores would allow an 
increase in the number of cores with their expanded cache and a reduction in the 
energy consumption.

The latter option is partially achieved in certain variants of the current generation 
of OpenPOWER architecture: the POWER9, although it is still focused on being a 
host CPU for GPUs in all the variants.

3.4  POWER9 expectations

The OpenPOWER POWER9 processor is the successor of the POWER8, offering 
superior specifications and four different processor architectures depending on the 
intended usage. A comparison between the POWER8 and the different POWER9 
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variants is presented in Table 5. The Scale-Up (SU) processors are designed to be 
installed with up to 15 other processors in the same node, and due to their higher 
memory bandwidth requirements, they provide more memory bandwidth than their 
Scale-Out counterparts. The Scale-Out (SO) processors are designed for dual-socket 
nodes, with both processors working together seamlessly. In this case, the access to 
memory is direct with a reduced memory bandwidth. The PowerVM variants are 
designed to work with virtual machines, where they need very high concurrency 
which is supported by the SMT8 mode. Moreover, there are also the Linux variants 
with more hardware cores than their PowerVM counterparts, but with reduced SMT 
modes.

The POWER9 processor is even more focused toward being the host processor 
of an accelerator-based system due to its high performing communications based on 
NVLink 2.0, the OpenCAPI protocol and the available PCIe Gen4 ports. These spec-
ifications make the POWER9 an excellent processor for managing multiple NVIDIA 
GPUs.

Considering our results, we expect that the best performing POWER9 variant in 
our WRF simulations would be the Scale-Up Linux because of its high number of 
hardware cores (24) and their near-optimal SMT4 mode. This option could present 
memory bottlenecks when using 16 processors on the same node due to the reduced 
amount of L3 cache per core (5 MB), so the Scale-Out Linux (10 MB of L3 per 
core) could also be an alternative if these bottlenecks occur. Ultimately, it is difficult 
to know a priori which of both configurations would perform better.

4  Discussion

The energy consumption of the POWER8 is significantly higher compared to the 
reference processor, even when reducing the clock frequency to the minimum possi-
ble. This consumption is higher when using the IBM XL compilers than when using 
other compilers, due to a more intensive use of the hardware elements in the pro-
cessor. This extra complexity is unneeded in the HPC software used, leading to an 
increase in power consumption without an increase in performance. For these rea-
sons, this processor is not recommended for environments where energy consump-
tion is critical.

Table 5  POWER8 (P8) and POWER9 (P9) specifications

Max sockets Max cores Max SMT L3 (MB) Mem buffer Mem 
bandwidth 
(GB/s)

P8 2 10 SMT8 96 L4 230
P9 SU PowerVM 16 12 SMT8 120 L4 230
P9 SO PowerVM 2 12 SMT8 120 Direct 120
P9 SU Linux 16 24 SMT4 120 L4 230
P9 SO Linux 2 24 SMT4 120 Direct 120
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In terms of performance, the POWER8 is significantly faster compared to the ref-
erence processor, even when reducing the clock frequency to the minimum to save 
energy. Therefore, this processor is highly recommended for HPC environments 
where energy consumption is secondary.

The POWER8 includes high-performance memory hierarchy, which is excel-
lent for hosting an accelerator (GPGPU). This is one of the main advantages of the 
POWER8 compared to other processors such as the reference processor used in this 
study, but it could still be better. The SMT4 and SMT8 modes are devised for light 
workload threads, so the memory hierarchy becomes a bottleneck when using all the 
threads intensively. Moreover, a miss in the L3 last-level cache entails a higher pen-
alty in performance than with other processor architectures.

Another question is how these two architectures might behave when more than 
one node is used. The main factor affecting the MPI scalability in HPC architec-
tures, when more computing nodes are used, is the communication overhead [14, 
26]. Two main factors affect the injection of data into the network:

– The number of nodes.
– The data communications generated by these nodes.

Having more nodes means that MPI processes must communicate data to more 
targets, especially when using MPI collective operations [14]. Also, allocating mul-
tiple MPI processes per node could be detrimental for performance, as more com-
munication is generated per node [26].

The POWER8 node had better simulation times than the Intel node, and it would 
take approximately 2 Intel nodes to match that performance. Therefore, if we 
increase the number of POWER8 nodes used, we would need to at least double the 
number of Intel nodes to match the same performance.

On the other hand, when the number of nodes is too high for the network to man-
age, the scalability limit is reached, where a further increase in nodes is detrimen-
tal to performance. Therefore, Intel nodes are expected to reach their limit before 
POWER8 nodes, or in other words, POWER8 nodes could get more performance at 
their scalability limit.

5  Conclusions

A performance-energy study based on weather forecasting software executed over 
POWER8 processors is presented in this work. Several simulations of the HPC 
weather forecasting WRF software were performed for the characterization of the 
processor with this kind of CPU intensive load.

In terms of energy-performance balance, the EDP is very similar to other proces-
sors used in HPC, although the POWER8 obtains significantly higher performance 
at the cost of more energy consumption.

As a conclusion, the POWER8 SMT2 and SMT4 modes are the best-fitted hyper-
threading modes for HPC workloads because of their superior performance and pro-
portional energy consumption, the latter being slightly better with SMT4. However, 
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the SMT1 mode leaves the processor resources underused, while the SMT8 mode 
collapses the memory hierarchy when using threads at full throttle. In order to 
improve performance for non-accelerator-based HPC workloads, we suggest an 
increase in the duplicity of the intra-core hardware to improve parallel access to the 
memory hierarchy, and a reduction in the complexity of the hardware cores to allow 
processors with a larger number of cores.

As future work, the scalability of the OpenPOWER architecture, from the point 
of view of the EDP, should be studied with an increasing number of nodes. It is dif-
ficult to predict beforehand what behavior will be observed with a high number of 
nodes. On the other hand, the current generation of OpenPOWER processors, the 
POWER9 architecture, is very promising for improving the performance of weather 
forecasts due to the improved memory hierarchy and the increased number of hard-
ware cores.

In the future, we want to obtain the EDP for the POWER9 architecture and study 
whether the performance-energy tradeoff is better or worse than POWER8. We 
expect the energy consumption per core of the POWER9 architecture to be lower 
or at least equal to that of its predecessor. In addition, some POWER9 models are 
optimized for HPC and in fact only implement up to SMT4 hyperthreading, so it 
would be interesting to test the performance obtained by the SMT4 mode in these 
processor models.
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