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Abstract
Parallel programming can be difficult and error prone, in particular if low-level opti-
mizations are required in order to reach high performance in complex environments 
such as multi-core clusters using MPI and OpenMP. One approach to overcome 
these issues is based on algorithmic skeletons. These are predefined patterns which 
are implemented in parallel and can be composed by application programmers with-
out taking care of low-level programming aspects. Support for algorithmic skeletons 
is typically provided as a library. However, optimizations are hard to implement in 
this setting and programming might still be tedious because of required boiler plate 
code. Thus, we propose a domain-specific language for algorithmic skeletons that 
performs optimizations and generates low-level C++ code. Our experimental results 
on four benchmarks show that the models are significantly shorter and that the exe-
cution time and speedup of the generated code often outperform equivalent library 
implementations using the Muenster Skeleton Library.

Keywords  Algorithmic skeletons · Parallel programming · High-performance 
computing · Model-driven development · Domain-specific language

1  Introduction

Parallel programming for (HPC) is a difficult endeavor, which requires expertise in 
different frameworks and programming languages. For example, if the code targets 
a multi-core cluster environment, the programmer needs to know a framework for 
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shared-memory architectures, such as OpenMP [1], for distributed-memory archi-
tectures, such as MPI [2], and possibly even for accelerators, such as CUDA [3] or 
OpenCL [4] for GPUs. Especially if advanced performance tuning is required, basic 
programming skills might not be sufficient. Moreover, using different frameworks in 
combination can lead to subtle errors, which are difficult to find and resolve.

One approach to solve this problem is based on predefined, typical parallel pro-
gramming patterns [5] such as map, fold/reduce, and zip. In addition to these 
data-parallel skeletons, there are task-parallel skeletons, such as pipeline or 
farm, and communication skeletons, such as gather or scatter. In order to use 
a general-purpose skeleton, a function providing the application-specific computa-
tion logic can be passed as an argument. This function is then executed in parallel on 
all elements of a data structure or data stream.

Thus, by using algorithmic skeletons, low-level details become transparent to the 
programmer and he or she does not have to consider them or even does not need to 
know anything about the underlying frameworks. Moreover, algorithmic skeletons 
make sure that common parallel programming errors, such as deadlocks and race 
conditions, do not occur.

There are several libraries, which provide algorithmic skeletons (see Sect. 2). A 
library implementation of algorithmic skeletons makes certain optimizations hard to 
implement, such as re-arranging skeleton calls, since on the level of C++ and using 
a combination of low-level frameworks, relevant and irrelevant features are hard to 
distinguish at runtime. In the present paper, we show how to avoid these drawbacks 
by generating C++ code from a dedicated (DSL) model. Moreover, we demonstrate 
how such a (DSL) can facilitate the efficient development of parallel programs by 
reducing the language to the essential core features and offering useful validation for 
models.

Our paper is structured as follows: first, we give an overview about different 
libraries for algorithmic skeletons in Sect. 2. In Sect. 3, our DSL is described and 
Sect.  4 shows how the language constructs are transformed into C++ code. The 
results of four benchmark applications are presented in Sect. 5. In Sect. 6, we con-
clude and point out the future work.

2 � Related work

Algorithmic skeletons for parallel programming are mostly provided as libraries. 
One instance is the Muenster Skeleton Library (Muesli), a C++ library which is 
used as a reference for the implementation of the presented approach. Muesli offers 
distributed data structures, and the skeletons are member functions of them. Data-
parallel skeletons implemented in Muesli are, for example, map, fold, zip, map-
Stencil and variants of these. Muesli works on multi-core and multi-GPU clus-
ters [6, 7].

Other well-known libraries are, for example, FastFlow, which focuses on task-
parallel skeletons and stream parallelism for multi-core systems [8], and eSkel, 
which provides skeletons for C and MPI [9].
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Two libraries we want to examine more closely here are SkePU2 [10] and SkeTo 
[11], since they incorporate similar concepts as presented in this paper. SkePU2 
includes a source-to-source compiler based on Clang and LLVM. A program written 
with SkePU can always be compiled into a sequential program. A precompiler trans-
forms the program for parallel execution, e.g., adding the _ _device_ _ keyword 
to functions. SkePU uses custom C++ attributes, which the precompiler recognizes 
and transforms accordingly.

SkeTo is a library for distributed-memory environments, which focuses on opti-
mizations such as fusion transformations—i.e., combining two skeleton invocations 
into one and hence reducing the overhead for function calls and the amount of data 
which is passed between skeletons. The implementation is based on expression tem-
plates [12], a meta-programming technique. By using expression templates it is, 
for example, possible to avoid temporary variables, which are required for complex 
expressions.

Lately, the concepts of model-driven and generative software development have 
gained attraction in academia and practice, mainly because of the expected benefits 
in development speed, software quality, and reduction in redundant code [13]. In 
addition, DSLs allow for better reuse and readability of models—targeted at both the 
modeling domain and user experience—while at the same time reducing the com-
plexity through appropriate abstractions [14]. In the domain of high-performance 
programming, few approaches have been presented in the literature that adopt DSLs. 
Almorsy and Grundy [15] have presented a graphical notation to ease the shift from 
sequential to parallel implementations of existing software for CPU and GPU clus-
ters. Anderson et  al. [16] have extended the language Julia which is designed for 
scientific computing and partly aligned with the MATLAB notation. By applying 
optimization techniques such as parallelization, fusion, hoisting, and vectorization, 
the generated code significantly improves the computation. In contrast, our approach 
focuses on the parallelization on clusters of compute nodes.

There are also DSLs for parallel programming with skeletons or parallel pat-
terns, which are embedded into other languages, or enable the creation of embedded 
DSLs, such as SPar [17] for C++ or Delite [18] for Scala. SPar uses C++ annota-
tions, and therefore, it is possible to parallelize an existing code base without much 
effort. Additionally, all features of the host language can easily be used. If a code 
base already exists, even a less complex stand-alone DSL requires more effort for a 
re-implementation. However, by reducing the language to core features in a stand-
alone DSL the complexity can be easily handled by inexperienced programmers.

Danelutto et  al. [19] propose a DSL for designing parallel programs based on 
parallel patterns, which also allows for optimization and rewriting of the pattern 
composition. The DSL focuses on the management of non-functional properties 
such as performance, security, or power consumption. Based on the model and non-
functional properties, a template providing an optimized pattern composition for 
the FastFlow library is generated, which the programmer can use to implement the 
application.

Since this work presents an own language for parallel programming, we want to 
highlight that some upcoming and established languages aim to benefit from paral-
lel code execution as well. For example, Chapel has built-in concepts for parallel 
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programming such as forall loops and the cobegin statement, which allows for start-
ing independent tasks [20]. Also, the C++ standard includes extensions for parallel 
programming since version C++17 [21]. For example, the algorithms for_each 
and transform are comparable to the presented skeletons map(InPlace). 
However, these capabilities are restricted to a single (potentially multi-core) node 
and do not support clusters. Another related approach, which provides a source-to-
source compiler, is Bones [22]. It takes sequential C code and transforms it into 
code for GPUs, but again, it does not support distributed systems.

3 � A domain‑specific language for high‑level parallel programming

Many existing approaches to high-level parallel programming provide parallel con-
structs in the form of a library. As pointed out in introduction, this causes some limi-
tations such as the difficulty to implement optimizations and a higher entry barrier 
for inexperienced programmers. Thus, we propose a DSL named Musket (Muenster 
Skeleton Tool for High-Performance Code Generation) to tackle these limitations 
and generate optimized code.

3.1 � Benefits of generating high‑performance code

The main drawback of using libraries for high-performance computing is the fact 
that library calls are included in arbitrarily complex code of a host language such as 
C++. Besides introducing some performance overhead, a library is always restricted 
by the host language’s syntax. In contrast, important design decisions such the syn-
tax and structure of code can be selected purposefully when building a DSL. For 
example, different algorithmic skeletons as major domain concept for parallelization 
can be integrated as keywords in the designed language and recognized by the edit-
ing component. Consequently, the program specification is more readable for novice 
users who want to apply their domain knowledge.

A code generator can easily analyze the DSL features based on a formalized 
meta-model and produce optimized code for different hardware configurations. In 
the domain of high-level parallel programming using algorithmic skeletons, paral-
lelism can be built into the structure of the language such that the user does not need 
to cater for parallelism-specific implementations. Required transformations can be 
provided by the framework developers, for example when applying an algorithmic 
skeleton to a distributed data structure. In addition, this level of abstraction increases 
the readability for users who do not need to know the details of (potentially multi-
ple) target platforms but can focus on the high-level sequence of activities.

With regard to framework developers who are concerned with efficient program 
execution, DSLs introduce additional flexibility. The abstract syntax of the paral-
lel program can be analyzed and modified in order to optimize the generated high-
performance code for the target hardware. In particular, recurring—and potentially 
inefficient—patterns of high-level user code can be transformed to hardware-spe-
cific low-level implementations by applying rewrite rules as described in [23]. For 



5102	 F. Wrede et al.

1 3

example, map fusion may be applied to combine multiple transformations on the 
same data structure instead of applying them consecutively (cf. Sect. 4.2).

Moreover, a DSL-based approach can be extended to additional platforms in the 
future by supplying new generator implementations—without changing the input 
programs. Compared to customizing compilers, DSL creation frameworks such as 
Xtext further support in creating usable editing components with features such as 
syntax highlighting and meaningful model1 validation [24].

3.2 � Language overview

The Musket DSL targets rather inexperienced programmers who want to use algo-
rithmic skeletons to quickly write high-performance programs that run on hetero-
geneous clusters. Therefore, a syntax similar to C++ was chosen to align with a 
familiar programming language that is common for high-performance scenarios 
such as simulating physical or biological systems. However, a Musket model is more 
structured than an arbitrary C++ program and provides four main sections which 
are described in more detail in the following.2 The DSL was created using the Xtext 
language development framework which uses an EBNF-like grammar to specify 
the language syntax and derives a corresponding Ecore meta-model [26]. Further-
more, a parser as well as an editor component is generated which integrates with the 
Eclipse ecosystem for subsequent code generation. Consequently, common features 
of an (IDE) such as syntax highlighting, auto-completion, and validation are avail-
able and have been customized to provide contextual modeling support.

1  The model-driven software development community prefers the notion DSL model rather than DSL 
program.
2  Due to the lack of space, only the overall structure and the main concepts of the language are presented 
here and an excerpt of the DSL is given in Listing 2. The full DSL specification can be found in our code 
repository [25].
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1 #config PLATFORM CPU
2 #config PROCESSES 4
3 #config CORES 24
4 #config MODE release
5

6 const int dim = 16384;
7

8 matrix <float ,dim ,dim ,dist > as = {1.0f};
9 matrix <float ,dim ,dim ,dist > bs = {0.001f};

10 matrix <float ,dim ,dim ,dist > cs = {0.0f};
11

12 float dotProduct(int i, int j, float Cij){
13 float sum = Cij;
14

15 for (int k = 0; k < cs.columnsLocal (); k++) {
16 sum += as[[i,k]] * bs[[k,j]];
17 }
18

19 return sum;
20 }
21

22 main{
23 as.shiftPartitionsHorizontally ((int a) -> int {return -a;});
24 bs.shiftPartitionsVertically ((int a) -> int {return -a;});
25

26 for (int i = 0; i < as.blocksInRow (); ++i) {
27 cs.map <localIndex , inPlace >( dotProduct ());
28 as.shiftPartitionsHorizontally ((int a)-> int {return -1;});
29 bs.shiftPartitionsVertically ((int a) -> int {return -1;});
30 }
31

32 as.shiftPartitionsHorizontally ((int a) -> int {return a;});
33 bs.shiftPartitionsVertically ((int a) -> int {return a;});
34 }

Listing 1 Musket model for matrix multiplication.

3.2.1 � Meta‑information

The header of a Musket model consists of meta-information that guides the generation 
process. On the one hand, target platforms and the compiler optimization mode can be 
chosen for convenient debugging of the program. More important, the configuration 
of cores and processes is used by the generator to optimize the code for a distributed 
execution on a high-performance cluster. For example, the setup of distributed data 
structures, the parallel execution of skeletons, and the intra-cluster communication of 
calculation results are then automatically managed. An exemplary model for a matrix 
multiplication according to the algorithm described in [7] is depicted in Listing 1.
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3.2.2 � Data structure declaration

Because of the distributed execution of the program, all global data structures are 
declared upfront and distributed to the different compute nodes. Also, global con-
stants can be defined in this block to easily parametrize the program (lines 6–10).

Musket currently supports several primitive data types (float, double, integer, 
and Boolean). Array and matrix collection types also exist and are defined using 
the C++ template style, e.g., matrix<double,512,512,dist> table;. 
This definition contains the type and dimension of the collection and also provides 
a keyword indicating whether the collection should be present on all nodes (copy), 
distributed across the nodes (dist, rowDist, or columnDist), or instantiated depend-
ing on the context (loc). The explicit distinction lets the user control the partitioning 
of a data structure by means of a user function (see Subsect. 3.2.3). To simplify the 
handling of distributed data structures, collections can be accessed either using their 
global index (e.g., table[42]) or the local index within the current partition (e.g., 
table[[42]]). Moreover, primitive and collection types can be composed into 
custom struct types.

3.2.3 � User function declaration

The third section of a Musket program consists of custom user functions which 
specify the behavior to be executed on each node within skeleton calls (such as the 
dotProduct function in lines 12–20). Therefore, a wide variety of calculations 
such as arithmetic and Boolean expressions can be directly expressed in the DSL. In 
addition to assignments and skeleton applications, different control structures such 
as sequential composition, if statements, and for loops are available. Moreover, the 
modeler can use C++ functions from the standard library or call arbitrary external 
C++ functions (which are, however, not considered for the optimizations described 
in Sect. 4.2).

Within functions, users can access globally available data structures (declared in 
the previous section) or create local variables to store temporary calculation results 
which are not available to other processes. The sophisticated validation capabilities 
allow for instant feedback to the user when errors are introduced in the model. For 
example, type inference aims to statically analyze the resulting data type of expres-
sions or type casts and thus warns the user before vainly starting the generation 
process.

3.2.4 � Main program declaration

Finally, the overall sequence of activities in the program is described in the main 
block (lines 22–34 in Listing 1). Besides the possible control structures and expres-
sions described in the previous paragraphs, skeleton functions are the main features 
to write high-level parallel code. Currently, map, fold, gather, scatter, and shift par-
tition skeletons are implemented in multiple variants. In general, they are applied 
to a distributed data structure and may take additional arguments such as the previ-
ously defined user functions. For convenience and code readability reasons, the user 



5105

1 3

Generation of high‑performance code based on a domain‑specific…

can instead specify a lambda abstraction for simple operations, e.g., (int a) -> 
int {return -a;}.

Listing 2 Excerpt of the Musket DSL in EBNF notation.

1 MainBlock : := // cf. Section 3.2.4
2 ’main’ ’{’ {MainFunctionStatement} ’}’
3
4 MainFunctionStatement : :=
5 MusketControlStructure | // For loop and if clause variants
6 MusketStatement ’;’
7
8 MusketStatement : :=
9 MusketVariable | // Variable declarations

10 MusketAssignment | // Assigning values to variables
11 Ske l e tonExpres s ion | // Arithmetic and boolean expressions
12 Funct ionCal l // Function calls without assignment
13
14 Ske l e tonExpres s ion : := Co l l e c t i onObjec tRe f ’.’ Ske le ton
15
16 Ske le ton : // available algorithmic skeletons
17 ’map’ Ske letonOpt ions ’(’ MapFunction ’)’ |
18 ’fold’ Ske letonOpt ions ’(’ Ident i tyVa lue ’,’ FoldFunction ’)’ |
19 ’mapFold ’ Ske letonOpt ions

’(’ MapFunction ’,’ Ident i tyVa lue ’,’ FoldFunction ’)’ |
20 ’zip’ Ske letonOpt ions ’(’ ObjectRef ’,’ UserFunction ’)’ |
21 ’gather ’ ’(’ ’)’ |
22 ’scatter ’ ’(’ ’)’ |
23 ’shiftHorizontally ’ ’(’ UserFunction ’)’ |
24 ’shiftVertically ’ ’(’ UserFunction ’)’
25 // alternative skeleton representations omitted
26
27 Ske letonOpt ions : := [ ’<’ SkeletonOption {’,’ SkeletonOption } ’>’ ]
28 SkeletonOption : := index | l o c a l I ndex | i nP lace
29
30 MapFunction : := UserFunction
31 FoldFunction : := UserFunction
32
33 UserFunction : :=
34 Funct ionCal l | // reference to user function (cf. 3.2.3)
35 LambdaFunction // inline definition of functions (cf. 3.2.4)

An excerpt of the Musket grammar concerning the main program declaration is 
depicted in Listing 2 using the EBNF notation.3 A map skeleton applies a user func-
tion to each element of the data structure (either returning a new collection or updat-
ing values in place depending on the SkeletonOption). A fold skeleton (also known 
as reduce pattern) takes a user function and the identity value of the operation and 
folds pairs of elements in the collection into a single value. For performance rea-
sons, both skeletons can be combined into a mapFold skeleton (see Sect. 4.2). The 
zip skeleton joins two data structures of the same size using the provided user func-
tion. The gather and scatter skeletons are used to transfer objects with different 

3  The Xtext representation of the full DSL is available in our code repository [25].
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distribution strategies. Finally, shift skeletons can be applied in order to re-distribute 
rows/columns of distributed matrices between computation nodes.

Again, multiple validators have been implemented to ensure that the types and 
amount of parameters passed into skeletons match. Meaningful error messages such 
as depicted in Fig. 1 can be instantly provided while writing the program instead of 
relying on cryptic failure descriptions when compiling the generated code.

To sum up, the Musket DSL represents a subset of the C++ language in order 
to handle the complexities of generating parallelism-aware and hardware-optimized 
code. With only few additions such as distribution modes, local/global collection 
access, and predefined skeleton functions, a transformation of otherwise regular 
C++ code into distributed programs which are executable in a cluster environment 
can be achieved.

4 � Code generation for multi‑core clusters

In the following section, we demonstrate how certain language constructs are trans-
formed into C++ code. We cover the data structures, data-parallel skeletons, as well 
as selected specific functions provided by the language. In general, we tried to gen-
erate code, which is still readable and makes use of modern features of C++11, 14, 
and 17.

Further, the way to generate code as described in the following is only one pos-
sibility. The approach of using a DSL allows for generating very different imple-
mentations to achieve the same behavior. It becomes also possible to consider cost 
models or descriptions of the target hardware and guide the generation accordingly. 

Fig. 1   Integration of custom validation errors in the Eclipse IDE
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This also includes the generation of code for different architectures. By adding an 
additional generator, the same language and models can be reused to, for example, 
generate code for GPUs.

4.1 � Data structures

In general, all distributed data structures are represented as wrapper classes around 
a std::vector. Based on the number of processes configured in the model and 
the distribution type, the size of the local vectors is calculated. Consequently, also 
for matrices the values are stored only in one vector. When an element in a matrix is 
accessed, the index is calculated accordingly.

Even though the size of the data structure is known when the code is generated, 
we decided to use std::vector over std::array. This is mostly because of 
the more efficient move operation for vectors: for some skeletons, intermediate buff-
ers for sending and receiving data are required and we found vectors to be more effi-
cient when data are moved from temporary buffers to the main vector.

Structs, which are defined in the model, are transformed into C++ structs. Addi-
tionally, a default constructor is generated, which initializes all members to default 
values. Moreover, the generation approach could be used to generate code for dif-
ferent data layouts. At the moment, the data are generated as array of structs, but 
it could be transformed to struct of arrays or any hybrid representation, which can 
increase the performance regarding data access and vectorization.

Moreover, there are collection functions, such as show and size, which can be 
invoked on data structures. Where possible, these function calls are already evalu-
ated during the generation. For example, the global or local size is known for dis-
tributed data structures so that the function call can be replaced by the fixed value.

4.2 � Model transformation

The generation approach enables a rewriting step of skeleton calls by perform-
ing a model-to-model transformation before the actual generation. In this trans-
formation, certain sequences of skeleton calls can be rewritten in a more efficient 
way [27]. For example, one or more skeleton calls can be combined through map 
fusion. This is the case for several calls of map on the same data structure. The 
sequence a.mapInPlace(f); a.mapInPlace(g); can be joined to 
a.mapInPlace(g◦ f);. For the generated code, this is one less parallel loop, 
which can save time for synchronization and intermediate data storage.

Also, different skeletons such as map and fold can be combined. In terms of the 
presented DSL, a.mapInPlace(f); x = a.fold(0, g); can be joined to 
x = a.mapFold(f, 0, g);. In the generated code, this results in one parallel 
for loop with reduction and a call to MPI_Allreduce instead of two loops and the 
MPI call. Moreover, the intermediate result does not need to be stored in the result-
ing data structure. However, this transformation would only be valid if a was not 
used in any subsequent skeleton calls. Using static analysis of the model’s abstract 
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syntax tree, such transformations can be specifically targeted, for instance, to opti-
mize specific combinations of skeleton and user function.

4.3 � Custom reduction

The implementation of the fold skeleton is based on a straightforward sequence of 
the OpenMP pragma #pragma omp parallel for simd reduction for 
performing a local reduction in each thread, followed by an MPI_Allreduce for 
combining the local intermediate results. MPI requires a function with the following 
signature void f(void *in, void *inout, int *len, MPI_Data-
type *dptr), which can then be used in reduction operations. By generating this 
reduction function, it is possible to avoid the combination of a gather operation fol-
lowed by a second local fold.

4.4 � User functions

The generation approach allows for generating user functions in different ways, 
while they can be expressed at a single point in the model. Moreover, the context 
in which the function is called can be considered during the generation step, e.g., 
the function might be generated differently if it is used in a map map_in_place 
skeleton. Further examples are the generation for different platforms, e.g., clusters 
with or without GPUs or generating different functions based on a single user func-
tions as described in Subsect. 4.3. To this respect, the generation approach provides 
a rather convenient possibility to provide alternative code for the same model.

4.5 � Specific Musket functions

There are some additional functions provided by Musket, which are not part of the 
standard library, such as rand. If the rand function is used in the model, random 
engines and distribution objects are generated in the beginning of the main function, 
so that they can be reused without additional overhead. The actual call to rand 
is generated as rand_dist[thread_id](random_engines [thread_
id]); thus, it can be used as a part of an expression. Consequently, the DSL con-
veniently reduces the amount of boilerplate code, since the function can simply be 
used in the model without, for example, creating an object which creates the random 
engines on construction.

4.6 � Build files

The generation approach offers additional convenience for programmers. In addition 
to the source and header files, we also generate a CMake file and scripts to build and 
run the application as well as Slurm job files [28]. Consequently, there is no effort 
required for the setup and build process, which lowers the entry threshold to parallel 
programming for inexperienced programmers.
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5 � Benchmarks

We used four benchmark applications to test our approach: calculation of the Frobe-
nius norm, Nbody simulation, matrix multiplication, and (FSS). In the following sub-
sections, we demonstrate the models, compare them to the C++ implementations with 
Muesli, and analyze the execution times for both. All execution times are presented 
in Table  1. The code has been compiled with g++7.3.0 and OpenMPI 3.1.1. Each 
node of the cluster we have used for the benchmark is equipped with two Intel Xeon 
E5-2680 v3 CPUs (12 cores each, 30MiB shared L3 cache per CPU and 256KiB L2 
cache per core) and 7200MiB memory per node. Hyper-Threading has been disabled.

Table 1   Execution times of the benchmark applications (in seconds)

Benchmark Execution times (s)

Nodes Cores Muesli Musket Speedup

Frobenius norm 1 1 9.8932 2.0513 4.8228
1 6 2.1389 0.6906 3.0973
1 12 1.4890 0.6520 2.2837
1 18 1.5508 0.6366 2.4361
1 24 1.6015 0.7240 2.2120
4 1 2.4793 0.5193 4.7743
4 6 0.5308 0.2308 2.2996
4 12 0.3925 0.2034 1.9298
4 18 0.3943 0.1967 2.0043
4 24 0.3915 0.1960 1.9970

16 1 0.6703 0.1364 4.9136
16 6 0.1497 0.0706 2.1212
16 12 0.1040 0.0575 1.8093
16 18 0.1018 0.0538 1.8937
16 24 0.1060 0.0528 2.0089

Nbody simulation 1 1 7422.7370 7568.5646 0.9807
1 6 1234.074 1249.3490 0.9878
1 12 616.9001 624.8900 0.9872
1 18 411.3290 416.6970 0.9871
1 24 309.0764 312.6062 0.9887
4 1 1850.179 1923.3303 0.9620
4 6 308.7439 312.5329 0.9879
4 12 154.3643 156.2796 0.9877
4 18 102.9115 104.2059 0.9876
4 24 77.7512 78.4770 0.9908

16 1 473.8626 469.3563 1.0096
16 6 77.2279 78.1771 0.9879
16 12 38.6245 39.1056 0.9877
16 18 25.7638 26.0871 0.9876
16 24 23.1896 19.6905 1.1777
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5.1 � Frobenius norm

The calculation of the Frobenius norm for matrices consists of three steps. First, all 
values are squared, then all values are summed up, and finally, the square root of the 
sum yields the result. We used a 32,768 × 32,768 matrix with double precision val-
ues. The model is presented in Listing 3.

Table 1   (continued)

Benchmark Execution times (s)

Nodes Cores Muesli Musket Speedup

Matrix multiplication 1 1 83529.6618 17802.0678 4.6921
1 6 14726.9833 2430.8756 6.0583
1 12 7700.4190 1269.3401 6.0665
1 18 5185.8780 953.9736 5.4361
1 24 4758.7190 711.8798 6.6847
4 1 19245.4000 4043.8573 4.7592
4 6 3578.7240 588.7502 6.0785
4 12 2086.8870 275.8081 7.5664
4 18 1549.4470 199.2162 7.7777
4 24 1376.8620 164.2069 8.3849

16 1 3655.1590 787.6939 4.6403
16 6 729.3905 97.0805 7.5133
16 12 413.3354 44.4174 9.3057
16 18 252.2129 32.3545 7.7953
16 24 224.8478 26.2930 8.5516

Fish School Search 1 1 916.3965 762.9235 1.2012
1 6 158.2332 136.2039 1.1617
1 12 81.0045 72.4273 1.1184
1 18 54.8713 52.2537 1.0501
1 24 45.5823 43.0435 1.0590
4 1 211.6765 182.9391 1.1571
4 6 40.1817 33.2093 1.2100
4 12 20.9549 18.1227 1.1563
4 18 15.2139 13.7305 1.1080
4 24 13.5301 12.0980 1.1184

16 1 54.9478 46.2524 1.1880
16 6 11.7779 9.4939 1.2406
16 12 7.1947 6.1798 1.1642
16 18 5.9784 5.4158 1.1039
16 24 5.7644 5.2615 1.0956
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1 #config PLATFORM CPU
2 #config PROCESSES 4
3 #config CORES 24
4 #config MODE release
5

6 matrix <double ,32768 ,32768 ,dist > as;
7

8 main{
9 // init

10 as.map <index , inPlace >((int x, int y, double a) -> double
{return (double) x + y + 1.5;});

11

12 mkt:: roi_start (); // Timer start
13

14 as.map <inPlace >(( double a) -> double {return a * a;});
15 double fn = as.fold (0.0, (double a, double b) -> double

{return a + b;});
16 fn = std::sqrt(fn);
17

18 mkt:: roi_end (); // Timer end
19

20 mkt:: print("Frobenius norm is %.5f.\n", fn);
21 }

Listing 3 Model for Frobenius norm calculation

There is one matrix defined as a distributed data structure. Since all user func-
tions are written as lambda expressions, there is no need for separately defined 
user functions. Within the main block, the logic for the program is defined. First, 
in this case, the matrix is initialized with arbitrary values. The calculation of 
the Frobenius norm is modeled in lines 14–16. The functions roi_start and 
roi_end are merely for benchmark purposes and trigger the generation of timer 
functions. In line 20, the Musket function print is used, so that the result is 
only printed once by the main process.

The results for this benchmark already reveal some interesting insights, even 
though the complexity of the program is rather low, which is also the reason why 
the program does not scale very well, when increasing the number of cores per 
node.

Musket achieves good speedups compared to the Muesli implementation. There 
are multiple effects that lead to the observed results. First of all, for the generated 
code GCC is able to vectorize the loops performing the map and fold operations. 
Auto-vectorization is, however, not possible for the Muesli implementation. Addi-
tionally, Muesli does not consider configurations with one process or one thread 
as special cases, but relies on the fact that MPI routines also work for one process 
and that all used OpenMP pragmas are ignored for sequential programs. In contrast, 
Musket checks the configuration and generates the code accordingly. Consequently, 
there are no MPI routines in the generated program and less operations are required 
regarding the management of the data structures, if there is only one process. When 
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a data structure is created in Muesli, the global and local sizes have to be calculated, 
the new memory has to be allocated, etc. In Musket, the data structures are defined 
in the model, and all required information, such as the size, can be generated and 
therefore need not be calculated during program execution.

To give a perspective on the effort of writing a parallel program, we want to point 
to the lines of code for the Musket model, the Muesli implementation, and the gen-
erated source file. We did not use the lambda notation for Musket for counting the 
lines of code, since Muesli requires functors in certain situations and in this way the 
results become more comparable. While the Musket model consists of 20 lines, the 
Muesli implementation has 45 lines and the generated source code 398. Thus, we 
conclude that the DSL provides a concise way to express a parallel program.

Another aspect to mention here is the skeleton fusion optimization. The lines 14 
and 15 could also be written as double fn = as.mapFold(square(), 
0.0, sum());, if we assume that the lambda expressions correspond to the 
respective functions. In the generated code, this would reduce the two loops for the 
map and fold operations into a single loop. The execution times in Table 1 do not 
reflect this optimization to keep the results comparable, because Muesli does not 
offer a combined mapFold skeleton. As an example, for a configuration with 4 
nodes and 24 cores, the execution time has been 0.07 s with skeleton fusion, which 
corresponds to a speedup of 2.68 compared to the Musket implementation without 
skeleton fusion.

5.2 � Nbody simulation

In the case of the Nbody simulation with 5,00,000 particles over five time steps, 
the execution times for both implementations are rather similar. For most configura-
tions, the Musket generated code is slightly slower, while for the configuration with 
16 nodes and 24 cores per node there is a speedup of 1.18. The benchmark does not 
allow for much optimization. Transformations such as skeleton fusion are not appli-
cable, and the user function used in the map skeleton contains function calls as well 
as multiple branches, which prevent efficient vectorization.

In an alternative implementation of the Musket generator, we investigated the 
effects of inlining of user functions to avoid overhead for function calls. Contrary 
to intuition, this approach is not blindly applicable as can be seen for the Nbody 
simulation where inlining has not been advantageous. For a configuration with 
4 nodes and 24 cores, the execution time was even 87.08 s compared to 78.48 s 
for the current approach. We have simulated the behavior of the application with 
Valgrind’s cachegrind and callgrind tools [29]. The number of L3 cache misses 
as well as the amount of unnecessary data loaded to cache is higher than for the 
Muesli implementation. Consequently, we refrain from applying loop unrolling 
and inlining by default and propagate these optimizations to the subsequent com-
pilation step.

In terms of complexity, both implementations have about the same size. The 
Musket model consists of 77 lines of code, whereas the Muesli program consists 
of 84 lines. The generated code consists of 335 lines.
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5.3 � Matrix multiplication

The matrix multiplication benchmark shows a case, in which massive improve-
ments become possible due to the code generation approach. We have performed 
the matrix multiplication with matrices of 16.384 × 16.384 single precision val-
ues, but first, we have to emphasize again that Musket targets rather inexperienced 
programmers. The benchmark is set up in such a way that the second matrix for 
the multiplication is not transposed. Hence, the data is stored row major, but the 
user function iterates column-wise through the matrix, which leads to inefficient 
memory accesses. The model is shown in Listing 1 in Sect. 3.

In the Muesli implementation, the compiler is not able to vectorize the calcula-
tion and to optimize the memory access. However, this is the case for the gener-
ated program, which leads to significant shorter execution times. The speedups 
for configurations with multiple nodes and cores range between 6.08 and 9.31.

The model has 42 lines of code, while the Muesli implementation has 74. 
Again, the effort for implementing the benchmark has been reduced. In compari-
son, the generated code has 542 lines.

5.4 � Fish School Search

The FSS benchmark showcases a complex and more real-world example of a par-
allel program. FSS is a swarm-intelligent meta-heuristic to solve hard optimiza-
tion problems [30]. The model has 244 lines of code and the Muesli implementa-
tion even 623, which is a reduction of about 61% . The generated code consists of 
866 lines of code. A detailed discussion of the implementation with Muesli can 
be found in [31].
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1 #config PLATFORM CPU
2 #config PROCESSES 4
3 #config CORES 24
4 #config MODE release
5

6 const int NUMBER_OF_FISH = 2048;
7 const int DIMENSIONS = 512;
8

9 struct Fish{
10 array <double ,DIMENSIONS ,loc > position;
11 double fitness;
12 array <double ,DIMENSIONS ,loc > candidate_position;
13 double candidate_fitness;
14 array <double ,DIMENSIONS ,loc > displacement;
15 double fitness_variation;
16 double weight;
17 array <double ,DIMENSIONS ,loc > best_position;
18 double best_fitness;
19 };
20

21 array <Fish ,NUMBER_OF_FISH ,dist > population;
22 // [...]
23

24 main{
25 // [...]
26 double sum_weight = population.mapFold(
27 (Fish fi) -> double {return fi.weight;}, 0.0,
28 (double a, double b) -> double {return a + b;});
29 // [...]
30 }

Listing 4 Excerpt of the Musket model for Fish School Search

Listing  4 shows excerpts of the FSS model. Since Musket also supports 
distributed data structures of complex types—which can include arrays—
it becomes very convenient to work with. The struct for Fish is defined in 
lines  9–19, and the distributed array is defined in line  21. The fact that com-
plex types are allowed in distributed data structures highlights the benefit of the 
fused mapFold skeleton. For one operator called collective volitive movement, 
it is necessary to calculate the sum of the weight of all fish. Line 26 shows how 
this can be conveniently done by invoking the mapFold skeleton on the popu-
lation array. In the map part, the weight of each fish is taken and in the fold 
part the sum is calculated. In the generated code, this is efficiently performed in 
a single parallelized loop. The execution times show a slight improvement for 
most configurations with speedups up to 1.24.
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6 � Conclusions and future work

In this paper, we have proposed a DSL for parallel programming, which is based on 
algorithmic skeletons. Regarding the execution times, the generated code can offer 
significant speedups (of up to 9) compared to the library-based approach Muesli for 
most benchmarks and configurations. Furthermore, the benchmark applications have 
shown that the DSL offers a convenient and concise way to express applications. 
Based on a single model, it becomes possible to generate different implementations 
to achieve the same behavior.

For future work on multi-core clusters, this leads to the problem of selecting the 
best (i.e., fastest) alternative. This could be achieved by considering cost models or 
descriptions of the target hardware or by comparing alternatives experimentally. At 
the same time, we are investigating more model transformations to identify perfor-
mance potentials in the interplay of user functions and skeletons in order to further 
optimize the generated code.

In addition, current work focuses on implementing a corresponding generator 
for multi-GPU clusters. Consequently, the modeler can express the desired program 
using the Musket DSL and generate optimized code for multiple platforms using the 
same Musket models.
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