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Abstract
The bsml and multi-ml languages have been designed for programming, à la ml, 
algorithms of the respectively bsp and multi-bsp bridging models. multi-bsp is an 
extension of the well-know bsp model by taking into account the different levels of 
networks and memories of modern hierarchical architectures. This is a rather new 
model, as well as multi-ml is a new language, while bsp and bsml have been used 
for a long time in many different domains. Intuitively, designing and programming 
multi-bsp algorithms seems more complex than with bsp, and one can ask whether 
it is beneficial to rewrite bsp algorithms using the multi-bsp model. In this paper, we 
thus investigate the pro and cons of the aforementioned models and languages by 
experimenting with them on different typical applications. For this, we use a meth-
odology to measure the level of difficulty of writing code and we also benchmark 
them in order to show whether writing multi-ml code is worth the effort.

Keywords bsp · multi-bsp · ml · Hierarchical · Performance · Algorithms

1 Introduction

Context Our previous work aimed at designing a parallel functional language based 
on the bulk synchronous parallelism (bsp) bridging model called bsml  [14]. bsp is a 
model of parallelism which offers a high level of abstraction and takes into account 
real communication and synchronisation cost  [23]. bsp has been used successfully 
for a broad variety of applications such as scientific computation [6], artificial intel-
ligence, big-data and graph frameworks (pregel [19]). To be compliant to a bridging 
model eases the way of writing code and ensures efficiency and portability from one 
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architecture to another. Thanks to a cost model, it is also possible to reason on the 
algorithmic costs.

As modern high-performance computing (hpc) architectures are hierarchical and 
have multiple layers of parallelism, communication between distant nodes cannot be 
as fast as among the cores of a given processor. Because bsp was designed for flat 
architectures, we now consider the multi-bsp bridging model [26], an extension of 
bsp which is dedicated to hierarchical architectures. multi-ml uses a small set of ml-
like primitives [3] for programming multi-bsp algorithms similarly to bsml for the 
bsp algorithms. As bsml, multi-ml  [3] is implemented using the ml language ocaml 
(http://ocaml .org/).

Comparing languages Since we now have two programming languages dedicated 
each for two rather different bridging models, we ask ourselves whether they differ 
in terms of performances and written code. Both have structured models of execu-
tion. Both have an ocaml + mpi implementation. However, bsml has been designed 
for flat parallelism, whereas multi-ml is designed for controlled nested parallelism. 
To compare them, we have chosen three different cases that are in the field of sym-
bolic, numerical, and big-data computations.

We want to compare the two languages for both performance and the ease of 
writing code.1 For the performance, we have chosen speedup and/or timing for some 
data-sets. We also change the target architecture by modifying the number of cores, 
processors, and nodes of the machines. For the code, we have choose some tradi-
tional metrics which are the Halstead difficulty and the McCabe cyclomatic com-
plexity. These metrics mainly count the number of operands and programming struc-
tures such as conditionals, loops, etc. We have adapted them to take into account 
the number of parallel operators. These metrics are not perfect but are easy to use. 
Finally, we have used one interesting ability of both bsml and multi-ml which is 
programming parallel algorithms in an incremental manner from sequential codes, 
which simplifies the development of parallel codes. As explained later, this is due 
to the fact that both bsml and multi-ml provide a global view of programs, i.e. their 
programs can be seen as sequential programs working on parallel data structures 
(“seq of par”), while in many hpc libraries such as mpi, programs are written in the 
spmd style and are understood as a parallel composition of communicating sequen-
tial programs (“par of seq”).

Outline The rest of this paper is structured as follows. First, Sect. 2 briefly presents 
the two aforementioned languages. Then, Sect. 3 defines our methodology of com-
parison of the languages and we apply it to different use cases (Sects.  3.2–3.4), 
hoping they are general enough to stand for a representative sample of hpc applica-
tions. For all of them, we give some benchmarks in terms of both performance and 

1 We currently make the hypothesis that the more complicated the codes are, the more complicated the 
algorithmic design is. We leave the problematic of algorithmic design for future work and we focus on 
code writing only.

http://ocaml.org/
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difficulty of writing the code. Finally, in Sect. 4, we discuss related work and Sect. 5 
concludes the paper by giving a brief outlook of future work.

2  BSML and multi‑ML: similar but different languages

2.1  Programming BSP algorithms in ML

2.1.1  The BSP bridging model

In the bsp bridging model, a computer is a set of � uniform pairs of processor–mem-
ory components with a communication network [6, 25]. A bsp program is executed 
as a sequence of supersteps (Fig.  1), each one divided into three successive dis-
jointed phases: (1) each processor only uses its local data to perform sequential 
computations and to request data transfers to other nodes; (2) the network delivers 
the requested data; (3) a global synchronisation barrier occurs, making the trans-
ferred data available for the next superstep.

The performance of the bsp computer is characterised by 4 parameters (that we 
do not detail in this article2). To reliably estimate the execution time of a bsp pro-
gram, these parameters could be easily benchmarked [6]. The execution time (cost) 
of a superstep is the maximal of the sum of the local processing time, the data deliv-
ery and the global synchronisation times. The total cost of a bsp program is the sum 
of its supersteps’s costs.

2.1.2  The BSML language

bsml [14] uses a small set of primitives and is currently implemented as a library 
(http://tracl ifo.univ-orlea ns.fr/bsml/) for the ml programming language ocaml. 

Fig. 1  A bsp superstep

local
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2 We do not show the bsp parameters nor the multi-bsp ones because we do not use them at all in this 
work. In fact, cost prediction is rather impossible in some of our application cases, e.g. the state-space 
construction where the number of computing states is unknown and no upper bound is possible in prac-
tice [9].

http://traclifo.univ-orleans.fr/bsml/
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An important feature of bsml is its confluent semantics: whatever the order of 
execution of the processors is, the final value will be the same. Confluence is 
convenient for debugging since it allows to get an interactive loop, the toplevel. 
It also simplifies programming since the parallelisation can be done incremen-
tally from an ocaml program.

A bsml program is built as a ml one but using a specific data structure called 
parallel vector. Its ml type is ’a par. A vector expresses that each of the � 
processors embeds a value of any type ’a. Figure 2 summarises the bsml primi-
tives. Informally, they work as follows: let ≪e≫ be the vector holding e eve-
rywhere (on each processor), the ≪ ≫ indicates that we enter into the scope of a 
(parallel) vector. Within a vector, the syntax $x$ can be used to read the vector 
x and get the local value it contains. The ids can be accessed with the predefined 
vector pid.

The proj primitive is the only way to extract local values from a vector. 
Given a vector, it returns a function such that, applied to the pid of a processor, 
returns the value of the vector at this processor. proj performs communication 
to make local results available globally and ends the current superstep.

The put primitive is another communication primitive. It allows any local 
value to be transferred to any other processor. It is also synchronous, and ends 
the current superstep. The parameter of put is a vector that, at each processor, 
holds a function returning the data to be sent to processor j when applied to j. 
The result of put is another vector of functions: at a processor j the function, 
when applied to i, yields the value received from processor i by processor j.

To illustrate the previous primitives with a small piece of code, we use the 
bsml toplevel and a simulation of a bsp machine with three processors. Now if 
we want to convert a vector into a replicated list (that is to say an identical list 
on each processor [14]), we write:

(where procs is a list of the processors’s ids) and we applied it to a vector 
which contains the processors’s ids.

Fig. 2  Summary of the bsml primitives
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2.2  Programming Multi‑BSP algorithms in ML

2.2.1  The multi‑BSP bridging model

multi-bsp is a bridging model [26] which is adapted to hierarchical architectures, 
mainly clusters of multi-cores. There exist other hierarchical models  [17], but 
multi-bsp describes them in a simpler way. The structure and abstraction brought 
by multi-bsp allows to have portable programs with scalable performance pre-
dictions, without dealing with low-level details of the architectures. This model 
brings a tree-based view of nested components (sub-machines or siblings) of hier-
archical architectures where the lowest stages (leaves symbolised by squares) are 
processors and every other stage (node symbolised by circles) contains memory 
(or a network). Figure 3 illustrates the difference between the bsp and multi-bsp 
models for a multi-core.

Every component can execute code, but they have to synchronise in favour of 
data exchange. Thus, multi-bsp does not allow sub-group synchronisation of any 
group of processors: at a stage i there is only a synchronisation of the sub-compo-
nents, a synchronisation of each of the computational units that manage the stage 

Fig. 3  The difference between the multi-bsp and bsp models for a multi-core architecture

Fig. 4  Example of the multi-bsp execution model
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i−1 . So, a node executes some code on its nested components (aka “children”), 
then waits for results, does the communication and synchronises the sub-machine. 
A multi-bsp algorithm is thus composed of several supersteps, each step is syn-
chronised for each sub-machine. Figure  4 illustrates such an execution model 
where black rectangles scheme computations and dash lines between rectangles 
stand for communications.

Mainly, an instance of multi-bsp is defined by � , the fixed depth of the balanced 
and homogeneous tree architecture, and by the 4 bsp performance parameters (plus 
the memory size) for each stage i of the tree. Figure 5 illustrates nodes and leaves. 
Thus, for each i ∈ {0,… , d−1} , pi is the number of sub-components inside the i − 1 
stage.

The cost of a multi-bsp algorithm is the sum of the costs of the supersteps of 
the root node, where the cost of each of these supersteps is the maximal cost of the 
supersteps of the sub-components (plus communication and synchronisation); and 
so on.

2.2.2  The multi‑ML language

multi-ml [2, 3] (https ://git.lacl.fr/vallo mbert /Multi -ML) is based on the idea of 
executing bsml-like codes on every stage of a multi-bsp architecture. This approach 
facilitates incremental development from bsml codes to multi-ml ones. multi-ml 
follows the multi-bsp approach where the hierarchical architecture is composed 
of nodes and leaves. On nodes, it is possible to build parallel vectors, as in bsml. 
This parallel data structure aims to manage values that are stored on the sub-nodes: 
at stage i, the code let v=≪e≫ evaluates the expression e on each i − 1 stages. 
Inside a parallel vector, we note #x# to copy the value x stored at stage i to the 
memory i − 1.

We also introduce the concept of multi-function to recursively go through a 
multi-bsp architecture. A multi-function is a particular recursive function, defined 
by the keyword let multi, which is composed of two codes: the node and the 

Fig. 5  The multi-bsp components

https://git.lacl.fr/vallombert/Multi-ML
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leaf codes. The recursion is initiated by calling the multi-function (recursively) 
inside the scope of a parallel vector, that is to say, on the sub-nodes. The evalu-
ation of a multi-function starts (and ends) on the root node. The code of Fig. 6 
shows how a multi-function is defined. After the definition of the multi-function 
mf on line 1 where [args] symbolises a set of arguments, we define the node 
code (from line 2 to 6). The recursive call of the multi-function is done on line 5, 
within the scope of a parallel vector. The node code ends with a value v, which is 
available as a result of the recursive call from the upper node. The leaf code, from 
lines 7 to 9 consists of sequential computations. When a multi-function is applied 
to a value at the multi-bsp level, the evaluation is initiated on the root node of the 
architecture. In the example (Fig. 7), the multi-function mf is called inside a par-
allel vector (line 3) to initiate the recursion on the sub-nodes. As the evaluation of 
a multi-function starts from the root node, the recursion will spread from the root 
towards the leaves.

As expected, the synchronous communication primitives of bsml are also avail-
able to communicate values from/to parallel vectors. We also propose another 
parallel data structure called tree. A tree is a distributed structure where a value is 
stored in every node and leave memories. A tree can be built using a multi-tree-
function, using the let multi-tree keyword. We propose three primitives to 
handle such a parallel data structure: (1) To easily construct a tree with a simple 
expression, mktree e can be used; it aims to execute the expression e on each 
component of the architecture, resulting in a tree; (2) the function at can be used 
to access the value of a tree within a component; (3) the global identifier gid 
is shaped as a tree of identifiers, and is useful, for example, to distribute data 
depending on the position in the architecture.

Fig. 6  A multi-function code

Fig. 7  A multi-function
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3  Application cases

We now compare bsml and multi-ml. To do so, we first describe our methodology 
for the comparison in Sect. 3.1 and then we have selected three typical cases of vari-
ous domains and apply the methodology to each case: (1) state-space calculation 
(basis of model-checking) in Sect. 3.2; (2) implementation of the fft using algorith-
mic skeletons in Sect. 3.3; (3) finally, in Sect. 3.4, a classical big-data problem that 
is computing the similarity of millions of pairs.

It is to notice that in this paper we present non optimal implementations that 
cannot be compared to cutting-edge implementations: we neither use specific data 
structures nor domain specific tricks. For example, in the state-space algorithms, our 
sets of states do not use shared possibilities of the states as modern model-checkers 
do [9]. We use the standard ocaml ’s sets and a naive representation of the states. 
Here, our objective is to compare the languages and their performances. Program-
ming the most optimised implementations is not the purpose of this work.

3.1  Methodology

bsml and multi-ml have been designed to program parallel algorithms incremen-
tally: from a sequential ocaml code to a bsp code using bsml and finally to a multi-
bsp code using multi-ml. We can thus expect better performance, but we presume 
that the programs will be, unfortunately, more and more complex.

To measure this difficulty we have used: (a) the Halstead effort (he) which 
depends on both the length and complexity of the code; the Halstead difficulty (hd) 
considers the amount of different operators used; (b) the McCabe cyclomatic com-
plexity (cc) that is the number of linearly independent paths through the source; 
(c) the maintainability index (mi) which depends on he and cc. To do so we have 
adapted the ocaml metrics tool (http://forge .ocaml core.org/proje cts/ocaml -metri cs/) 
to bsml and multi-ml. We now count, as an operand, each parallel primitive; and, 
as a new path, each multi-function and vector. Benchmarks were performed on two 
architectures:

1. (mirev2) 8 nodes with 2 quad-cores (amd 2376 at 2.3 Ghz) with 16 GB of memory 
per node and a 1 Gbit/s network;

2. (mirev3) 4 nodes with 2 octa-cores with 2 hyper-threads (intel xeon E5 − 2650 
at 2.6Ghz) with 64GB of memory per node and a 10Gbit / s network.

To measure the code performance, we use the version 4.02.1 of ocaml and 
mpich 3.1. We measure the speedup for different sizes of data and different con-
figurations of our architectures with a variation of the number of nodes × pro-
cessors × cores × threads used. We execute the codes on mirev2 and mirev3 by 
using different configurations. For example, 2 × 2 × 8 × 2 means that the code is 
executed on an architecture made of 2 nodes with 2 multi-cores using 8 cores 
with 2 threads; thus, we use 64 computing units. The configurations were chosen 

http://forge.ocamlcore.org/projects/ocaml-metrics/
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arbitrarily, in order to compare performances with a growing number of compo-
nents with both distributed and shared memories. All the sources and data are 
available in the multi-ml’s git repository. We note ∞ when the program fails.

Thus, we aim to compare both the code difficulty and the difference, in terms 
of performances, between bsml and multi-ml codes.

3.2  First case: symbolic computation

Our first experiment is about model-checking (mc) which is a formal method 
often used to verify safety-critical systems  [9]. Before verifying a logical for-
mula, one must first compute the state-space of the systems. The parallelisation 
of this construction is a frequently used method in the industry [12].

The finite state-space construction problem consists of exploring all the states 
accessible via a successor function ���� (returning a set of states) from an initial 
state s0 . This problem is computing and data intensive because realistic systems 
have a tremendous amount of scenarios. Usually, during this operation, all the 
explored states must be kept in memory in order to avoid multiple explorations 
of a same state. Figure 8 shows the usual sequential algorithm in ml where a set 
called known contains all the states that have been processed and would finally 
contain the state-space. It also involves a set todo that is used to hold all the 
states whose successors have not yet been constructed; each state t from todo 
is processed in turn (lines 5 to 10) and added to known (line 8), while its succes-
sors are added to todo unless they are already known—line 9.

Fig. 8  The ocaml code for mc 

Fig. 9  The bsml code for mc 
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The standard flat parallelisation of this problem is based on the idea that each 
process only computes the successors for its own states. The mc code written with 
bsml is given in Fig. 9. To do this incremental parallelisation, a partition function 
(hashing) returns, for each state, a processor id; i.e. ����(s) returns the owner of s. 
Sets known and todo are still used but become local to each processor and thus 
provide only a partial view of the ongoing computations (lines 3–4). Initially, only 
state s0 is known and only its owner puts it in its todo set (line 5). Once again, pro-
cessors enlarge their own local sets of states by applying the successor function on 
the received states; recursively to their descendants until no new states are computed 
(line 7). Then, a synchronous communication primitive computes and performs, for 
each processor, the set of received states that are not yet locally known (line 9). To 
ensure termination, we use the additional variable finish in which we test whether 
some states have been exchanged or not by the processors. If not, there is no need to 
continue the computation (line 6).

The main difference between the bsp and multi-bsp codes is that the multi-bsp 
algorithm uses a hashing function to distribute the states on the sub-trees. Fig-
ure 10 summarises the multi-ml code. Each sub-tree of the multi-bsp architecture is 
in charge of keeping the states it owns. Moreover, on two different sub-trees, there 
could be different numbers of supersteps depending of the verifying system: the 
synchronous communication primitive is performed on different sub-trees leading 
to implicit sub-group synchronisations. Due to a random strategy of walk (hashing) 
in the set of states, the load-balancing is mainly preserved—with specific indus-
trial systems, different kinds of load-balancing strategies would be necessary for an 
industrial development. There is not only communication between the siblings but 
also between parents and children. Indeed, some states might not be in their right 
sub-trees. Thus, like in the bsp algorithm (line 18), each leaf only computes its own 

Fig. 10  The multi-ml code for mc 
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states. Each node manages the sub-trees of its children by performing exchanges 
between siblings as in the bsp algorithm (line 13) but also gathers the states that are 
not in the right sub-trees (line 14); it also distributes the states between the sub-trees 
of its children (line 11). To perform the communications, the code uses two arrays 
of sets, each of the size of the number of siblings of each level of the multi-bsp 
architecture. The reader can notice that the multi-ml code is again an incremental 
update of the bsml one, using the hierarchical ability of the multi-bsp model: “same” 
main loop and local computations.

For our experiments, we compute the state-space of the well-known crypto-
graphic needham–schroeder public-key protocol with a standard universal dolev–yao 
intruder residing in the network [11]. Note that during the computation, most of the 
scenarios can be detected as faulty at their very beginning using a specialised mc, 
but this is not the subject of this article.

Figure  11 summarises the benchmarks. As intended, the multi-ml code is the 
more complex: by a factor of 2 compared to bsml, which is also 2 times more com-
plex than the ocaml code.

In this example, using the hierarchical capacities is not beneficial for small archi-
tectures. But when the number of cores increases too much on nodes, for both mirev2 
and mirev3, multi-ml exceeds bsml. This is not surprising since more communications 
append between cores without communicating through the network at every step of 
the algorithm. The bsp algorithm saturates the network with a large amount of com-
munications and thus, this congestion drastically decreases the performances. On the 
contrary, the multi-ml program focuses on communications through local memories 
and communicates through the network only when necessary. Thus, the network is less 
saturated and the performance is better. On a configuration with many cores and physi-
cal threads, but for a small number of machines, the performance is disappointing. This 

Fig. 11  Benchmarks (measures and speedup) of the mc of a security protocol
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is due to too much caches-misses and ram congestion. Indeed, our current algorithms 
take into account the different network capacities but not the memory sizes.

We have notice a strange and disappointing behaviour when using ocaml +mpi. 
Indeed, the ocaml ’s runtime slows down by a factor of ≃ 2 when it massively allocates 
memory. We suspect an overhead (or incompatibility) between the ocaml garbage col-
lector and the mpi ’s memory allocation system. Unfortunately, we do not know how to 
go beyond this problem, which is just technical.

3.3  Second case: algorithmic skeletons and a numerical application

We can observe that many parallel algorithms can be characterised and classified by 
their adherence to a small number of generic patterns of computation. Skeletal pro-
gramming proposes that such patterns can be abstracted and provided as a program-
mer’s toolkit with specifications [10]. Thus, they can transcend architectural variations 
with implementations which enhance performance.

A well-known disadvantage of skeleton languages is that the only admitted parallel-
ism is, usually, the skeleton one, while many applications cannot be easily expressed 
as instances of known skeletons. Skeleton languages must be constructed to allow the 
integration of skeletal and ad hoc parallelism [10]. In this way, having skeletons in a 
more general language would combine the expression power of collective communica-
tion patterns with the clarity of the skeleton approach.

In this work, we consider the implementation of well-known data-parallel skeletons 
as they are simpler to use than task-parallel ones and because they encode many scien-
tific computation problems and scale naturally. Even if this implementation is surely 
less efficient compared to a dedicated skeleton language, the programmer can compose 
skeletons when it is natural for him and uses a bsml or multi-ml programming style 
when new patterns are needed.

The functional semantics of the considered set of data-parallel skeletons is described 
in [4]. It can also be seen as a naive sequential implementation using lists. The skel-
etons work as follows: skeleton ���� creates a new list containing n times element x. 
The ��� and ������ skeletons are equivalent to the classical single-program–mul-
tiple-data (spmd) style of parallel programming, where a single program f is applied to 
different data, in parallel. The ���� skeleton, like the collective operation MPI_Scan, 
computes the partial (prefix) sums for all list elements. A more complex data-paral-
lel skeleton, the distributable homomorphism ( �� ) presented in [4], is used to express 
divide-and-conquer algorithms, i.e. (dh ⊕ ⊗ l) transforms a list l = [x1,… , xn] of size 
n = 2m into a result list r = [y1,… , yn] of the same size, whose elements are recur-
sively computed as follows:

where u = �� ⊕ ⊗ [x1,… , x n

2

] , i.e. �� applied to the left half of the input list l and 
v = �� ⊕ × [x n

2
+1,… , xn] , i.e. �� applied to the right half of l. The �� skeleton pro-

yi =

{
ui ⊕ vi if i ≤

n

2

ui− n

2

⊗ vi− n

2

otherwise
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vides the well-known butterfly pattern of computation which can be used to imple-
ment many computations with the appropriate ⊕ and ⊗ operators [4].

In this work, we choose the fast Fourier transform (fft) where a list 
x = [x0,… , xn−1] of length n = 2m yields a list where the ith element is defined as: 
(FFT x)i =

∑n−1

k=0
xk�

ki
n
 where �n denotes the nth complex root of unity e2�

√
−1∕n . The 

skeletal code is:

The code for asynchronous skeletons such as ��� is trivial. Using bsml:

Each processor owns a sub-part of the list. The scan code for both bsml and 
multi-ml can be found in [3]: we use a logarithmic parallel reducing algorithm for 
bsml and a divide-and-conquer one for multi-ml.

The bsml code for �� looks like a reducing and can be found in [2]. The one for 
multi-ml is in Fig. 12 and works as follows. We recursively split the list (lines 4–5) 
from the root node to the leaf where local_dh computes, locally, the �� skeleton. 
Then we gather the temporary results and perform a local_dh on the data (line 7). 
Note that these skeletons do not change the size of the “lists” so they can be imple-
mented using vector of arrays, that is one array per processor. It is still a divide-
and-conquer strategy and, in this case, the codes for bsml and multi-ml really differ. 
This is mainly due to the fact that there is no sub-group synchronisation using bsml 
whereas it is natural using multi-ml.

We have tested our two implementations of the �� skeleton (Fig. 13). To meas-
ure the difficulty, we use the implementation of the skeletons only. We test the fft 
for two values of m, 19 and 21, leading to 2m elements as input. We can notice an 
overhead with multi-ml on small architecture with a small input; and thus a speedup 
in favour of bsml. This is mainly due to the fact that the multi-ml �� implementa-
tion needs to transfer the data between each memory level of the architecture. This 
issue was an expected drawback of the multi-ml algorithm. In this algorithm, the 
sub-synchronisation mechanism on multi-ml is under-exploited. As the architecture 
grows in terms of both machines and cores, multi-ml takes a small advantage on 

(FFT l) ≡ let𝛺 = scan + 1(repl (𝜔 n)
n

2
)

in map𝜋1 (dh⊕𝛺 ⊗𝛺 (mapidx triple l))

Fig. 12  The multi-ml code for 
��
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mirev3 as bsml floods the network. However, the complexity of the code is in favour 
of multi-ml. So there is ultimately no problem using it. The overall performance of 
both implementations are disappointing, but it is the best we can hope for such a toy 
implementation of the fft.

3.4  Third case: big‑data application

Given a collection of objects, the all pairs similarity search problem (apss) involves 
discovering all the pairs of objects whose similarity is above a given threshold. It 
may be used to detect redundant documents, similar users in social networks, etc. 
Due the huge number of objects present in real-life systems and its quadratic com-
plexity, similarity scores are usually computed off-line.

Assuming a set of n documents of terms D = {d1, d2,… , dn} . Each document d is 
represented as a sparse vector containing at most m terms. d[i] denotes the number 
of occurrences of the ith term in the document d. The problem is to find all pairs 
(x, y) of documents and their exact value of similarity sim(x, y) =

∑m

i
x[i] ∗ y[i] if 

the similarity is greater than a certain threshold �.
Different parallel algorithms have been proposed to apss  [1] and some of them 

deal with approximation techniques. Our work focuses on exact solutions only and 
we use inverted indexes as it is now the most common technique  [5] (our ocaml 
code is an implementation of this kind of algorithm). For bsp-like computing, two 

Fig. 13  Benchmarks (measures and speedup) of fft using skeletons
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algorithms are mainly used [1]. The first algorithm is based on a systolic-like loop. 
We assume that each processor i holds a subset of documents Di . Initially, each 
processor i computes the similarity sim(Di,Di) of Di ’s documents with each other 
documents of Di . Then each subset is passed around from processor to processor in 
a sequence of �∕2 supersteps (exploiting the symmetric similarity of two subsets): 
each processor receives a subset Dj and calculates sim(Di,Dj) and then it sends Dj 
to its right-hand neighbour, while at the same time receiving the documents from 
its left-hand neighbour. If � is odd, half of the processors perform an additional 
exchange.

The second algorithm is based on two simple mapreduce [21] phases as illus-
trated in Fig. 14: (1) Indexing; for each term in the document, each processor merges 
the term as key, and a pair (d, d[t]) consisting of document id d and weight of the 
term as the value (line 3). Then the algorithm handles the grouping by key of these 
pairs (the shuffle, line 4); (2) Similarity; each processor emits pairs of document ids 
that are in the same group G as keys (line 6). There will be m × (m − 1)∕2 exchange 
pairs where m = |G| for the shuffle (line 7); then they associate with each pair the 
product of the corresponding term weights. Finally they reduce the sums of all the 
partial similarity scores for a pair to generate the final similarity scores (line 8).

The multi-bsp algorithm is again an incremental improvement of the two above 
bsp algorithms. It is based on the following idea (Fig. 15): Initially, on leaves, we 
perform a systolic-like loop to initiating the index lists and the similarities. Then, 
each node selects some documents (on the sub-nodes, line 4) that already have a 
similarity: these documents are thus a greater opportunity to be similar with other 
documents. These documents are passed around from sibling to sibling (line 5) and 
are passed down to leaves as pairs as in the mapreduce method. Now all the leaves 
update their similarity scores (line 7). And so on until no more documents are send-
ing around siblings.

As before, to measure the performances and the difficulty of writing the pro-
grams, we take into account the algorithm part only and not the reading of the data. 

Fig. 14  The bsml code for apps 

Fig. 15  The multi-ml code for 
apps 
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We use the Twitter’s follower graph (July 2009, 24GB file with approximately 1.5 
billion of followings) available at http://an.kaist .ac.kr/trace s/WWW20 10.html as 
data-set. For our experiments (Fig. 16), we take sub-parts of the original file. A pair 
corresponds to the same kind of following. We do not use any disc to store tempo-
rary results. There are 600M (resp. 1.5G) of pairs for 10M (resp. 17M) followings. 
The sequential code fails on these too large data-sets (not enough memory), so we 
give the execution times only. We do not use the common pruning of documents [5]: 
that reduces the overall computing time by reducing the number of documents to be 
compared and communicated but that is “independent” of using parallel algorithms. 
Our threshold is very low (even if it’s not realistic), thus many pairs are computed. 
The number of pairs quadratically increases to the size of the data-set. The fails ( ∞ ) 
corresponds to “out of memory” or mpi fails when too much data are exchanged dur-
ing a superstep (i.e. when less nodes take part in the computation or there are too 
many cores in use on a single node).

As already seen in [1], for bsp computing, the systolic method is faster than the 
mapreduce one by an important order of magnitude. This is mainly due to a quad-
ratic number of sending pairs. Thus, we do not give these timings.

The performances of the programs are not impressive because we use the generic 
data structures of ocaml which are not optimised for pairs and thus consumes too 
much memory. The losses are mainly due to a large use of the ram. As intended, the 
multi-bsp code is more complex but gives better performance. The gain is not spec-
tacular: using a bsp systolic algorithm, only one core sends data to a another core of 
a machine. So there are few data exchanged in the network and there is thus not a 
congestion as in the mc example. This also explains why the performances are better 
using mirev2 than mirev3: there are too many memory accesses in the ram. However 
when using the multi-bsp algorithm, even if the computations and the memory uses 

Fig. 16  Benchmarks of the all pairs similarity search problem (apps)

http://an.kaist.ac.kr/traces/WWW2010.html
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are of the same order of magnitude as in the bsp algorithm, there is a massive use of 
synchronisation of sub-machines which allow a better load-balancing. Even if there 
is more (local) supersteps, each performs less computation leading to less conges-
tion when accessing to the ram.

4  Related work

Hierarchical programming and multi-BSP libraries There are many papers about 
the gains of mixing shared and distributed memories, e.g. mpi and open-mp [7]. As 
intended, the programmer must manage the distribution of the data for these two 
different models. For example, with the mc case, the algorithm of [20] handles a 
specific data structure (with locks) shared by the threads on cores and distributes 
the states across the nodes using the hash technique. We can also cite the work of 
[15] in which a bsp extension of c++ runs the same code on both a cluster and on 
multi-cores. But it is the responsibility of the programmer to avoid harmful nested 
parallelism. This is thus not a dedicated language working for hierarchical architec-
tures. We can also highlight the work of neststep [16] which is a c/java library for 
bsp computing, which authorises nested computations in case of a cluster of multi-
cores—but without any safety.

Distributed functional languages Except in [18], there is a lack of comparisons 
between parallel functional languages. It is difficult to compare them since many 
parameters have to be taken into account: used libraries, used frameworks or archi-
tectures and what we want to measure that are efficiency, scalability, expressiveness, 
etc.

A data-parallel extension of haskell call nepal has been done in [8], an abstract 
machine is responsible for the distribution of the data over the available processors. 
multi-mlton [22] is a multi-core aware runtime for standard ml, which is an exten-
sion of the mlton compiler. It manages composable and asynchronous events using, 
in particular, safe-futures. A description of other bridging models for hierarchical 
architectures and other parallel languages can be found in [2]. Currently, we are not 
aware of any safe and efficient functional parallel language dedicated to hierarchical 
architectures.

5  Conclusion and future work

5.1  Conclusion

We have benchmarked different distributed applications using a flat bridging model 
(bsp) and its hierarchical extension (multi-bsp). We used two ml-like languages for 
both. We tried to compare both speedup and difficulty to write codes on rather different 
and typical hpc applications. Currently, we are not aware of similar works in the litera-
ture. Regarding the proposed case study, in general, the hierarchical programs are more 
efficient, but they are more difficult to write as a counterpart. As expected, there are 
also some cases where designing and programming a hierarchical algorithm does not 
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yield much. Intuitively, to get a performance gain, you have to maximise the locality (in 
the lowest memories of your machine) of calculations as well as the synchronisations/
communications. That is to say that we can conclude, without surprise, that to have 
efficient multi-bsp algorithms, we need to massively exchanges data between the fastest 
memories. Indeed, on standard intel or amd architectures, memories close to the physi-
cal threads (L1, L2 and L3 memories) are very fast. As a counter part, they are so small 
that it is a challenge to maximise their usage. As expected, we must concentrate on 
maximising data exchanges between computation units of the same memory locality.

Thanks to our approach, the bsp programs have been written incrementally from the 
sequential ones, as well as the multi-bsp programs extend the bsp ones. This seems to 
be an interesting point for software hpc development engineering: in a project, it is pos-
sible to work by successive additions of codes and it is not necessary to rewrite the 
code from scratch. However, it is still less flexible than the skeleton approach where 
only the patterns need to be efficiently implemented. Nevertheless, regarding an effi-
cient multi-bsp algorithm, it is simpler to implement it using multi-ml code rather than 
in a skeleton framework.

5.2  Future work

The next phase will be to work on the optimisation of the previous programs. For 
example, how the states are kept in the memories is not optimised at all and induces 
many cache-misses. Using the last parameter of the multi-bsp model, that is the size of 
the memories, should leads to better algorithms. That should also reduce the execution 
time for exact apss by using a cache-conscious data layout [24]. Our methodology also 
suffers from the fact that we make the hypothesis that the algorithms are known. How-
ever, designing an efficient bsp algorithm is harder than a sequential one. The effort is 
even harder for multi-bsp even though we perform an incremental development.

In the continuity of this work, we see two interesting points:

1. Doing programming experiments of our languages with students or users; this will 
allow to test if coding multi-bsp algorithms using multi-ml is really more difficult 
than coding bsp algorithms with bsml and/or sequential algorithms with ocaml; 
we think that designing the algorithms themselves is clearly the most difficult 
part;

2. Comparing the experimental timings with the expected cost formulae. The sec-
ond author has already done this work in the context of bsp and bsml [13]. The 
conclusion is that the main difficulty is finding these cost formulae.
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