
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:5079–5097
https://doi.org/10.1007/s11227-019-02822-9

1 3

Programming bsp and multi‑bsp algorithms in ml

Victor Allombert1 · Frédéric Gava2

Published online: 27 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The bsml and multi-ml languages have been designed for programming, à la ml,
algorithms of the respectively bsp and multi-bsp bridging models. multi-bsp is an
extension of the well-know bsp model by taking into account the different levels of
networks and memories of modern hierarchical architectures. This is a rather new
model, as well as multi-ml is a new language, while bsp and bsml have been used
for a long time in many different domains. Intuitively, designing and programming
multi-bsp algorithms seems more complex than with bsp, and one can ask whether
it is beneficial to rewrite bsp algorithms using the multi-bsp model. In this paper, we
thus investigate the pro and cons of the aforementioned models and languages by
experimenting with them on different typical applications. For this, we use a meth-
odology to measure the level of difficulty of writing code and we also benchmark
them in order to show whether writing multi-ml code is worth the effort.

Keywords bsp · multi-bsp · ml · Hierarchical · Performance · Algorithms

1 Introduction

Context Our previous work aimed at designing a parallel functional language based
on the bulk synchronous parallelism (bsp) bridging model called bsml [14]. bsp is a
model of parallelism which offers a high level of abstraction and takes into account
real communication and synchronisation cost [23]. bsp has been used successfully
for a broad variety of applications such as scientific computation [6], artificial intel-
ligence, big-data and graph frameworks (pregel [19]). To be compliant to a bridging
model eases the way of writing code and ensures efficiency and portability from one

 * Victor Allombert
 victor.allombert@lacl.fr; victor.allombert@univ-orleans.fr

 Frédéric Gava
 frederic.gava@univ-paris-est.fr

1 LIFO, Université d’Orléans, Orléans, France
2 LACL, Université Paris-Est Créteil, Créteil, France

http://orcid.org/0000-0002-6250-5819
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02822-9&domain=pdf

5080 V. Allombert, F. Gava

1 3

architecture to another. Thanks to a cost model, it is also possible to reason on the
algorithmic costs.

As modern high-performance computing (hpc) architectures are hierarchical and
have multiple layers of parallelism, communication between distant nodes cannot be
as fast as among the cores of a given processor. Because bsp was designed for flat
architectures, we now consider the multi-bsp bridging model [26], an extension of
bsp which is dedicated to hierarchical architectures. multi-ml uses a small set of ml-
like primitives [3] for programming multi-bsp algorithms similarly to bsml for the
bsp algorithms. As bsml, multi-ml [3] is implemented using the ml language ocaml
(http://ocaml .org/).

Comparing languages Since we now have two programming languages dedicated
each for two rather different bridging models, we ask ourselves whether they differ
in terms of performances and written code. Both have structured models of execu-
tion. Both have an ocaml + mpi implementation. However, bsml has been designed
for flat parallelism, whereas multi-ml is designed for controlled nested parallelism.
To compare them, we have chosen three different cases that are in the field of sym-
bolic, numerical, and big-data computations.

We want to compare the two languages for both performance and the ease of
writing code.1 For the performance, we have chosen speedup and/or timing for some
data-sets. We also change the target architecture by modifying the number of cores,
processors, and nodes of the machines. For the code, we have choose some tradi-
tional metrics which are the Halstead difficulty and the McCabe cyclomatic com-
plexity. These metrics mainly count the number of operands and programming struc-
tures such as conditionals, loops, etc. We have adapted them to take into account
the number of parallel operators. These metrics are not perfect but are easy to use.
Finally, we have used one interesting ability of both bsml and multi-ml which is
programming parallel algorithms in an incremental manner from sequential codes,
which simplifies the development of parallel codes. As explained later, this is due
to the fact that both bsml and multi-ml provide a global view of programs, i.e. their
programs can be seen as sequential programs working on parallel data structures
(“seq of par”), while in many hpc libraries such as mpi, programs are written in the
spmd style and are understood as a parallel composition of communicating sequen-
tial programs (“par of seq”).

Outline The rest of this paper is structured as follows. First, Sect. 2 briefly presents
the two aforementioned languages. Then, Sect. 3 defines our methodology of com-
parison of the languages and we apply it to different use cases (Sects. 3.2–3.4),
hoping they are general enough to stand for a representative sample of hpc applica-
tions. For all of them, we give some benchmarks in terms of both performance and

1 We currently make the hypothesis that the more complicated the codes are, the more complicated the
algorithmic design is. We leave the problematic of algorithmic design for future work and we focus on
code writing only.

http://ocaml.org/

5081

1 3

Programming bsp and multi-bsp algorithms in ml

difficulty of writing the code. Finally, in Sect. 4, we discuss related work and Sect. 5
concludes the paper by giving a brief outlook of future work.

2 BSML and multi‑ML: similar but different languages

2.1 Programming BSP algorithms in ML

2.1.1 The BSP bridging model

In the bsp bridging model, a computer is a set of � uniform pairs of processor–mem-
ory components with a communication network [6, 25]. A bsp program is executed
as a sequence of supersteps (Fig. 1), each one divided into three successive dis-
jointed phases: (1) each processor only uses its local data to perform sequential
computations and to request data transfers to other nodes; (2) the network delivers
the requested data; (3) a global synchronisation barrier occurs, making the trans-
ferred data available for the next superstep.

The performance of the bsp computer is characterised by 4 parameters (that we
do not detail in this article2). To reliably estimate the execution time of a bsp pro-
gram, these parameters could be easily benchmarked [6]. The execution time (cost)
of a superstep is the maximal of the sum of the local processing time, the data deliv-
ery and the global synchronisation times. The total cost of a bsp program is the sum
of its supersteps’s costs.

2.1.2 The BSML language

bsml [14] uses a small set of primitives and is currently implemented as a library
(http://tracl ifo.univ-orlea ns.fr/bsml/) for the ml programming language ocaml.

Fig. 1 A bsp superstep

local
computations

p0 p1 p2 p3

communication

barrier
next superstep...

...
...

...

2 We do not show the bsp parameters nor the multi-bsp ones because we do not use them at all in this
work. In fact, cost prediction is rather impossible in some of our application cases, e.g. the state-space
construction where the number of computing states is unknown and no upper bound is possible in prac-
tice [9].

http://traclifo.univ-orleans.fr/bsml/

5082 V. Allombert, F. Gava

1 3

An important feature of bsml is its confluent semantics: whatever the order of
execution of the processors is, the final value will be the same. Confluence is
convenient for debugging since it allows to get an interactive loop, the toplevel.
It also simplifies programming since the parallelisation can be done incremen-
tally from an ocaml program.

A bsml program is built as a ml one but using a specific data structure called
parallel vector. Its ml type is ’a par. A vector expresses that each of the �
processors embeds a value of any type ’a. Figure 2 summarises the bsml primi-
tives. Informally, they work as follows: let ≪e≫ be the vector holding e eve-
rywhere (on each processor), the ≪ ≫ indicates that we enter into the scope of a
(parallel) vector. Within a vector, the syntax x can be used to read the vector
x and get the local value it contains. The ids can be accessed with the predefined
vector pid.

The proj primitive is the only way to extract local values from a vector.
Given a vector, it returns a function such that, applied to the pid of a processor,
returns the value of the vector at this processor. proj performs communication
to make local results available globally and ends the current superstep.

The put primitive is another communication primitive. It allows any local
value to be transferred to any other processor. It is also synchronous, and ends
the current superstep. The parameter of put is a vector that, at each processor,
holds a function returning the data to be sent to processor j when applied to j.
The result of put is another vector of functions: at a processor j the function,
when applied to i, yields the value received from processor i by processor j.

To illustrate the previous primitives with a small piece of code, we use the
bsml toplevel and a simulation of a bsp machine with three processors. Now if
we want to convert a vector into a replicated list (that is to say an identical list
on each processor [14]), we write:

(where procs is a list of the processors’s ids) and we applied it to a vector
which contains the processors’s ids.

Fig. 2 Summary of the bsml primitives

5083

1 3

Programming bsp and multi-bsp algorithms in ml

2.2 Programming Multi‑BSP algorithms in ML

2.2.1 The multi‑BSP bridging model

multi-bsp is a bridging model [26] which is adapted to hierarchical architectures,
mainly clusters of multi-cores. There exist other hierarchical models [17], but
multi-bsp describes them in a simpler way. The structure and abstraction brought
by multi-bsp allows to have portable programs with scalable performance pre-
dictions, without dealing with low-level details of the architectures. This model
brings a tree-based view of nested components (sub-machines or siblings) of hier-
archical architectures where the lowest stages (leaves symbolised by squares) are
processors and every other stage (node symbolised by circles) contains memory
(or a network). Figure 3 illustrates the difference between the bsp and multi-bsp
models for a multi-core.

Every component can execute code, but they have to synchronise in favour of
data exchange. Thus, multi-bsp does not allow sub-group synchronisation of any
group of processors: at a stage i there is only a synchronisation of the sub-compo-
nents, a synchronisation of each of the computational units that manage the stage

Fig. 3 The difference between the multi-bsp and bsp models for a multi-core architecture

Fig. 4 Example of the multi-bsp execution model

5084 V. Allombert, F. Gava

1 3

i−1 . So, a node executes some code on its nested components (aka “children”),
then waits for results, does the communication and synchronises the sub-machine.
A multi-bsp algorithm is thus composed of several supersteps, each step is syn-
chronised for each sub-machine. Figure 4 illustrates such an execution model
where black rectangles scheme computations and dash lines between rectangles
stand for communications.

Mainly, an instance of multi-bsp is defined by � , the fixed depth of the balanced
and homogeneous tree architecture, and by the 4 bsp performance parameters (plus
the memory size) for each stage i of the tree. Figure 5 illustrates nodes and leaves.
Thus, for each i ∈ {0,… , d−1} , pi is the number of sub-components inside the i − 1
stage.

The cost of a multi-bsp algorithm is the sum of the costs of the supersteps of
the root node, where the cost of each of these supersteps is the maximal cost of the
supersteps of the sub-components (plus communication and synchronisation); and
so on.

2.2.2 The multi‑ML language

multi-ml [2, 3] (https ://git.lacl.fr/vallo mbert /Multi -ML) is based on the idea of
executing bsml-like codes on every stage of a multi-bsp architecture. This approach
facilitates incremental development from bsml codes to multi-ml ones. multi-ml
follows the multi-bsp approach where the hierarchical architecture is composed
of nodes and leaves. On nodes, it is possible to build parallel vectors, as in bsml.
This parallel data structure aims to manage values that are stored on the sub-nodes:
at stage i, the code let v=≪e≫ evaluates the expression e on each i − 1 stages.
Inside a parallel vector, we note #x# to copy the value x stored at stage i to the
memory i − 1.

We also introduce the concept of multi-function to recursively go through a
multi-bsp architecture. A multi-function is a particular recursive function, defined
by the keyword let multi, which is composed of two codes: the node and the

Fig. 5 The multi-bsp components

https://git.lacl.fr/vallombert/Multi-ML

5085

1 3

Programming bsp and multi-bsp algorithms in ml

leaf codes. The recursion is initiated by calling the multi-function (recursively)
inside the scope of a parallel vector, that is to say, on the sub-nodes. The evalu-
ation of a multi-function starts (and ends) on the root node. The code of Fig. 6
shows how a multi-function is defined. After the definition of the multi-function
mf on line 1 where [args] symbolises a set of arguments, we define the node
code (from line 2 to 6). The recursive call of the multi-function is done on line 5,
within the scope of a parallel vector. The node code ends with a value v, which is
available as a result of the recursive call from the upper node. The leaf code, from
lines 7 to 9 consists of sequential computations. When a multi-function is applied
to a value at the multi-bsp level, the evaluation is initiated on the root node of the
architecture. In the example (Fig. 7), the multi-function mf is called inside a par-
allel vector (line 3) to initiate the recursion on the sub-nodes. As the evaluation of
a multi-function starts from the root node, the recursion will spread from the root
towards the leaves.

As expected, the synchronous communication primitives of bsml are also avail-
able to communicate values from/to parallel vectors. We also propose another
parallel data structure called tree. A tree is a distributed structure where a value is
stored in every node and leave memories. A tree can be built using a multi-tree-
function, using the let multi-tree keyword. We propose three primitives to
handle such a parallel data structure: (1) To easily construct a tree with a simple
expression, mktree e can be used; it aims to execute the expression e on each
component of the architecture, resulting in a tree; (2) the function at can be used
to access the value of a tree within a component; (3) the global identifier gid
is shaped as a tree of identifiers, and is useful, for example, to distribute data
depending on the position in the architecture.

Fig. 6 A multi-function code

Fig. 7 A multi-function

5086 V. Allombert, F. Gava

1 3

3 Application cases

We now compare bsml and multi-ml. To do so, we first describe our methodology
for the comparison in Sect. 3.1 and then we have selected three typical cases of vari-
ous domains and apply the methodology to each case: (1) state-space calculation
(basis of model-checking) in Sect. 3.2; (2) implementation of the fft using algorith-
mic skeletons in Sect. 3.3; (3) finally, in Sect. 3.4, a classical big-data problem that
is computing the similarity of millions of pairs.

It is to notice that in this paper we present non optimal implementations that
cannot be compared to cutting-edge implementations: we neither use specific data
structures nor domain specific tricks. For example, in the state-space algorithms, our
sets of states do not use shared possibilities of the states as modern model-checkers
do [9]. We use the standard ocaml ’s sets and a naive representation of the states.
Here, our objective is to compare the languages and their performances. Program-
ming the most optimised implementations is not the purpose of this work.

3.1 Methodology

bsml and multi-ml have been designed to program parallel algorithms incremen-
tally: from a sequential ocaml code to a bsp code using bsml and finally to a multi-
bsp code using multi-ml. We can thus expect better performance, but we presume
that the programs will be, unfortunately, more and more complex.

To measure this difficulty we have used: (a) the Halstead effort (he) which
depends on both the length and complexity of the code; the Halstead difficulty (hd)
considers the amount of different operators used; (b) the McCabe cyclomatic com-
plexity (cc) that is the number of linearly independent paths through the source;
(c) the maintainability index (mi) which depends on he and cc. To do so we have
adapted the ocaml metrics tool (http://forge .ocaml core.org/proje cts/ocaml -metri cs/)
to bsml and multi-ml. We now count, as an operand, each parallel primitive; and,
as a new path, each multi-function and vector. Benchmarks were performed on two
architectures:

1. (mirev2) 8 nodes with 2 quad-cores (amd 2376 at 2.3 Ghz) with 16 GB of memory
per node and a 1 Gbit/s network;

2. (mirev3) 4 nodes with 2 octa-cores with 2 hyper-threads (intel xeon E5 − 2650
at 2.6Ghz) with 64GB of memory per node and a 10Gbit / s network.

To measure the code performance, we use the version 4.02.1 of ocaml and
mpich 3.1. We measure the speedup for different sizes of data and different con-
figurations of our architectures with a variation of the number of nodes × pro-
cessors × cores × threads used. We execute the codes on mirev2 and mirev3 by
using different configurations. For example, 2 × 2 × 8 × 2 means that the code is
executed on an architecture made of 2 nodes with 2 multi-cores using 8 cores
with 2 threads; thus, we use 64 computing units. The configurations were chosen

http://forge.ocamlcore.org/projects/ocaml-metrics/

5087

1 3

Programming bsp and multi-bsp algorithms in ml

arbitrarily, in order to compare performances with a growing number of compo-
nents with both distributed and shared memories. All the sources and data are
available in the multi-ml’s git repository. We note ∞ when the program fails.

Thus, we aim to compare both the code difficulty and the difference, in terms
of performances, between bsml and multi-ml codes.

3.2 First case: symbolic computation

Our first experiment is about model-checking (mc) which is a formal method
often used to verify safety-critical systems [9]. Before verifying a logical for-
mula, one must first compute the state-space of the systems. The parallelisation
of this construction is a frequently used method in the industry [12].

The finite state-space construction problem consists of exploring all the states
accessible via a successor function ���� (returning a set of states) from an initial
state s0 . This problem is computing and data intensive because realistic systems
have a tremendous amount of scenarios. Usually, during this operation, all the
explored states must be kept in memory in order to avoid multiple explorations
of a same state. Figure 8 shows the usual sequential algorithm in ml where a set
called known contains all the states that have been processed and would finally
contain the state-space. It also involves a set todo that is used to hold all the
states whose successors have not yet been constructed; each state t from todo
is processed in turn (lines 5 to 10) and added to known (line 8), while its succes-
sors are added to todo unless they are already known—line 9.

Fig. 8 The ocaml code for mc

Fig. 9 The bsml code for mc

5088 V. Allombert, F. Gava

1 3

The standard flat parallelisation of this problem is based on the idea that each
process only computes the successors for its own states. The mc code written with
bsml is given in Fig. 9. To do this incremental parallelisation, a partition function
(hashing) returns, for each state, a processor id; i.e. ����(s) returns the owner of s.
Sets known and todo are still used but become local to each processor and thus
provide only a partial view of the ongoing computations (lines 3–4). Initially, only
state s0 is known and only its owner puts it in its todo set (line 5). Once again, pro-
cessors enlarge their own local sets of states by applying the successor function on
the received states; recursively to their descendants until no new states are computed
(line 7). Then, a synchronous communication primitive computes and performs, for
each processor, the set of received states that are not yet locally known (line 9). To
ensure termination, we use the additional variable finish in which we test whether
some states have been exchanged or not by the processors. If not, there is no need to
continue the computation (line 6).

The main difference between the bsp and multi-bsp codes is that the multi-bsp
algorithm uses a hashing function to distribute the states on the sub-trees. Fig-
ure 10 summarises the multi-ml code. Each sub-tree of the multi-bsp architecture is
in charge of keeping the states it owns. Moreover, on two different sub-trees, there
could be different numbers of supersteps depending of the verifying system: the
synchronous communication primitive is performed on different sub-trees leading
to implicit sub-group synchronisations. Due to a random strategy of walk (hashing)
in the set of states, the load-balancing is mainly preserved—with specific indus-
trial systems, different kinds of load-balancing strategies would be necessary for an
industrial development. There is not only communication between the siblings but
also between parents and children. Indeed, some states might not be in their right
sub-trees. Thus, like in the bsp algorithm (line 18), each leaf only computes its own

Fig. 10 The multi-ml code for mc

5089

1 3

Programming bsp and multi-bsp algorithms in ml

states. Each node manages the sub-trees of its children by performing exchanges
between siblings as in the bsp algorithm (line 13) but also gathers the states that are
not in the right sub-trees (line 14); it also distributes the states between the sub-trees
of its children (line 11). To perform the communications, the code uses two arrays
of sets, each of the size of the number of siblings of each level of the multi-bsp
architecture. The reader can notice that the multi-ml code is again an incremental
update of the bsml one, using the hierarchical ability of the multi-bsp model: “same”
main loop and local computations.

For our experiments, we compute the state-space of the well-known crypto-
graphic needham–schroeder public-key protocol with a standard universal dolev–yao
intruder residing in the network [11]. Note that during the computation, most of the
scenarios can be detected as faulty at their very beginning using a specialised mc,
but this is not the subject of this article.

Figure 11 summarises the benchmarks. As intended, the multi-ml code is the
more complex: by a factor of 2 compared to bsml, which is also 2 times more com-
plex than the ocaml code.

In this example, using the hierarchical capacities is not beneficial for small archi-
tectures. But when the number of cores increases too much on nodes, for both mirev2
and mirev3, multi-ml exceeds bsml. This is not surprising since more communications
append between cores without communicating through the network at every step of
the algorithm. The bsp algorithm saturates the network with a large amount of com-
munications and thus, this congestion drastically decreases the performances. On the
contrary, the multi-ml program focuses on communications through local memories
and communicates through the network only when necessary. Thus, the network is less
saturated and the performance is better. On a configuration with many cores and physi-
cal threads, but for a small number of machines, the performance is disappointing. This

Fig. 11 Benchmarks (measures and speedup) of the mc of a security protocol

5090 V. Allombert, F. Gava

1 3

is due to too much caches-misses and ram congestion. Indeed, our current algorithms
take into account the different network capacities but not the memory sizes.

We have notice a strange and disappointing behaviour when using ocaml +mpi.
Indeed, the ocaml ’s runtime slows down by a factor of ≃ 2 when it massively allocates
memory. We suspect an overhead (or incompatibility) between the ocaml garbage col-
lector and the mpi ’s memory allocation system. Unfortunately, we do not know how to
go beyond this problem, which is just technical.

3.3 Second case: algorithmic skeletons and a numerical application

We can observe that many parallel algorithms can be characterised and classified by
their adherence to a small number of generic patterns of computation. Skeletal pro-
gramming proposes that such patterns can be abstracted and provided as a program-
mer’s toolkit with specifications [10]. Thus, they can transcend architectural variations
with implementations which enhance performance.

A well-known disadvantage of skeleton languages is that the only admitted parallel-
ism is, usually, the skeleton one, while many applications cannot be easily expressed
as instances of known skeletons. Skeleton languages must be constructed to allow the
integration of skeletal and ad hoc parallelism [10]. In this way, having skeletons in a
more general language would combine the expression power of collective communica-
tion patterns with the clarity of the skeleton approach.

In this work, we consider the implementation of well-known data-parallel skeletons
as they are simpler to use than task-parallel ones and because they encode many scien-
tific computation problems and scale naturally. Even if this implementation is surely
less efficient compared to a dedicated skeleton language, the programmer can compose
skeletons when it is natural for him and uses a bsml or multi-ml programming style
when new patterns are needed.

The functional semantics of the considered set of data-parallel skeletons is described
in [4]. It can also be seen as a naive sequential implementation using lists. The skel-
etons work as follows: skeleton ���� creates a new list containing n times element x.
The ��� and ������ skeletons are equivalent to the classical single-program–mul-
tiple-data (spmd) style of parallel programming, where a single program f is applied to
different data, in parallel. The ���� skeleton, like the collective operation MPI_Scan,
computes the partial (prefix) sums for all list elements. A more complex data-paral-
lel skeleton, the distributable homomorphism (��) presented in [4], is used to express
divide-and-conquer algorithms, i.e. (dh ⊕ ⊗ l) transforms a list l = [x1,… , xn] of size
n = 2m into a result list r = [y1,… , yn] of the same size, whose elements are recur-
sively computed as follows:

where u = �� ⊕ ⊗ [x1,… , x n

2

] , i.e. �� applied to the left half of the input list l and
v = �� ⊕ × [x n

2
+1,… , xn] , i.e. �� applied to the right half of l. The �� skeleton pro-

yi =

{
ui ⊕ vi if i ≤

n

2

ui− n

2

⊗ vi− n

2

otherwise

5091

1 3

Programming bsp and multi-bsp algorithms in ml

vides the well-known butterfly pattern of computation which can be used to imple-
ment many computations with the appropriate ⊕ and ⊗ operators [4].

In this work, we choose the fast Fourier transform (fft) where a list
x = [x0,… , xn−1] of length n = 2m yields a list where the ith element is defined as:
(FFT x)i =

∑n−1

k=0
xk�

ki
n
 where �n denotes the nth complex root of unity e2�

√
−1∕n . The

skeletal code is:

The code for asynchronous skeletons such as ��� is trivial. Using bsml:

Each processor owns a sub-part of the list. The scan code for both bsml and
multi-ml can be found in [3]: we use a logarithmic parallel reducing algorithm for
bsml and a divide-and-conquer one for multi-ml.

The bsml code for �� looks like a reducing and can be found in [2]. The one for
multi-ml is in Fig. 12 and works as follows. We recursively split the list (lines 4–5)
from the root node to the leaf where local_dh computes, locally, the �� skeleton.
Then we gather the temporary results and perform a local_dh on the data (line 7).
Note that these skeletons do not change the size of the “lists” so they can be imple-
mented using vector of arrays, that is one array per processor. It is still a divide-
and-conquer strategy and, in this case, the codes for bsml and multi-ml really differ.
This is mainly due to the fact that there is no sub-group synchronisation using bsml
whereas it is natural using multi-ml.

We have tested our two implementations of the �� skeleton (Fig. 13). To meas-
ure the difficulty, we use the implementation of the skeletons only. We test the fft
for two values of m, 19 and 21, leading to 2m elements as input. We can notice an
overhead with multi-ml on small architecture with a small input; and thus a speedup
in favour of bsml. This is mainly due to the fact that the multi-ml �� implementa-
tion needs to transfer the data between each memory level of the architecture. This
issue was an expected drawback of the multi-ml algorithm. In this algorithm, the
sub-synchronisation mechanism on multi-ml is under-exploited. As the architecture
grows in terms of both machines and cores, multi-ml takes a small advantage on

(FFT l) ≡ let𝛺 = scan + 1(repl (𝜔 n)
n

2
)

in map𝜋1 (dh⊕𝛺 ⊗𝛺 (mapidx triple l))

Fig. 12 The multi-ml code for
��

5092 V. Allombert, F. Gava

1 3

mirev3 as bsml floods the network. However, the complexity of the code is in favour
of multi-ml. So there is ultimately no problem using it. The overall performance of
both implementations are disappointing, but it is the best we can hope for such a toy
implementation of the fft.

3.4 Third case: big‑data application

Given a collection of objects, the all pairs similarity search problem (apss) involves
discovering all the pairs of objects whose similarity is above a given threshold. It
may be used to detect redundant documents, similar users in social networks, etc.
Due the huge number of objects present in real-life systems and its quadratic com-
plexity, similarity scores are usually computed off-line.

Assuming a set of n documents of terms D = {d1, d2,… , dn} . Each document d is
represented as a sparse vector containing at most m terms. d[i] denotes the number
of occurrences of the ith term in the document d. The problem is to find all pairs
(x, y) of documents and their exact value of similarity sim(x, y) =

∑m

i
x[i] ∗ y[i] if

the similarity is greater than a certain threshold �.
Different parallel algorithms have been proposed to apss [1] and some of them

deal with approximation techniques. Our work focuses on exact solutions only and
we use inverted indexes as it is now the most common technique [5] (our ocaml
code is an implementation of this kind of algorithm). For bsp-like computing, two

Fig. 13 Benchmarks (measures and speedup) of fft using skeletons

5093

1 3

Programming bsp and multi-bsp algorithms in ml

algorithms are mainly used [1]. The first algorithm is based on a systolic-like loop.
We assume that each processor i holds a subset of documents Di . Initially, each
processor i computes the similarity sim(Di,Di) of Di ’s documents with each other
documents of Di . Then each subset is passed around from processor to processor in
a sequence of �∕2 supersteps (exploiting the symmetric similarity of two subsets):
each processor receives a subset Dj and calculates sim(Di,Dj) and then it sends Dj
to its right-hand neighbour, while at the same time receiving the documents from
its left-hand neighbour. If � is odd, half of the processors perform an additional
exchange.

The second algorithm is based on two simple mapreduce [21] phases as illus-
trated in Fig. 14: (1) Indexing; for each term in the document, each processor merges
the term as key, and a pair (d, d[t]) consisting of document id d and weight of the
term as the value (line 3). Then the algorithm handles the grouping by key of these
pairs (the shuffle, line 4); (2) Similarity; each processor emits pairs of document ids
that are in the same group G as keys (line 6). There will be m × (m − 1)∕2 exchange
pairs where m = |G| for the shuffle (line 7); then they associate with each pair the
product of the corresponding term weights. Finally they reduce the sums of all the
partial similarity scores for a pair to generate the final similarity scores (line 8).

The multi-bsp algorithm is again an incremental improvement of the two above
bsp algorithms. It is based on the following idea (Fig. 15): Initially, on leaves, we
perform a systolic-like loop to initiating the index lists and the similarities. Then,
each node selects some documents (on the sub-nodes, line 4) that already have a
similarity: these documents are thus a greater opportunity to be similar with other
documents. These documents are passed around from sibling to sibling (line 5) and
are passed down to leaves as pairs as in the mapreduce method. Now all the leaves
update their similarity scores (line 7). And so on until no more documents are send-
ing around siblings.

As before, to measure the performances and the difficulty of writing the pro-
grams, we take into account the algorithm part only and not the reading of the data.

Fig. 14 The bsml code for apps

Fig. 15 The multi-ml code for
apps

5094 V. Allombert, F. Gava

1 3

We use the Twitter’s follower graph (July 2009, 24GB file with approximately 1.5
billion of followings) available at http://an.kaist .ac.kr/trace s/WWW20 10.html as
data-set. For our experiments (Fig. 16), we take sub-parts of the original file. A pair
corresponds to the same kind of following. We do not use any disc to store tempo-
rary results. There are 600M (resp. 1.5G) of pairs for 10M (resp. 17M) followings.
The sequential code fails on these too large data-sets (not enough memory), so we
give the execution times only. We do not use the common pruning of documents [5]:
that reduces the overall computing time by reducing the number of documents to be
compared and communicated but that is “independent” of using parallel algorithms.
Our threshold is very low (even if it’s not realistic), thus many pairs are computed.
The number of pairs quadratically increases to the size of the data-set. The fails (∞)
corresponds to “out of memory” or mpi fails when too much data are exchanged dur-
ing a superstep (i.e. when less nodes take part in the computation or there are too
many cores in use on a single node).

As already seen in [1], for bsp computing, the systolic method is faster than the
mapreduce one by an important order of magnitude. This is mainly due to a quad-
ratic number of sending pairs. Thus, we do not give these timings.

The performances of the programs are not impressive because we use the generic
data structures of ocaml which are not optimised for pairs and thus consumes too
much memory. The losses are mainly due to a large use of the ram. As intended, the
multi-bsp code is more complex but gives better performance. The gain is not spec-
tacular: using a bsp systolic algorithm, only one core sends data to a another core of
a machine. So there are few data exchanged in the network and there is thus not a
congestion as in the mc example. This also explains why the performances are better
using mirev2 than mirev3: there are too many memory accesses in the ram. However
when using the multi-bsp algorithm, even if the computations and the memory uses

Fig. 16 Benchmarks of the all pairs similarity search problem (apps)

http://an.kaist.ac.kr/traces/WWW2010.html

5095

1 3

Programming bsp and multi-bsp algorithms in ml

are of the same order of magnitude as in the bsp algorithm, there is a massive use of
synchronisation of sub-machines which allow a better load-balancing. Even if there
is more (local) supersteps, each performs less computation leading to less conges-
tion when accessing to the ram.

4 Related work

Hierarchical programming and multi-BSP libraries There are many papers about
the gains of mixing shared and distributed memories, e.g. mpi and open-mp [7]. As
intended, the programmer must manage the distribution of the data for these two
different models. For example, with the mc case, the algorithm of [20] handles a
specific data structure (with locks) shared by the threads on cores and distributes
the states across the nodes using the hash technique. We can also cite the work of
[15] in which a bsp extension of c++ runs the same code on both a cluster and on
multi-cores. But it is the responsibility of the programmer to avoid harmful nested
parallelism. This is thus not a dedicated language working for hierarchical architec-
tures. We can also highlight the work of neststep [16] which is a c/java library for
bsp computing, which authorises nested computations in case of a cluster of multi-
cores—but without any safety.

Distributed functional languages Except in [18], there is a lack of comparisons
between parallel functional languages. It is difficult to compare them since many
parameters have to be taken into account: used libraries, used frameworks or archi-
tectures and what we want to measure that are efficiency, scalability, expressiveness,
etc.

A data-parallel extension of haskell call nepal has been done in [8], an abstract
machine is responsible for the distribution of the data over the available processors.
multi-mlton [22] is a multi-core aware runtime for standard ml, which is an exten-
sion of the mlton compiler. It manages composable and asynchronous events using,
in particular, safe-futures. A description of other bridging models for hierarchical
architectures and other parallel languages can be found in [2]. Currently, we are not
aware of any safe and efficient functional parallel language dedicated to hierarchical
architectures.

5 Conclusion and future work

5.1 Conclusion

We have benchmarked different distributed applications using a flat bridging model
(bsp) and its hierarchical extension (multi-bsp). We used two ml-like languages for
both. We tried to compare both speedup and difficulty to write codes on rather different
and typical hpc applications. Currently, we are not aware of similar works in the litera-
ture. Regarding the proposed case study, in general, the hierarchical programs are more
efficient, but they are more difficult to write as a counterpart. As expected, there are
also some cases where designing and programming a hierarchical algorithm does not

5096 V. Allombert, F. Gava

1 3

yield much. Intuitively, to get a performance gain, you have to maximise the locality (in
the lowest memories of your machine) of calculations as well as the synchronisations/
communications. That is to say that we can conclude, without surprise, that to have
efficient multi-bsp algorithms, we need to massively exchanges data between the fastest
memories. Indeed, on standard intel or amd architectures, memories close to the physi-
cal threads (L1, L2 and L3 memories) are very fast. As a counter part, they are so small
that it is a challenge to maximise their usage. As expected, we must concentrate on
maximising data exchanges between computation units of the same memory locality.

Thanks to our approach, the bsp programs have been written incrementally from the
sequential ones, as well as the multi-bsp programs extend the bsp ones. This seems to
be an interesting point for software hpc development engineering: in a project, it is pos-
sible to work by successive additions of codes and it is not necessary to rewrite the
code from scratch. However, it is still less flexible than the skeleton approach where
only the patterns need to be efficiently implemented. Nevertheless, regarding an effi-
cient multi-bsp algorithm, it is simpler to implement it using multi-ml code rather than
in a skeleton framework.

5.2 Future work

The next phase will be to work on the optimisation of the previous programs. For
example, how the states are kept in the memories is not optimised at all and induces
many cache-misses. Using the last parameter of the multi-bsp model, that is the size of
the memories, should leads to better algorithms. That should also reduce the execution
time for exact apss by using a cache-conscious data layout [24]. Our methodology also
suffers from the fact that we make the hypothesis that the algorithms are known. How-
ever, designing an efficient bsp algorithm is harder than a sequential one. The effort is
even harder for multi-bsp even though we perform an incremental development.

In the continuity of this work, we see two interesting points:

1. Doing programming experiments of our languages with students or users; this will
allow to test if coding multi-bsp algorithms using multi-ml is really more difficult
than coding bsp algorithms with bsml and/or sequential algorithms with ocaml;
we think that designing the algorithms themselves is clearly the most difficult
part;

2. Comparing the experimental timings with the expected cost formulae. The sec-
ond author has already done this work in the context of bsp and bsml [13]. The
conclusion is that the main difficulty is finding these cost formulae.

References

 1. Alabduljalil MA, Tang X, Yang T (2013) Optimizing parallel algorithms for all pairs similarity search. In:
Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13,
New York, NY, USA. ACM, pp 203–212

 2. Allombert V (2017) Functional abstraction for programming multi-level architectures: formalisation and
implementation

 3. Allombert V, Gava F, Tesson J (2017) Multi-ML: programming multi-BSP algorithms in ML. Int J Paral-
lel Program 45(2):20

5097

1 3

Programming bsp and multi-bsp algorithms in ml

 4. Alt MH (2007) Using algorithmic skeletons for efficient grid computing with predictable performance.
Ph.D. thesis, Münster University

 5. Bayardo RJ, Ma Y, Srikant R (2017) Scaling up all pairs similarity search. In: Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, New York, NY, USA. ACM, pp 131–140

 6. Bisseling RH (2004) Parallel scientific computation: a structured approach using BSP and MPI. Oxford
University Press, Oxford

 7. Cappello F, Etiemble D (2000) MPI versus MPI+OpenMP on IBM SP for the NAS benchmarks. In: Pro-
ceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC ’00, Washington, DC, USA.
IEEE Computer Society

 8. Chakravarty MMT, Keller G, Lechtchinsky R, Pfannenstiel W (2001) Nepal-nested data parallelism in
Haskell. In: Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Process-
ing, London, UK. Springer-Verlag, pp 524–534

 9. Clarke EM, Henzinger TA, Veith H, Bloem R (2012) Handbook of model checking. Springer, Berlin
 10. Cole M (2004) Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel program-

ming. Parallel Comput 30(3):389–406
 11. Dolev D, Yao AC (1983) On the security of public key protocols. IEEE Trans Inf Theory 29(2):198–208
 12. Garavel H, Mateescu R, Smarandache I (2001) Parallel state space construction for model-checking.

Research report
 13. Gava F (2008) BSP functional programming: examples of a cost based methodology. In: Bubak M, van

Albada GD, Dongarra J, Sloot PMA (eds) Computational Science—ICCS 2008. Springer, Berlin Hei-
delberg, pp 375–385

 14. Gesbert L, Gava F, Loulergue F, Dabrowski F (2010) Bulk synchronous parallel ML with exceptions.
Future Gener Comput Syst 26(3):486–490

 15. Hamidouche K, Falcou J, Etiemble D (2011) A framework for an automatic hybrid MPI+OpenMP
code generation. In: Proceedings of the 19th High Performance Computing Symposia, San Diego, CA,
USA. Society for Computer Simulation International, pp 48–55

 16. Kessler CW (2000) NestStep: nested parallelism and virtual shared memory for the BSP model. J
Supercomput 17(3):245–262

 17. Li C, Hains G (2012) SGL: towards a bridging model for heterogeneous hierarchical platforms. Int J
Parallel Program 7(2):139–151

 18. Loidl H-W, Rubio F, Scaife N, Hammond K, Horiguchi S, Klusik U, Loogen R, Michaelson GJ, Peña
R, Priebe S, Rebón ÁJ, Trinder PW (2003) Comparing parallel functional languages: programming and
performance. High Order Symb Comput 16(3):203–251

 19. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a sys-
tem for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Confer-
ence on Management of Data, New York, NY, USA. ACM, pp 135–146

 20. Saad RT, Dal Zilio S, Berthomieu B (2011) Mixed shared-distributed hash tables approaches for par-
allel state space construction. In: International Symposium on Parallel and Distributed Computing
(ISPDC 2011), Cluj-Napoca, Romania

 21. Seo S, Yoon E, Kim J, Jin S, Kim J-S, Maeng S (2010) HAMA: an efficient matrix computation with
the MapReduce framework. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), pp 721–726

 22. Sivaramakrishnan KC, Ziarek L, Jagannathan S (2014) MultiMLton: a multicore-aware runtime for
standard ML. J Funct Program 24(06):613–674

 23. Skillicorn DB, Hill JMD, McColl WF (1997) Questions and answers about BSP. Sci Program
6(3):249–274

 24. Tang X, Alabduljalil M, Jin X, Yang T (2017) Partitioned similarity search with cache-conscious data
traversal. ACM Trans Knowl Discov Data 11(3):1–34

 25. Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
 26. Valiant LG (2011) A bridging model for multi-core computing. J Comput Syst Sci 77(1):154–166

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Programming bsp and multi-bsp algorithms in ml
	Abstract
	1 Introduction
	2 BSML and multi-ML: similar but different languages
	2.1 Programming BSP algorithms in ML
	2.1.1 The BSP bridging model
	2.1.2 The BSML language

	2.2 Programming Multi-BSP algorithms in ML
	2.2.1 The multi-BSP bridging model
	2.2.2 The multi-ML language

	3 Application cases
	3.1 Methodology
	3.2 First case: symbolic computation
	3.3 Second case: algorithmic skeletons and a numerical application
	3.4 Third case: big-data application

	4 Related work
	5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work

	References

