
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:6194–6219
https://doi.org/10.1007/s11227-019-02843-4

1 3

A component‑based study of energy consumption
for sequential and parallel genetic algorithms

Amr Abdelhafez1  · Enrique Alba1 · Gabriel Luque1

Published online: 4 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Recently, energy efficiency has gained attention from researchers interested in opti-
mizing computing resources. Solving real-world problems using optimization tech-
niques (such as metaheuristics) requires a large number of computing resources and
time, consuming an enormous amount of energy. However, only a few and limited
research efforts in studying the energy consumption of metaheuristics can be found
in the existing literature. In particular, genetic algorithms (GAs) are being used so
widely to solve a large range of problems in scientific and real-world problems, but
hardly found explained in their internal consumption behavior. In the present article,
we analyze the energy consumption behavior of such techniques to offer a useful
set of findings to researchers in the mentioned domains. We expand our study to
include several algorithms and different problems and target the components of the
algorithms so that the results are still more appealing for researchers in arbitrary
domains of application. Our experiments on the sequential GAs show the controlling
role of the fitness operator on energy consumption and also reveal possible energy
hot spots in GAs operations, such as mutation operator. Further, our distributed eval-
uations besides a statistical analysis of the results demonstrate that the communica-
tion scheme could highly affect the energy consumption of the parallel evaluations
of the GAs.

Keywords  Energy consumption · Green computing · Genetic algorithms ·
Sequential · Parallel

 *	 Amr Abdelhafez
	 amr@lcc.uma.es

	 Enrique Alba
	 eat@lcc.uma.es

	 Gabriel Luque
	 gabriel@lcc.uma.es

1	 Dpto. de Lenguajes y Ciencias de la Computación, Univ. de Málaga, E.T.S. Ingeniería
Informática, Campus de Teatinos, 29071 Málaga, Spain

http://orcid.org/0000-0003-0469-3791
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02843-4&domain=pdf

6195

1 3

A component-based study of energy consumption for sequential…

1  Introduction

In today’s world, energy efficiency is an important topic in all scientific areas.
In computer science, a new domain called green computing [19] has emerged to
deal with the efficient use of computing resources to reduce the environmental
footprint. The electricity consumption of computing devices has a large impact in
our current digital era, and it will increase in the next years. Although electricity
is an environment-friendly form of energy, its generation and distribution emit a
significant amount of pollutants [e.g., carbon dioxide ( CO

2
 ) and sulfur dioxide

( SO
2
)]. These pollutants increase global warming and represent a threat to any

living being [26, 27].
Building real green computing applications requires the knowledge of the

actual consumption of each component of their algorithms or software pieces [1].
However, measuring the energy consumption of software still faces many practi-
cal and theoretical problems, e.g., the lack of specialized software able to accu-
rately measure energy consumption (hardware independent) [18]. Even the actual
building of software that uses this information is quite unprecise [36]. Among the
most consuming type of programs we can find out there, search techniques when
solving complex problems have a prominent place. Search techniques require
large computation times and are frequently run to optimize daily activities in cit-
ies and factories [14]. Genetic algorithms (GAs) are search, optimization, and
learning methods that have been widely applied in many research areas and real-
life problems, e.g., engineering, aircraft design, optimization, logistics, bioinfor-
matics, scheduling, robotics.

The availability of high-performance computing (HPC) resources makes GAs
suitable for parallelism in order to solve more complex and lager problems [4].
In the literature, there are no studies that offer precise indications on where is
energy going in GAs and parallel GAs (PGAs), what would allow the next phase
of smart use of this information to build efficient algorithms with lower consump-
tion for a similar numerical result.

In this work, we focus on the measurement and quantitative analysis of the
energy consumption of GAs and PGAs. We perform an extensive analysis of the
energy consumption and execution time of the components of a sequential (pan-
mictic) genetic algorithm. Further, we include the energy consumption analysis
of PGAs (a distributed GA (dGA) in our case) with two different communication
schemes. We aim to answer four significant research questions:

RQ1 Which GA component consumes the most?
RQ2 What is the effect of the problem size on the energy consumption of GA
components?
RQ3 What is the effect of using different communication schemes on the
energy consumption of the dGA?
RQ4 What is the impact of using a variable number of cores on the global
energy consumption of the dGA?

6196	 A. Abdelhafez et al.

1 3

For RQ1, we analyze the energy consumption of GA components one by one using
a varied number of problems and dimensions. For RQ2, we test problems with dif-
ferent dimensions to study the effect of the size of the problem on the energy con-
sumption of different GA components. For RQ3, we extend this analysis to a dGA
with two different communication schemes (synchronous and asynchronous). RQ4
requires an extensive study to the energy consumption features of the dGA over a
different number of cores from 1 to 32. We consider a varied set of problem features
(dimensionality, search landscape, multimodality, etc.) so that meaningful conclu-
sions are feasible.

In short, the main contributions of this paper are to study the energy consump-
tion and execution time behavior of both sequential and parallel GAs, in reason-
ably wide energy analysis of its components under different computer communica-
tion schemes. We expect that our research (energy understanding of GAs) will be a
spot of interest to the research community. The potential impact of these results in
building new techniques that fit the aims of green computing will also link to a line
of research for making algorithms more efficient as a piece of software running on
a computer. This point of view is not so present in the literature, but a fundamental
one for formulating high-quality research.

The rest of this paper is organized as follows: Sect. 2 discusses several related
works for an overview of their recent advances. Section 3 defines the basic concepts
of the canonical and distributed GA, with a description of the different dGA com-
munication schemes. Section 4 provides the methodology for our experiments with
a justification of the problems used in the experiments. In Sect. 5, we present our
numerical results to analyze the sequential and distributed GA with a discussion on
it. Section 6 summarizes the conclusions and discusses open research lines.

2 � Related works

Overall, the literature on analyzing energy consumption of GAs exists, though it is
very limited yet. As to PGAs, the literature is still shorter. We can also find sev-
eral articles on nearby fields, like applying metaheuristics for problems dealing with
energy minimization in a target scenario. However, that approach is different from
our goal since they are not targeting the energy consumption of the algorithm itself
but using the algorithm to solve problems concerns energy.

In the area of GAs, there are efforts to study the energy consumption behavior of
the algorithm. One of these efforts was proposed by [13]. There, authors developed a
GA to solve an extended version of the job-shop scheduling problem by considering
its energy consumption. Another related effort was performed in [16], where authors
evaluated the performance of three metaheuristic algorithms on the basis of cost and
minimizing energy reductions. In the area of parallel algorithms, the authors of [25]
proposed a parallel bi-objective hybrid genetic algorithm that takes into account
energy consumption. They studied island and multi-start parallel GA models with
a hybrid approach between a multi-objective PGA and energy-conscious scheduling
heuristic. They concluded that the hybrid approach consumes more resources than

6197

1 3

A component-based study of energy consumption for sequential…

the energy-aware scheduling heuristic, and the insular approach consumes more
resources than the hybrid approach.

Previously mentioned efforts studied GAs and other algorithms to improve
energy efficiency when solving a problem. However, they did not analyze the energy
consumed by the GA or its components. In the scope of analysis of energy consump-
tion of evolutionary algorithms (EAs), Vega et al. [38] presented a preliminary study
on the energy consumption of the genetic programming (GP) algorithm. They run
their experiments on different hardware devices over a number of operating systems.
The main goal of their study was to show the effect of the main parameters of the
algorithm on the energy consumption. They concluded that devices with better pro-
cessors can run the algorithm faster but spend larger amounts of energy. They also
reported the influence of changing population sizes in the variable amount of energy
required to reach solutions. Another recent research in this regard was proposed by
Alvarez et al. [7]. The authors of that work presented a preliminary energy con-
sumption estimation model, based on the analysis of the influence of GP parameters
on their energy consumption under a number of hardware devices. They concluded
that their model was able to correctly estimate the energy consumption of the GP
algorithm over different devices.

We now turn to review the relevant researches concerning tools to measure
energy consumption, either in algorithms or in other types of software. Since it was
proposed by Intel, Intel’s running average power limit (RAPL) [10] interface has
been used widely to measure the energy consumption of algorithms. In [9], authors
used RAPL as a measurement to the execution of the algorithms and stated that it is
reliable in many different types of computing systems. In another aspect, the authors
of [39] used the RAPL interface to measure the energy consumption characteristics
of MPI calls. They proposed a model to accurately measure the aggregate energy
consumed by all processes engaged in MPI operations. In [31], authors extended
Flex-MPI [24] with energy-aware and power-aware capabilities. Their aim was to
increase the energy efficiency of parallel applications by means of malleability. All
the power measurements in their novel approach were obtained by means of the
RAPL interface. With a different objective, the work presented in [30] focused on
the comparison between RAPL and two other power-meter methods for gathering
energy consumption values. Their contribution was to study the correspondence or
difference of the energy data provided by these methods. Their analyses show that
RAPL has good correspondence due to using the faster and reliable hardware coun-
ters, which allows to use it for measuring energy consumption accurately. For more
researches on using RAPL in energy measurement, we refer the reader to [8, 21,
28]. Thus, we could claim that RAPL proved to be a reliable tool for measuring the
energy of algorithms.

In summary, there are several differences between the existing works and our
approach. We here present a study on the energy consumption behavior of sequential
and distributed GAs, not GP or other ad hoc heuristics or software. Also, the pre-
vious works were dealing with either an application where energy was considered
(out of the algorithm itself) or tools for measuring energy in software packages in
general. The actual situation in this domain is that of a definite shortage of works
focusing on GAs (a really important kind of techniques today) with modern tools for

6198	 A. Abdelhafez et al.

1 3

measurement. Besides, GA and PGAs are structurally different in many aspects, so
they need and deserve a focused study, as we do here.

3 � Genetic algorithms background

In this section, we provide the background algorithmic information needed to under-
stand and reproduce this work. In particular, we present an overview of the canoni-
cal panmictic GA and dGA.

3.1 � Overview of the canonical genetic algorithm

GA starts with a randomly generated set of individuals, called a population. Each
individual (chromosome plus fitness) represents a possible tentative solution. Each
chromosome is composed of an array of genes depending on the dimension of the
problem solved. The fitness (optimized objective) function is used to evaluate the
quality of every individual in relation to the rest. Genetic operators (usually selec-
tion, crossover, mutation, and replacement) are used to generate new solutions for
the next generation. This process is performed until the stopping criterion is met
(maximum number of fitness evaluations or find a solution of good quality). Algo-
rithm 1 provides the pseudocode of this panmictic algorithm.

The term panmictic means that all the individuals in the same single population
can probably mate to the rest, i.e., there is no restriction to their interactions. In the
structured GAs [5, 34], the individuals are geographically separated, and interac-
tions occur only inside these isolated neighborhoods. Multi-population GAs (such as
dGA) are the typical example of structured GAs. dGA can indeed be run in parallel
on different cores (or not), but this refers to its physical execution, not to the design
of the algorithm (as distributed points out).

3.2 � The distributed genetic algorithm

In our study, we also consider the distributed model largely described in [4] and
many other works. In this model, the population is divided into many subpopula-
tions called islands all having the same number of individuals. These islands can run

6199

1 3

A component-based study of energy consumption for sequential…

in parallel (so we could call it PGA or parallel dGA) and can exchange information
and knowledge among them. The resulting behavior of this parallel dGA is quite dif-
ferent from the canonical one and in general beneficial to explore different parts of
the search space at the same time (distributed effect) plus a significant reduction in
the time expected from performing more operations per time unit (parallel effect).
Once migration conditions are met, individuals (or other information) occasionally
migrate from one particular island to its neighbors. (So, a topology is needed.) In
Algorithm 2, we provide the pseudocode of a canonical dGA.

It is clear that individuals only mate inside islands, and the sparse migrations
make it possible for a copy of them to arrive at other islands and merge then with
locals. The time between successive communications, Δi , is one of the most impor-
tant parameters of the migration policy, regulating the degree of connectivity and
indeed the potential consumed energy for computing and using the communication
network.

Our migration topology is a unidirectional ring topology, a very common one.
(We want to maximize our impact in the field by using common models in this first
paper on energy.) Thus, an island can send and receive migrants only from its next
and previous neighbors, respectively. The actual communications between islands
do not only depend on frequency or topology, but it could also vary according to the
synchronism of the implementation. The most common dGA communication poli-
cies are synchronous and asynchronous schemes [3].

3.3 � Synchronous and asynchronous communication schemes

In our experiments, we will address both synchronous and asynchronous implemen-
tations for the same case studies. Studying both implementations present an impact
in the field than previous studies since most existing works usually address one
implementation. Synchronous versions are common when the algorithm is run on
shared memory for all islands since all islands should then proceed at a similar pace.
Asynchronous distributed genetic algorithms (dGAs) are very common in Internet
systems policies and clusters with heterogeneous computing units.

6200	 A. Abdelhafez et al.

1 3

Synchronous and asynchronous implementations are governed by the same
algorithm and parameters. The main difference is in the communication scheme:
Either we proceed at the same pace (sync) and wait for the slower island (in every
generation) of the dGA or every island advances at its own pace (async) and
incorporates incoming information as soon as it arrives. Figure 1 shows the dif-
ferences between the two schemes in a graphical manner.

The main difference between these implementations is that the synchronous
version has a synchronization point at every migration interval, where all the
islands exchange the search information simultaneously [3]. At that point, all the
processes should wait and block for other processes to reach this point. So, it is
highly probable that at every communication point there are some idle processes
waiting for some others to finish their task. It is important to mention that the
migrant solutions are from the same evaluation phases, which may lead to lower
performance for the migration operator.

On the contrary, in the asynchronous approach there are not such synchroniza-
tion points; thus, islands proceed on their own with sparse and non-synchronous
exchanges of information once arrived at the island. Every island includes the
received individuals from migration whenever possible, then avoiding any wait-
ing [3]. Thus, this communication scheme potentially evolves immigrant solu-
tions independently from the different generation times among the islands. This
way of sharing knowledge gives more diversity to the islands across the search
process, promoted by the different speeds of the computing units; thus, there are
no idle processes by construction.

Even if the synchronized algorithms might have some performance issues,
they are spread. Synchronization of communications may cause some resources
to be idle waiting for communications [2], but in some problems (due to a specific
problem requirement) it may come as a design choice. Therefore, studying the

Initialize

....

Synchronous communication between islands

Update & check termination
conditions

of

 it
er

at
io

ns

Island 1

N islands

Island 2 Island n

Genetic
Operators

Evaluate

Selection

Genetic
Operators

Selection

Genetic
Operators

Selection

Evaluate Evaluate

(a) Synchronous scheme

Initialize

....

Genetic
Operators

Evaluate

Selection

Genetic
Operators

Selection

Genetic
Operators

Selection

Island 1

N islands

Island 2 Island n

Asynchronous
 communication

 between
islands

Update & check termination
conditions

Evaluate Evaluate

(b) Asynchronous scheme

Fig. 1   Functional diagram for the synchronous/asynchronous dGA schemes

6201

1 3

A component-based study of energy consumption for sequential…

effect of synchronism on the parallel and distributed algorithms is an important
issue, never previously done in connection with their energy consumption.

4 � Design of experiments

Our approach is to present energy consumption and execution time studies of the
(panmictic) sequential GA and the (structured) parallel dGA. As to the sequential
GA, we study the energy consumption and execution time of the GA components
(not just of the whole algorithm). In the second analysis, we expand the study to
include energy consumption of the dGA with different communication schemes.
Both studies provide knowledge to researchers not just on the actual internal behav-
ior in terms of energy, but they represent an opportunity to build less consuming
algorithms in future studies.

Let us start with the sequential GA. Here, we will justify why and how we meas-
ure the energy consumption of the following components:

•	 Fitness evaluation: This operator is one of the main GA components since it
is used for calculating the quality of solutions and guiding the search. A fitness
value indicates how close a solution to the optimal solution is. The computa-
tional resources required by this operation highly depend on the problem being
solved. Other problem characteristics, e.g., multi-objective optimization and
dynamic problems, have a strong relation to fitness computation; not to mention
parallelism, that comes handy in many cases because of its high computational
demands. It is now clear the importance of the study for energy consumption of
evaluations apart.

•	 Genetic operators: Usually, the variation operators of a GA are used to gener-
ate new solutions based on the existing ones. The active variation operators in
a GA are crossover and mutation. The aim of these operations is to modify the
current population to get a new one. The crossover (or recombination) operator
combines two or more different solutions to generate new solutions, while the
mutation operator modifies the solution by changing its genes to generate a new
one. The main role of the mutation operator is to add genetic diversity inside the
population, thus preventing the algorithm from converging to a local optimum.
Genetic operators are substantial to GAs; they deserve an energy profiling study.

•	 Housekeeping: This term (in our study) refers to all the rest of the tasks of
the algorithm, e.g., initialization, selection, and I/O operations. These operations
have fewer computations and instructions to be executed compared to the previ-
ous operators.

Further, we present an analysis of the energy and time consumption of the syn-
chronous and asynchronous dGAs over a different number of cores. We use a set of
problems with different features and sizes. Moreover, we perform a statistical com-
parison for the energy consumption behavior between these two implementations.
Our algorithms have been implemented in C++, and the communication phase in
the dGA is implemented using the MPI message-passing programming model. The

6202	 A. Abdelhafez et al.

1 3

communication topology uses MPI’s blocking/non-blocking communication func-
tion features for the synchronous and asynchronous migrations, respectively. MPI
allows a natural and easy partitioning of the problem, and it provides portability and
efficiency.

All the energy measurements in our experiments were obtained by means of
RAPL [10]. The RAPL interface is implemented in C++ and invoked from the
source code. The reasons for using RAPL are many: First, it has already been proven
to be stable and to achieve high accuracy energy estimates at a fine-grained level
[17, 32, 41]. Second, it does not require built-in hardware on Intel-compatible sys-
tems. Third, RAPL measures the energy consumption of the running code without
introducing influent overhead.

4.1 � Benchmark problems

In order to perform a comprehensive energy consumption study, we use a set of eight
different problems with many instances each. These problems vary in dimension
sizes, computational complexity, and search landscapes, which will lead to better-
grounded conclusions. The problems used in our experiment are as follows: ONE-
MAX problem [33] (or bit-counting), multimodal problem generator (P-PEAKS)
[20], error-correcting code design (ECC) [23], the minimum tardy task problem
(MTTP) [35], COUNTSAT [12] which is an instance of MAXSAT, maximum cut of
a graph (MAXCUT) [22], frequency modulation sounds (FMS) [37], and the mas-
sively multimodal deceptive problem (MMDP) [15]. They represent quite a diverse
set, not only from a numerical point of view but also showing different complexi-
ties. Table 1 gives a list of the problems sorted according to the evaluation operator
complexity.

ONEMAX (bit-counting problem) is a basic test function used for evaluating and
comparing algorithms; it will allow these results to benefit other papers in theory of
GAs and will provide a basic line for comparison. The multimodal problem genera-
tor P-PEAKS employs n-bit solutions named peaks. These solutions represent the
location of the peaks in the search space. The fitness of a given tentative solution
is computed using the Hamming distance to the nearest peak in the search space
[11]. ECC is an important problem in the area of secure communications (error code
design); our instance consists of 24 words and a word length of 12 bits. MAXCUT,
COUNTSAT, and MTTP are NP-complete combinatorial problems of interest in the
field of metaheuristics used for testing and evaluating algorithms. FMS is a real-
world problem in the field of engineering. FMS has six real-valued parameters of a

Table 1   Benchmark problems
and its evaluation operator
complexity

Problem Evaluation Problem Evaluation

COUNTSAT O(n) MAXCUT​ O(n2)

MTTP O(n) P-PEAKS O(n2)

FMS O(n) ECC O(n2)

ONEMAX O(n) MMDP O(n2)

6203

1 3

A component-based study of energy consumption for sequential…

frequency-modulated sound model, and the goal is to minimize the sum of squared
errors from the proposed solution to a reference model. The MMDP problem is
composed of k deceptive subproblems, with the goal of cheating the search algo-
rithm and making it perform badly. We use one instance with k = 60 subproblems.

In all of our benchmark problems, we are maximizing the objective function,
except for FMS where we are minimizing it. We here need to remind that our goal
in this paper is not to offer the best performing algorithm for these problems, but
to use problems from the literature that will allow our energy consumption to be
more representative than usually found till now. This approach is a diverse source of
search features that would require from the algorithm an unknown and very different
performance.

4.2 � Parameter settings and system specifications

In this section, we present the parameters used in our experiments. We determined
these values by a set of preliminary numerical experiments, with the goal of allow-
ing the running to expose different behaviors and energy profiles, for richer analysis.
Table 2 presents the values used for the sequential GA and parallel dGA.

Our results are the average of 30 independent runs of the algorithms, executed in
a dedicated multicore computer. These multiple runs allow also reducing the effect
of system and I/O overhead in the measurements. We conducted our experiments
on an Intel-based PowerEdge T430 Tower Server with the following specifications:
Intel(R) Xeon(R) E5-2620 v4 2.10 GHz, 20M Cache, Linux Ubuntu Server 14.04.5
LTS operating system, and 64GB of RAM.

5 � Numerical experiments

This section presents the results of the introduced algorithms to solve the explained
problems. First, we analyze the results of the energy consumption of the sequential
GA components, showing how much each component consumes. Later, we present

Table 2   Parameter settings for
the sequential and parallel dGA

Definitions Values

Population size in the sequential GA 100 individuals
Subpopulation size in the dGA 50 individuals
of islands in the dGA 32 islands
Crossover Uniform, pc = 0.6

Mutation Bit-flip, pm = 0.1∕n

Selection operator Binary tournament
Replacement Replacing the worst
Elitism Yes
Migration rate 2 individuals
Migration gap 5000 evaluations

6204	 A. Abdelhafez et al.

1 3

an analysis of the synchronous and asynchronous parallel dGA to spot its unique
energy profiles.

5.1 � Energy consumption analysis of the sequential genetic algorithm

In this analysis, we focus on the energy consumption and execution time analysis of
GA components. We aim to present a detailed answer to our first research question
(RQ1) proposed in the Sect. 1. Tables 3 and 4 present the energy consumption in
kWh, and energy consumption percentages of the GA components, respectively. We
separate problems of O(n) and O(n2) in the table with a dashed line. These results
are the average of the 30 independent runs of the algorithm after 106 generations. In
Table 3, we show in boldface the five highest energy consumption components and
underline the lowest energy consumption components among all the problems. In
Table 4, we show in boldface the components with the highest energy consumption
percentages for each problem, respectively.

As to the total energy consumption values reported in Table 3, the first conclu-
sion is that values vary depending on the problem dimension and fitness function
complexity. For MAXCUT and P-PEAKS problems, the total energy consumption

Table 3   Mean of the energy consumption of GA components for 30 independent runs, in kWh

Problem Dimension Evaluation Crossover Mutation Housekeeping Total

COUNTSAT 20 6.54E−04 7.87E−04 7.97E−04 7.30E−04 2.97E−03
MTTP 100 1.15E−03 2.05E−03 2.54E−03 8.09E−04 6.55E−03
FMS 288 2.22E−02 5.37E−03 7.45E−03 1.13E−03 3.61E−02
ONEMAX 2000 3.95E−03 3.70E−02 5.15E−02 9.63E−03 1.02E−01
MAXCUT​ 100 3.05E−02 1.99E−03 2.60E−03 7.95E−04 3.59E−02
P-PEAKS 100 3.06E−02 2.00E−03 2.73E−03 5.34E−05 3.54E−02
ECC 288 3.25E−02 5.38E−03 7.54E−03 1.07E−03 4.65E−02
MMDP 360 1.56E−03 6.65E−03 9.30E−03 1.42E−03 1.89E−02

Table 4   Energy consumption
percentages (%) of the different
GA components

Boldfaced values represent the component with the highest energy
consumption by problem

Problem Evaluation Crossover Mutation Housekeeping

COUNTSAT 22.02 26.52 26.87 24.59
MTTP 17.62 31.30 38.74 12.34
FMS 61.38 14.86 20.64 3.12
ONEMAX 3.87 36.25 50.45 9.43
MAXCUT​ 85.01 5.53 7.25 2.22
P-PEAKS 86.48 5.66 7.71 0.15
ECC 69.90 11.58 16.22 2.31
MMDP 8.22 35.13 49.15 7.51

6205

1 3

A component-based study of energy consumption for sequential…

of the algorithm is similar, since the two problems have the same dimension size
and evaluation operator complexity. For problems COUNTSAT and ONEMAX, the
GA scores the lowest and highest energy consumption amount, respectively. This
happens again because of the dimension size of each problem. For the evaluation
operator, ECC scores the highest energy consumption amount among all the eval-
uation values out of all the other problems. The reason for this is the complexity
and implementation of the ECC problem, which requires more computations in the
evaluation process. The controlling role of the dimension size is very clear in the
genetic operators. For problems of dimension 100 (P-PEAKS, MTTP, and MAX-
CUT), genetic operators score approximately the same amount of energy; the same
behavior is detected in the case of dimension 288 (ECC and FMS). The reason for
this behavior is that these operators are applied to the population regardless of the
fitness operator complexity.

In Table 3, we can observe that three of the highest five energy consumption val-
ues (marked in bold) are for the evaluation operator of MAXCUT, P-PEAKS, and
ECC problems. These problems have a complexity of O(n2) , which requires more
computation and time in the evaluation operator. MMDP has also a quadratic com-
plexity, but its evaluation can be implemented in a very efficient way, reducing the
amount of energy consumed for the studied instances. The other two values are for
the crossover and mutation operators of ONEMAX problem. Since all the operators
have linear complexity, the dimension is the most important factor in the energy
consumed by them. As we remarked above, ONEMAX has the highest dimension
among all the problems, which requires higher energy consumption in the genetic
phase. We can also observe that three of the least five energy consumption compo-
nents (marked with underline) are for the COUNTSAT problem, again appear the
dimension of the problem as a leading role for the energy consumption value.

In Table 4, we also show in boldfaced the components with the highest energy
consumption percentages for each problem. In the case of percentages, we can dis-
tinguish two different behaviors: The evaluation operator is the one which consumes
the most energy for four problems, while in the other four problems, the most energy
consumption operators are the mutation. These results answer our RQ1 and besides
confirm the leading role of the evaluation operator. It also confirms another impor-
tant observation that mutation represents a potential energy hot spot component
inside the GA. The consumption of the evaluation operator is clear due to its higher
complexity with respect to the rest of the components. The mutation consumption
is, however, more subtle. This operator is constantly generating random numbers
to decide whether a bit should be flipped or not. In our experiments, we employ
the standard random number generation function provided by the programming lan-
guage which is the most common approach in the GA implementations. The random
number generation is shown to be quite an expensive operator (in time and energy)
and the reason for the mutation consumption behavior. Housekeeping represents the
smaller energy percentages in seven out of our eight problems: less than 15% of the
total energy consumed by the algorithm. The only exception is COUNTSAT, where
it goes up to 24.59% of the total energy consumption. This is because the compo-
nent has some operations which are independent of the features of the problem, and
for easy problems (low dimensionality) with low energy consumption, this fix cost

6206	 A. Abdelhafez et al.

1 3

could be important when it is compared with the cost of the classical GA operations.
These results are intuitively shown in a graphical form in Fig. 2, and we can see how
much each component consumes compared to the rest in the algorithm. These per-
centages show a variety of energy consumption values for the different problems, as
it was expected.

We conclude this analysis by showing the execution time percentages of each
component in Table 5. The results shown in this table are clearly similar to the
energy consumption percentages shown in Table 4. Also, Figs. 2 and 3 resemble
each other for most of the problems. The correlation between execution time per-
centages and energy consumption percentages is a common sense finding, since
energy (E) is directly proportional to time (T) and power (P) ( E ≈ P × T  ). We
should take into account that P is almost in the same range of watts but not a con-
stant, so these percentages will not be exactly the same in both cases of energy and
time percentages.

0

10

20

30

40

50

60

70

80

90

100

COUNTSAT MTTP FMS ONEMAX MAXCUT P-PEAKS ECC MMDP

Pe
rc

en
ta

ge

GA by problem

Evalution

Crossover

Mutation

Housekeeping

Fig. 2   Energy consumption percentages (%) of the different GA components

Table 5   The execution time
percentages (%) of the different
GA components

Problem Evaluation Crossover Mutation Housekeeping

COUNTSAT 24.30 25.30 25.40 25.00
MTTP 18.28 31.06 37.82 12.84
FMS 62.22 14.56 20.30 2.92
ONEMAX 4.21 35.26 50.56 9.98
MAXCUT​ 85.85 5.17 6.78 2.21
P-PEAKS 87.36 5.25 7.21 0.18
ECC 72.42 10.62 14.98 1.99
MMDP 8.63 35.07 49.19 7.11

6207

1 3

A component-based study of energy consumption for sequential…

The discussion of the results presented in this section fully explains the answers
to the first research question (RQ1). It shows the key influence of the evaluation in
the complex problems. Also, it hints on the importance of studying other operations
(mainly for classical mutation operators) for developing an energy-aware algorithm.

5.2 � Dimensionality and energy consumption

In this section, we will answer and clarify RQ2, discussing the effect of the prob-
lem size on the energy consumption of the GA components. There are many factors
that could affect the scalability analysis of energy consumption, e.g., the parameters
(especially population size) and the search space model. In consequence, we have
selected two different problems (ONEMAX and P-PEAKS) varying in search space
model and fitness function complexity.

ONEMAX is well known and commonly used as a benchmark problem with lin-
ear fitness function complexity, which ensures a better understanding of the direct
effect of the problem size on energy and time consumption. P-PEAKS (a multi-
modal problem of O(n2) ) has a tunable range of epistasis, thus allowing to generate
instances with growing difficulty when the problem size changes [11]. We evaluate
our algorithms on seven instances ranging from ten till 3000 bits, to allow different
behaviors of the instances emerge and thus present a robust conclusion. We have
fixed other GA parameters (Table 2) for all instances while changing only the prob-
lem size. We must highlight that P-PEAKS has two main parameters: the number
of bits of each peak and the number of peaks. In this experiment, we change the
number of bits, while the number of peaks remains fixed (100). Our results are the
average of 30 independent runs of the algorithm for 106 generations.

Tables 6 and 7 present a scalability analysis to the increment of the dimension on
the energy consumption and execution time for ONEMAX problem. The boldfaced

0

10

20

30

40

50

60

70

80

90

100

COUNTSAT MTTP FMS ONEMAX MAXCUT P-PEAKS ECC MMDP

Pe
rc

en
ta

ge

GA by problem

Evalution

Crossover

Mutation

Housekeeping

Fig. 3   Execution time percentages (%) of the different GA components

6208	 A. Abdelhafez et al.

1 3

values represent the most consumption percentages, while the underlined ones refer
to the least consumption percentages.

For the evaluation operator, as shown in Tables 6 and 7, the increment of the
dimension dramatically decreased the percentages of energy and time consumption.
ONEMAX has an inexpensive fitness function, which made the evaluation phase
has the lowest energy and time percentages (underlined) in most of the dimensions
under the study. Much on the contrary, time and energy consumption percentages
by the genetic operators were the highest among the other operators. The mutation
operator exhibits the highest percentages (shown in bold) for all the dimensions
under the study. The housekeeping tasks of the algorithm consumed small percent-
ages of time and energy but still comparable to the evaluation operator ones.

Tables 8 and 9 present a scalability analysis for P-PEAKS problem. The bold-
faced values represent the most consumption percentages, while the underlined ones
refer to the least consumption percentages.

The results of P-PEAKS problem reveal the controlling rule of evaluation opera-
tor in the time and energy consumption. The evaluation operator obtained the high-
est consumption percentage (shown in bold) among the other operators for all the
instances under the study. The evaluation requires comparing the tentative solution
against a set of peaks. However, when we expand the dimension of the tentative
solution, this percentage is decreased since the number of peaks is not changing,
and this additional comparison has a lower impact. Crossover and mutation are
applied for the solutions (of length n) and thus do not employ the number of peaks
in their computation. Therefore, the increment of problem size leads to a rise in the

Table 6   Energy consumption
percentages (%) of the GA
components for ONEMAX
problem

Dim Evaluation Crossover Mutation Housekeeping

10 24.25 25.54 26.09 24.11
100 11.68 32.64 43.01 12.67
200 7.15 35.72 48.64 8.50
500 4.51 36.91 50.80 7.78
1000 4.41 39.16 54.26 2.17
2000 3.87 36.25 50.45 9.43
3000 3.80 34.84 48.15 13.20

Table 7   Execution time
percentages (%) of the GA
components for ONEMAX
problem

Dim Evaluation Crossover Mutation Housekeeping

10 26.85 26.79 27.43 18.93
100 13.09 31.76 42.10 13.05
200 7.89 35.10 48.79 8.23
500 4.89 36.39 51.45 7.27
1000 4.73 38.41 54.83 2.03
2000 4.21 35.26 50.56 9.98
3000 4.01 33.87 48.24 13.89

6209

1 3

A component-based study of energy consumption for sequential…

percentage of the energy consumption of the crossover and mutation. Housekeeping
operator obtained the least percentage of energy and time consumption (underlined);
it sustained small percentages for all the instances under the study.

For a better understanding of the energy and time percentage results shown in
tables, we give a visual presentation of the results in Fig. 4.

Figure 4 shows different behaviors for the problems of different representations.
For the inexpensive linear function ONEMAX, with dimension increment, we get a
descent in the curve of time and energy consumption percentages for the evaluation
and housekeeping tasks in contrast to a rise in the energy consumption percentage of
the genetic operators. The dimension increment highly affects the genetic operations
(which requires generating random numbers and swapping genes). The before-men-
tioned consumption behaviors are higher than the consumption of the evaluation of
solutions (which is only counting bits in the ONEMAX case) and the housekeeping
tasks for all the dimensions under the study.

For the nonlinear multimodal problem P-PEAKS, we have different time and
energy consumption behaviors. The increment in dimension was combined with a
decrement in the consumption percentages of the evolution operator. This slight dec-
rement happens due to using a fixed number of peaks (100) for all the dimensions
under study. Despite this reduction in the consumption percentages of the evaluation
operator, evaluation of solutions still has higher consumption than other operators.
P-PEAKS has a costly fitness function (which involves expensive computations for
the distance between peaks); this reason justifies the consumption behavior of the
evaluation operator.

Table 8   Energy consumption
percentages (%) of the GA
components for P-PEAKS
problem

Dim Evaluation Crossover Mutation Housekeeping

10 87.22 5.34 7.35 0.09
100 86.48 5.66 7.71 0.15
200 84.76 6.08 8.25 0.91
500 75.30 9.31 10.81 4.58
1000 68.48 12.94 14.36 4.22
2000 62.71 14.07 20.19 3.03
3000 51.84 18.09 27.09 2.98

Table 9   Execution time
percentages (%) of the GA
components for P-PEAKS
problem

Dim Evaluation Crossover Mutation Housekeeping

10 90.21 3.81 5.91 0.07
100 87.64 4.77 7.48 0.11
200 84.92 5.59 8.62 0.87
500 80.16 7.18 8.76 3.90
1000 74.69 9.70 12.05 3.56
2000 69.38 11.40 17.26 1.96
3000 56.94 17.19 24.63 1.24

6210	 A. Abdelhafez et al.

1 3

Based on the previous discussions on the numerical data and figures, we can
claim that enlarging problem sizes (while keeping other algorithm parameters fixed)
lead to different time and energy consumptions of the algorithm operators.

5.3 � Energy consumption analysis of the distributed genetic algorithm

In this section, we present an analysis of synchronous and asynchronous dGA paral-
lel implementations. Both implementations have the same parameters with the only
difference being their communication scheme (see Table 2 for the parameters used).
Our algorithm consists of 32 islands for all the experiments done, and we study an
increasing number of cores for running these 32 islands, from 1 to 32 cores. The
results presented in this section are the basis to answer the third and fourth research
questions (RQ3 and RQ4) made in the Sect. 1.

Tables 10 and 11 present the results of energy consumption and execution time
of the dGA implementations, respectively. We present the results for six problem

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Dimension

0

10

20

30

40

50

60
P
er
ce
nt
ag
e

Housekeeping

Evaluation

Crossover

Mutation

(a)Energy consumption
Dimension

0

10

20

30

40

50

60

P
er
ce
nt
ag
e

Mutation

Crossover

Evaluation

Housekeeping

(b)Execution time

0 500 1000 1500 2000 2500 3000

Dimension

0

25

50

75

100

P
er
ce
nt
ag
e

Crossover
Mutation

Evaluation

Housekeeping

(c)Energy consumption

0 500 1000 1500 2000 2500 3000

Dimension

0

25

50

75

100

P
er
ce
nt
ag
e

Housekeeping

Crossover

Evaluation

Mutation

(d)Execution time

Fig. 4   Energy consumption and execution time percentages versus dimension for P-PEAKS problem

6211

1 3

A component-based study of energy consumption for sequential…

Ta
bl

e 
10

  
M

ea
n

of
 e

ne
rg

y
co

ns
um

pt
io

n
va

lu
es

 o
n

bo
th

 v
er

si
on

s,
in

 k
W

h

Pr
ob

le
m

O
N

EM
A

X
P-

PE
A

K
S

EC
C

M
TT

P2
0

M
TT

P1
00

M
TT

P2
00

of

 c
or

es
Sy

nc
A

sy
nc

Sy
nc

A
sy

nc
Sy

nc
A

sy
nc

Sy
nc

A
sy

nc
Sy

nc
A

sy
nc

Sy
nc

A
sy

nc

1
9.

94
E−

03
2.

40
E−

03
1.

34
E−

03
1.

83
E−

04
6.

80
E−

03
9.

25
E−

04
5.

57
E−

03
 5

.4
7E

−
05

1.
39

E−
01

3.
09

E−
03

2.
95

E−
01

8.
11

E−
03

2
2.

92
E−

03
1.

03
E−

03
3.

79
E−

04
8.

46
E−

05
1.

78
E−

03
3.

41
E−

04
1.

43
E−

03
2.

50
E−

05
4.

24
E−

02
1.

21
E−

03
7.

70
E−

02
3.

43
E−

03
4

1.
42

E−
03

5.
19

E−
04

1.
80

E−
04

4.
73

E−
05

8.
81

E−
04

1.
73

E−
04

7.
46

E−
04

1.
85

E−
05

1.
91

E−
02

6.
35

E−
04

3.
29

E−
02

1.
85

E−
03

8
5.

89
E−

04
1.

64
E−

04
8.

47
E−

05
1.

19
E−

05
3.

83
E−

04
4.

81
E−

05
2.

88
E−

04
7.

58
E−

06
8.

91
E−

03
2.

23
E−

04
1.

64
E−

02
5.

71
E−

04
16

1.
94

E−
04

5.
55

E−
05

2.
65

E−
05

5.
08

E−
06

1.
17

E−
04

1.
75

E−
05

9.
06

E−
05

3.
14

E−
06

2.
44

E−
03

6.
03

E−
05

4.
99

E−
03

1.
68

E−
04

32
1.

95
E−

05
2.

06
E−

05
2.

80
E−

06
2.

27
E−

06
7.

98
E−

06
6.

93
E−

06
2.

04
E−

06
1.

36
E−

06
2.

67
E−

05
2.

13
E−

05
7.

64
E−

05
6.

72
E−

05

6212	 A. Abdelhafez et al.

1 3

Ta
bl

e 
11

  
M

ea
n

of
 e

xe
cu

tio
n

tim
e

on
 b

ot
h

ve
rs

io
ns

, i
n

se
co

nd
s

Pr
ob

le
m

O
N

EM
A

X
P-

PE
A

K
S

EC
C

M
TT

P2
0

M
TT

P1
00

M
TT

P2
00

of

 c
or

es
Sy

nc
A

sy
nc

Sy
nc

A
sy

nc
Sy

nc
A

sy
nc

Sy
nc

A
sy

nc
Sy

nc
A

sy
nc

Sy
nc

A
sy

nc

1
48

.9
2

11
.6

8
7.

09
0.

95
33

.5
0

4.
63

27
.6

4
1.

28
74

0.
38

15
.0

6
14

43
.7

4
39

.4
4

2
27

.1
8

9.
74

3.
77

0.
86

16
.7

3
3.

35
13

.5
4

0.
57

39
8.

04
11

.3
9

72
0.

99
32

.3
8

4
13

.1
9

4.
91

1.
87

0.
49

8.
29

1.
72

7.
02

0.
36

17
9.

20
5.

95
30

5.
62

17
.3

1
8

9.
00

2.
51

1.
46

0.
25

6.
02

0.
87

4.
53

0.
25

13
8.

22
3.

43
24

9.
70

8.
49

16
4.

83
1.

47
0.

77
0.

19
3.

05
0.

50
2.

30
0.

13
60

.8
6

1.
63

12
4.

38
4.

25
32

0.
88

0.
92

0.
19

0.
17

0.
43

0.
39

0.
15

0.
10

1.
17

0.
94

3.
20

2.
83

6213

1 3

A component-based study of energy consumption for sequential…

instances: ONEMAX of size 2000 bits, P-PEAKS of 100 bits, ECC of size 288 bits,
and three instances of MTTP named MTTP20, MTTP100, and MTTP200.

Having different problems allows raising different behaviors and consumptions,
while having different dimensions for them will allow some conclusions on scalabil-
ity. These results are the average of the 30 independent runs, where the stop condi-
tion was to find the optimal solution in all the cases. The results of Tables 10 and 11
clearly show that the asynchronous implementation consumes the least energy and
execution times (marked in bold) in most of the instances of our experiments. These
results prove that the asynchronous implementation is more energy-friendly than
the synchronous implementation. Also, the larger the number of cores in the execu-
tion pool, the lower the running time and energy consumption. This result is wanted
but maybe not expected, since more cores would mean more energy. Now we have
quantitative evidence that parallelism can help reduce energy. In spite of the fact
that adding more computing units may lead to consuming more energy, adding more
computing units will steadily decrease the execution time and thus decrease the
energy consumed (for the benchmark considered).

The results are rich with significant and interesting outcomes. Even if there is
a big difference in dimensions between ONEMAX and MTTP200, the latter con-
sumes a much higher amount of energy than ONEMAX for all the different numbers
of cores used. This evidence confirms our previous conclusions about the impor-
tance of the evaluation operator and its complexity. On the other hand, adding more
cores led to a higher reduction rate of energy and time consumption in MTTP200
more than in ONEMAX. The same energy and time reduction rates are also found
on P-PEAKS and ECC problems. This behavior can be due to the larger number of
cores working simultaneously to solve the problem: the higher the number of cores,
the higher the number of parallel operations per time unit and therefore a smaller
wall-clock time is needed. The final overall effect definitely reduces the execution
time. With respect to the energy point of view, we have two different factors: When
the number of cores increases, the energy consumed by the complete processor is
higher, but since the execution is faster, the time in which it is consuming energy is
lower. Since the second effect has a larger impact than the first one, the final energy
consumption is also reduced when the number of cores is increased. With the results
presented above, we can positively answer the third research question (RQ3).

Figure 5 shows the behavior of the energy consumption of synchronous and asyn-
chronous algorithms, respectively, over a different number of cores. These results
also clearly point to the fact that the asynchronous implementation is more efficient
than the synchronous implementation: It consumes less energy and time in most of
the cases of the study (for the same numerical performance). In terms of execution
time, this behavior was reported in many previous studies on synchronism of EAs,
e.g., [3, 6, 29, 40]. Our results confirm this poor performance of the synchronous
implementation in terms of energy consumption too. The reason for this behavior
is the unblocking of communications of the asynchronous implementation, which
means there are no idle cores waiting for incoming data. Also, the independent
evolution of asynchronous algorithms could promote a higher diversity inside the
islands, but this effect is just clear in cluster computing with distributed memories
and a network in the middle.

6214	 A. Abdelhafez et al.

1 3

The higher difference in energy consumption values in both versions happens
when using a low number of cores (see Fig. 5). As we decrease the number of cores
from 32 to 1, there will be increasingly more islands running on the same core.
(Remember we do not modify the number of islands; removing or adding islands
would create different algorithms and lead to meaningless conclusions.) For the syn-
chronous implementation, this fact is more influential since fewer cores will deal
with computations and synchronized communications of many islands (overhead).

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

of cores

0

0.5

1

1.5

2

2.5

3

3.5

4

E
ne

rg
y

co
ns

um
pt

io
n

104
ONEMAX-Async
ONEMAX-Sync
ECC-Async
ECC-Sync
MTTP20-Async
MTTP20-Sync

(a) Problems: ONEMAX, ECC, and MTTP20

of cores

0

2

4

6

8

10

12

E
ne

rg
y

co
ns

um
pt

io
n

105
MTTP100-Async
MTTP100-Sync
MTTP200-Async
MTTP200-Sync
P-PEAKS-Async
P-PEAKS

(b) Problems: MTTP100, MTTP200, and P-PEAKS

Fig. 5   Energy consumption of the synchronous and asynchronous algorithms

6215

1 3

A component-based study of energy consumption for sequential…

The case of fewer number of cores will be more tolerated in the asynchronous imple-
mentation, since there are no waiting points and the core will not block and wait for
information and computations can freely proceed.

When both implementations are being run on 32 cores (32 islands, one per core),
we get a similar performance for the asynchronous and synchronous implementa-
tions: The load is similar in the two and running on a shared memory multiprocessor
is equally fast for them. Also, the time cost of blocking and waiting to synchronize
in the synchronous implementation is negligible. Therefore, we can totally confirm
RQ3 (consumption of different communication schemes) and answer RQ4 (impact
of the number of cores).

5.3.1 � Statistical analysis of the synchronous and asynchronous implementations

Since we are dealing with non-deterministic algorithms, we do need a section to
discuss the statistical relevance of the results. Table 12 shows a statistical compari-
son between asynchronous and synchronous implementations based on the energy
consumption values obtained from both versions, by using the Wilcoxon’s signed-
rank test. Wilcoxon’s test makes individual comparisons between two algorithms
(pairwise comparisons) and aims to detect significant differences between them. The
p-value in a pairwise comparison is independent of another one. The results are con-
sidered significant when p < 0.01.

The results clearly show that both versions have a different energy consumption
behavior when being executed over a different number of cores. This outcome also
proves our previous results in Table 10, so now we can claim that the asynchronous
implementation has a different energy consumption behavior which is more efficient
than the synchronous implementation.

6 � Conclusions and future works

In this article, we measured and analyzed the energy and time consumption behav-
iors of GA and dGA, two important paradigms of optimization, search, and learn-
ing algorithms. We used different problems (varying in characteristics of the search
space and fitness function complexity) over a varied number of cores and dimen-
sions to expose the potential behavior of the algorithms. We observed that the
energy consumption of problems varies according to many factors, such as the size
of the problem, fitness operator complexity, and parameters used.

For the sequential GA, the fitness and genetic operators consume most of the
energy and time, while the rest of the algorithm operations (housekeeping) do not
take a significant amount of energy in most of the scenarios. The fitness operator of
the expensive problems controls the energy and time consumption behavior of GA
since other GA operations have the same implementations (not problem dependent).
Mutation came out as the most consumption component in four of the problems of
the study. Mutation scored higher energy consumption than crossover in all of the
problems of the study. Moreover, the analysis of the relation between problem size
and energy consumption reveals that the energy consumption percentage consumed

6216	 A. Abdelhafez et al.

1 3

Ta
bl

e 
12

  
St

at
ist

ic
al

 c
om

pa
ris

on
 o

f t
he

 sy
nc

hr
on

ou
s a

nd
 a

sy
nc

hr
on

ou
s d

G
A

, b
y

us
in

g
th

e
W

ilc
ox

on
’s

 si
gn

ed
-r

an
k

te
st

Pr
ob

le
m

O
N

EM
A

X
P-

PE
A

K
S

EC
C

M
TT

P2
0

M
TT

P1
00

M
TT

P2
00

of

 c
or

es
p

va
lu

e
Si

gn
.

p
va

lu
e

Si
gn

.
p

va
lu

e
Si

gn
.

p
va

lu
e

Si
gn

.
p

va
lu

e
Si

gn
.

p
va

lu
e

Si
gn

.

1
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
2

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

4
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
8

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

3.
02

E−
11

Ye
s

16
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
3.

02
E−

11
Ye

s
32

8.
99

E−
11

Ye
s

1.
16

E−
07

Ye
s

2.
00

E−
06

Ye
s

4.
44

E−
07

Ye
s

6.
59

E−
04

Ye
s

2.
86

E−
03

Ye
s

6217

1 3

A component-based study of energy consumption for sequential…

by GA operators is varying with the change of the dimension. We remark that these
percentages will not ever be the same on any laboratory experiment, but they are
machine and problem settings dependent. With the previous conclusions, we could
answer and justify RQ1 (energy consumption of the GA components) and RQ2
(impact of the problem dimension).

With respect to dGA, the results clearly point to a higher efficiency of the asyn-
chronous version (time and energy), what we noticed for all numbers of cores. The
statistical analysis did also confirm their different energy consumption profiles. We
want to remark that the optimal energy consumption in the dGA configuration hap-
pened when using a number of islands equal to the number of cores. These conclu-
sions conclusively give answers to RQ3 and RQ4.

For future works, we will expand our study to include other trajectory-based and
population-based metaheuristics. We will analyze the energy consumption of such
techniques to solve problems in smart cities domain. Finally, we plan to provide a
general framework for designing efficient and energy-aware metaheuristics.

Acknowledgements  This research has been partially funded by the Spanish MINECO and FEDER pro-
jects TIN2016-81766-REDT (CI-RTI), TIN2017-88213-R (6city), and Andalucía Tech, Universidad de
Málaga.

References

	 1.	 Abbasi Z, Jonas M, Banerjee A et al (2013) Evolutionary green computing solutions for distrib-
uted cyber physical systems. In: Khan S, Kołodziej J, Li J, Zomaya A (eds) Evolutionary based
solutions for green computing studies in computational intelligence. Springer, Berlin, pp 1–28

	 2.	 Abdelhafez A, Alba E (2017) Speed-up of synchronous and asynchronous distributed Genetic
Algorithms: a first common approach on multiprocessors. In: 2017 IEEE Congress on Evolution-
ary Computation (CEC)

	 3.	 Alba E, Troya JM (2001) Analyzing synchronous and asynchronous parallel distributed genetic
algorithms. Future Gener Comput Syst 17:451–465

	 4.	 Alba E (2005) Parallel metaheuristics: a new class of algorithms. Wiley Interscience, Hoboken
	 5.	 Alba E, Bernabé Dorronsoro (2010) Cellular genetic algorithms. Springer, New York
	 6.	 Alba E, Giacobini M, Tomassini M, Romero S (2002) Comparing synchronous and asynchro-

nous cellular genetic algorithms. In: International Conference on Parallel Problem Solving from
Nature. Springer, Berlin, Heidelberg

	 7.	 Álvarez JD, O FCDL, García Martínez JÁ, et al (2017) Estimating energy consumption in evo-
lutionary algorithms by means of FRBS. In: Progress in Artificial Intelligence Lecture Notes in
Computer Science, pp 229–240

	 8.	 Bán D, Ferenc R, Siket I et al (2018) Prediction models for performance, power, and energy effi-
ciency of software executed on heterogeneous hardware. J Supercomput 2018:1–25

	 9.	 Calandrini G, Gardel A, Bravo I et al (2013) Power measurement methods for energy efficient
applications. Sensors 13:7786–7796

	10.	 David H, Gorbatov E, Hanebutte UR, Khanaa R, Le C (2010) Rapl. In: Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and Design—ISLPED 10

	11.	 Dorronsoro B, Burguillo JC, Peleteiro A, Bouvry P (2013) Evolutionary algorithms based on
game theory and cellular automata with coalitions. In: Zelinka I, Snášel V, Abraham A (eds)
Handbook of optimization intelligent systems reference library. Springer, Berlin, pp 481–503

	12.	 Droste S, Jansen T, Wegener I (2000) A natural and simple function which is hard for all evolu-
tionary algorithms. In: 2000 26th Annual Conference of the IEEE Industrial Electronics Society
IECON 2000 IEEE International Conference on Industrial Electronics, Control and Instrumenta-
tion 21st Century Technologies and Industrial Opportunities (Cat No00CH37141)

6218	 A. Abdelhafez et al.

1 3

	13.	 Escamilla J, Salido MA, Giret A, Barber F (2016) A metaheuristic technique for energy-effi-
ciency in job-shop scheduling. Knowl Eng Rev 31:475–485

	14.	 Fanfakh A, Charr J-C, Couturier R, Giersch A (2017) Energy consumption reduction for asyn-
chronous message-passing applications. J Supercomput 73:2369–2401

	15.	 Goldberg D, Deb K, Horn J (1992) Massive multimodality, deception, and genetic algorithms.
In: Manner R, Manderick B (eds) International Conference on Parallel Problem Solving from
Nature II

	16.	 Guzman C, Cardenas A, Agbossou K (2017) Evaluation of meta-heuristic optimization meth-
ods for home energy management applications. In: 2017 IEEE 26th International Symposium on
Industrial Electronics (ISIE)

	17.	 Hähnel M, Döbel B, Völp M, Härtig H (2012) Measuring energy consumption for short code
paths using RAPL. ACM SIGMETRICS Perform Eval Rev 40:13

	18.	 Hindle A (2016) Green software engineering: the curse of methodology. In: Proceedings: IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER)

	19.	 Hooper A (2008) Green computing. Commun ACM 51(10):11–13
	20.	 Jong KD, Potter M, Spears W (1997) Using problem generators to explore the effects of epista-

sis. In: The Seventh International Conference on Genetic Algorithms, pp 338–345
	21.	 Khan KN, Ou Z, Hirki M et al (2016) How much power does your server consume? Estimating

wall socket power using RAPL measurements. Comput Sci Res Dev 31:207–214
	22.	 Khuri S, Bäck T, Heitkötter J (1994) An evolutionary approach to combinatorial optimization

problems. In: 22nd Annual ACM C.S. Conference, pp 66–73
	23.	 MacWilliams F, Sloane N (1977) The theory of error-correcting codes: part 2, vol 16. Elsevier,

Amsterdam
	24.	 Martín G, Singh DE, Marinescu M-C, Carretero J (2015) Enhancing the performance of malle-

able MPI applications by using performance-aware dynamic reconfiguration. Parallel Comput
46:60–77

	25.	 Mezmaz M, Melab N, Kessaci Y et al (2011) A parallel bi-objective hybrid metaheuristic for
energy-aware scheduling for cloud computing systems. J Parallel Distrib Comput 71:1497–1508

	26.	 Michaelides EE (2012) Environmental and ecological effects of energy production and consump-
tion. In: Green Energy and Technology Alternative Energy Sources, pp 33–63

	27.	 Munawer ME (2018) Human health and environmental impacts of coal combustion and post-
combustion wastes. J Sustain Min 17:87–96

	28.	 Pereira R, Couto M, Ribeiro F, et al (2017) Energy efficiency across programming languages:
how do energy, time, and memory relate? In: Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering—SLE 2017

	29.	 Rada-Vilela J, Zhang M, Seah W (2013) A performance study on synchronicity and neighbor-
hood size in particle swarm optimization. Soft Comput 17:1019–1030

	30.	 Rauber T, Rünger G, Schwind M et al (2014) Energy measurement, modeling, and prediction for
processors with frequency scaling. J Supercomput 70:1451–1476

	31.	 Rodriguez-Gonzalo M, Singh DE, Blas JG, Carretero J (2016) Improving the energy efficiency
of MPI applications by means of malleability. In: 2016 24th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP)

	32.	 Rotem E, Naveh A, Ananthakrishnan A et al (2012) Power-management architecture of the intel
microarchitecture code-named sandy bridge. IEEE Micro 32:20–27

	33.	 Schaffer J, Eshelman L (1991) On crossover as an evolutionary viable strategy. In: Belew R,
Booker L (eds) Proceedings of the 4th ICGA, Morgan Kaufmann, pp 61–68

	34.	 Tomassini M (2006) Spatially structured evolutionary algorithms: artificial evolution in space
and time. Springer, Berlin

	35.	 Stinson D (1985) An introduction to the design and analysis of algorithms. The Charles Babbage
Research Centre, St Pierre

	36.	 Trefethen AE, Thiyagalingam J (2013) Energy-aware software: challenges, opportunities and
strategies. J Comput Sci 4:444–449

	37.	 Tsutsui S, Fujimoto Y (1993) Forking genetic algorithm with blocking and shrinking modes. In:
Forrest S (ed) 5th ICGA, Morgan Kaufmamann, pp 206–213

	38.	 Vega FFD, Chávez F, Díaz J et al (2016) A cross-platform assessment of energy consumption in
evolutionary algorithms. In: Parallel Problem Solving from Nature—PPSN XIV Lecture Notes in
Computer Science, pp 548–557

6219

1 3

A component-based study of energy consumption for sequential…

	39.	 Venkatesh A, Kandalla K, Panda DK (2013) Evaluation of energy characteristics of MPI com-
munication primitives with RAPL. In: 2013 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum

	40.	 Venter G, Sobieszczanski-Sobieski J (2006) Parallel particle swarm optimization algorithm acceler-
ated by asynchronous evaluations. J Aerosp Comput Inf Commun 3:123–137

	41.	 Zhang H, Hoffman H (2015) A quantitative evaluation of the RAPL power control system. In: Feed-
back Computing

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A component-based study of energy consumption for sequential and parallel genetic algorithms
	Abstract
	1 Introduction
	2 Related works
	3 Genetic algorithms background
	3.1 Overview of the canonical genetic algorithm
	3.2 The distributed genetic algorithm
	3.3 Synchronous and asynchronous communication schemes

	4 Design of experiments
	4.1 Benchmark problems
	4.2 Parameter settings and system specifications

	5 Numerical experiments
	5.1 Energy consumption analysis of the sequential genetic algorithm
	5.2 Dimensionality and energy consumption
	5.3 Energy consumption analysis of the distributed genetic algorithm
	5.3.1 Statistical analysis of the synchronous and asynchronous implementations

	6 Conclusions and future works
	Acknowledgements
	References

