
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:6194–6219
https://doi.org/10.1007/s11227-019-02843-4

1 3

A component‑based study of energy consumption 
for sequential and parallel genetic algorithms

Amr Abdelhafez1   · Enrique Alba1 · Gabriel Luque1

Published online: 4 April 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Recently, energy efficiency has gained attention from researchers interested in opti-
mizing computing resources. Solving real-world problems using optimization tech-
niques (such as metaheuristics) requires a large number of computing resources and 
time, consuming an enormous amount of energy. However, only a few and limited 
research efforts in studying the energy consumption of metaheuristics can be found 
in the existing literature. In particular, genetic algorithms (GAs) are being used so 
widely to solve a large range of problems in scientific and real-world problems, but 
hardly found explained in their internal consumption behavior. In the present article, 
we analyze the energy consumption behavior of such techniques to offer a useful 
set of findings to researchers in the mentioned domains. We expand our study to 
include several algorithms and different problems and target the components of the 
algorithms so that the results are still more appealing for researchers in arbitrary 
domains of application. Our experiments on the sequential GAs show the controlling 
role of the fitness operator on energy consumption and also reveal possible energy 
hot spots in GAs operations, such as mutation operator. Further, our distributed eval-
uations besides a statistical analysis of the results demonstrate that the communica-
tion scheme could highly affect the energy consumption of the parallel evaluations 
of the GAs.
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1  Introduction

In today’s world, energy efficiency is an important topic in all scientific areas. 
In computer science, a new domain called green computing [19] has emerged to 
deal with the efficient use of computing resources to reduce the environmental 
footprint. The electricity consumption of computing devices has a large impact in 
our current digital era, and it will increase in the next years. Although electricity 
is an environment-friendly form of energy, its generation and distribution emit a 
significant amount of pollutants [e.g., carbon dioxide ( CO

2
 ) and sulfur dioxide 

( SO
2
)]. These pollutants increase global warming and represent a threat to any 

living being [26, 27].
Building real green computing applications requires the knowledge of the 

actual consumption of each component of their algorithms or software pieces [1]. 
However, measuring the energy consumption of software still faces many practi-
cal and theoretical problems, e.g., the lack of specialized software able to accu-
rately measure energy consumption (hardware independent) [18]. Even the actual 
building of software that uses this information is quite unprecise [36]. Among the 
most consuming type of programs we can find out there, search techniques when 
solving complex problems have a prominent place. Search techniques require 
large computation times and are frequently run to optimize daily activities in cit-
ies and factories [14]. Genetic algorithms (GAs) are search, optimization, and 
learning methods that have been widely applied in many research areas and real-
life problems, e.g., engineering, aircraft design, optimization, logistics, bioinfor-
matics, scheduling, robotics.

The availability of high-performance computing (HPC) resources makes GAs 
suitable for parallelism in order to solve more complex and lager problems [4]. 
In the literature, there are no studies that offer precise indications on where is 
energy going in GAs and parallel GAs (PGAs), what would allow the next phase 
of smart use of this information to build efficient algorithms with lower consump-
tion for a similar numerical result.

In this work, we focus on the measurement and quantitative analysis of the 
energy consumption of GAs and PGAs. We perform an extensive analysis of the 
energy consumption and execution time of the components of a sequential (pan-
mictic) genetic algorithm. Further, we include the energy consumption analysis 
of PGAs (a distributed GA (dGA) in our case) with two different communication 
schemes. We aim to answer four significant research questions:

RQ1 Which GA component consumes the most?
RQ2 What is the effect of the problem size on the energy consumption of GA 
components?
RQ3 What is the effect of using different communication schemes on the 
energy consumption of the dGA?
RQ4 What is the impact of using a variable number of cores on the global 
energy consumption of the dGA?
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For RQ1, we analyze the energy consumption of GA components one by one using 
a varied number of problems and dimensions. For RQ2, we test problems with dif-
ferent dimensions to study the effect of the size of the problem on the energy con-
sumption of different GA components. For RQ3, we extend this analysis to a dGA 
with two different communication schemes (synchronous and asynchronous). RQ4 
requires an extensive study to the energy consumption features of the dGA over a 
different number of cores from 1 to 32. We consider a varied set of problem features 
(dimensionality, search landscape, multimodality, etc.) so that meaningful conclu-
sions are feasible.

In short, the main contributions of this paper are to study the energy consump-
tion and execution time behavior of both sequential and parallel GAs, in reason-
ably wide energy analysis of its components under different computer communica-
tion schemes. We expect that our research (energy understanding of GAs) will be a 
spot of interest to the research community. The potential impact of these results in 
building new techniques that fit the aims of green computing will also link to a line 
of research for making algorithms more efficient as a piece of software running on 
a computer. This point of view is not so present in the literature, but a fundamental 
one for formulating high-quality research.

The rest of this paper is organized as follows: Sect.  2 discusses several related 
works for an overview of their recent advances. Section 3 defines the basic concepts 
of the canonical and distributed GA, with a description of the different dGA com-
munication schemes. Section 4 provides the methodology for our experiments with 
a justification of the problems used in the experiments. In Sect. 5, we present our 
numerical results to analyze the sequential and distributed GA with a discussion on 
it. Section 6 summarizes the conclusions and discusses open research lines.

2 � Related works

Overall, the literature on analyzing energy consumption of GAs exists, though it is 
very limited yet. As to PGAs, the literature is still shorter. We can also find sev-
eral articles on nearby fields, like applying metaheuristics for problems dealing with 
energy minimization in a target scenario. However, that approach is different from 
our goal since they are not targeting the energy consumption of the algorithm itself 
but using the algorithm to solve problems concerns energy.

In the area of GAs, there are efforts to study the energy consumption behavior of 
the algorithm. One of these efforts was proposed by [13]. There, authors developed a 
GA to solve an extended version of the job-shop scheduling problem by considering 
its energy consumption. Another related effort was performed in [16], where authors 
evaluated the performance of three metaheuristic algorithms on the basis of cost and 
minimizing energy reductions. In the area of parallel algorithms, the authors of [25] 
proposed a parallel bi-objective hybrid genetic algorithm that takes into account 
energy consumption. They studied island and multi-start parallel GA models with 
a hybrid approach between a multi-objective PGA and energy-conscious scheduling 
heuristic. They concluded that the hybrid approach consumes more resources than 



6197

1 3

A component-based study of energy consumption for sequential…

the energy-aware scheduling heuristic, and the insular approach consumes more 
resources than the hybrid approach.

Previously mentioned efforts studied GAs and other algorithms to improve 
energy efficiency when solving a problem. However, they did not analyze the energy 
consumed by the GA or its components. In the scope of analysis of energy consump-
tion of evolutionary algorithms (EAs), Vega et al. [38] presented a preliminary study 
on the energy consumption of the genetic programming (GP) algorithm. They run 
their experiments on different hardware devices over a number of operating systems. 
The main goal of their study was to show the effect of the main parameters of the 
algorithm on the energy consumption. They concluded that devices with better pro-
cessors can run the algorithm faster but spend larger amounts of energy. They also 
reported the influence of changing population sizes in the variable amount of energy 
required to reach solutions. Another recent research in this regard was proposed by 
Alvarez et  al. [7]. The authors of that work presented a preliminary energy con-
sumption estimation model, based on the analysis of the influence of GP parameters 
on their energy consumption under a number of hardware devices. They concluded 
that their model was able to correctly estimate the energy consumption of the GP 
algorithm over different devices.

We now turn to review the relevant researches concerning tools to measure 
energy consumption, either in algorithms or in other types of software. Since it was 
proposed by Intel, Intel’s running average power limit (RAPL) [10] interface has 
been used widely to measure the energy consumption of algorithms. In [9], authors 
used RAPL as a measurement to the execution of the algorithms and stated that it is 
reliable in many different types of computing systems. In another aspect, the authors 
of [39] used the RAPL interface to measure the energy consumption characteristics 
of MPI calls. They proposed a model to accurately measure the aggregate energy 
consumed by all processes engaged in MPI operations. In [31], authors extended 
Flex-MPI [24] with energy-aware and power-aware capabilities. Their aim was to 
increase the energy efficiency of parallel applications by means of malleability. All 
the power measurements in their novel approach were obtained by means of the 
RAPL interface. With a different objective, the work presented in [30] focused on 
the comparison between RAPL and two other power-meter methods for gathering 
energy consumption values. Their contribution was to study the correspondence or 
difference of the energy data provided by these methods. Their analyses show that 
RAPL has good correspondence due to using the faster and reliable hardware coun-
ters, which allows to use it for measuring energy consumption accurately. For more 
researches on using RAPL in energy measurement, we refer the reader to [8, 21, 
28]. Thus, we could claim that RAPL proved to be a reliable tool for measuring the 
energy of algorithms.

In summary, there are several differences between the existing works and our 
approach. We here present a study on the energy consumption behavior of sequential 
and distributed GAs, not GP or other ad hoc heuristics or software. Also, the pre-
vious works were dealing with either an application where energy was considered 
(out of the algorithm itself) or tools for measuring energy in software packages in 
general. The actual situation in this domain is that of a definite shortage of works 
focusing on GAs (a really important kind of techniques today) with modern tools for 
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measurement. Besides, GA and PGAs are structurally different in many aspects, so 
they need and deserve a focused study, as we do here.

3 � Genetic algorithms background

In this section, we provide the background algorithmic information needed to under-
stand and reproduce this work. In particular, we present an overview of the canoni-
cal panmictic GA and dGA.

3.1 � Overview of the canonical genetic algorithm

GA starts with a randomly generated set of individuals, called a population. Each 
individual (chromosome plus fitness) represents a possible tentative solution. Each 
chromosome is composed of an array of genes depending on the dimension of the 
problem solved. The fitness (optimized objective) function is used to evaluate the 
quality of every individual in relation to the rest. Genetic operators (usually selec-
tion, crossover, mutation, and replacement) are used to generate new solutions for 
the next generation. This process is performed until the stopping criterion is met 
(maximum number of fitness evaluations or find a solution of good quality). Algo-
rithm 1 provides the pseudocode of this panmictic algorithm.

The term panmictic means that all the individuals in the same single population 
can probably mate to the rest, i.e., there is no restriction to their interactions. In the 
structured GAs [5, 34], the individuals are geographically separated, and interac-
tions occur only inside these isolated neighborhoods. Multi-population GAs (such as 
dGA) are the typical example of structured GAs. dGA can indeed be run in parallel 
on different cores (or not), but this refers to its physical execution, not to the design 
of the algorithm (as distributed points out).

3.2 � The distributed genetic algorithm

In our study, we also consider the distributed model largely described in [4] and 
many other works. In this model, the population is divided into many subpopula-
tions called islands all having the same number of individuals. These islands can run 
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in parallel (so we could call it PGA or parallel dGA) and can exchange information 
and knowledge among them. The resulting behavior of this parallel dGA is quite dif-
ferent from the canonical one and in general beneficial to explore different parts of 
the search space at the same time (distributed effect) plus a significant reduction in 
the time expected from performing more operations per time unit (parallel effect). 
Once migration conditions are met, individuals (or other information) occasionally 
migrate from one particular island to its neighbors. (So, a topology is needed.) In 
Algorithm 2, we provide the pseudocode of a canonical dGA.

It is clear that individuals only mate inside islands, and the sparse migrations 
make it possible for a copy of them to arrive at other islands and merge then with 
locals. The time between successive communications, Δi , is one of the most impor-
tant parameters of the migration policy, regulating the degree of connectivity and 
indeed the potential consumed energy for computing and using the communication 
network.

Our migration topology is a unidirectional ring topology, a very common one. 
(We want to maximize our impact in the field by using common models in this first 
paper on energy.) Thus, an island can send and receive migrants only from its next 
and previous neighbors, respectively. The actual communications between islands 
do not only depend on frequency or topology, but it could also vary according to the 
synchronism of the implementation. The most common dGA communication poli-
cies are synchronous and asynchronous schemes [3].

3.3 � Synchronous and asynchronous communication schemes

In our experiments, we will address both synchronous and asynchronous implemen-
tations for the same case studies. Studying both implementations present an impact 
in the field than previous studies since most existing works usually address one 
implementation. Synchronous versions are common when the algorithm is run on 
shared memory for all islands since all islands should then proceed at a similar pace. 
Asynchronous distributed genetic algorithms (dGAs) are very common in Internet 
systems policies and clusters with heterogeneous computing units.



6200	 A. Abdelhafez et al.

1 3

Synchronous and asynchronous implementations are governed by the same 
algorithm and parameters. The main difference is in the communication scheme: 
Either we proceed at the same pace (sync) and wait for the slower island (in every 
generation) of the dGA or every island advances at its own pace (async) and 
incorporates incoming information as soon as it arrives. Figure 1 shows the dif-
ferences between the two schemes in a graphical manner.

The main difference between these implementations is that the synchronous 
version has a synchronization point at every migration interval, where all the 
islands exchange the search information simultaneously [3]. At that point, all the 
processes should wait and block for other processes to reach this point. So, it is 
highly probable that at every communication point there are some idle processes 
waiting for some others to finish their task. It is important to mention that the 
migrant solutions are from the same evaluation phases, which may lead to lower 
performance for the migration operator.

On the contrary, in the asynchronous approach there are not such synchroniza-
tion points; thus, islands proceed on their own with sparse and non-synchronous 
exchanges of information once arrived at the island. Every island includes the 
received individuals from migration whenever possible, then avoiding any wait-
ing [3]. Thus, this communication scheme potentially evolves immigrant solu-
tions independently from the different generation times among the islands. This 
way of sharing knowledge gives more diversity to the islands across the search 
process, promoted by the different speeds of the computing units; thus, there are 
no idle processes by construction.

Even if the synchronized algorithms might have some performance issues, 
they are spread. Synchronization of communications may cause some resources 
to be idle waiting for communications [2], but in some problems (due to a specific 
problem requirement) it may come as a design choice. Therefore, studying the 
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effect of synchronism on the parallel and distributed algorithms is an important 
issue, never previously done in connection with their energy consumption.

4 � Design of experiments

Our approach is to present energy consumption and execution time studies of the 
(panmictic) sequential GA and the (structured) parallel dGA. As to the sequential 
GA, we study the energy consumption and execution time of the GA components 
(not just of the whole algorithm). In the second analysis, we expand the study to 
include energy consumption of the dGA with different communication schemes. 
Both studies provide knowledge to researchers not just on the actual internal behav-
ior in terms of energy, but they represent an opportunity to build less consuming 
algorithms in future studies.

Let us start with the sequential GA. Here, we will justify why and how we meas-
ure the energy consumption of the following components:

•	 Fitness evaluation:  This operator is one of the main GA components since it 
is used for calculating the quality of solutions and guiding the search. A fitness 
value indicates how close a solution to the optimal solution is. The computa-
tional resources required by this operation highly depend on the problem being 
solved. Other problem characteristics, e.g., multi-objective optimization and 
dynamic problems, have a strong relation to fitness computation; not to mention 
parallelism, that comes handy in many cases because of its high computational 
demands. It is now clear the importance of the study for energy consumption of 
evaluations apart.

•	 Genetic operators:  Usually, the variation operators of a GA are used to gener-
ate new solutions based on the existing ones. The active variation operators in 
a GA are crossover and mutation. The aim of these operations is to modify the 
current population to get a new one. The crossover (or recombination) operator 
combines two or more different solutions to generate new solutions, while the 
mutation operator modifies the solution by changing its genes to generate a new 
one. The main role of the mutation operator is to add genetic diversity inside the 
population, thus preventing the algorithm from converging to a local optimum. 
Genetic operators are substantial to GAs; they deserve an energy profiling study.

•	 Housekeeping:  This term (in our study) refers to all the rest of the tasks of 
the algorithm, e.g., initialization, selection, and I/O operations. These operations 
have fewer computations and instructions to be executed compared to the previ-
ous operators.

Further, we present an analysis of the energy and time consumption of the syn-
chronous and asynchronous dGAs over a different number of cores. We use a set of 
problems with different features and sizes. Moreover, we perform a statistical com-
parison for the energy consumption behavior between these two implementations. 
Our algorithms have been implemented in C++, and the communication phase in 
the dGA is implemented using the MPI message-passing programming model. The 
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communication topology uses MPI’s blocking/non-blocking communication func-
tion features for the synchronous and asynchronous migrations, respectively. MPI 
allows a natural and easy partitioning of the problem, and it provides portability and 
efficiency.

All the energy measurements in our experiments were obtained by means of 
RAPL [10]. The RAPL interface is implemented in C++ and invoked from the 
source code. The reasons for using RAPL are many: First, it has already been proven 
to be stable and to achieve high accuracy energy estimates at a fine-grained level 
[17, 32, 41]. Second, it does not require built-in hardware on Intel-compatible sys-
tems. Third, RAPL measures the energy consumption of the running code without 
introducing influent overhead.

4.1 � Benchmark problems

In order to perform a comprehensive energy consumption study, we use a set of eight 
different problems with many instances each. These problems vary in dimension 
sizes, computational complexity, and search landscapes, which will lead to better-
grounded conclusions. The problems used in our experiment are as follows: ONE-
MAX problem [33] (or bit-counting), multimodal problem generator (P-PEAKS) 
[20], error-correcting code design (ECC) [23], the minimum tardy task problem 
(MTTP) [35], COUNTSAT [12] which is an instance of MAXSAT, maximum cut of 
a graph (MAXCUT) [22], frequency modulation sounds (FMS) [37], and the mas-
sively multimodal deceptive problem (MMDP) [15]. They represent quite a diverse 
set, not only from a numerical point of view but also showing different complexi-
ties. Table 1 gives a list of the problems sorted according to the evaluation operator 
complexity.

ONEMAX (bit-counting problem) is a basic test function used for evaluating and 
comparing algorithms; it will allow these results to benefit other papers in theory of 
GAs and will provide a basic line for comparison. The multimodal problem genera-
tor P-PEAKS employs n-bit solutions named peaks. These solutions represent the 
location of the peaks in the search space. The fitness of a given tentative solution 
is computed using the Hamming distance to the nearest peak in the search space 
[11]. ECC is an important problem in the area of secure communications (error code 
design); our instance consists of 24 words and a word length of 12 bits. MAXCUT, 
COUNTSAT, and MTTP are NP-complete combinatorial problems of interest in the 
field of metaheuristics used for testing and evaluating algorithms. FMS is a real-
world problem in the field of engineering. FMS has six real-valued parameters of a 

Table 1   Benchmark problems 
and its evaluation operator 
complexity

Problem Evaluation Problem Evaluation

COUNTSAT O(n) MAXCUT​ O(n2)

MTTP O(n) P-PEAKS O(n2)

FMS O(n) ECC O(n2)

ONEMAX O(n) MMDP O(n2)
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frequency-modulated sound model, and the goal is to minimize the sum of squared 
errors from the proposed solution to a reference model. The MMDP problem is 
composed of k deceptive subproblems, with the goal of cheating the search algo-
rithm and making it perform badly. We use one instance with k = 60 subproblems.

In all of our benchmark problems, we are maximizing the objective function, 
except for FMS where we are minimizing it. We here need to remind that our goal 
in this paper is not to offer the best performing algorithm for these problems, but 
to use problems from the literature that will allow our energy consumption to be 
more representative than usually found till now. This approach is a diverse source of 
search features that would require from the algorithm an unknown and very different 
performance.

4.2 � Parameter settings and system specifications

In this section, we present the parameters used in our experiments. We determined 
these values by a set of preliminary numerical experiments, with the goal of allow-
ing the running to expose different behaviors and energy profiles, for richer analysis. 
Table 2 presents the values used for the sequential GA and parallel dGA.

Our results are the average of 30 independent runs of the algorithms, executed in 
a dedicated multicore computer. These multiple runs allow also reducing the effect 
of system and I/O overhead in the measurements. We conducted our experiments 
on an Intel-based PowerEdge T430 Tower Server with the following specifications: 
Intel(R) Xeon(R) E5-2620 v4 2.10 GHz, 20M Cache, Linux Ubuntu Server 14.04.5 
LTS operating system, and 64GB of RAM.

5 � Numerical experiments

This section presents the results of the introduced algorithms to solve the explained 
problems. First, we analyze the results of the energy consumption of the sequential 
GA components, showing how much each component consumes. Later, we present 

Table 2   Parameter settings for 
the sequential and parallel dGA

Definitions Values

Population size in the sequential GA 100 individuals
Subpopulation size in the dGA 50 individuals
# of islands in the dGA 32 islands
Crossover Uniform, pc = 0.6

Mutation Bit-flip, pm = 0.1∕n

Selection operator Binary tournament
Replacement Replacing the worst
Elitism Yes
Migration rate 2 individuals
Migration gap 5000 evaluations
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an analysis of the synchronous and asynchronous parallel dGA to spot its unique 
energy profiles.

5.1 � Energy consumption analysis of the sequential genetic algorithm

In this analysis, we focus on the energy consumption and execution time analysis of 
GA components. We aim to present a detailed answer to our first research question 
(RQ1) proposed in the Sect. 1. Tables 3 and 4 present the energy consumption in 
kWh, and energy consumption percentages of the GA components, respectively. We 
separate problems of O(n) and O(n2) in the table with a dashed line. These results 
are the average of the 30 independent runs of the algorithm after 106 generations. In 
Table 3, we show in boldface the five highest energy consumption components and 
underline the lowest energy consumption components among all the problems. In 
Table 4, we show in boldface the components with the highest energy consumption 
percentages for each problem, respectively.

As to the total energy consumption values reported in Table 3, the first conclu-
sion is that values vary depending on the problem dimension and fitness function 
complexity. For MAXCUT and P-PEAKS problems, the total energy consumption 

Table 3   Mean of the energy consumption of GA components for 30 independent runs, in kWh

Problem Dimension Evaluation Crossover Mutation Housekeeping Total

COUNTSAT 20 6.54E−04 7.87E−04 7.97E−04 7.30E−04 2.97E−03
MTTP 100 1.15E−03 2.05E−03 2.54E−03 8.09E−04 6.55E−03
FMS 288 2.22E−02 5.37E−03 7.45E−03 1.13E−03 3.61E−02
ONEMAX 2000 3.95E−03 3.70E−02 5.15E−02 9.63E−03 1.02E−01
MAXCUT​ 100 3.05E−02 1.99E−03 2.60E−03 7.95E−04 3.59E−02
P-PEAKS 100 3.06E−02 2.00E−03 2.73E−03 5.34E−05 3.54E−02
ECC 288 3.25E−02 5.38E−03 7.54E−03 1.07E−03 4.65E−02
MMDP 360 1.56E−03 6.65E−03 9.30E−03 1.42E−03 1.89E−02

Table 4   Energy consumption 
percentages (%) of the different 
GA components

Boldfaced values represent the component with the highest energy 
consumption by problem

Problem Evaluation Crossover Mutation Housekeeping

COUNTSAT 22.02 26.52 26.87 24.59
MTTP 17.62 31.30 38.74 12.34
FMS 61.38 14.86 20.64 3.12
ONEMAX 3.87 36.25 50.45 9.43
MAXCUT​ 85.01 5.53 7.25 2.22
P-PEAKS 86.48 5.66 7.71 0.15
ECC 69.90 11.58 16.22 2.31
MMDP 8.22 35.13 49.15 7.51
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of the algorithm is similar, since the two problems have the same dimension size 
and evaluation operator complexity. For problems COUNTSAT and ONEMAX, the 
GA scores the lowest and highest energy consumption amount, respectively. This 
happens again because of the dimension size of each problem. For the evaluation 
operator, ECC scores the highest energy consumption amount among all the eval-
uation values out of all the other problems. The reason for this is the complexity 
and implementation of the ECC problem, which requires more computations in the 
evaluation process. The controlling role of the dimension size is very clear in the 
genetic operators. For problems of dimension 100 (P-PEAKS, MTTP, and MAX-
CUT), genetic operators score approximately the same amount of energy; the same 
behavior is detected in the case of dimension 288 (ECC and FMS). The reason for 
this behavior is that these operators are applied to the population regardless of the 
fitness operator complexity.

In Table 3, we can observe that three of the highest five energy consumption val-
ues (marked in bold) are for the evaluation operator of MAXCUT, P-PEAKS, and 
ECC problems. These problems have a complexity of O(n2) , which requires more 
computation and time in the evaluation operator. MMDP has also a quadratic com-
plexity, but its evaluation can be implemented in a very efficient way, reducing the 
amount of energy consumed for the studied instances. The other two values are for 
the crossover and mutation operators of ONEMAX problem. Since all the operators 
have linear complexity, the dimension is the most important factor in the energy 
consumed by them. As we remarked above, ONEMAX has the highest dimension 
among all the problems, which requires higher energy consumption in the genetic 
phase. We can also observe that three of the least five energy consumption compo-
nents (marked with underline) are for the COUNTSAT problem, again appear the 
dimension of the problem as a leading role for the energy consumption value.

In Table 4, we also show in boldfaced the components with the highest energy 
consumption percentages for each problem. In the case of percentages, we can dis-
tinguish two different behaviors: The evaluation operator is the one which consumes 
the most energy for four problems, while in the other four problems, the most energy 
consumption operators are the mutation. These results answer our RQ1 and besides 
confirm the leading role of the evaluation operator. It also confirms another impor-
tant observation that mutation represents a potential energy hot spot component 
inside the GA. The consumption of the evaluation operator is clear due to its higher 
complexity with respect to the rest of the components. The mutation consumption 
is, however, more subtle. This operator is constantly generating random numbers 
to decide whether a bit should be flipped or not. In our experiments, we employ 
the standard random number generation function provided by the programming lan-
guage which is the most common approach in the GA implementations. The random 
number generation is shown to be quite an expensive operator (in time and energy) 
and the reason for the mutation consumption behavior. Housekeeping represents the 
smaller energy percentages in seven out of our eight problems: less than 15% of the 
total energy consumed by the algorithm. The only exception is COUNTSAT, where 
it goes up to 24.59% of the total energy consumption. This is because the compo-
nent has some operations which are independent of the features of the problem, and 
for easy problems (low dimensionality) with low energy consumption, this fix cost 
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could be important when it is compared with the cost of the classical GA operations. 
These results are intuitively shown in a graphical form in Fig. 2, and we can see how 
much each component consumes compared to the rest in the algorithm. These per-
centages show a variety of energy consumption values for the different problems, as 
it was expected.

We conclude this analysis by showing the execution time percentages of each 
component in Table  5. The results shown in this table are clearly similar to the 
energy consumption percentages shown in Table  4. Also, Figs.  2 and 3 resemble 
each other for most of the problems. The correlation between execution time per-
centages and energy consumption percentages is a common sense finding, since 
energy (E) is directly proportional to time (T) and power (P) ( E ≈ P × T  ). We 
should take into account that P is almost in the same range of watts but not a con-
stant, so these percentages will not be exactly the same in both cases of energy and 
time percentages.
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Fig. 2   Energy consumption percentages (%) of the different GA components

Table 5   The execution time 
percentages (%) of the different 
GA components

Problem Evaluation Crossover Mutation Housekeeping

COUNTSAT 24.30 25.30 25.40 25.00
MTTP 18.28 31.06 37.82 12.84
FMS 62.22 14.56 20.30 2.92
ONEMAX 4.21 35.26 50.56 9.98
MAXCUT​ 85.85 5.17 6.78 2.21
P-PEAKS 87.36 5.25 7.21 0.18
ECC 72.42 10.62 14.98 1.99
MMDP 8.63 35.07 49.19 7.11
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The discussion of the results presented in this section fully explains the answers 
to the first research question (RQ1). It shows the key influence of the evaluation in 
the complex problems. Also, it hints on the importance of studying other operations 
(mainly for classical mutation operators) for developing an energy-aware algorithm.

5.2 � Dimensionality and energy consumption

In this section, we will answer and clarify RQ2, discussing the effect of the prob-
lem size on the energy consumption of the GA components. There are many factors 
that could affect the scalability analysis of energy consumption, e.g., the parameters 
(especially population size) and the search space model. In consequence, we have 
selected two different problems (ONEMAX and P-PEAKS) varying in search space 
model and fitness function complexity.

ONEMAX is well known and commonly used as a benchmark problem with lin-
ear fitness function complexity, which ensures a better understanding of the direct 
effect of the problem size on energy and time consumption. P-PEAKS (a multi-
modal problem of O(n2) ) has a tunable range of epistasis, thus allowing to generate 
instances with growing difficulty when the problem size changes [11]. We evaluate 
our algorithms on seven instances ranging from ten till 3000 bits, to allow different 
behaviors of the instances emerge and thus present a robust conclusion. We have 
fixed other GA parameters (Table 2) for all instances while changing only the prob-
lem size. We must highlight that P-PEAKS has two main parameters: the number 
of bits of each peak and the number of peaks. In this experiment, we change the 
number of bits, while the number of peaks remains fixed (100). Our results are the 
average of 30 independent runs of the algorithm for 106 generations.

Tables 6 and 7 present a scalability analysis to the increment of the dimension on 
the energy consumption and execution time for ONEMAX problem. The boldfaced 
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values represent the most consumption percentages, while the underlined ones refer 
to the least consumption percentages.

For the evaluation operator, as shown in Tables  6 and 7, the increment of the 
dimension dramatically decreased the percentages of energy and time consumption. 
ONEMAX has an inexpensive fitness function, which made the evaluation phase 
has the lowest energy and time percentages (underlined) in most of the dimensions 
under the study. Much on the contrary, time and energy consumption percentages 
by the genetic operators were the highest among the other operators. The mutation 
operator exhibits the highest percentages (shown in bold) for all the dimensions 
under the study. The housekeeping tasks of the algorithm consumed small percent-
ages of time and energy but still comparable to the evaluation operator ones.

Tables  8 and 9 present a scalability analysis for P-PEAKS problem. The bold-
faced values represent the most consumption percentages, while the underlined ones 
refer to the least consumption percentages.

The results of P-PEAKS problem reveal the controlling rule of evaluation opera-
tor in the time and energy consumption. The evaluation operator obtained the high-
est consumption percentage (shown in bold) among the other operators for all the 
instances under the study. The evaluation requires comparing the tentative solution 
against a set of peaks. However, when we expand the dimension of the tentative 
solution, this percentage is decreased since the number of peaks is not changing, 
and this additional comparison has a lower impact. Crossover and mutation are 
applied for the solutions (of length n) and thus do not employ the number of peaks 
in their computation. Therefore, the increment of problem size leads to a rise in the 

Table 6   Energy consumption 
percentages (%) of the GA 
components for ONEMAX 
problem

Dim Evaluation Crossover Mutation Housekeeping

10 24.25 25.54 26.09 24.11
100 11.68 32.64 43.01 12.67
200 7.15 35.72 48.64 8.50
500 4.51 36.91 50.80 7.78
1000 4.41 39.16 54.26 2.17
2000 3.87 36.25 50.45 9.43
3000 3.80 34.84 48.15 13.20

Table 7   Execution time 
percentages (%) of the GA 
components for ONEMAX 
problem

Dim Evaluation Crossover Mutation Housekeeping

10 26.85 26.79 27.43 18.93
100 13.09 31.76 42.10 13.05
200 7.89 35.10 48.79 8.23
500 4.89 36.39 51.45 7.27
1000 4.73 38.41 54.83 2.03
2000 4.21 35.26 50.56 9.98
3000 4.01 33.87 48.24 13.89
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percentage of the energy consumption of the crossover and mutation. Housekeeping 
operator obtained the least percentage of energy and time consumption (underlined); 
it sustained small percentages for all the instances under the study.

For a better understanding of the energy and time percentage results shown in 
tables, we give a visual presentation of the results in Fig. 4.

Figure 4 shows different behaviors for the problems of different representations. 
For the inexpensive linear function ONEMAX, with dimension increment, we get a 
descent in the curve of time and energy consumption percentages for the evaluation 
and housekeeping tasks in contrast to a rise in the energy consumption percentage of 
the genetic operators. The dimension increment highly affects the genetic operations 
(which requires generating random numbers and swapping genes). The before-men-
tioned consumption behaviors are higher than the consumption of the evaluation of 
solutions (which is only counting bits in the ONEMAX case) and the housekeeping 
tasks for all the dimensions under the study.

For the nonlinear multimodal problem P-PEAKS, we have different time and 
energy consumption behaviors. The increment in dimension was combined with a 
decrement in the consumption percentages of the evolution operator. This slight dec-
rement happens due to using a fixed number of peaks (100) for all the dimensions 
under study. Despite this reduction in the consumption percentages of the evaluation 
operator, evaluation of solutions still has higher consumption than other operators. 
P-PEAKS has a costly fitness function (which involves expensive computations for 
the distance between peaks); this reason justifies the consumption behavior of the 
evaluation operator.

Table 8   Energy consumption 
percentages (%) of the GA 
components for P-PEAKS 
problem

Dim Evaluation Crossover Mutation Housekeeping

10 87.22 5.34 7.35 0.09
100 86.48 5.66 7.71 0.15
200 84.76 6.08 8.25 0.91
500 75.30 9.31 10.81 4.58
1000 68.48 12.94 14.36 4.22
2000 62.71 14.07 20.19 3.03
3000 51.84 18.09 27.09 2.98

Table 9   Execution time 
percentages (%) of the GA 
components for P-PEAKS 
problem

Dim Evaluation Crossover Mutation Housekeeping

10 90.21 3.81 5.91 0.07
100 87.64 4.77 7.48 0.11
200 84.92 5.59 8.62 0.87
500 80.16 7.18 8.76 3.90
1000 74.69 9.70 12.05 3.56
2000 69.38 11.40 17.26 1.96
3000 56.94 17.19 24.63 1.24



6210	 A. Abdelhafez et al.

1 3

Based on the previous discussions on the numerical data and figures, we can 
claim that enlarging problem sizes (while keeping other algorithm parameters fixed) 
lead to different time and energy consumptions of the algorithm operators.

5.3 � Energy consumption analysis of the distributed genetic algorithm

In this section, we present an analysis of synchronous and asynchronous dGA paral-
lel implementations. Both implementations have the same parameters with the only 
difference being their communication scheme (see Table 2 for the parameters used). 
Our algorithm consists of 32 islands for all the experiments done, and we study an 
increasing number of cores for running these 32 islands, from 1 to 32 cores. The 
results presented in this section are the basis to answer the third and fourth research 
questions (RQ3 and RQ4) made in the Sect. 1.

Tables 10 and 11 present the results of energy consumption and execution time 
of the dGA implementations, respectively. We present the results for six problem 
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instances: ONEMAX of size 2000 bits, P-PEAKS of 100 bits, ECC of size 288 bits, 
and three instances of MTTP named MTTP20, MTTP100, and MTTP200.

Having different problems allows raising different behaviors and consumptions, 
while having different dimensions for them will allow some conclusions on scalabil-
ity. These results are the average of the 30 independent runs, where the stop condi-
tion was to find the optimal solution in all the cases. The results of Tables 10 and 11 
clearly show that the asynchronous implementation consumes the least energy and 
execution times (marked in bold) in most of the instances of our experiments. These 
results prove that the asynchronous implementation is more energy-friendly than 
the synchronous implementation. Also, the larger the number of cores in the execu-
tion pool, the lower the running time and energy consumption. This result is wanted 
but maybe not expected, since more cores would mean more energy. Now we have 
quantitative evidence that parallelism can help reduce energy. In spite of the fact 
that adding more computing units may lead to consuming more energy, adding more 
computing units will steadily decrease the execution time and thus decrease the 
energy consumed (for the benchmark considered).

The results are rich with significant and interesting outcomes. Even if there is 
a big difference in dimensions between ONEMAX and MTTP200, the latter con-
sumes a much higher amount of energy than ONEMAX for all the different numbers 
of cores used. This evidence confirms our previous conclusions about the impor-
tance of the evaluation operator and its complexity. On the other hand, adding more 
cores led to a higher reduction rate of energy and time consumption in MTTP200 
more than in ONEMAX. The same energy and time reduction rates are also found 
on P-PEAKS and ECC problems. This behavior can be due to the larger number of 
cores working simultaneously to solve the problem: the higher the number of cores, 
the higher the number of parallel operations per time unit and therefore a smaller 
wall-clock time is needed. The final overall effect definitely reduces the execution 
time. With respect to the energy point of view, we have two different factors: When 
the number of cores increases, the energy consumed by the complete processor is 
higher, but since the execution is faster, the time in which it is consuming energy is 
lower. Since the second effect has a larger impact than the first one, the final energy 
consumption is also reduced when the number of cores is increased. With the results 
presented above, we can positively answer the third research question (RQ3).

Figure 5 shows the behavior of the energy consumption of synchronous and asyn-
chronous algorithms, respectively, over a different number of cores. These results 
also clearly point to the fact that the asynchronous implementation is more efficient 
than the synchronous implementation: It consumes less energy and time in most of 
the cases of the study (for the same numerical performance). In terms of execution 
time, this behavior was reported in many previous studies on synchronism of EAs, 
e.g., [3, 6, 29, 40]. Our results confirm this poor performance of the synchronous 
implementation in terms of energy consumption too. The reason for this behavior 
is the unblocking of communications of the asynchronous implementation, which 
means there are no idle cores waiting for incoming data. Also, the independent 
evolution of asynchronous algorithms could promote a higher diversity inside the 
islands, but this effect is just clear in cluster computing with distributed memories 
and a network in the middle.
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The higher difference in energy consumption values in both versions happens 
when using a low number of cores (see Fig. 5). As we decrease the number of cores 
from 32 to 1, there will be increasingly more islands running on the same core. 
(Remember we do not modify the number of islands; removing or adding islands 
would create different algorithms and lead to meaningless conclusions.) For the syn-
chronous implementation, this fact is more influential since fewer cores will deal 
with computations and synchronized communications of many islands (overhead). 
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The case of fewer number of cores will be more tolerated in the asynchronous imple-
mentation, since there are no waiting points and the core will not block and wait for 
information and computations can freely proceed.

When both implementations are being run on 32 cores (32 islands, one per core), 
we get a similar performance for the asynchronous and synchronous implementa-
tions: The load is similar in the two and running on a shared memory multiprocessor 
is equally fast for them. Also, the time cost of blocking and waiting to synchronize 
in the synchronous implementation is negligible. Therefore, we can totally confirm 
RQ3 (consumption of different communication schemes) and answer RQ4 (impact 
of the number of cores).

5.3.1 � Statistical analysis of the synchronous and asynchronous implementations

Since we are dealing with non-deterministic algorithms, we do need a section to 
discuss the statistical relevance of the results. Table 12 shows a statistical compari-
son between asynchronous and synchronous implementations based on the energy 
consumption values obtained from both versions, by using the Wilcoxon’s signed-
rank test. Wilcoxon’s test makes individual comparisons between two algorithms 
(pairwise comparisons) and aims to detect significant differences between them. The 
p-value in a pairwise comparison is independent of another one. The results are con-
sidered significant when p < 0.01.

The results clearly show that both versions have a different energy consumption 
behavior when being executed over a different number of cores. This outcome also 
proves our previous results in Table 10, so now we can claim that the asynchronous 
implementation has a different energy consumption behavior which is more efficient 
than the synchronous implementation.

6 � Conclusions and future works

In this article, we measured and analyzed the energy and time consumption behav-
iors of GA and dGA, two important paradigms of optimization, search, and learn-
ing algorithms. We used different problems (varying in characteristics of the search 
space and fitness function complexity) over a varied number of cores and dimen-
sions to expose the potential behavior of the algorithms. We observed that the 
energy consumption of problems varies according to many factors, such as the size 
of the problem, fitness operator complexity, and parameters used.

For the sequential GA, the fitness and genetic operators consume most of the 
energy and time, while the rest of the algorithm operations (housekeeping) do not 
take a significant amount of energy in most of the scenarios. The fitness operator of 
the expensive problems controls the energy and time consumption behavior of GA 
since other GA operations have the same implementations (not problem dependent). 
Mutation came out as the most consumption component in four of the problems of 
the study. Mutation scored higher energy consumption than crossover in all of the 
problems of the study. Moreover, the analysis of the relation between problem size 
and energy consumption reveals that the energy consumption percentage consumed 
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by GA operators is varying with the change of the dimension. We remark that these 
percentages will not ever be the same on any laboratory experiment, but they are 
machine and problem settings dependent. With the previous conclusions, we could 
answer and justify RQ1 (energy consumption of the GA components) and RQ2 
(impact of the problem dimension).

With respect to dGA, the results clearly point to a higher efficiency of the asyn-
chronous version (time and energy), what we noticed for all numbers of cores. The 
statistical analysis did also confirm their different energy consumption profiles. We 
want to remark that the optimal energy consumption in the dGA configuration hap-
pened when using a number of islands equal to the number of cores. These conclu-
sions conclusively give answers to RQ3 and RQ4.

For future works, we will expand our study to include other trajectory-based and 
population-based metaheuristics. We will analyze the energy consumption of such 
techniques to solve problems in smart cities domain. Finally, we plan to provide a 
general framework for designing efficient and energy-aware metaheuristics.
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