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Abstract
A one-to-one k-disjoint path cover {P1,P2,… ,Pk} of a graph G is a collection of k 
internally vertex disjoint paths joining source with sink that cover all vertices of G. 
In this paper, we investigate the problem of one-to-one disjoint path cover in hyper-
cubes with faulty edges and obtain the following results: Let u, v ∈  V(Qn) be such 
that p(u) ≠ p(v) and 1 ≤ k ≤ n . Then there exists a one-to-one k-disjoint path cover 
{P1,P2,… ,Pk} joining vertices u and v in Qn . Moreover, when 1 ≤ k ≤ n − 2 , the 
result still holds even if removing n − 2 − k edges from Qn.

Keywords  Hypercubes · Vertex disjoint paths · Path covers · One-to-one · Fault 
edges

1  Introduction

A topological structure of an interconnection network can be modeled by a graph 
G = (V(G),E(G)) , where the vertex set V(G) represents the set of processors and the 
edge set E(G) represents the set of links joining processors. One of the most central 
issues in various interconnection networks is to find vertex disjoint paths concerned 
with a routing among vertices [1–6, 33, 34].

A u, v-path is a path with endpoints u and v, denoted by Pu,v when we specify a 
particular such path. We say that k paths are vertex disjoint in a graph G if any two 
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of them have no common vertex. Given any two disjoint sets of k labeled vertices 
S = {s1, s2,… , sk} and T = {t1, t2,… , tk} in a graph G, are there k vertex disjoint 
paths Ps1,t1

,Ps2,t2
,… ,Psk ,tk

 which cover all vertices of G?
It has been investigated with respect to various special graphs such as hypercubes 

[8, 12, 17, 18, 21, 24, 25], k-ary n-cubes [30, 35, 36], and hypercube-like intercon-
nection networks [13, 28, 29].

A path (respectively, cycle) in a graph G is a hamiltonian path (respectively, ham-
iltonian cycle) if every vertex in G appears exactly once in the path (respectively, 
cycle). One of the core subjects in hamiltonian graph theory is to develop sufficient 
conditions for a graph to have a hamiltonian path/cycle [14, 15, 19, 20, 26, 27, 31].

Fault tolerance is an important index of the stability of the network. It is useful to 
consider faulty networks because node faults or link faults may occur in networks. 
In this regard, the fault-tolerant capacity of a network is a critical issue in parallel 
computing. It motivated the study of various networks with faulty elements [10, 11, 
16, 17, 21].

The n-dimensional hypercube, denoted by Qn , is one of the most popular and effi-
cient interconnection networks. Hypercubes play an important role in many areas 
of computer science. Motivated by the disjoint path cover problem and Hamilton 
problem, we consider the problem of one-to-one k-disjoint path cover in hypercubes 
with faulty edges.

A one-to-one  k-disjoint path cover {P1,P2,… ,Pk} of a graph G is a collection of 
k internally vertex disjoint paths joining source with sink that cover all vertices of G. 
Denote the source and sink by u and v, respectively. Then the one-to-one k-disjoint 
path cover joining u and v sometimes is called by u-to-v k-disjoint path cover.

Studies about one-to-one disjoint path cover problem of some networks or graphs 
can be found in the literature [9, 30]. In this paper, we investigate the problem of 
one-to-one disjoint path cover in hypercubes and obtain the following results: Let 
u, v ∈ V(Qn) be such that p(u) ≠ p(v) and 1 ≤ k ≤ n . Then there exists a u-to-v k-dis-
joint path cover {P1,P2,… ,Pk} in Qn . Moreover, when 1 ≤ k ≤ n − 2 , the result still 
holds even if removing n − 2 − k edges from Qn.

2 � Definitions and preliminaries

Terminology and notation used in this paper but undefined below can be found in 
[7]. Let G be a graph. For a set F ⊆ E(G) , let G − F denote the resulting graph after 
removing all edges in F from G. For a set S ⊆ V(G) , let G − S denote the graph 
removing all vertices in S and all the edges incident with S from G.

Let Px,y = (x,… , vi,… , vj,… , y) be a path. We use Px,y[vi, vj] to denote the sub-
path (vi,… , vj) of Px,y joining vi and vj . For two paths P1 and P2 with only one com-
mon endpoint, we use P1 + P2 to denote the path P such that V(P) = V(P1) ∪ V(P2) 
and E(P) = E(P1) ∪ E(P2).

Let [n] denote the set {1,… , n} . The n-dimensional hypercube Qn is 
a graph whose vertex set consists of all binary strings of length n, i.e., 
V(Qn) = {u ∶ u = �1 ⋯ �n and �i ∈ {0, 1} for every i ∈ [n]} , with two vertices 
being adjacent whenever the corresponding strings differ in just one position. The 
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Hamming distance between two vertices u and v in Qn , denoted by d(u, v), is the 
number of different bits of u and v.

Let j ∈ [n] . An edge in Qn is an j-edge if its endpoints differ in the jth position. 
The set of all j-edges in Qn is denoted by Ej . Let Q0

n−1,j
 and Q1

n−1,j
 , with the super-

scripts j being omitted when the context is clear, be the (n − 1)-dimensional sub-
cubes of Qn induced by the vertex sets {u = �1 ⋯ �n ∈ V(Qn) ∶ �j = 0} and 
{u = �1 ⋯ �n ∈ V(Qn) ∶ �j = 1} , respectively. Thus Qn − Ej = Q0

n−1,j
+ Q1

n−1,j
 . We 

say that Qn splits into two (n − 1)-dimensional subcubes Q0

n−1
 and Q1

n−1
 at position 

j. See Fig. 1 for example.
Let � ∈ {0, 1} . We use 𝛼̄ to denote 1 − � . Every vertex x� ∈ V(Q�

n−1
) has in Q𝛼̄

n−1
 

a unique neighbor, denoted by x𝛼̄.
Moreover, we may split Q�

n−1
 into two (n − 2)-dimensional subcubes Q�0

n−2
 and 

Q�1
n−2

 at some position i. So Qn − Ej − Ei = Q00

n−2
+ Q01

n−2
+ Q10

n−2
+ Q11

n−2
 . We say 

that Qn splits into four (n − 2)-dimensional subcubes Q00

n−2
,Q01

n−2
,Q10

n−2
 and Q11

n−2
 at 

positions i and j.
Let � ∈ {0, 1} . For every vertex x�� in Q��

n−2
 , let x𝛼𝛽 denote the unique neighbor 

of x�� in Q𝛼𝛽

n−2
 , and let x𝛼̄𝛽 denote the unique neighbor of x�� in Q𝛼̄𝛽

n−2
 , and let x𝛼̄𝛽 

denote the unique neighbor of x𝛼̄𝛽 in Q𝛼̄𝛽

n−2
 . For a path P�� = (x

��

1
,… , x

��

l
) in Q��

n−2
 , 

we say that P���� = (x
����

1
,… , x

����

l
) is the corresponding path of P�� in Q����

n−2
.

For any F ⊆ E(Qn) , let F� = F ∩ E(Q�
n−1

) and F�� = F ∩ E(Q
��

n−2
).

The parity p(u) of a vertex u = �1 ⋯ �n in Qn is defined by p(u) =
∑n

i=1
�i(mod 

2). Then there are 2n−1 vertices with parity 0 and 2n−1 vertices with parity 1 in Qn . 
Vertices with parity 0 and 1 are called black vertices and white vertices, respec-
tively. Observe that Qn is bipartite and vertices of each parity form bipartite sets 
of Qn.

We give some results which will be used in the proof of the main results.

Theorem 2.1  [19] Qn has a Hamiltonian cycle for every n ≥ 2.

Theorem 2.2  [20] If n ≥ 1 and x, y ∈ V(Qn) are such that p(x) ≠ p(y) , then Qn con-
tains a hamiltonian path joining x and y.

Lemma 2.3  [23] For n ≥ 2 , let x,  y,  u be pairwise distinct vertices in Qn with 
p(x) = p(y) ≠ p(u) . Then there exists a hamiltonian path joining x and y in Qn − u.

Fig. 1   Q4 splits into two 
3-dimensional subcubes Q0

3
 and 

Q1

3
 at position 4
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Lemma 2.4  [22] Qn has a hamiltonian cycle even if it has (n − 2) edge faults for 
every n ≥ 2.

Lemma 2.5  [32] Assume that n ≥ 2 and F is a subset of edges with |F| ≤ n − 2 . 
Then there exists a hamiltonian path in Qn − F joining any two vertices of different 
colors.

Theorem 2.6  [11] Let n > 2k ≥ 4 and F ⊂ E(Qn) with |F| ≤ n − 2k − 1 . Assume 
that S = {s1,… , sk} and T = {t1,… , tk} are distinct vertices of Qn such that S ∪ T  
contains k vertices from each class of bipartition of Qn. Then Qn − F have k vertex 
disjoint paths Ps1,t1

,… ,Psk ,tk
 which cover all vertices of Qn.

3 � The main results

Theorem 3.1  Let u, v ∈ V(Qn) be such that p(u) ≠ p(v) and let 1 ≤ k ≤ n. Then there 
exists a u-to-v k-disjoint path cover {P1,P2,… ,Pk} in Qn.

Proof  When k = 1 , by Theorem 2.2, there exists a hamiltonian path joining u and v 
in Qn . This is a u-to-v 1-disjoint path cover in Qn.

When k = 2 , now n ≥ 2 . By Theorem 2.1, there is a hamiltonian cycle in Qn . Let 
P1 and P2 be the two paths on the cycle joining the vertices u and v. Then {P1,P2} is 
a u-to-v 2-disjoint path cover in Qn.

Next, we consider the case k ≥ 3 . Now n ≥ k ≥ 3 . We prove the theorem by 
induction on n.

For n = 3 , now k = 3 . Since p(u) ≠ p(v) , without loss of generality, there are two 
cases of {u, v} to consider. See Fig. 2. For the two cases, we can verify that the con-
clusion holds.

Suppose that the theorem holds for n − 1(≥ 3) . We are to show that it holds for 
n(≥ 4).

Case 1 d(u, v) < n.
Since d(u, v) < n , there exists a position j ∈ [n] such that u, v ∈ V(Q0

n−1
) . Denote 

u by u0 and v by v0 . Since 3 ≤ k ≤ n , we have 2 ≤ k − 1 ≤ n − 1 . By induction, 
there exists a u-to-v (k − 1)-disjoint path cover {P0

1
,P0

2
,… ,P0

k−1
} in Q0

n−1
 . Since 

p(u) ≠ p(v) , we have p(u1) ≠ p(v1) . By Theorem 2.2, there exists a hamiltonian path 

Fig. 2   The two cases of {u, v} 
in Q3

u v u

v

(1) (2)
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Pu1,v1 in Q1

n−1
 . Let Pi = P0

i
 for every i ∈ [k − 1] , and let Pk = uu1 + Pu1,v1 + v1v . Thus, 

{P1,P2,… ,Pk} is a u-to-v k-disjoint path cover in Qn . See Fig. 3.
Case 2 d(u, v) = n . In this case, since p(u) ≠ p(v) , we have n is odd and n ≥ 5.
Arbitrarily split Qn at some two positions to subcubes Q00

n−2
 , Q01

n−2
 , Q10

n−2
 and Q11

n−2
 . 

Without loss of generality, we may assume u ∈ V(Q00

n−2
) . Then v ∈ V(Q11

n−2
) . Denote 

u by u00 and v by v11.
Since 3 ≤ k ≤ n , we have 1 ≤ k − 2 ≤ n − 2 . In Q00

n−2
 , since p(u) ≠ p(v00) , by 

induction, there exists a u-to-v00 (k − 2)-disjoint path cover {P00

1
, … ,P00

k−2
} of Q00

n−2
 . 

For every i ∈ [k − 2] , let P01

i
 be the corresponding path of P00

i
 in Q01

n−2
 , and let P11

i
 be 

the corresponding path of P00

i
 in Q11

n−2
 . Then {P01

1
, … ,P01

k−2
} is a u01-to-v01 (k − 2)-dis-

joint path cover of Q01

n−2
 , and {P11

1
, … ,P11

k−2
} is a u11-to-v (k − 2)-disjoint path cover 

of Q11

n−2
 . See Fig. 4.

Fig. 3   The illustration for the 
contruction of Case 1 u

v
position j
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Fig. 4   The illustration for the contruction of Case 2
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For every i ∈ [k − 2] , let x01
i

 and y01
i

 be the neighbors of v01 and u01 on the path 
P01

i
 , respectively. Since d(u, v) = n , we have d(v01, u01) = n − 2 ≥ 3 . Thus x01

i
 and y01

i
 

are distinct vertices and they are different from the vertices u01, v01 . Next, we con-
struct a u-to-v k-disjoint path cover {P1,P2,… ,Pk} of Qn.

Step 1 Let P1 = P00

1
+ v00v01 + v01v.

Step 2 If k − 2 = 1 , then skip this step. If k − 2 ≥ 2 , then for every 
i ∈ {2,… , k − 2} , let Pi = P00

i
[u, x00

i
] + x00

i
x01
i
+ P01

i
[x01

i
, y01

i
] + y01

i
y11
i
+ P11

i
[y11

i
, v].

Step 3 Let Pk−1 = uu01 + P01

1
[u01, x01

1
] + x01

1
x11
1
+ x11

1
v . Let s11

1
 be the neighbor of 

x11
1

 on the path P11

1
[x11

1
, u11] . Then p(s11

1
) = p(v) ≠ p(u) . So p(s10

1
) = p(v10) ≠ p(u10) . 

By Lemma 2.3, there is a hamiltonian path Ps10
1
,v10 in Q10

n−2
− u10 . Let 

Pk = uu10 + u10u11 + P11

1
[u11, s11

1
] + s11

1
s10
1
+ Ps10

1
,v10 + v10v.

Then {P1,P2,… ,Pk} is a u-to-v k-disjoint path cover in Qn . 	� □

Theorem  3.2  Let u, v ∈ V(Qn) be such that p(u) ≠ p(v). Let F ⊆ E(Qn) and 
1 ≤ k ≤ n − 2. If |F| ≤ n − 2 − k, then there exists a u-to-v k -disjoint path cover 
{P1,P2,… ,Pk} in Qn − F.

Proof  If F = � , then by Theorem 3.1, the theorem holds. So in the following, we 
only need to consider the case |F| ≥ 1 . Now k ≤ n − 3.

When k = 1 , now |F| ≤ n − 3 . By Lemma 2.5, there exists a hamiltonian path 
joining vertices u and v in Qn − F . This is a u-to-v 1-disjoint path cover in Qn − F . 
In this case, the theorem holds.

When k = 2 , now |F| ≤ n − 4 . By Lemma 2.4, there is a hamiltonian cycle in 
Qn − F . Let P1 and P2 be the two paths on the cycle joining the vertices u and v. 
Then {P1,P2} is a u-to-v 2-disjoint path cover in Qn − F . In this case, the theorem 
holds.

So, we only need to consider the case k ≥ 3 . Now n ≥ k + 3 ≥ 6 . We prove the 
theorem by induction on n.

First we prove the basis of induction. When n = 6 , now k = 3 and |F| = 1 . Let 
F = {f } . Since p(u) ≠ p(v) , we have d(u, v) is odd. So d(u, v) < 6 . Hence there exists 
a position j ∈ [6] such that u, v ∈ V(Q0

5
) . Denote u by u0 and v by v0.

If f ∈ E(Q0

5
) , then by Lemma 2.4 there is a hamiltonian cycle in Q0

5
− F . Let 

P1,P2 be the two paths on the cycle joining vertices u and v. Since p(u1) ≠ p(v1) , 
by Theorem 2.2, there is a hamiltonian path Pu1,v1 in Q1

5
 . Let P3 = uu1 + Pu1,v1 + v1v . 

Then {P1,P2,P3} is a u-to-v 3-disjoint path cover in Q6 − F.

Fig. 5   The illustration for 
the contruction of the case 
f ∉ E(Q0

5
)

u

v position j

0
1P

0
2P

0
3P

1x

1y

0x

1 1,x y
P

0y
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If f ∉ E(Q0

5
) , then by Theorem  3.1 there is a u-to-v 3-disjoint path cover 

{P0

1
,P0

2
,P0

3
} in Q0

5
 . See Fig. 5. Since 

∑3

i=1
�E(P0

i
)� = 25 − 2 + 3 > 3 , there exists an 

edge x0y0 ∈ E(P0

i
) for some i ∈ [3] such that x0x1 ≠ f  and y0y1 ≠ f  . Without loss of 

generality, assume i = 3 . Since |F| ≤ 1 , by Lemma 2.5, there is a hamiltonian path 
Px1,y1 in Q1

5
− F . Let P1 = P0

1
 , P2 = P0

2
 , and P3 = P0

3
− x0y0 + x0x1 + Px1,y1 + y1y0 . 

Then {P1,P2,P3} is a u-to-v 3-disjoint path cover in Q6 − F.
By the above two cases, we know that the theorem holds for n = 6 . Suppose that 

the theorem holds for n − 1(≥ 6) . We are to show that it holds for n(≥ 7) . We distin-
guish two cases (Cases 1 and 2) to consider.

Case 1 d(u, v) < n.
Since d(u, v) < n , there exists a position j ∈ [n] such that u, v ∈ V(Q0

n−1
) . Denote 

u by u0 and v by v0 . We distinguish two subcases (Subcases 1.1 and 1.2) to consider.
Subcase 1.1 |F0| ≤ |F| − 1.
Now 3 ≤ k ≤ n − 3 = (n − 1) − 2 , and |F0| ≤ |F| − 1 ≤ (n − 1) − 2 − k . By 

induction, there exists a u-to-v k-disjoint path cover {P0

1
,P0

2
,… ,P0

k
} in Q0

n−1
− F0 . 

Since 
∑k

i=1
�E(P0

i
)� = 2n−1 − 2 + k > 2k + 2(�F� − 2) for n ≥ 7 , there exists an edge 

x0y0 ∈ E(P0

i
) for some i ∈ [k] such that x0x1 ∉ F and y0y1 ∉ F . Without loss of gen-

erality, we may assume i = k . Since |F1| ≤ |F| ≤ n − 5 < (n − 1) − 2 , by Lemma 2.5, 
there exists a hamiltonian path Px1,y1 in Q1

n−1
− F1 . Let Pi = P0

i
 for every i ∈ [k − 1] , 

and let Pk = P0

k
− x0y0 + x0x1 + Px1,y1 + y1y0 . Thus, {P1,P2,… ,Pk} is a u-to-v k-dis-

joint path cover in Qn − F.
Subcase 1.2 F0 = F.
Since 3 ≤ k ≤ n − 3 and |F| ≤ n − 2 − k , we have 2 ≤ k − 1 ≤ n − 4 < (n − 1) − 2 

and |F0| = |F| ≤ (n − 1) − 2 − (k − 1) . By induction, there exists a u-to-v (k − 1)

-disjoint path cover {P0

1
,P0

2
,… ,P0

k−1
} in Q0

n−1
− F0 . Since p(u1) ≠ p(v1) , by 

Theorem  2.2, there exists a hamiltonian path Pu1,v1 in Q1

n−1
 . Let Pi = P0

i
 for every 

i ∈ [k − 1] , and let Pk = uu1 + Pu1,v1 + v1v . Thus, {P1,P2,… ,Pk} is a u-to-v k-dis-
joint path cover in Qn − F.

By the above two subcases, we know that the theorem holds for Case 1.
Case 2 d(u, v) = n . In this case, since p(u) ≠ p(v) , we have n is odd and n ≥ 7.
Since |F| ≤ n − 2 − k ≤ n − 5 , there exist two positions j1 and j2 such that 

Ej1
∩ F = � and Ej2

∩ F = � . Split Qn at positions j1 and j2 to subcubes Q00

n−2
 , Q01

n−2
 , 

Q10

n−2
 , and Q11

n−2
 . Without loss of generality, we may assume u ∈ V(Q00

n−2
) . Then 

v ∈ V(Q11

n−2
) . Denote u by u00 and v by v11 . Without loss of generality, we may 

assume |F00| ≥ |F11| . Moreover, we may assume |F01| ≥ |F10| . We distinguish two 
subcases (Subcases 2.1 and 2.2) to consider.

Subcase 2.1 F00 = F or F01 = F.
Since 3 ≤ k ≤ n − 3 , we have 1 ≤ k − 2 ≤ n − 5 < (n − 2) − 2.
If F00 = F , then the other three subcubes have no faulty edges. Since 

|F00| = |F| ≤ n − 2 − k = (n − 2) − 2 − (k − 2) , by induction, there exists a u-to-v00 
(k − 2)-disjoint path cover {P00

1
,… ,P00

k−2
} in Q00

n−2
− F00 . For every i ∈ [k − 2] , let 
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P01

i
 and P11

i
 be the corresponding paths of P00

i
 in Q01

n−2
 and Q11

n−2
 , respectively. Then 

{P01

1
, … ,P01

k−2
} is a u01-to-v01 (k − 2)-disjoint path cover of Q01

n−2
 , and {P11

1
, … ,P11

k−2
} 

is a u11-to-v (k − 2)-disjoint path cover of Q11

n−2
 . See Fig. 6.

If F01 = F , then similarly, by induction there exists a u01-to-v01 (k − 2)-disjoint 
path cover {P01

1
,… ,P01

k−2
} in Q01

n−2
− F01 . For every i ∈ [k − 2] , let P00

i
 and P11

i
 be the 

corresponding paths of P01

i
 in Q00

n−2
 and Q11

n−2
 , respectively. Then {P00

1
, … ,P00

k−2
} is a 

u-to-v00 (k − 2)-disjoint path cover of Q00

n−2
 , and {P11

1
, … ,P11

k−2
} is a u11-to-v (k − 2)

-disjoint path cover of Q11

n−2
.

In the above two cases, for every i ∈ [k − 2] , let x01
i

 and y01
i

 be the neigh-
bors of v01 and u01 on the path P01

i
 , respectively. Since d(u, v) = n , we have 

d(v01, u01) = n − 2 ≥ 5 . Thus x01
i

 and y01
i

 are distinct vertices and they are dif-
ferent from the vertices u01, v01 . Next, we construct a u-to-v k-disjoint path cover 
{P1,P2,… ,Pk} in Qn − F.

Step 1 Let P1 = P00

1
+ v00v01 + v01v.

Step 2 If k − 2 = 1 , then skip this step. If k − 2 ≥ 2 , then for every 
i ∈ {2,… , k − 2} , let Pi = P00

i
[u, x00

i
] + x00

i
x01
i
+ P01

i
[x01

i
, y01

i
] + y01

i
y11
i
+ P11

i
[y11

i
, v].

Step 3 Let Pk−1 = uu01 + P01

1
[u01, x01

1
] + x01

1
x11
1
+ x11

1
v . Let s11

1
 be the neighbor of 

x11
1

 on the path P11

1
[x11

1
, u11] . Then p(s11

1
) = p(v) ≠ p(u) . So p(s10

1
) = p(v10) ≠ p(u10) . 

By Lemma 2.3, there is a hamiltonian path Ps10
1
,v10 in Q10

n−2
− u10 . Let 

Pk = uu10 + u10u11 + P11

1
[u11, s11

1
] + s11

1
s10
1
+ Ps10

1
,v10 + v10v.

u

00v
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1P

10u

10v
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iP

01u

01v

01
1P 01
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11u

v

11
1P11
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iy 11
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11
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Fig. 6   The illustration for the contruction of Subcase 2.1
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Then {P1,P2,… ,Pk} is a u-to-v k-disjoint path cover in Qn − F . So in this case, 
the theorem holds.

Subcase 2.2 |F00| ≤ |F| − 1 and |F01| ≤ |F| − 1.
In this case, we may observe that |F| ≥ 2 . For the sake of discussion, we distin-

guish two subcases (Subcases 2.2.1 and 2.2.2) to consider.
Subcase 2.2.1 |F01| ≤ |F| − 2.
Since 3 ≤ k ≤ n − 3 , we have 2 ≤ k − 1 ≤ n − 4 = (n − 2) − 2 . Since 

|F| ≤ n − 2 − k , we have |F11| ≤ |F00| ≤ n − 2 − k − 1 = (n − 2) − 2 − (k − 1) . 
By induction, there exist a u-to-v00 (k − 1)-disjoint path cover {P00

1
,P00

2
,… ,P00

k−1
} 

in Q00

n−2
− F00 and a u11-to-v (k − 1)-disjoint path cover {P11

1
,P11

2
,… ,P11

k−1
} in 

Q11

n−2
− F11 . (Note that in this case, P11

i
 are not necessarily the corresponding path of 

P00

i
 in Q11

n−2
 .) Let k1 = ⌈ k−1

2
⌉ and k2 = ⌊ k−1

2
⌋ . Then k1 + k2 = k − 1.

For every i ∈ {2,… , k − 1} , let x00
i

 be the neighbor of v00 on the path 
P00

i
 , and let y11

i
 be the neighbor of u11 on the path P11

i
 . Since d(u, v) = n ≥ 7 , 

we have d(u, v00) = d(u11, v) = n − 2 ≥ 5 . So x00
i

≠ u and y11
i

≠ v . Hence 
u01, v01, x01

i
, y01

i
, i ∈ {2,… , k1}, are distinct vertices, and p(x01

i
) = p(u01) ≠ p(v01)

= p(y01
i
) . Similarly, we have u10, v10, x10

t
, y10

t
, t ∈ {k1 + 1,… , k − 1}, are distinct ver-

tices, and p(x10
t
) = p(u10) ≠ p(v10) = p(y10

t
).

Note that k1 ≥ 1 and k ≥ 2k1 . Then |F01| ≤ |F| − 2 ≤ n − 2 − k − 2 ≤ n − 2 − 2k1

−2 < (n − 2) − 2k1 − 1 . If k1 = 1 , then by Lemma 2.5, there is a hamiltonian path 
Pu01,v01 in Q01

n−2
− F01 . If k1 ≥ 2 , then by Theorem 2.6, Q01

n−2
− F01 have k1 vertex dis-

joint paths Pu01,v01 ,Px01
2
,y01
2

, … ,Px01
k1
,y01
k1

 which cover all the vertices of Q01

n−2
.

Similarly, k2 ≥ 1 and k ≥ 2k2 + 1 . Then |F10| ≤ |F| − 2 ≤ n − 2 − k − 2

≤ n − 2 − (2k2 + 1) − 2 = (n − 2) − 2(k2 + 1) − 1 . By Theorem 2.6, Q10

n−2
− F10 have 

k2 + 1 vertex disjoint paths Pu10,v10 ,Px10
k1+1

,y10
k1+1

, … ,Px10
k−1

,y10
k−1

 which cover all the verti-
ces of Q10

n−2
.

Next, we construct a u-to-v k-disjoint path cover {P1,P2,… ,Pk} in Qn − F.
Step 1 Let P1 = P00

1
+ v00v01 + Pv01,u01 + u01u11 + P11

1
.

Step 2 If k1 = 1 , then skip this step. If k1 ≥ 2 , then for every i ∈ {2,… , k1} , let 
Pi = P00

i
[u, x00

i
] + x00

i
x01
i
+ Px01

i
,y01
i
+ y01

i
y11
i
+ P11

i
[y11

i
, v].

Step 3 For every t ∈ {k1 + 1,… , k − 1} , let Pt = P00

t
[u, x00

t
] + x00

t
x10
t

+Px10t ,y10t
+ y10

t
y11
t
+ P11

t
[y11

t
, v].

Step 4 Let Pk = uu10 + Pu10,v10 + v10v.
Then {P1,P2,… ,Pk} is a u-to-v k-disjoint path cover in Qn − F . See Fig. 7.
Subcase 2.2.2 |F01| = |F| − 1.
Since 2 ≤ |F| ≤ n − 2 − k , we have 3 ≤ k ≤ n − 4 . So 2 ≤ k − 1 ≤ n − 5 < (n − 2)

−2 . Since |F01| = |F| − 1 , we have |F00| + |F10| + |F11| = 1.
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If |F00| = 1 , then |F10| = |F11| = 0 . Since |F00| = 1 ≤ (n − 2) − 2 − (k − 1) , by 
induction, there exists a u-to-v00 (k − 1)-disjoint path cover {P00

1
,P00

2
,… ,P00

k−1
} in 

Q00

n−2
− F00 . For every i ∈ [k − 1] , let P10

i
 and P11

i
 be the corresponding paths of P00

i
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Fig. 7   The illustration for the contruction of Subcase 2.2.1
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Fig. 8   The illustration for the contruction of Subcase 2.2.2
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in Q10

n−2
 and Q11

n−2
 , respectively. Then {P10

1
, … ,P10

k−2
} is a u10-to-v10 (k − 1)-disjoint 

path cover of Q10

n−2
 , and {P11

1
, … ,P11

k−2
} is a u11-to-v (k − 1)-disjoint path cover of 

Q11

n−2
 . Similarly, if |F10| = 1 or |F11| = 1 , then the other two subcubes have no faulty 

edges. Hence we may also construct the above three path covers. See Fig. 8.
For every i ∈ {2,… , k − 1} , let x10

i
 and y10

i
 be the neighbors of v10 and u10 on the 

path P10

i
 , respectively. Since d(u, v) = n , we have d(v10, u10) = n − 2 ≥ 5 . Thus x10

i
 

and y10
i

 are distinct vertices and they are different from the vertices u10, v10 . Next, we 
construct a u-to-v k-disjoint path cover {P1,P2,… ,Pk} in Qn − F.

Step 1 Let P1 = P00

1
+ v00v10 + P10

1
+ u10u11 + P11

1
.

Step 2 For every i ∈ {2,… , k − 1} , let Pi = P00

i
[u, x00

i
] + x00

i
x10
i

+P10

i
[x10

i
, y10

i
] + y10

i
y11
i
+ P11

i
[y11

i
, v].

Step 3 Since |F01| = |F| − 1 ≤ n − 2 − k − 1 < (n − 2) − 2 , by Lemma 2.5, there 
is a hamiltonian path Pu01,v01 in Q01

n−2
− F01 . Let Pk = uu01 + Pu01,v01 + v01v.

Then {P1,P2,… ,Pk} is a u-to-v k-disjoint path cover in Qn − F.
By the above two subcases (Subcases 2.2.1 and 2.2.2), we know that the theorem 

holds for Subcase 2.2.
To sum up, by the principle of the induction hypothesis, the theorem holds. 	�  □

4 � Concluding remarks

Finding node-disjoint paths is one of the most important issues in various intercon-
nection networks, which is concerned with routing among nodes and embedding of 
linear arrays.

In this paper, we investigate the problem of one-to-one disjoint path cover in 
hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be 
such that p(u) ≠ p(v) and 1 ≤ k ≤ n . Then there exists a one-to-one k-disjoint path 
cover {P1,P2,… ,Pk} joining vertices u and v in Qn . Moreover, when 1 ≤ k ≤ n − 2 , 
the result still holds even if removing n − 2 − k edges from Qn.

Acknowledgements  The authors would like to express their gratitude to the anonymous reviewers for 
their kind suggestions on the original manuscript.
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