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Abstract
Software-defined networking (SDN) is a new paradigm which emerged in the net-
working area. Packet classification is an interesting topic that has considered in both 
traditional and SDN networks. Packet classification involves inspection of multiple 
fields against a set of thousands of rules called rule-set. With the increasing through-
put demands in modern networks and the growing size of rule-sets, performing 
wire-speed packet classification has become challenging and an important topic in 
recent years. Packet classification is called as many-field packet classification in the 
SDN because of increasing the number of header fields. In this paper, a scalable 
many-field packet classification by employing the extended tree (X-tree) integrated 
with an efficient probabilistic data structure called Cuckoo filter is proposed. X-tree 
has high performance from the lookup, insertion, and update aspects. However, 
X-tree has a high memory requirement, Cuckoo filter as a probabilistic data struc-
ture is integrated within each X-tree node to outperform memory requirements and 
providing more classification throughput. Our experiment results show that the pro-
posed approach achieves high throughput while requiring low memory. In addition, 
the proposed approach improves latency 2.4× , 6.15× and 4.75× in comparison with 
DBAMCP, BSOL-RC and BF-AQT for 64 k rule-set, respectively.
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1  Introduction

Modern networking technologies such as software-defined networking (SDN) 
have provided high-quality network services such as firewalls, quality of service, 
and network security. To enable such services, SDN used a network kernel func-
tion called packet classification. With the fast evolution of Internet traffic tech-
nologies, packet classification has become one of the foundational techniques of 
modern networking devices. Packet classification is the process of categorizing 
the incoming packets into flows and assigning a specific action to each of these 
flows. The traditional packet classification techniques use 5-fields, source IP, des-
tination IP, source port, destination port and protocol fields. While the SDN pro-
poses the many-field packet classification which exploits many number of fields 
from 15 to 40 fields.

1.1 � Problem statement

High-performance packet classification algorithms have gained a great inter-
est from academics and industrialists. The packet classification assigns action 
according to highest priority rule selected among a set of predefined rules. Open-
Flow [1] is an open standard communications protocol that provides the many-
field packet classification. OpenFlow uses the rule-set to perform packet classi-
fication on the incoming packets. Rule-set of a classifier is a set of predefined 
rules. This set may consist thousands of rules, which each rule contains up to 15 
matching fields in the newest OpenFlow version [2]. Each field may require dif-
ferent matching type according to the field’s type (exact, prefix, and range) [3]. 
The main problems that make it as a challenge to perform the wire-speed packet 
classification are the growing size of rule-set, exponentially increasing through-
put demands in modern networks, and high packet header dimensionality.

1.2 � Contributions

Many hardware- and software-based packet classification solutions have been 
proposed. Decision tree-based algorithms are software-based solutions can pro-
vide high throughput by representing the rule-set as a tree data structure to limit 
the number of rule comparisons. The query speed depends on the height of deci-
sion tree. However, decision tree-based algorithms require an excessive amount 
of memory because it redefines the whole rules at each tree level. In this paper, 
we propose a novel decision tree-based approach called CX-tree that can achieve 
high classification throughput with low memory. The main idea is to use a space-
efficient probabilistic data structure called Cuckoo filter (CF) [4] integrated with 
an extended node tree (X-tree) [5] for many-field packet classification. Our choice 
of X-tree came from that the X-tree has high query performance. This is because 
the following reasons:
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1.	 At each tree level, only one branch of the X-tree needs to be expanded for each 
incoming packet.

2.	 X-tree is a balanced tree data structure that M rules can be indexed in each node. 
This means that it gives lower tree height.

Cuckoo filter is an approximate membership query (AMQ) data structure. AMQ 
data structures are used in many databases, networking, and memory systems to 
handle the large amounts of data. Integrating Cuckoo filter within the tree nodes can 
minimize the high memory requirement of X-tree and increases the lookup time. 
Cuckoo filter uses a small amount of memory to represent a large set of elements 
and supports a membership query with small false positive probability.

The proposed approach represents each rule from the rule-set as a mini-
mum bounding rectangle (MBR) in X-tree by converting its source/destination IP 
addresses to range values. Then, it hashes the remaining fields from each rule in 
a Cuckoo filter integrated with each node. The experimental results show that the 
proposed data structure achieves high classification throughput with low latency in 
comparison with the most important works done in this area. The main contribu-
tions of this paper are as follows:

–	 Proposal of the CX-tree (integration of X-tree and Cuckoo filters) to organize the 
rule-set in an X-tree integrated with a Cuckoo filter.

–	 Using CX-tree for the first time for many-field packet classification.
–	 Perform the performance comparison of the proposed approach against our pre-

vious works [26, 27] and three modern many-field packet classification tech-
niques including (DBAMCP, BSOL-RC and BF-AQT).

The rest of this paper is organized as follows. Section 2 reviews the related works. 
Section 3 presents the concept of X-tree and Cuckoo filter data structures. Section 4 
describes CX-tree packet classification technique. Section 5 evaluates our proposed 
technique. Finally, we conclude the paper in Sect. 6.

2 � Related works

In this section, the related works in many-field packet classification in SDN is 
reviewed. Many researchers have focused to address different problems in SDN. 
In [6], a compressive survey for multi-controller research in SDN is proposed. It 
introduced the overview of multi-controller, including the origin of multi-controller 
and its challenges, and then, classified multi-controller research into four aspects 
(scalability, consistency, reliability, and load balancing). In [7], presented an adap-
tive update mechanism based on the quality of service (QoS)-aware traffic classi-
fication and real-time network status. In [8], a multiagent-based service composi-
tion approach, using agent-matchmakers and agent-representatives for the efficient 
retrieval of distributed services and propagation of information within the agent 
network to reduce the amount of brute-force search is proposed. Other researchers 
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focused on one of the most important functions in SDN which is the packet clas-
sification. Packet classification has gained a big attention from the network devel-
opers. The classical packet classification is the network function that supported by 
the traditional network devices to deal with forwarding packet according to 5 packet 
header fields only. Many-field packet classification is the network function that used 
to classify packets into flows according to a large predefined set of rules called rule-
set. Each rule in that rule-set contains up to 15 matching fields. In the following 
sections, the current classical and many-field packet classification techniques are 
described briefly.

2.1 � Classical packet classification

Many of hardware and software solutions for the classical packet classification prob-
lem have been proposed. Hardware solutions such as Ternary Content Addressable 
Memory (TCAM) [9] and Bitmap Intersection [10, 11] provide a good classification 
performance by using parallel lookup but using hardware resources limit the size 
of the forwarding tables and rule-sets. Hence, the software solutions are required to 
solve the scalability problem. Software solutions use extendible data structures to 
store the rule-sets and forwarding tables. The current classical packet classification 
solutions can be classified in the following subsections.

2.1.1 � Basic search algorithms

This group contains the simplest solutions for packet classification such as Linear 
Search, Hierarchical Tries (H-Tries), and Hierarchical Binary Search Tree. The lin-
ear search algorithm uses a simple list to store the rules in decreasing priority order 
and searches for matching in that list in a sequential manner. Hierarchical tries use 
the prefixes to recursively build two-dimensional trie, and then, for each incoming 
packet, it traverses that trie looking for matching rule. The solutions that belong to 
this group store the rule-sets in a basic data structure with a small amount of mem-
ory, but it suffers from the scalability problem.

2.1.2 � Heuristic algorithms

This group contains solutions such as the Recursive Flow Classification (RFC) [12], 
and Distributed Cross-producing of Field Labels (DCFL) [13]. The classification 
query is divided into a number of exact match queries. RFC solution can be used for 
classical and many-field packet classification. It divides the rule-set into a smaller 
set and performs the same single-field matching over several phases. This group 
requires more preprocessing time to perform rule-sets and query dividing.

2.1.3 � Decomposition‑based algorithms

In this group, the rule-sets are divided into several single-field rule-sets, and then 
lookup for incoming packet fields performed separately. The results are then 
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combined from all fields. Field Split Bit-Vector (FSBV) [14] is an example of this 
group solution. This group spends more additional memory and processing time to 
merge the fields results in order to obtain the final result.

2.1.4 � Decision tree‑based algorithm

In decision tree-based solutions, each header field is defined as a search space, and 
then, these spaces are divided into smaller sub-spaces and so on. To classify incom-
ing packet, it performs a linear search on these sub-spaces [15]. The HyperCuts [16, 
17] algorithm generates a shorter decision tree by performing multiple field cut-
ting per step to form shorter decision tree. It has high scalability and low rule-set 
dependency. The main decision tree-based solutions drawback is its high memory 
requirement.

2.2 � Many‑field packet classification

In recent years, the researchers have focused on many-field packet classification 
problems that classify the incoming packets according to the rule-sets with more 
than 15 fields. Following, we list a group of the most recent works that have tried to 
accelerate the packet classification from different directions and are related to our 
work. Several software-based many-field packet classification algorithms have been 
proposed. Most of these proposals use tree data structures to represent the rule-sets. 
Some of them use probabilistic data structures to accelerate querying these trees. 
The authors in [18] proposed a packet classification algorithm using a Bloom filter 
in a leaf-pushing area-based quad-tree. They hash the tree nodes in a Bloom filter 
stored in on-chip memories. Another Bloom search solution proposed in [19] which 
uses the GPU-accelerated implementation. The authors in [20] proposed a solution 
based on decision tree for many-field packet classification. They called their solution 
Binary search on levels (BSOL). They represent the rules as a hyper-rectangle in a 
two-dimensional address space, then generate a binary decision tree and associate 
each tree node with space. The space of each node is divided between its two chil-
dren. They associate each node with a filter list. They concluded that their solution 
has a high classification speed. The authors of [21] employed a replication control 
scheme on the binary search on levels (BSOL) algorithm to minimize the memory 
requirements, and the processing latency, then call the new algorithm as (BSOL-
RC). The memory requirement is still high because they have to store the entire rule-
set plus many additional data in their tree. The authors in [22] proposed many-field 
packet classification approach using range-tree [23, 24] and hash table [25] to build 
an efficient search algorithm. Firstly, they construct a range-tree or a hash table for 
each filed according to the field’s type. Subsequently, they query their data struc-
ture for each field of the incoming packets independently and then merge the partial 
searching results to compute the final result. This approach also requires large pre-
processing time and needs high processing latency including the time required to 
reach in the range-trees, the time required to search in the hash tables and the merg-
ing time
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In this work, the X-tree [5] is integrated with an approximate membership query 
(AMQ) data structure called Cuckoo filter to create high-performance packet clas-
sifier. The prefix fields of each rule are used to build the X-tree, then the remain-
ing fields from each rule are hashed into Cuckoo filters and integrated them to the 
X-tree’s nodes. The resulted CX-tree is a balanced tree which has high search speed 
and requires low memory due to integrating Cuckoo filters in its nodes. Compared 
to our previous works [26, 27], employing X-tree gives better processing latency and 
integrating Cuckoo filter with X-tree gives better memory utilization.

3 � Cuckoo filter and X‑tree data structures concepts

To design the proposed high-performance classifier, a new data structure is created 
and is called as Cuckoo filter-based X-tree (CX-tree). The CX-tree is an extended 
node tree (X-tree) [5] integrated with Cuckoo filters [4]. The CX-tree has been used 
to reorganize the rule-set in a tree data structure in order to accelerate the classifica-
tion process and to minimize the memory requirements. In the next subsections, the 
X-tree and Cuckoo filter data structures are described in details.

3.1 � Cuckoo filter

A Cuckoo Filter (CF) [4] is a probabilistic data structure. Its idea was originated 
from Cuckoo hashing, which was proposed by Pagh et  al. [25]. CF can perform 
the usual probabilistic data structures operations (insertion, and query), as well as 
removing, re-size, and merging. An empty CF is an array of buckets. Each bucket 
can store K fingerprints. CF usually uses two hashing functions to generate a key 
and two bucket numbers. If the CF fails to insert the key in the first bucket (the slot 
already contains k keys), then it will try to insert it into the second bucket. If the 
alternative bucket is also full, then the CF uses specific operation called reallocation 
operation to deal with such situations. An advanced version of CF uses only one 
bucket number to insert the element’s key, and if it fails to insert the key in that posi-
tion, then it generates another bucket number using the key in order to accelerate the 
reallocation operation. CF has a high-speed query and low memory requirements.

Figure 1 depicts a Cuckoo filter with the size of 8 buckets, each bucket can store 
k = 1 item. Initially, the items b and c are already in the Cuckoo filter. In Fig. 1 (a) 
adding item “a”, h1(a) = 1 , and h2(a) = 6 , both buckets are checked if one of them 
is empty then fh(a) is added into that empty bucket. In this case, both h1(a) = 1 , 
and h2(a) = 6 buckets are empty, then one of them randomly is selected (bucket(6)) 
and fh(a) is inserted into it. In Fig. 1b adding item “d”, h1(d) = 2 , and h2(d) = 5 . In 
this case, one bucket is empty (bucket(5)), then fh(d) can be added into that empty 
bucket. In Fig. 1c adding item “e ”, h1(e) = 2 , and h2(e) = 6 . In this case, both buck-
ets are not empty, then it is added in one of those buckets (bucket 6), kicks out the 
existing item (“a”), and reinserts this old item to its own alternate location (bucket 
1). The process of kicking out of existing items and reinserting them in their alter-
nate locations called reallocation process. In some cases, reallocating the old item 
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may also require kicking out another existing item, and this procedure may repeat 
until a vacant bucket is found or the maximum number of reallocation is reached 
(e.g., 150 times in our implementation). Even with a long sequence of reallocation 
process, Cuckoo filter still has O(1) insertion time and high space occupancy.

To lookup Cuckoo filter for a given item x, first, calculate x’s fingerprint fh(x) and 
two candidate buckets h1(x), and h2(x), and then read these two buckets. If there 
is fingerprint match fh(x) in these two buckets then returns true otherwise, returns 
false. The Cuckoo filter has more advanced features so that Cuckoo filter ensures no 
false negatives as long as bucket overflow never occurs, has better lookup perfor-
mance, and supports deleting items dynamically [28].

3.2 � eXtended node tree (X‑tree)

The X-tree (eXtended node trees) is a hierarchical data structure [5] as an improved 
version of R*-tree [9]. X-tree has been used widely to dynamic organization of the 
high-dimensional data and geographical coordinates objects as rectangles or poly-
gons. X-tree is a balanced tree which describes multi-dimensional geographical 
objects as items of nodes by generating minimum bounding rectangle (MBR) for 
each item and then describes each group of nearby MBRs as bigger MBR in the 
upper levels. The main improvement points of the X-tree are the overlap-free split 
and the supernodes. The overlap-free split means that the search space in X-trees 
can be divided into disjoint areas.

X-trees can organize its objects automatically so that the reorganization after 
the insertion or deletion is not necessary. Each internal node in X-tree of M degree 
can be either normal directory nodes or supernode. Each directory node can store 
m ( M

2
≤ m ≤ M ) entries unless it is a supernode (can store more than M entries). 

Each entry is described as MBR together with a pointer to a node in next level. 

(a)

(b)

(c)

Fig. 1   a Inserting “a” at bucket (6), b inserting “d” at bucket (5), c inserting item “e” at bucket(6)
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Each MBR describes a group of sub-MBRs at the next lower level located within its 
bounded area. Figure 2 presents the overall structure of the X-tree.

The supernodes are extended oversized nodes used to avoid the overlap among 
MBRs. The highly overlapped MBRs cause a visit to more than one branch of the 
tree for similar queries. To avoid such problem, X-tree maintains the split history 
of each node and uses it when an internal node overflows. X-tree does not perform 
split and creates a supernode as an alternative solution in case of an unbalanced split 
(after the split, one of the resulted nodes is full and the other is semi-empty). Each 
data node in X-tree contains MBR and a pointer to the real data objects.

4 � The proposed cuckoo filter‑based X‑tree

CX-tree likes X-tree consists of three different types of nodes: data nodes, normal 
directory nodes, and supernodes. The data nodes contain minimum bounding rec-
tangles (MBRs) integrated with Cuckoo filters. Each MBR is represented as a node 
entry in CX-tree and contains a pointer to a real data in the database. The direc-
tory nodes contain MBRs integrated with Cuckoo filters and pointers to store the 
addresses of the next level nodes that belong to its directory. The supernodes are 
oversized directory nodes used to avoid unbalanced splits in the directory that would 
result in an inefficient directory structure. The root node can store between (2 to M) 
entries unless it is a leaf (can store zero or a single entry). The internal nodes and the 
data nodes can store m ( M

2
≤ m ≤ M ) unless it is a supernode (can store more than 

M entries).
CX-tree can organize elements dynamically and can store elements with multi-

dimensional information such as rectangles or polygons and geographical objects, 
where each object contains p multi-dimensional attributes and q identities. The root 
and internal nodes contain entries in the form of (MBR, CF, Pointer) where MBR 
is the d-dimensions bounded rectangle which covers the p multi-dimensional attrib-
utes. CF is a Cuckoo filter which stores the q identities whose multi-dimensional 
attributes are represented by the MBR, and the Pointer stores the address of the next 
level. The data nodes contain entries in the form of (MBR, CF, Pointer) where MBR 

Fig. 2   The overall structure of the X-tree
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is a d-dimensions bounded rectangle which covers the p multi-dimensional attrib-
utes. CF is a Cuckoo filter which stores the q identities, and the Pointer is an address 
of data items in the database.

4.1 � Many‑field packet classification using CX‑tree

In this work, the X-tree is used to represent the rule-set by changing the source/
destination IP addresses from each rule into a range value, and then these ranges are 
used to create MBRs to build the X-tree. After that, instead of storing the remain-
ing fields of each rule, they are hashed into a Cuckoo filter and are integrated in the 
corresponding data node for improving memory utilization and search performance. 
Subsequently, these fields are hashed in the bigger Cuckoo filters in the next upper 
levels. Figure 3 depicts the block diagram of the proposed system.1

In MBR creation, to create the MBR, the SIP and DIP addresses are selected 
from each rule. In Cuckoo filter programming, the remaining fields are hashed to the 
Cuckoo filters, and then in CX-tree construction the resulted MBRs and Cuckoo fil-
ters are selected to construct the CX-tree. To query the resulted CX-tree, the incom-
ing packets one by one is checked in the CX-tree lookup and Cuckoo filter search 
to get the matched rules as results and apply the related actions. In the next sub-
sections, the proposed packet classification approach using CX-tree is described in 
details.

Field 
Length 

Field 
Name 

32 SIP 
32 DIP 
32 Ingr 

64 Meta- 
data

48 Eth src 
48 Eth dst 
16 Eth type 

12 VLAN 
ID 

3 VLAN 
priority 

20 MPLS 
label

3 MPLS 
tfc 

8 Prtl 
6 ToS 
16 SP 
16 DP 

MBR creation

Cuckoo filter 
programming

CX-tree 
construction

CX-tre
nstru

CX-tree 
lookup & 

Cuckoo filter 
search

CX-tre

ResultsResul

Rule-Set

Incoming 
packets

Actions

Fig. 3   Block diagram of the proposed system

1  The codes is available in: https​://githu​b.com/Aladd​inAbd​ulhas​san/CX-tree.

https://github.com/AladdinAbdulhassan/CX-tree
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4.1.1 � MBRs creation and X‑tree construction

To construct the CX-tree, the X-tree is built from the rule-set by creating MBRs 
using the source IP (SIP), and destination IP (DIP) addresses. To create MBR for 
a rule, its prefixes is converted into range values. To understand the MBRs crea-
tion, a simple example is described in Table 1. Table 1 shows rule-set with 14 rules 
with rule IDs (M-Z). Each rule contains two multi-dimensional attributes (SIP & 
DIP) and q identities (not displayed in the table). Every two prefixes of a rule are 
converted into MBR containing two ranges. Each range is described by its start and 
end values (R.start, R.end). The R.start and R.end are the minimum and maximum 
possible values that the IP prefix can represent, respectively. After creating MBRs, 
these MBRs are inserted one by one into an empty X-tree. The insertion opera-
tion of X-tree is described in the algorithm in Fig. 4 and the final resulted X-tree of 
(M = 3) degree is depicted in Fig. 5. The graphical representation of the correspond-
ing X-tree for the rules in Table 1 is depicted in Fig. 6. Each MBR has been drawn 
as a rectangle in geometric coordinates. The filled rectangles represent the real rules 
(X-tree data nodes). The others rectangles represent the directory and supernodes 
that is generated during X-tree construction operation.

The insert operation of X-tree is performed by creating MBRs from the rules, and 
then traversing the X-tree from the root node to the data nodes at each level. The 
X-tree selects the node entry that can cover the new MBR with minimum area and 
moves to its children until reaching the data nodes. At the corresponding data node, 
if that node can accommodate the new MBR, then inserts the MBR into that data 
node and updates the MBRs in the path from the root to the data node so that all of 
them should cover the new MBR. In case of overflow, after inserting the new entry 
to a full node, the selected node will contain M + 1 entries. In some cases when the 
node entries are highly overloaded, the split operation is not required even when the 
selected node is already full. X-tree changes the overflowed node to supernodes. The 

Table 1   A simple example of a 
small rule-set of 14 rules, and 
the converting process to the 
range values

RID SIP R. Start R. End DIP R. Start R. End

M 10* 128 191 00011* 24 31
N 101* 160 191 00000* 0 7
O 110* 192 223 10* 128 191
P 010* 64 95 01101* 104 111
Q 10101* 168 175 00* 0 63
R 111* 224 255 00110* 48 55
S 011* 96 127 100* 128 159
T 000* 0 31 0101* 80 95
U 10011* 152 159 100* 128 159
V 01* 64 127 10100* 160 167
W 1001* 144 159 00011* 24 31
X 001* 32 63 0100* 64 79
Y 11* 192 255 01101* 104 111
Z 01* 64 127 00* 0 63
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supernodes are extended oversized nodes that can store more than M entries. When 
the overflowed node can be split without overlapping, two new nodes should be cre-
ated. Subsequently, two entries are selected as seeds so that they have the maximum 
distance among all. Then two new nodes are created and assigned these seeds to 
them. After that, assign the remaining M − 1 entries to node 1 and node 2 accord-
ing to which of node 1 or node 2 can cover the entry with minimum area. This is 
depended on the distance between the entries and the seed that firstly inserted to the 
nodes.

Fig. 4   Proposed CX-tree insertion algorithm

A B 

C D E F G H 

S V U O Y X Z P T W M Q N R 

MBR(I)+Cuckoo filter Root node 

Directory node 

S VLeaves 

Super node 

Fig. 5   The corresponding X-tree for the 14 rules from Table 1
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After that, X-tree will perform splitting into the upper levels if necessary. If split-
ting is required on the root node, then it will split the root node into two new nodes 
and generates a new root with two entries to cover the newly generated nodes, and 
increases the tree height by one.

4.1.2 � Cuckoo filters programming

When the construction of X-tree is completed, the integrating of Cuckoo filters is 
started. The Cuckoo filter programming is a bottom-up operation so that integrat-
ing the Cuckoo filters are started from the data nodes and traverse up to the root. In 
the data nodes, all the remaining fields of each rule are hashed to an empty small 
Cuckoo filter and integrate it with the node’s MBR in the data node’s entry. In the 
next upper levels, at each level, all the Cuckoo filters that are related to the same 
entry are merged to create a bigger Cuckoo filter and are integrated together with the 
node’s MBR in the directory or supernode’s entry. At each level, the node entries 
will contain Cuckoo filters and fingerprints for all the remaining fields of the rules 
that is bounded by the corresponding MBR. Figure 7 depicts the process of integrat-
ing Cuckoo filters to the X-tree from Fig. 5.

4.1.3 � CX‑tree lookup and cuckoo filter search

To classify an incoming packet (test whether it matches a rule in the rule-set) 
using CX-tree, two queries are required: X-tree query and Cuckoo filters query. 
These queries are performed simultaneously in the CX-tree. Firstly, it creates a 
query MBR from the queried packet, generates the fingerprint and bucket locations 
of the remaining fields that are required for Cuckoo filter query. Once the queries 

H

A

C

D

E

F

G

B

Fig. 6   The graphical representation for the MBRs resulted from 14 rules from Table 1
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parameters are generated, the query process starts by traversing the CX-tree from the 
root to the data nodes. At each level, it selects appropriate node entry that its MBR 
can accommodate the query MBR with minimum area and its Cuckoo filter gives 
positive results for all the remaining fields queries. Then, travels to that node entries’ 
children.

At the data nodes, if there are more than one node entry that match the query 
MBR and its Cuckoo filter, the rule with the highest priority as a result is reported. 
To search for a given item x in a CF, first calculates x’s fingerprint fh(x) and two can-
didate buckets h1(x), and h2(x), and then read these two buckets. If there is finger-
print match fh(x) in these two buckets then return true, otherwise, return false. The 
used Cuckoo filters are longer in the upper levels than the lower levels. They have 
the same number of buckets if they belong to the same tree level. For query purpose, 
we build a special hashing function to get a static length fingerprint fh(x) with vari-
able length buckets h1(x), and h2(x). The special hashing function is a modified ver-
sion of Murmurhashing2 that generates variable fingerprint size in different level of 
X-tree. That means, the number of bits returned from the hashing function at level 
L is more than the number of bits returned from the same hashing function at level 
L + 1 . The same hashing function is used to hash the remaining fields to the Cuckoo 
filters and to query them. In this way, we can query a set of Cuckoo filters with dif-
ferent size. Table 2 shows a simple example of the hashing function results at differ-
ent tree level when hashing the word “TCP” for Cuckoo filters with different size. 
Note that h2(x) can be generated using the exclusive-or between fh(x) and h1(x).

Fig. 7   Integrating CFs to the X-tree

Table 2   A simple example to 
show the size and value 8 bits 
fingerprint fh(x), and a variable 
size candidate bucket h1(x) 
when hashing the word “TCP” 
in a data node at the proposed 
CX-tree with 5 levels using our 
hashing function

Tree level fh(x) 
size 
(bits)

h1(x) 
size 
(bits)

fh(x) value h1(x) value

Root 8 16 01001010 1101000011110100
Level 2 8 13 11101000 1100110100111
Level 3 8 11 11010010 10100011010
Level 4 8 8 10100001 10100111
Data node 8 6 01010110 101010
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4.2 � Theoretical analysis

In this section, the query time, and memory consumption of the proposed data struc-
ture is analyzed theoretically. Query time (T) is the amount of the time that the clas-
sifier needs to classify single packet theoretically. The maximum height (h) for an 
X-tree that stores N items (rules) and has m as minimum number of entries at each 
node is:

To query an X-tree, it is needed to visit one branch only at each level. Since one 
Cuckoo filter at each node’s entry is used, then it is needed to query m filter at each 
level. Cuckoo filter requires a fixed number of memory accesses (at most two mem-
ory accesses) [16]. The total query time for CX-tree is

Memory consumption (M) is the amount of the memory needed to store the rule-set 
in the proposed data structure. Since the whole rule-set fields in Cuckoo filters at 
each tree level is stored, and the X-tree has logm N levels. To store rule-set with N 
rules, each rule has K fields, which the average field’s size is L bits. Storing one item 
in Cuckoo filter requires C bits [28].

Where f is the fingerprint size, and � is the load factor. To store N rules with K fields 
for each rule, then the total space size that is required to store the CX-tree in the 
memory is:

5 � Performance evaluation

The performance evaluation has been provided using simulated rule-sets created by 
Classbench tool [29]. We have generated three types of 15 fields rule-sets: access 
control list (ACL), IP chain (IPC), and firewall (FW) with different sizes of each 
type (100 rule − 1 M rules). Also, the generated rule-sets have different specifi-
cations as depicted in Table  3. We have extended these rule-sets from 5-fields to 
15-fields rule-sets by generating more fields for each rule. All the generated fields 
are exact fields and required only exact matching. Since the proposed method does 
not depend on the properties of the remaining fields. We have created X-tree for 
each of rule-set size, and the degree of the tree have set to M = 6 . Therefore, the 
maximum supernode size is set to 12, and four supernodes in each tree level as max-
imum. We have provided performance comparison against the many-field packet 
classification in [22] (DBAMCP), [21] (BSOL-RC), and (BF-AQT) [18]. We have 

(1)hmax = ⌈logm N⌉ − 1

(2)TCX-tree = O((logm N) − 1).

(3)C =
f

�
,

(4)MCX-tree = (K(logm N) − 1)) ×
f

�
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re-coded and implemented the compared approaches to get a fairer comparison by 
testing it in our system and using our rule-sets. The same settings have been applied 
to the compared approaches when applicable. All experiments are conducted on 
Asus X299 delux h1 equipped with Cor i-9 7900 CPU, 64 GB DDR4 3200 g-skill 
(4*16) RAM, and 1080 11GB DDR5 GPU.

5.1 � Classification throughput

The classification throughput is defined as the average number of packets that our 
system can classify in a single second. The classification throughput is evaluated 
using rule-sets with the size of (100–10,000 rules). The results of the proposed 
approach show that it can classify packets in up to 4.5 Million PPS in small rule-
sets and up to 3.48 Million PPS in large rule-sets as can be seen in Fig.  8. The 
simulated rule-sets have different characteristics from each other, hence the perfor-
mance differs when working on different types of the rule-sets. The X-tree’s lookup 
time grows logarithmically with the rule-set size that gives X-tree the scalability 
to very large rule-sets sizes [5]. Comparing to the Bloom filter [30], using Cuckoo 
filter gives better results with the aspect of different rule-sets type. The classifica-
tion throughput is decreased significantly when we remove the integrated Cuckoo 
filters and the rule’s fields themselves in the leaves is stored as can be seen in Fig. 9. 

Table 3   The simulation rule-sets type, size, and specifications

Rule-set type No. of rule Specifications

ACL 100 100 Less than 1% wild-card
ACL 1 K 916 Ratio in SIP & DIP
ACL 5 K 4417 Source port fields are all wild-cards
ACL 10 K 9602 More than 80 % distinct field value in SIP & DIP
ACL 100 K 96,000 Low overlapping rules
ACL 1 M 972,000
IPC 100 100 More than 6 % wild-card
IPC 1 K 937 Ratio in SIP & DIP
IPC 5 K 4459 More than 38 % distinct field value in SIP & DIP
IPC 10 K 9037 Shorter prefixes length than ACL
IPC 100 K 96,000 and more overlapped rules than ACL
IPC 1 M 980,048
FW 100 100 60% wild-card ratio in SIP
FW 1 K 790 25% wild-card ratio in DIP
FW 5 K 4652 26% distinct field value in SIP & DIP
FW 10 K 9311 Destination port fields are all wild-cards
FW 100 K 96,000 and highly overlapped rules
FW 1 M 963,042
Input tracing 100, 1 k, 10 K
Packets 100 k, 1 M
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Integrating Cuckoo filters in the internal nodes prevents the unnecessary tree search 
(in the case of MBR success matching and Cuckoo filter query fail). Also, storing 
the rules in the leaves requires more matching processes and memory accesses.

5.2 � Processing latency

The processing latency is defined as the average time that is required to classify a 
single packet measured by �s . To measure the processing latency, rule-sets size in 
the range of (1 K–64 K) is used. The processing latency of our approach is compared 
against our previous work (AMQ-R-tree) [27] and three many-field packet classifica-
tion approaches (A Decomposition-Based Approach for Scalable Many-Field Packet 
Classification on Multi-core Processors (DBAMCP) [22], Binary Search on Levels 
with Replication Control (BSOL-RC) [21], and Packet Classification Using a Bloom 
Filter in a Leaf-Pushing Area-based Quad-Trie (BF-AQT) [18]). These algorithms 
have been chosen because they are related to our proposed algorithm so that they 
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use tree data structures in their solutions [18]. Uses a tree data structure combined 
with a Bloom filter. All these approaches use 15 field rule-sets generated by the 
same tool (Classbench tool) that we use to generate our rule-sets. The DBAMCP 
uses range-tree and hashing to search the fields of the input packet header in parallel. 
After that, it merges the partial results from all the fields in rule-ID sets to produce 
the final match results. BSOL-RC enhances the binary search on levels in BSOL 
[20] by employing a replication control scheme. The R-tree in our previous work 
has more overlapped MBRs than the X-tree in the proposed approach so that in the 
X-trees, instead of splitting the nodes that have overlapped MBRs, the overlapped 
MBRs have been gathered by employing supernodes. The range-tree in DBAMCP 
has empty nodes and more tree levels than CX-tree in our approach. Also, it uses a 
separated filter to store the remainder fields and a lot of hash tables. The process-
ing latency of DBAMCP contains range-tree search, filter and hash tables query, 
and partial results merging process. Hence, as can be seen in Fig. 10, the proposed 
approach latency outperforms the DBAMCP approach by more than (2x) times. The 
BSOL-RC constructs an unbalanced binary search tree and uses a set of hash tables 
to store the leaf nodes for every tree level contains a leaf (the leaves are not at the 
same level). Moreover, in BSOL-RC, the rule-set may be divided into more than two 
sub-rule-sets because that single decision tree may not be scalable for large rule-sets. 
BSOL-RC stores replicated filters in a new decision tree to result in fewer memory 
requirements. Hence, as can be seen in Fig. 10 increasing the rule-sets size increases 
BSOL-RC latency rapidly. Also, the proposed approach outperforms BSOL-RC 
with respect to various rule-set sizes. The BF-AQT builds a leaf-pushing area-based 
quad-Tree by assigning codewords for SIP&DIP fields. For SIP&DIP that have var-
ied lengths, they determine the codewords by the shorter length. For example, for 
given rule with SIP&DIP = (11 ∗, 101 ∗) , since DIP is longer, they extend the SIP 
to three bits, 110 ∗ and 111 ∗ , then they generate two codewords for each one com-
bined with DIP. For SIP&DIP that are varied in length with large number of bits, 
the BF-AQT generates a huge number of codewords and stores these codewords in a 
hash table. Hence, it requires more processing latency.
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5.3 � Memory consumption

The proposed classifier’s memory consumption has been enhanced significantly 
when X-tree is integrated with Cuckoo filter. Since our experiments use rule-sets 
with different sizes. We use Bytes per rule (BpR) to provide a better evaluation of 
proposed data structure memory consumption. BpR is equal to the total required 
memory to represent the entire rule-set in the proposed data structure divided by 
the number of rules. Figure 11 shows the required Bytes per rule (BpR) for the pro-
posed data structure and comparison against our previous works (R-tree [26], AMQ-
R-tree [27]), and other three many-field packet classification algorithms including 
(DBAMCP [22], BSOL-RC [21], and BF-AQT [18]). As can be seen, the proposed 
data structure requires 40–96 Bytes to store each rule for rule-sets of size 20 K to 
100 K. As a result, the proposed data structure does not incur any exponentially 
increased memory. Moreover, the average required memory of the proposed data 
structure is only 67 Bytes for rule-sets with the size of up to 100 K rules that means 
it supports high scalability from the memory aspect. As a comparison, the proposed 
approach outperforms the DBAMCP, BSOL-RC and BF-AQT more than (1.5× ) 
times. Comparing to our previous works, in [26] the R-tree have been built using 
SIP & DIP addresses. It stores the whole rule-set in every level in the R-tree, and 
integrating Cuckoo filters to store the remaining fields of the rules causes the pro-
posed approach achieves better memory utilization. In [27] the R-tree has been used 
instead of the X-tree in the proposed approach, using the supernodes in X-trees 
makes X-trees to have less tree levels than R-trees. Less tree levels means less mem-
ory consumption.

5.4 � Classification accuracy

Using the Cuckoo filter in the proposed system gives a small false positive probabil-
ity. In addition, it does not provide false negatives. In other words, when querying 
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such data structures, the result will be either “possibly in the set” or “definitely not 
in set”. To hash n elements to a Cuckoo filter, if k is the number of hash functions, m 
is the number of bits in the filter array, f is the fingerprint bits, and b is bucket size, 
then:

As can be seen from CF false positive probability equation (Eq. 5) that the probabil-
ity of false positive is decreased as f is increased (the number of bits in the finger-
print), and is increased as b is increased (the bucket size). Due to the use of Cuckoo 
filter in each X-tree level, the false positive rate cannot be theoretically calculated 
because that the X-tree is dynamically originated and the size of Cuckoo filter is 
variable at each level. The false positive probability has been calculated experimen-
tally using proposed classifier. It uses a variable number of the incoming packets 
that have been generated especially to match the existing rules, and then the ratio 
between the incoming packets that have been classified as expected and those that 
failed to find its corresponding rules. The resulted false positive probability has been 
compared against the false positive rate when integrating the Bloom filter in our 
proposed classifier instead of Cuckoo filter. The false positive probability of Bloom 
filter is:

As can be seen from BF false positive probability equation (Eq. 6) that the probabil-
ity of false positives decreases as m increases, and increases as n and/or k increases. 
In the experimental implementation, the size of fingerprints f in CF is set to 2 Byte 
in average depending on the size of rule-set and the X-tree node level, bucket size b 
to 4 slots. The BF array size m and the number of hashed elements in each BF n are 
set to variable size depending on the corresponding X-tree node level, and four hash-
ing function are used k.

The results show that the proposed classifier has less false positive rate when 
using the Cuckoo filter as can be seen in Table 4. The proposed solution has false 
positive rate 15 ∗ 10−5 . This rate includes false positive from all levels and the X-tree 
itself. Noted that selecting high-quality hashing function and appropriated bucket 
length for the filter decrease the false positive rate. We have used simple hashing 
functions such as (Murmurhashing2 [31], and CRC32 [32]). CF has very small false 
positive rate because it uses the reallocation technique that prevents inserted ele-
ments collision.

(5)CF false positive probability = 1 −
(
1 −

1

2f

)2b

≃
2b

2f

(6)BF false positive probability = (1 − e
−kn

m )
k

Table 4   False positive rate 
comparison

Approach False positive probability False positive

1 K 10 K 100 K 1 M

BF based X-tree 2 24 231 2137 0.00215
CF based X-tree 0 2 14 158 0.000156
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6 � Conclusion

In this work, we proposed a new data structure that called CX-tree. The CX-tree 
is an X-tree that includes Cuckoo filters in its nodes. The proposed CX-tree data 
structure is used in many-field packet classification as an important task in software-
defined networking. The X-tree needs more memory than the original rule-sets 
themselves. Hence, we integrate an approximated membership query data structure 
named Cuckoo filter in the X-tree nodes as a query data structure. Cuckoo filters 
require a smaller querying time comparing with other approximated membership 
query data structures. Cuckoo filter had been used to increase the classification 
throughput as well as to decrease the memory requirements. We concluded from 
the results that the proposed data structure decreases the required memory to store 
the rule-set to less than half compared to our previous work [26], which stored the 
rule-sets directly in R-tree without the use of Cuckoo filters. We have also concluded 
that the proposed method has reduced the processing latency by half in compared to 
our previous work AMQ-R-tree [27]. As well as the proposed approach has outper-
formed the other compared many-field packet classification algorithms from classifi-
cation throughput, processing latency, and memory consumption aspects.

References

	 1.	 McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner 
J (2008) OpenFlow: enabling innovation in campus networks. SIGCOMM Comput Commun 
38(2):69–74

	 2.	 Specification, OpenFlow Switch 1.4 (2019) https​://www.openn​etwor​king.org/wp-conte​nt/uploa​
ds/2014/10/openf​low-spec-v1.4.0.pdf. Accessed 1 March 2019

	 3.	 Ganegedara T, Jiang W, Prasanna VK (2014) A scalable and modular architecture for high-perfor-
mance packet classification. IEEE Trans Parallel Distrib Syst 25(5):1134–1144

	 4.	 Walia GS, Kapoor R (2013) Particle filter based on cuckoo search for non-linear state estimation. In: 
Advance computing conference (IACC), 918–924

	 5.	 Berchtold S, Keim DA, Kriegel HP (1996) The X-tree: an index structure for high-dimensional data. 
In: Proceeding VLDB ’96 proceedings of the 22th international conference on very large data bases, 
pp 28–39

	 6.	 Hu T, Guo Z, Yi P, Baker T, Lan J (2018) Multi-controller based software-defined networking: a 
survey. IEEE Access 6:15980–15996

	 7.	 Yu C, Lan J, Guo Z, Hu Y, Baker T (2019) An adaptive and lightweight update mechanism for SDN. 
IEEE Access 7:12914–12927

	 8.	 Kendrick P, Baker T, Maamar Z, Hussain A, Buyya R, Al-Jumeily D (2018) An efficient multi-
cloud service composition using a distributed multiagent-based. Memory-driven approach. IEEE 
Trans Sustain Comput Early Access

	 9.	 Liu AX, Meiners CR, Torng E (2016) Packet classification using binary content addressable mem-
ory. IEEE/ACM Trans Biol Cybern 24(3):1295–307

	10.	 Taylor DE (2005) Survey and taxonomy of packet classification techniques. J ACM Comput Surv 
37(3):238–275

	11.	 Lakshman TV, Stiliadis D (1998) High-speed policy-based packet forwarding using efficient multi-
dimensional range matching. ACM SIGCOMM Comput Commun Rev 28(4):203–214

	12.	 Gupta P, McKeown N (1999) Packet classification on multiple fields. ACM SIGCOMM Comput 
Commun Rev 29(4):147–160

	13.	 Taylor D, Turner J (2005) Scalable packet classification using distributed crossproducing of field 
labels. INFOCOM 2005. In: Proceedings of the 24th annual joint conference of the IEEE computer 
and communications societies, 269–280

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf


5687

1 3

Cuckoo filter‑based many‑field packet classification using…

	14.	 Jiang W, Prasanna VK (2009) Field-split parallel architecture for high performance multi-match 
packet classification using FPGAs. In: Proceedings of the twenty-first annual symposium on paral-
lelism in algorithms and architectures, pp 188-196

	15.	 Dong X, Qian M, Jiang R (2018) Packet classification based on the decision tree with information 
entropy. J Supercomput, pp 1–15

	16.	 Singh S, Baboescu F, Varghese G, Wang J (2003) Packet classification using multidimensional cut-
ting. In: Proceedings of the 2003 conference on applications, technologies, architectures, and proto-
cols for computer communications, pp 213–224

	17.	 Wee J-H, Pak W (2017) Fast packet classification based on hybrid cutting. IEEE Commun Lett 
21(5):1011–1014

	18.	 Lim H, Byun HY (2015) Packet classification using a bloom filter in a leaf-pushing area-based 
quad-trie. In: Proceedings of the eleventh ACM/IEEE symposium on architectures for networking 
and communications systems, 183–184

	19.	 Varvello M, Laufer R, Zhang F, Lakshman TV (2016) Multilayer packet classification with graphics 
processing units. IEEE/ACM Trans Netw 24(5):2728–2741

	20.	 Lu H, Sahni OS (2007) O(logW) multidimensional packet classification. IEEE/ACM Trans Netw 
15(2):462–472

	21.	 Cheng Y-C, Wang P-C (2015) Packet classification using dynamically generated decision trees. 
IEEE Trans Comput 64(2):582–586

	22.	 Qu YR, Zhou S, Prasanna VK (2015) A decomposition-based approach for scalable many-field 
packet classification on multi-core processors. Int J Parallel Program 43(6):965–987

	23.	 Warkhede P, Suri S, Varghese G (2004) Multiway range trees: scalable IP lookup with fast updates. 
Comput Netw 44(3):289–303

	24.	 Zhong P (2011) An IPv6 address lookup algorithm based on recursive balanced multi-way range 
trees with efficient search and update. In: Proceedings of the international conference on computer 
science and service system (CSSS), 2059–2063

	25.	 Pagh R, Rodler FF (2001) Cuckoo hashing. Springer, Berlin
	26.	 Abdulhassan A, Ahmadi M (20017) Parallel many fields packet classification technique using 

R-tree. In: New trends in information and communications technology applications (NTICT), 
274–279

	27.	 Abdulhassan A, Ahmadi M (2018) Many-field packet classification using AMQ-R-tree. J High 
Speed Netw 24(3):219–241

	28.	 Gupta V, Breitinger F (2015) How cuckoo filter can improve existing approximate matching tech-
niques. In: International conference on digital forensics and cyber crime, vol 157, pp 39–52

	29.	 Taylor DE, Turner JS (2007) ClassBench: a packet classification benchmark. IEEE/ACM Trans 
Netw 15(3):499–511

	30.	 Kaler T, Cache efficient bloom filters for shared memory machines. https​://pdfs.seman​ticsc​holar​
.org/465b/0d787​2764b​ba2a6​daadf​fa9a1​69d05​6b8c7​c.pdf

	31.	 Tanjent (tanjent) (2018) MurmurHash first announcement. https​://ipfs.io/ipfs/QmXoy​pizjW​3WknF​
iJnKL​wHCnL​72ved​xjQkD​DP1mX​Wo6uc​o/wiki/Murmu​rHash​.html. Accessed 1 March 2019

	32.	 Mitra J, Nayak T (2017) Reconfigurable very high throughput low latency VLSI (FPGA) design 
architecture of CRC 32. Integr VLSI J 56:1–14

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://pdfs.semanticscholar.org/465b/0d7872764bba2a6daadffa9a169d056b8c7c.pdf
https://pdfs.semanticscholar.org/465b/0d7872764bba2a6daadffa9a169d056b8c7c.pdf
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/MurmurHash.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/MurmurHash.html

	Cuckoo filter-based many-field packet classification using X-tree
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Contributions

	2 Related works
	2.1 Classical packet classification
	2.1.1 Basic search algorithms
	2.1.2 Heuristic algorithms
	2.1.3 Decomposition-based algorithms
	2.1.4 Decision tree-based algorithm

	2.2 Many-field packet classification

	3 Cuckoo filter and X-tree data structures concepts
	3.1 Cuckoo filter
	3.2 eXtended node tree (X-tree)

	4 The proposed cuckoo filter-based X-tree
	4.1 Many-field packet classification using CX-tree
	4.1.1 MBRs creation and X-tree construction
	4.1.2 Cuckoo filters programming
	4.1.3 CX-tree lookup and cuckoo filter search

	4.2 Theoretical analysis

	5 Performance evaluation
	5.1 Classification throughput
	5.2 Processing latency
	5.3 Memory consumption
	5.4 Classification accuracy

	6 Conclusion
	References




