
Vol:.(1234567890)

The Journal of Supercomputing (2020) 76:5098–5116
https://doi.org/10.1007/s11227-019-02825-6

1 3

Generation of high‑performance code based
on a domain‑specific language for algorithmic skeletons

Fabian Wrede1 · Christoph Rieger1 · Herbert Kuchen1

Published online: 27 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Parallel programming can be difficult and error prone, in particular if low-level opti-
mizations are required in order to reach high performance in complex environments
such as multi-core clusters using MPI and OpenMP. One approach to overcome
these issues is based on algorithmic skeletons. These are predefined patterns which
are implemented in parallel and can be composed by application programmers with-
out taking care of low-level programming aspects. Support for algorithmic skeletons
is typically provided as a library. However, optimizations are hard to implement in
this setting and programming might still be tedious because of required boiler plate
code. Thus, we propose a domain-specific language for algorithmic skeletons that
performs optimizations and generates low-level C++ code. Our experimental results
on four benchmarks show that the models are significantly shorter and that the exe-
cution time and speedup of the generated code often outperform equivalent library
implementations using the Muenster Skeleton Library.

Keywords Algorithmic skeletons · Parallel programming · High-performance
computing · Model-driven development · Domain-specific language

1 Introduction

Parallel programming for (HPC) is a difficult endeavor, which requires expertise in
different frameworks and programming languages. For example, if the code targets
a multi-core cluster environment, the programmer needs to know a framework for

 * Fabian Wrede
 fabian.wrede@uni-muenster.de

 Christoph Rieger
 christoph.rieger@uni-muenster.de

 Herbert Kuchen
 herbert.kuchen@uni-muenster.de

1 Department of Information Systems, University of Muenster, European Research Center
for Information Systems (ERCIS), Leonardo-Campus 3, 48149 Muenster, Germany

http://orcid.org/0000-0003-3927-7931
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02825-6&domain=pdf

5099

1 3

Generation of high‑performance code based on a domain‑specific…

shared-memory architectures, such as OpenMP [1], for distributed-memory archi-
tectures, such as MPI [2], and possibly even for accelerators, such as CUDA [3] or
OpenCL [4] for GPUs. Especially if advanced performance tuning is required, basic
programming skills might not be sufficient. Moreover, using different frameworks in
combination can lead to subtle errors, which are difficult to find and resolve.

One approach to solve this problem is based on predefined, typical parallel pro-
gramming patterns [5] such as map, fold/reduce, and zip. In addition to these
data-parallel skeletons, there are task-parallel skeletons, such as pipeline or
farm, and communication skeletons, such as gather or scatter. In order to use
a general-purpose skeleton, a function providing the application-specific computa-
tion logic can be passed as an argument. This function is then executed in parallel on
all elements of a data structure or data stream.

Thus, by using algorithmic skeletons, low-level details become transparent to the
programmer and he or she does not have to consider them or even does not need to
know anything about the underlying frameworks. Moreover, algorithmic skeletons
make sure that common parallel programming errors, such as deadlocks and race
conditions, do not occur.

There are several libraries, which provide algorithmic skeletons (see Sect. 2). A
library implementation of algorithmic skeletons makes certain optimizations hard to
implement, such as re-arranging skeleton calls, since on the level of C++ and using
a combination of low-level frameworks, relevant and irrelevant features are hard to
distinguish at runtime. In the present paper, we show how to avoid these drawbacks
by generating C++ code from a dedicated (DSL) model. Moreover, we demonstrate
how such a (DSL) can facilitate the efficient development of parallel programs by
reducing the language to the essential core features and offering useful validation for
models.

Our paper is structured as follows: first, we give an overview about different
libraries for algorithmic skeletons in Sect. 2. In Sect. 3, our DSL is described and
Sect. 4 shows how the language constructs are transformed into C++ code. The
results of four benchmark applications are presented in Sect. 5. In Sect. 6, we con-
clude and point out the future work.

2 Related work

Algorithmic skeletons for parallel programming are mostly provided as libraries.
One instance is the Muenster Skeleton Library (Muesli), a C++ library which is
used as a reference for the implementation of the presented approach. Muesli offers
distributed data structures, and the skeletons are member functions of them. Data-
parallel skeletons implemented in Muesli are, for example, map, fold, zip, map-
Stencil and variants of these. Muesli works on multi-core and multi-GPU clus-
ters [6, 7].

Other well-known libraries are, for example, FastFlow, which focuses on task-
parallel skeletons and stream parallelism for multi-core systems [8], and eSkel,
which provides skeletons for C and MPI [9].

5100 F. Wrede et al.

1 3

Two libraries we want to examine more closely here are SkePU2 [10] and SkeTo
[11], since they incorporate similar concepts as presented in this paper. SkePU2
includes a source-to-source compiler based on Clang and LLVM. A program written
with SkePU can always be compiled into a sequential program. A precompiler trans-
forms the program for parallel execution, e.g., adding the _ _device_ _ keyword
to functions. SkePU uses custom C++ attributes, which the precompiler recognizes
and transforms accordingly.

SkeTo is a library for distributed-memory environments, which focuses on opti-
mizations such as fusion transformations—i.e., combining two skeleton invocations
into one and hence reducing the overhead for function calls and the amount of data
which is passed between skeletons. The implementation is based on expression tem-
plates [12], a meta-programming technique. By using expression templates it is,
for example, possible to avoid temporary variables, which are required for complex
expressions.

Lately, the concepts of model-driven and generative software development have
gained attraction in academia and practice, mainly because of the expected benefits
in development speed, software quality, and reduction in redundant code [13]. In
addition, DSLs allow for better reuse and readability of models—targeted at both the
modeling domain and user experience—while at the same time reducing the com-
plexity through appropriate abstractions [14]. In the domain of high-performance
programming, few approaches have been presented in the literature that adopt DSLs.
Almorsy and Grundy [15] have presented a graphical notation to ease the shift from
sequential to parallel implementations of existing software for CPU and GPU clus-
ters. Anderson et al. [16] have extended the language Julia which is designed for
scientific computing and partly aligned with the MATLAB notation. By applying
optimization techniques such as parallelization, fusion, hoisting, and vectorization,
the generated code significantly improves the computation. In contrast, our approach
focuses on the parallelization on clusters of compute nodes.

There are also DSLs for parallel programming with skeletons or parallel pat-
terns, which are embedded into other languages, or enable the creation of embedded
DSLs, such as SPar [17] for C++ or Delite [18] for Scala. SPar uses C++ annota-
tions, and therefore, it is possible to parallelize an existing code base without much
effort. Additionally, all features of the host language can easily be used. If a code
base already exists, even a less complex stand-alone DSL requires more effort for a
re-implementation. However, by reducing the language to core features in a stand-
alone DSL the complexity can be easily handled by inexperienced programmers.

Danelutto et al. [19] propose a DSL for designing parallel programs based on
parallel patterns, which also allows for optimization and rewriting of the pattern
composition. The DSL focuses on the management of non-functional properties
such as performance, security, or power consumption. Based on the model and non-
functional properties, a template providing an optimized pattern composition for
the FastFlow library is generated, which the programmer can use to implement the
application.

Since this work presents an own language for parallel programming, we want to
highlight that some upcoming and established languages aim to benefit from paral-
lel code execution as well. For example, Chapel has built-in concepts for parallel

5101

1 3

Generation of high‑performance code based on a domain‑specific…

programming such as forall loops and the cobegin statement, which allows for start-
ing independent tasks [20]. Also, the C++ standard includes extensions for parallel
programming since version C++17 [21]. For example, the algorithms for_each
and transform are comparable to the presented skeletons map(InPlace).
However, these capabilities are restricted to a single (potentially multi-core) node
and do not support clusters. Another related approach, which provides a source-to-
source compiler, is Bones [22]. It takes sequential C code and transforms it into
code for GPUs, but again, it does not support distributed systems.

3 A domain‑specific language for high‑level parallel programming

Many existing approaches to high-level parallel programming provide parallel con-
structs in the form of a library. As pointed out in introduction, this causes some limi-
tations such as the difficulty to implement optimizations and a higher entry barrier
for inexperienced programmers. Thus, we propose a DSL named Musket (Muenster
Skeleton Tool for High-Performance Code Generation) to tackle these limitations
and generate optimized code.

3.1 Benefits of generating high‑performance code

The main drawback of using libraries for high-performance computing is the fact
that library calls are included in arbitrarily complex code of a host language such as
C++. Besides introducing some performance overhead, a library is always restricted
by the host language’s syntax. In contrast, important design decisions such the syn-
tax and structure of code can be selected purposefully when building a DSL. For
example, different algorithmic skeletons as major domain concept for parallelization
can be integrated as keywords in the designed language and recognized by the edit-
ing component. Consequently, the program specification is more readable for novice
users who want to apply their domain knowledge.

A code generator can easily analyze the DSL features based on a formalized
meta-model and produce optimized code for different hardware configurations. In
the domain of high-level parallel programming using algorithmic skeletons, paral-
lelism can be built into the structure of the language such that the user does not need
to cater for parallelism-specific implementations. Required transformations can be
provided by the framework developers, for example when applying an algorithmic
skeleton to a distributed data structure. In addition, this level of abstraction increases
the readability for users who do not need to know the details of (potentially multi-
ple) target platforms but can focus on the high-level sequence of activities.

With regard to framework developers who are concerned with efficient program
execution, DSLs introduce additional flexibility. The abstract syntax of the paral-
lel program can be analyzed and modified in order to optimize the generated high-
performance code for the target hardware. In particular, recurring—and potentially
inefficient—patterns of high-level user code can be transformed to hardware-spe-
cific low-level implementations by applying rewrite rules as described in [23]. For

5102 F. Wrede et al.

1 3

example, map fusion may be applied to combine multiple transformations on the
same data structure instead of applying them consecutively (cf. Sect. 4.2).

Moreover, a DSL-based approach can be extended to additional platforms in the
future by supplying new generator implementations—without changing the input
programs. Compared to customizing compilers, DSL creation frameworks such as
Xtext further support in creating usable editing components with features such as
syntax highlighting and meaningful model1 validation [24].

3.2 Language overview

The Musket DSL targets rather inexperienced programmers who want to use algo-
rithmic skeletons to quickly write high-performance programs that run on hetero-
geneous clusters. Therefore, a syntax similar to C++ was chosen to align with a
familiar programming language that is common for high-performance scenarios
such as simulating physical or biological systems. However, a Musket model is more
structured than an arbitrary C++ program and provides four main sections which
are described in more detail in the following.2 The DSL was created using the Xtext
language development framework which uses an EBNF-like grammar to specify
the language syntax and derives a corresponding Ecore meta-model [26]. Further-
more, a parser as well as an editor component is generated which integrates with the
Eclipse ecosystem for subsequent code generation. Consequently, common features
of an (IDE) such as syntax highlighting, auto-completion, and validation are avail-
able and have been customized to provide contextual modeling support.

1 The model-driven software development community prefers the notion DSL model rather than DSL
program.
2 Due to the lack of space, only the overall structure and the main concepts of the language are presented
here and an excerpt of the DSL is given in Listing 2. The full DSL specification can be found in our code
repository [25].

5103

1 3

Generation of high‑performance code based on a domain‑specific…

1 #config PLATFORM CPU
2 #config PROCESSES 4
3 #config CORES 24
4 #config MODE release
5

6 const int dim = 16384;
7

8 matrix <float ,dim ,dim ,dist > as = {1.0f};
9 matrix <float ,dim ,dim ,dist > bs = {0.001f};

10 matrix <float ,dim ,dim ,dist > cs = {0.0f};
11

12 float dotProduct(int i, int j, float Cij){
13 float sum = Cij;
14

15 for (int k = 0; k < cs.columnsLocal (); k++) {
16 sum += as[[i,k]] * bs[[k,j]];
17 }
18

19 return sum;
20 }
21

22 main{
23 as.shiftPartitionsHorizontally ((int a) -> int {return -a;});
24 bs.shiftPartitionsVertically ((int a) -> int {return -a;});
25

26 for (int i = 0; i < as.blocksInRow (); ++i) {
27 cs.map <localIndex , inPlace >(dotProduct ());
28 as.shiftPartitionsHorizontally ((int a)-> int {return -1;});
29 bs.shiftPartitionsVertically ((int a) -> int {return -1;});
30 }
31

32 as.shiftPartitionsHorizontally ((int a) -> int {return a;});
33 bs.shiftPartitionsVertically ((int a) -> int {return a;});
34 }

Listing 1 Musket model for matrix multiplication.

3.2.1 Meta‑information

The header of a Musket model consists of meta-information that guides the generation
process. On the one hand, target platforms and the compiler optimization mode can be
chosen for convenient debugging of the program. More important, the configuration
of cores and processes is used by the generator to optimize the code for a distributed
execution on a high-performance cluster. For example, the setup of distributed data
structures, the parallel execution of skeletons, and the intra-cluster communication of
calculation results are then automatically managed. An exemplary model for a matrix
multiplication according to the algorithm described in [7] is depicted in Listing 1.

5104 F. Wrede et al.

1 3

3.2.2 Data structure declaration

Because of the distributed execution of the program, all global data structures are
declared upfront and distributed to the different compute nodes. Also, global con-
stants can be defined in this block to easily parametrize the program (lines 6–10).

Musket currently supports several primitive data types (float, double, integer,
and Boolean). Array and matrix collection types also exist and are defined using
the C++ template style, e.g., matrix<double,512,512,dist> table;.
This definition contains the type and dimension of the collection and also provides
a keyword indicating whether the collection should be present on all nodes (copy),
distributed across the nodes (dist, rowDist, or columnDist), or instantiated depend-
ing on the context (loc). The explicit distinction lets the user control the partitioning
of a data structure by means of a user function (see Subsect. 3.2.3). To simplify the
handling of distributed data structures, collections can be accessed either using their
global index (e.g., table[42]) or the local index within the current partition (e.g.,
table[[42]]). Moreover, primitive and collection types can be composed into
custom struct types.

3.2.3 User function declaration

The third section of a Musket program consists of custom user functions which
specify the behavior to be executed on each node within skeleton calls (such as the
dotProduct function in lines 12–20). Therefore, a wide variety of calculations
such as arithmetic and Boolean expressions can be directly expressed in the DSL. In
addition to assignments and skeleton applications, different control structures such
as sequential composition, if statements, and for loops are available. Moreover, the
modeler can use C++ functions from the standard library or call arbitrary external
C++ functions (which are, however, not considered for the optimizations described
in Sect. 4.2).

Within functions, users can access globally available data structures (declared in
the previous section) or create local variables to store temporary calculation results
which are not available to other processes. The sophisticated validation capabilities
allow for instant feedback to the user when errors are introduced in the model. For
example, type inference aims to statically analyze the resulting data type of expres-
sions or type casts and thus warns the user before vainly starting the generation
process.

3.2.4 Main program declaration

Finally, the overall sequence of activities in the program is described in the main
block (lines 22–34 in Listing 1). Besides the possible control structures and expres-
sions described in the previous paragraphs, skeleton functions are the main features
to write high-level parallel code. Currently, map, fold, gather, scatter, and shift par-
tition skeletons are implemented in multiple variants. In general, they are applied
to a distributed data structure and may take additional arguments such as the previ-
ously defined user functions. For convenience and code readability reasons, the user

5105

1 3

Generation of high‑performance code based on a domain‑specific…

can instead specify a lambda abstraction for simple operations, e.g., (int a) ->
int {return -a;}.

Listing 2 Excerpt of the Musket DSL in EBNF notation.

1 MainBlock : := // cf. Section 3.2.4
2 ’main’ ’{’ {MainFunctionStatement} ’}’
3
4 MainFunctionStatement : :=
5 MusketControlStructure | // For loop and if clause variants
6 MusketStatement ’;’
7
8 MusketStatement : :=
9 MusketVariable | // Variable declarations

10 MusketAssignment | // Assigning values to variables
11 Ske l e tonExpres s ion | // Arithmetic and boolean expressions
12 Funct ionCal l // Function calls without assignment
13
14 Ske l e tonExpres s ion : := Co l l e c t i onObjec tRe f ’.’ Ske le ton
15
16 Ske le ton : // available algorithmic skeletons
17 ’map’ Ske letonOpt ions ’(’ MapFunction ’)’ |
18 ’fold’ Ske letonOpt ions ’(’ Ident i tyVa lue ’,’ FoldFunction ’)’ |
19 ’mapFold ’ Ske letonOpt ions

’(’ MapFunction ’,’ Ident i tyVa lue ’,’ FoldFunction ’)’ |
20 ’zip’ Ske letonOpt ions ’(’ ObjectRef ’,’ UserFunction ’)’ |
21 ’gather ’ ’(’ ’)’ |
22 ’scatter ’ ’(’ ’)’ |
23 ’shiftHorizontally ’ ’(’ UserFunction ’)’ |
24 ’shiftVertically ’ ’(’ UserFunction ’)’
25 // alternative skeleton representations omitted
26
27 Ske letonOpt ions : := [’<’ SkeletonOption {’,’ SkeletonOption } ’>’]
28 SkeletonOption : := index | l o c a l I ndex | i nP lace
29
30 MapFunction : := UserFunction
31 FoldFunction : := UserFunction
32
33 UserFunction : :=
34 Funct ionCal l | // reference to user function (cf. 3.2.3)
35 LambdaFunction // inline definition of functions (cf. 3.2.4)

An excerpt of the Musket grammar concerning the main program declaration is
depicted in Listing 2 using the EBNF notation.3 A map skeleton applies a user func-
tion to each element of the data structure (either returning a new collection or updat-
ing values in place depending on the SkeletonOption). A fold skeleton (also known
as reduce pattern) takes a user function and the identity value of the operation and
folds pairs of elements in the collection into a single value. For performance rea-
sons, both skeletons can be combined into a mapFold skeleton (see Sect. 4.2). The
zip skeleton joins two data structures of the same size using the provided user func-
tion. The gather and scatter skeletons are used to transfer objects with different

3 The Xtext representation of the full DSL is available in our code repository [25].

5106 F. Wrede et al.

1 3

distribution strategies. Finally, shift skeletons can be applied in order to re-distribute
rows/columns of distributed matrices between computation nodes.

Again, multiple validators have been implemented to ensure that the types and
amount of parameters passed into skeletons match. Meaningful error messages such
as depicted in Fig. 1 can be instantly provided while writing the program instead of
relying on cryptic failure descriptions when compiling the generated code.

To sum up, the Musket DSL represents a subset of the C++ language in order
to handle the complexities of generating parallelism-aware and hardware-optimized
code. With only few additions such as distribution modes, local/global collection
access, and predefined skeleton functions, a transformation of otherwise regular
C++ code into distributed programs which are executable in a cluster environment
can be achieved.

4 Code generation for multi‑core clusters

In the following section, we demonstrate how certain language constructs are trans-
formed into C++ code. We cover the data structures, data-parallel skeletons, as well
as selected specific functions provided by the language. In general, we tried to gen-
erate code, which is still readable and makes use of modern features of C++11, 14,
and 17.

Further, the way to generate code as described in the following is only one pos-
sibility. The approach of using a DSL allows for generating very different imple-
mentations to achieve the same behavior. It becomes also possible to consider cost
models or descriptions of the target hardware and guide the generation accordingly.

Fig. 1 Integration of custom validation errors in the Eclipse IDE

5107

1 3

Generation of high‑performance code based on a domain‑specific…

This also includes the generation of code for different architectures. By adding an
additional generator, the same language and models can be reused to, for example,
generate code for GPUs.

4.1 Data structures

In general, all distributed data structures are represented as wrapper classes around
a std::vector. Based on the number of processes configured in the model and
the distribution type, the size of the local vectors is calculated. Consequently, also
for matrices the values are stored only in one vector. When an element in a matrix is
accessed, the index is calculated accordingly.

Even though the size of the data structure is known when the code is generated,
we decided to use std::vector over std::array. This is mostly because of
the more efficient move operation for vectors: for some skeletons, intermediate buff-
ers for sending and receiving data are required and we found vectors to be more effi-
cient when data are moved from temporary buffers to the main vector.

Structs, which are defined in the model, are transformed into C++ structs. Addi-
tionally, a default constructor is generated, which initializes all members to default
values. Moreover, the generation approach could be used to generate code for dif-
ferent data layouts. At the moment, the data are generated as array of structs, but
it could be transformed to struct of arrays or any hybrid representation, which can
increase the performance regarding data access and vectorization.

Moreover, there are collection functions, such as show and size, which can be
invoked on data structures. Where possible, these function calls are already evalu-
ated during the generation. For example, the global or local size is known for dis-
tributed data structures so that the function call can be replaced by the fixed value.

4.2 Model transformation

The generation approach enables a rewriting step of skeleton calls by perform-
ing a model-to-model transformation before the actual generation. In this trans-
formation, certain sequences of skeleton calls can be rewritten in a more efficient
way [27]. For example, one or more skeleton calls can be combined through map
fusion. This is the case for several calls of map on the same data structure. The
sequence a.mapInPlace(f); a.mapInPlace(g); can be joined to
a.mapInPlace(g◦ f);. For the generated code, this is one less parallel loop,
which can save time for synchronization and intermediate data storage.

Also, different skeletons such as map and fold can be combined. In terms of the
presented DSL, a.mapInPlace(f); x = a.fold(0, g); can be joined to
x = a.mapFold(f, 0, g);. In the generated code, this results in one parallel
for loop with reduction and a call to MPI_Allreduce instead of two loops and the
MPI call. Moreover, the intermediate result does not need to be stored in the result-
ing data structure. However, this transformation would only be valid if a was not
used in any subsequent skeleton calls. Using static analysis of the model’s abstract

5108 F. Wrede et al.

1 3

syntax tree, such transformations can be specifically targeted, for instance, to opti-
mize specific combinations of skeleton and user function.

4.3 Custom reduction

The implementation of the fold skeleton is based on a straightforward sequence of
the OpenMP pragma #pragma omp parallel for simd reduction for
performing a local reduction in each thread, followed by an MPI_Allreduce for
combining the local intermediate results. MPI requires a function with the following
signature void f(void *in, void *inout, int *len, MPI_Data-
type *dptr), which can then be used in reduction operations. By generating this
reduction function, it is possible to avoid the combination of a gather operation fol-
lowed by a second local fold.

4.4 User functions

The generation approach allows for generating user functions in different ways,
while they can be expressed at a single point in the model. Moreover, the context
in which the function is called can be considered during the generation step, e.g.,
the function might be generated differently if it is used in a map map_in_place
skeleton. Further examples are the generation for different platforms, e.g., clusters
with or without GPUs or generating different functions based on a single user func-
tions as described in Subsect. 4.3. To this respect, the generation approach provides
a rather convenient possibility to provide alternative code for the same model.

4.5 Specific Musket functions

There are some additional functions provided by Musket, which are not part of the
standard library, such as rand. If the rand function is used in the model, random
engines and distribution objects are generated in the beginning of the main function,
so that they can be reused without additional overhead. The actual call to rand
is generated as rand_dist[thread_id](random_engines [thread_
id]); thus, it can be used as a part of an expression. Consequently, the DSL con-
veniently reduces the amount of boilerplate code, since the function can simply be
used in the model without, for example, creating an object which creates the random
engines on construction.

4.6 Build files

The generation approach offers additional convenience for programmers. In addition
to the source and header files, we also generate a CMake file and scripts to build and
run the application as well as Slurm job files [28]. Consequently, there is no effort
required for the setup and build process, which lowers the entry threshold to parallel
programming for inexperienced programmers.

5109

1 3

Generation of high‑performance code based on a domain‑specific…

5 Benchmarks

We used four benchmark applications to test our approach: calculation of the Frobe-
nius norm, Nbody simulation, matrix multiplication, and (FSS). In the following sub-
sections, we demonstrate the models, compare them to the C++ implementations with
Muesli, and analyze the execution times for both. All execution times are presented
in Table 1. The code has been compiled with g++7.3.0 and OpenMPI 3.1.1. Each
node of the cluster we have used for the benchmark is equipped with two Intel Xeon
E5-2680 v3 CPUs (12 cores each, 30MiB shared L3 cache per CPU and 256KiB L2
cache per core) and 7200MiB memory per node. Hyper-Threading has been disabled.

Table 1 Execution times of the benchmark applications (in seconds)

Benchmark Execution times (s)

Nodes Cores Muesli Musket Speedup

Frobenius norm 1 1 9.8932 2.0513 4.8228
1 6 2.1389 0.6906 3.0973
1 12 1.4890 0.6520 2.2837
1 18 1.5508 0.6366 2.4361
1 24 1.6015 0.7240 2.2120
4 1 2.4793 0.5193 4.7743
4 6 0.5308 0.2308 2.2996
4 12 0.3925 0.2034 1.9298
4 18 0.3943 0.1967 2.0043
4 24 0.3915 0.1960 1.9970

16 1 0.6703 0.1364 4.9136
16 6 0.1497 0.0706 2.1212
16 12 0.1040 0.0575 1.8093
16 18 0.1018 0.0538 1.8937
16 24 0.1060 0.0528 2.0089

Nbody simulation 1 1 7422.7370 7568.5646 0.9807
1 6 1234.074 1249.3490 0.9878
1 12 616.9001 624.8900 0.9872
1 18 411.3290 416.6970 0.9871
1 24 309.0764 312.6062 0.9887
4 1 1850.179 1923.3303 0.9620
4 6 308.7439 312.5329 0.9879
4 12 154.3643 156.2796 0.9877
4 18 102.9115 104.2059 0.9876
4 24 77.7512 78.4770 0.9908

16 1 473.8626 469.3563 1.0096
16 6 77.2279 78.1771 0.9879
16 12 38.6245 39.1056 0.9877
16 18 25.7638 26.0871 0.9876
16 24 23.1896 19.6905 1.1777

5110 F. Wrede et al.

1 3

5.1 Frobenius norm

The calculation of the Frobenius norm for matrices consists of three steps. First, all
values are squared, then all values are summed up, and finally, the square root of the
sum yields the result. We used a 32,768 × 32,768 matrix with double precision val-
ues. The model is presented in Listing 3.

Table 1 (continued)

Benchmark Execution times (s)

Nodes Cores Muesli Musket Speedup

Matrix multiplication 1 1 83529.6618 17802.0678 4.6921
1 6 14726.9833 2430.8756 6.0583
1 12 7700.4190 1269.3401 6.0665
1 18 5185.8780 953.9736 5.4361
1 24 4758.7190 711.8798 6.6847
4 1 19245.4000 4043.8573 4.7592
4 6 3578.7240 588.7502 6.0785
4 12 2086.8870 275.8081 7.5664
4 18 1549.4470 199.2162 7.7777
4 24 1376.8620 164.2069 8.3849

16 1 3655.1590 787.6939 4.6403
16 6 729.3905 97.0805 7.5133
16 12 413.3354 44.4174 9.3057
16 18 252.2129 32.3545 7.7953
16 24 224.8478 26.2930 8.5516

Fish School Search 1 1 916.3965 762.9235 1.2012
1 6 158.2332 136.2039 1.1617
1 12 81.0045 72.4273 1.1184
1 18 54.8713 52.2537 1.0501
1 24 45.5823 43.0435 1.0590
4 1 211.6765 182.9391 1.1571
4 6 40.1817 33.2093 1.2100
4 12 20.9549 18.1227 1.1563
4 18 15.2139 13.7305 1.1080
4 24 13.5301 12.0980 1.1184

16 1 54.9478 46.2524 1.1880
16 6 11.7779 9.4939 1.2406
16 12 7.1947 6.1798 1.1642
16 18 5.9784 5.4158 1.1039
16 24 5.7644 5.2615 1.0956

5111

1 3

Generation of high‑performance code based on a domain‑specific…

1 #config PLATFORM CPU
2 #config PROCESSES 4
3 #config CORES 24
4 #config MODE release
5

6 matrix <double ,32768 ,32768 ,dist > as;
7

8 main{
9 // init

10 as.map <index , inPlace >((int x, int y, double a) -> double
{return (double) x + y + 1.5;});

11

12 mkt:: roi_start (); // Timer start
13

14 as.map <inPlace >((double a) -> double {return a * a;});
15 double fn = as.fold (0.0, (double a, double b) -> double

{return a + b;});
16 fn = std::sqrt(fn);
17

18 mkt:: roi_end (); // Timer end
19

20 mkt:: print("Frobenius norm is %.5f.\n", fn);
21 }

Listing 3 Model for Frobenius norm calculation

There is one matrix defined as a distributed data structure. Since all user func-
tions are written as lambda expressions, there is no need for separately defined
user functions. Within the main block, the logic for the program is defined. First,
in this case, the matrix is initialized with arbitrary values. The calculation of
the Frobenius norm is modeled in lines 14–16. The functions roi_start and
roi_end are merely for benchmark purposes and trigger the generation of timer
functions. In line 20, the Musket function print is used, so that the result is
only printed once by the main process.

The results for this benchmark already reveal some interesting insights, even
though the complexity of the program is rather low, which is also the reason why
the program does not scale very well, when increasing the number of cores per
node.

Musket achieves good speedups compared to the Muesli implementation. There
are multiple effects that lead to the observed results. First of all, for the generated
code GCC is able to vectorize the loops performing the map and fold operations.
Auto-vectorization is, however, not possible for the Muesli implementation. Addi-
tionally, Muesli does not consider configurations with one process or one thread
as special cases, but relies on the fact that MPI routines also work for one process
and that all used OpenMP pragmas are ignored for sequential programs. In contrast,
Musket checks the configuration and generates the code accordingly. Consequently,
there are no MPI routines in the generated program and less operations are required
regarding the management of the data structures, if there is only one process. When

5112 F. Wrede et al.

1 3

a data structure is created in Muesli, the global and local sizes have to be calculated,
the new memory has to be allocated, etc. In Musket, the data structures are defined
in the model, and all required information, such as the size, can be generated and
therefore need not be calculated during program execution.

To give a perspective on the effort of writing a parallel program, we want to point
to the lines of code for the Musket model, the Muesli implementation, and the gen-
erated source file. We did not use the lambda notation for Musket for counting the
lines of code, since Muesli requires functors in certain situations and in this way the
results become more comparable. While the Musket model consists of 20 lines, the
Muesli implementation has 45 lines and the generated source code 398. Thus, we
conclude that the DSL provides a concise way to express a parallel program.

Another aspect to mention here is the skeleton fusion optimization. The lines 14
and 15 could also be written as double fn = as.mapFold(square(),
0.0, sum());, if we assume that the lambda expressions correspond to the
respective functions. In the generated code, this would reduce the two loops for the
map and fold operations into a single loop. The execution times in Table 1 do not
reflect this optimization to keep the results comparable, because Muesli does not
offer a combined mapFold skeleton. As an example, for a configuration with 4
nodes and 24 cores, the execution time has been 0.07 s with skeleton fusion, which
corresponds to a speedup of 2.68 compared to the Musket implementation without
skeleton fusion.

5.2 Nbody simulation

In the case of the Nbody simulation with 5,00,000 particles over five time steps,
the execution times for both implementations are rather similar. For most configura-
tions, the Musket generated code is slightly slower, while for the configuration with
16 nodes and 24 cores per node there is a speedup of 1.18. The benchmark does not
allow for much optimization. Transformations such as skeleton fusion are not appli-
cable, and the user function used in the map skeleton contains function calls as well
as multiple branches, which prevent efficient vectorization.

In an alternative implementation of the Musket generator, we investigated the
effects of inlining of user functions to avoid overhead for function calls. Contrary
to intuition, this approach is not blindly applicable as can be seen for the Nbody
simulation where inlining has not been advantageous. For a configuration with
4 nodes and 24 cores, the execution time was even 87.08 s compared to 78.48 s
for the current approach. We have simulated the behavior of the application with
Valgrind’s cachegrind and callgrind tools [29]. The number of L3 cache misses
as well as the amount of unnecessary data loaded to cache is higher than for the
Muesli implementation. Consequently, we refrain from applying loop unrolling
and inlining by default and propagate these optimizations to the subsequent com-
pilation step.

In terms of complexity, both implementations have about the same size. The
Musket model consists of 77 lines of code, whereas the Muesli program consists
of 84 lines. The generated code consists of 335 lines.

5113

1 3

Generation of high‑performance code based on a domain‑specific…

5.3 Matrix multiplication

The matrix multiplication benchmark shows a case, in which massive improve-
ments become possible due to the code generation approach. We have performed
the matrix multiplication with matrices of 16.384 × 16.384 single precision val-
ues, but first, we have to emphasize again that Musket targets rather inexperienced
programmers. The benchmark is set up in such a way that the second matrix for
the multiplication is not transposed. Hence, the data is stored row major, but the
user function iterates column-wise through the matrix, which leads to inefficient
memory accesses. The model is shown in Listing 1 in Sect. 3.

In the Muesli implementation, the compiler is not able to vectorize the calcula-
tion and to optimize the memory access. However, this is the case for the gener-
ated program, which leads to significant shorter execution times. The speedups
for configurations with multiple nodes and cores range between 6.08 and 9.31.

The model has 42 lines of code, while the Muesli implementation has 74.
Again, the effort for implementing the benchmark has been reduced. In compari-
son, the generated code has 542 lines.

5.4 Fish School Search

The FSS benchmark showcases a complex and more real-world example of a par-
allel program. FSS is a swarm-intelligent meta-heuristic to solve hard optimiza-
tion problems [30]. The model has 244 lines of code and the Muesli implementa-
tion even 623, which is a reduction of about 61% . The generated code consists of
866 lines of code. A detailed discussion of the implementation with Muesli can
be found in [31].

5114 F. Wrede et al.

1 3

1 #config PLATFORM CPU
2 #config PROCESSES 4
3 #config CORES 24
4 #config MODE release
5

6 const int NUMBER_OF_FISH = 2048;
7 const int DIMENSIONS = 512;
8

9 struct Fish{
10 array <double ,DIMENSIONS ,loc > position;
11 double fitness;
12 array <double ,DIMENSIONS ,loc > candidate_position;
13 double candidate_fitness;
14 array <double ,DIMENSIONS ,loc > displacement;
15 double fitness_variation;
16 double weight;
17 array <double ,DIMENSIONS ,loc > best_position;
18 double best_fitness;
19 };
20

21 array <Fish ,NUMBER_OF_FISH ,dist > population;
22 // [...]
23

24 main{
25 // [...]
26 double sum_weight = population.mapFold(
27 (Fish fi) -> double {return fi.weight;}, 0.0,
28 (double a, double b) -> double {return a + b;});
29 // [...]
30 }

Listing 4 Excerpt of the Musket model for Fish School Search

Listing 4 shows excerpts of the FSS model. Since Musket also supports
distributed data structures of complex types—which can include arrays—
it becomes very convenient to work with. The struct for Fish is defined in
lines 9–19, and the distributed array is defined in line 21. The fact that com-
plex types are allowed in distributed data structures highlights the benefit of the
fused mapFold skeleton. For one operator called collective volitive movement,
it is necessary to calculate the sum of the weight of all fish. Line 26 shows how
this can be conveniently done by invoking the mapFold skeleton on the popu-
lation array. In the map part, the weight of each fish is taken and in the fold
part the sum is calculated. In the generated code, this is efficiently performed in
a single parallelized loop. The execution times show a slight improvement for
most configurations with speedups up to 1.24.

5115

1 3

Generation of high‑performance code based on a domain‑specific…

6 Conclusions and future work

In this paper, we have proposed a DSL for parallel programming, which is based on
algorithmic skeletons. Regarding the execution times, the generated code can offer
significant speedups (of up to 9) compared to the library-based approach Muesli for
most benchmarks and configurations. Furthermore, the benchmark applications have
shown that the DSL offers a convenient and concise way to express applications.
Based on a single model, it becomes possible to generate different implementations
to achieve the same behavior.

For future work on multi-core clusters, this leads to the problem of selecting the
best (i.e., fastest) alternative. This could be achieved by considering cost models or
descriptions of the target hardware or by comparing alternatives experimentally. At
the same time, we are investigating more model transformations to identify perfor-
mance potentials in the interplay of user functions and skeletons in order to further
optimize the generated code.

In addition, current work focuses on implementing a corresponding generator
for multi-GPU clusters. Consequently, the modeler can express the desired program
using the Musket DSL and generate optimized code for multiple platforms using the
same Musket models.

References

 1. Chapman B, Jost G, van der Pas R (2008) Using OpenMP: portable shared memory parallel pro-
gramming. Scientific and engineering computation. MIT Press, Cambridge

 2. Gropp W, Lusk E, Skjellum A (2014) Using MPI: portable parallel programming with the message-
passing interface. Scientific and engineering computation, 3rd edn. MIT Press, Cambridge

 3. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA.
Queue 6(2):40–53

 4. Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous
computing systems. Comput Sci Eng 12(3):66–73

 5. Cole M (1991) Algorithmic skeletons: structured management of parallel computation. MIT Press,
Cambridge

 6. Ernsting S, Kuchen H (2012) Algorithmic skeletons for multi-core, multi-GPU systems and clusters.
Int J High Perform Comput Netw 7(2):129–138

 7. Ernsting S, Kuchen H (2017) Data parallel algorithmic skeletons with accelerator support. Int J Par-
allel Program 45(2):283–299

 8. Aldinucci M, Danelutto M, Meneghin M, Torquati M, Kilpatrick P (2010) Efficient streaming appli-
cations on multi-core with FastFlow: the biosequence alignment test-bed. In: Chapman B, Desprez
F, Joubert GR, Lichnewsky A, Peters F, Priol T (eds) Parallel computing: from multicores and
GPU’s to petascale, advances in parallel computing, vol 19. IOS Press, Amsterdam

 9. Benoit A, Cole M, Gilmore S, Hillston J (2005) Flexible skeletal programming with eSkel. In:
Cunha JC, Medeiros PD, (eds) Proceedings of the 11th International Euro-Par Conference on Paral-
lel Processing (Euro-Par ’05), Lecture Notes in Computer Science, vol 3648. Springer, pp 761–770

 10. Ernstsson A, Li L, Kessler C (2017) SkePU 2: Flexible and type-safe skeleton programming for het-
erogeneous parallel systems. Int J Parallel Program 46(1):62–80

 11. Matsuzaki K, Emoto K (2010) Implementing fusion-equipped parallel skeletons by expression tem-
plates. In: Morazán MT, Scholz S (eds) Implementation and application of functional languages.
Springer, Berlin, pp 72–89

 12. Veldhuizen T (1995) Expression templates. C++ Rep 7(5):26–31

5116 F. Wrede et al.

1 3

 13. Stahl T, Völter M (2006) Model-driven software development. Wiley, Chichester
 14. Mernik M, Heering J, Sloane AM (2005) When and how to develop domain-specific languages.

ACM Comput Surv 37(4):316–344
 15. Almorsy M, Grundy J (2015) Supporting scientists in re-engineering sequential programs to paral-

lel using model-driven engineering. In: 2015 IEEE/ACM 1st International Workshop on Software
Engineering for High Performance Computing in Science, pp 1–8. IEEE

 16. Anderson TA, Liu H, Kuper L, Totoni E, Vitek J, Shpeisman T (2017) Parallelizing Julia with a
non-invasive DSL. In: Müller P (ed) 31st European Conference on Object-Oriented Programming
(ECOOP ’17), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leib-
niz-Zentrum fuer Informatik, vol 74. Dagstuhl, Germany, pp 4:1–4:29, 2017

 17. Griebler D, Danelutto M, Torquati M, Fernandes LG (2017) SPar: a DSL for high-level and produc-
tive stream parallelism. Parallel Process Lett 27(01):1740005

 18. Sujeeth AK, Brown KJ, Lee H, Rompf T, Chafi H, Odersky M, Olukotun K (2014) Delite: a com-
piler architecture for performance-oriented embedded domain-specific languages. ACM Trans
Embed Comput Syst (TECS) 13(4s):134

 19. Danelutto M, Torquati M, Kilpatrick P, (2016) A DSL based toolchain for design space exploration
in structured parallel programming, Procedia Computer Science, vol 80, pp 1519–1530. In: Interna-
tional Conference on Computational Science 2016, ICCS 2016, San Diego, California, USA, 6–8
June 2016

 20. Chamberlain BL, Callahan D, Zima HP (2007) Parallel programmability and the chapel language.
Int J High Perform Comput Appl 21(3):291–312

 21. Standard ISO (2015) Programming languages–technical specification for C++ extensions for paral-
lelism, standard ISO/IEC TS 19570:2015. International Organization for Standardization, Geneva

 22. Nugteren C, Corporaal H (2015) Bones: an automatic skeleton-based C-to-CUDA compiler for
GPUs. ACM Trans Archit Code Optim (TACO) 11(4):35

 23. Steuwer M, Fensch C, Lindley S, Dubach C (2015) Generating performance portable code using
rewrite rules: from high-level functional expressions to high-performance OpenCL code. In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP
’15. ACM, New York pp 205–217

 24. Bettini L (2013) Implementing domain-specific languages with Xtext and Xtend. Community expe-
rience distilled. Packt Publishing, Birmingham

 25. Wrede F, Rieger C (2018) Musket material repository. https ://githu b.com/wwu-pi/muske t-mater ial.
Accessed 26 Mar 2019

 26. Eclipse foundation (2019) The eclipse foundation. Xtext documentation. https ://eclip se.org/Xtext /
docum entat ion/. Accessed 26 Mar 2019

 27. Kuchen H (2004) Optimizing sequences of skeleton calls. In: Lengauer C, Batory D, Consel C,
Odersky M (eds) Domain-specific program generation. Lecture notes in computer science, vol 3016.
Springer, Berlin, pp 254–274

 28. Yoo AB, Jette MA, Grondona M (2003) SLURM: simple linux utility for resource management. In:
Feitelson D, Rudolph L, Schwiegelshohn U (eds) Job scheduling strategies for parallel processing.
Springer, Berlin, pp 44–60

 29. Nethercote N, Seward J (2007) Valgrind: a framework for heavyweight dynamic binary instrumenta-
tion. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, ACM, New York, NY, USA, pp 89–100

 30. Bastos-Filho CJA, de Lima Neto FB, Lins AJCC, Nascimento AIS, Lima MP (2008) A novel search
algorithm based on fish school behavior. In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (SMC ’08). IEEE, pp 2646–2651

 31. Wrede F, Menezes B, Kuchen H (2018) Fish school search with algorithmic skeletons. Int J Parallel
Program 47(2):234–252

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://github.com/wwu-pi/musket-material
https://eclipse.org/Xtext/documentation/
https://eclipse.org/Xtext/documentation/

	Generation of high-performance code based on a domain-specific language for algorithmic skeletons
	Abstract
	1 Introduction
	2 Related work
	3 A domain-specific language for high-level parallel programming
	3.1 Benefits of generating high-performance code
	3.2 Language overview
	3.2.1 Meta-information
	3.2.2 Data structure declaration
	3.2.3 User function declaration
	3.2.4 Main program declaration

	4 Code generation for multi-core clusters
	4.1 Data structures
	4.2 Model transformation
	4.3 Custom reduction
	4.4 User functions
	4.5 Specific Musket functions
	4.6 Build files

	5 Benchmarks
	5.1 Frobenius norm
	5.2 Nbody simulation
	5.3 Matrix multiplication
	5.4 Fish School Search

	6 Conclusions and future work
	References

