
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:5760–5781
https://doi.org/10.1007/s11227-019-02797-7

1 3

SAIR: significance‑aware approach to improve QoR of big
data processing in case of budget constraint

Hossein Ahmadvand1 · Maziar Goudarzi1

Published online: 3 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Nowadays, a wide range of enterprises are faced with big data processing in dif-
ferent domains such as transaction operations, business calculations and analytical
computations. Large-scale computing is an approach for big data processing. Due to
the cost of large-scale computing and limitations of enterprise budgets, it is hardly
possible to process all the input data and therefore the Quality of Result (QoR) may
be affected. SAIR is an approach to improve QoR of big data processing for aggre-
gative usages based on significance variety when there is a budget constraint. In this
paper, the most significant data portions have been assigned to the most efficient
resources in terms of time and cost. If the budget is still available, other data por-
tions have been assigned to remaining resources. In this approach, statistical meth-
ods and a sampling technique with a 95% of the confidence interval and 5% of error
margin are used to identify the most and least significant data portions. By using
this method, the users are able to improve QoR with respect to budget constraint
and preferred finishing time. In the evaluation phase, applications from different
domains such as document and text, transaction data and system logs are used. Our
results indicate that SAIR improves QoR while meeting budget constraint for con-
sidered usages. This approach improves the QoR up to 15%, compared with the state
of the art.

Keywords Big data · Significance · Quality of Result · Data variety · Budget
constraint

 * Hossein Ahmadvand
 ahmadvand@ce.sharif.edu

 Maziar Goudarzi
 goudarzi@sharif.edu

1 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

http://orcid.org/0000-0003-1121-1914
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02797-7&domain=pdf

5761

1 3

SAIR: significance‑aware approach to improve QoR of big data…

1 Introduction

Quality of Result is a key concern in big data processing. One of the solutions
for big data processing is warehouse scale processing in data center [1, 2]. Since
a huge capacity of large-scale computing is required for big data processing, the
cost of big data processing is of great value. Limitations of enterprise budgets
may prevent them from processing all of the data and cause a reduction in QoR.

Aggregative applications are used widely in transaction operations, business
calculations and analytical computations. An aggregative function is a function
where some multiple values grouped together to form a single value, such as sum
or average function. In this paper, we focus on aggregative applications and pre-
sent an approach to improve QoR in big data processing in case of budget con-
straint and preferred finishing time.

In previous work [3], we have shown that various portions of data from one or
different sources have various significance in determining the final outcome. In
current paper, we offer an approach to overcome the limitation of budget/time and
improve the QoR.

Some previous works have also addressed Quality of Result. The most impor-
tant categories of them are as follows:

Improving QoR Some researchers have introduced frameworks to help the pro-
grammers and users for progressive analytics [4]. Our approach also is a frame-
work to help improving QoR in big data processing. Approximate computing is
a kind of computation that generates acceptable QoR using fewer resources such
as time or cost [5]. CPU energy reduction with acceptable QoR is considered in
[6] where the authors run less significant tasks on unreliable hardware and more
significant ones on the most reliable hardware. Researchers in [7] have offered
a framework for increasing QoR for cloud providers. Using hardware accelera-
tors to improve QoR is discussed in [8, 9]. Some works find other techniques
for increasing the QoR in big data processing [10]. Many prior researches tried
to address the efficient resource management [11]. Definition of progress inter-
val by data sampling is the main concept of [12]. Authors in [13] have changed
the MapReduce architecture to generate an approximate result in a progressive
manner. Similar to our research, some researchers have introduced frameworks to
help the programmers and users in progressive analytics [4].

Resource allocation Resource allocation is one of the approaches used for
increasing QoR and managing the processing cost [7, 14]. Our approach also assigns
more significant data portions to the most efficient resource to increase QoR.

Approximation The approximation is a solution to increase the performance
of big data processing. Authors in [5, 13, 15, 16] use approximation for big data
processing. In these researches, a certain QoR is expected.

Code, task and variable variety Code, task and variable variety are considered
in [17], and some techniques and tools have been introduced to detect the most
significant portion of code and variable in output quality. Selecting desirable split
of data for feeding the pipeline is considered in [13].

5762 H. Ahmadvand, M. Goudarzi

1 3

Nevertheless, the effect of significance variety of various portions of input data
to improve QoR in case of budget limitation has not been previously explored. The
input data consist of various data types from multiple resources. This fact leads to
the different significance of various portions of data in the final result.

Based on the idea which is presented in paper [3], now we present “SAIR,” Sig-
nificance-aware Approach to Improve quality of Result, which is an approach to
improve QoR in case of budget constraint and preferred finishing time in big data
processing. For this goal, more significant data portions have been assigned to the
most efficient resource in terms of time and cost. If the budget is still available, other
data portions have been assigned to existing resources.

As Fig. 1 depicts, the high-level design of SAIR consists of three main parts. In
the first part, the Significance Measure is defined to judge the difference between
data portions. Significance Measure should be defined based on the functionality
of the application. We use Significance Measure to define the significance of each
portion. In the second part, a sampling method is presented to determine the signifi-
cance of each portion. In the third part, the data portions are assigned to the servers
based on the budget/time constraint. Our algorithm estimates processing time and
cost for each portion on the candidate server. The data portions are assigned to the
servers, in such a way that, despite the time and budget constraints, the best quality
of response is obtained. Finally, our approach is evaluated and is shown its perfor-
mance in different application types.

1.1 Challenges

There are important parts of our proposed approach. These parts are explained
below.

Targeted applications Our proposed approach can manage the QoR of aggrega-
tive applications and other similar functions effectively. These applications calculate
aggregate functions such as Average, Sum, Count, Ratio and some other statistical
calculations. In this application type, different parts of input data are independent of
each other. Due to this independency, sampling can be used to determine the signifi-
cance of each data portion.

Significance determination This is the main part of our approach. Significance
Measure is determined per application based on its functionality. To judge the different

Fig. 1 SAIR overview

5763

1 3

SAIR: significance‑aware approach to improve QoR of big data…

impacts of data portions on the final result, the Significance Measure must be properly
defined.

Sampling method A kind of sampling method is used to reduce amount of data
needed to be processed. For achieving a meaningful difference between portions, desir-
able portion size is determined.

QoR-aware allocation Finally, in the Allocation section, the data portions are
assigned to the efficient resources in terms of cost and time. Based on the significance
variety, the data portions must be allocated to proper servers. This allocation achieves
maximum QoR and meets the constraints.

1.2 Evaluation

Applications from several domains are used for SAIR evaluation. Domains like docu-
ment and text, transaction data, system logs and some others are used in our evalua-
tions. Specifications and price of servers are obtained from Amazon EC2. Experiments
are run on three types of machines, an Intel Core-i7 2 core CPU at 2.8 GHz with 2 GB
of RAM, an Intel Core-i7 4 core CPU at 2.8 GHz with 4 GB of RAM and an Intel
Core-i7 8 core CPU at 2.8 GHz with 8 GB of RAM.

In Sect. 5, representative experimental results for some of these applications have
been presented. These results show that SAIR allows users to meet budget limitations
in an acceptable finishing time and achieve a desirable QoR.

1.3 Contributions

In summary, the following contributions are made in this paper: (1) We propose a gen-
eral set of mechanisms to improve QoR when having low budgets or finishing time
limit, (2) we define the concept of “significance” for each application to illustrate the
difference between data portions, (3) We define targeted applications for this approach
based on their intra-data/program dependencies, (4) we benefit from different impact
of various portions on the final result, and (5) via our experiments, we show that SAIR
is applicable to many applications and it can significantly improve QoR when there is
budget constraint.

1.4 Organization

The rest of the paper is organized as follows: Sect. 2 surveys the previous works. Sec-
tion 3 presents some examples to show the motivation of research. Section 4 presents
and discusses the SAIR approach. Section 5 shows the experimental results. Finally, the
paper is concluded and future works are discussed in Sect. 6 and 7.

5764 H. Ahmadvand, M. Goudarzi

1 3

2 Related works

Improving QoR Similar to our work, some of the previous works have also focused
on improving the Quality of Results. Approximate computing generates acceptable
Quality of Result using less resources [5, 15]. Our approach also can provide a pro-
gressive approximation of result. By processing more significant data portions in the
early steps, SAIR provides a fast approximation of the outcome. Authors in [18] have
used sampling to overcome the resource limitation and have succeeded in improv-
ing Quality of Result. The authors in [19] have used an approximation to reduce
computational requirements without significant reduction in Quality of Result. They
have used their approach to compute scientific processing and have considered users
preferences such as Quality of Result, Deadline and Budget. The authors in Sapprox
[20] have noted the weakness of ApproxHadoop [15] and tried to offer a way to
overcome it. They have used cluster sampling with unequal probability theory. It is
very hard for users to define suitable Sampling Interval for the various condition of
skew. Approaches and researches in approximate query processing are presented in
[21]. BlinkDB [22] offers a solution to select samples for each query column set and
uses samples to answer online queries in the distributed file system.

QoR-aware resource allocation Our approach has used a QoR-aware resource
allocation algorithm for improving the QoR. Some of the previous works also have
paid attention to this issue.

CPU energy reduction with acceptable Quality of Result is considered in [6].
Running less significant tasks on unreliable hardware and more significant ones on
reliable hardware, with five benchmarks, had been evaluated. The benchmarks have
different computational characteristics. In [23], the authors have performed a quanti-
tative study of OS behavior on scale-out data center workloads, taking into account
the interferences between micro-architecture and OS execution. This investigation
has shown that the performance of data center workloads is significantly dominated
by preemptive OS activities in contemporary OS design. Accordingly, the authors
have recommended that multi-kernel structure with more local resource allocation
could be a leading trend for future OS design. Detecting DDoS attack with URL
counting is the main concept of [24]. The authors have shown the impact of differ-
ent Hadoop clusters on the performance of the counter-based detector. Researchers
in [7] also have offered a framework for Big Data Analytic Applications. This paper
has presented an approach for maximizing resource utilization by assigning queries
to existing VMs and reducing resource cost by executing queries on VMs with lower
cost first. This approach reduces the load on expensive servers. The authors have
recommended this approach to cloud providers and have predicted that their market
share will be increased by using this method. Authors in [25] have described the
Data Warehousing and Analytics Infrastructure at Facebook. Our approach has also
focused on the challenge of the impact of Data Variety on the cost of big data pro-
cessing. Actually, a limited number of studies exist in this area.

Authors in [26] consider the characteristics of data for resource allocation. In
this article, input data consist of text, image, video and audio. Authors presented
an approach for sampling and estimating the volume and velocity of various types

5765

1 3

SAIR: significance‑aware approach to improve QoR of big data…

of input data. Resources are allocated to input data based on its functionality and
requirement. In our paper, aggregate applications have been considered and the
impact of a variety of input data on the result has been evaluated. Variety that is
one of the 4Vs of Big Data is considered in our paper. Authors in [26] showed
that the allocation should be changed whenever data characteristics change in
terms of type, volume or velocity. Our paper shows that the allocation should be
changed whenever data characteristics change in terms of variety or source. The
authors in [27] have considered a trade-off between the efficient resource alloca-
tion and the topology throughput. They have not considered the data variety in
their work and their definition for throughput. Authors in [28] have presented a
framework for obtaining and managing quality of answer for online data-inten-
sive services. They first provide fast interactive result by processing data from
available and fast components and then improve Quality of Result by processing
other data. The authors in [29] have considered the differences between the Cloud
job tasks. They also have considered the user’s demands and have increased the
users’ satisfaction. The problem of imbalanced sub-datasets and inefficient sam-
pling on sub-datasets over a Hadoop cluster has been investigated [30]. They have
offered a solution to overcome the uneven sub-datasets distribution and balance
workload among computational nodes. They have increased the performance of
parallel data analysis.

Progressive processing Our solution has the ability to generate progressive
results. There are other related researches in this area. Authors in [13] have changed
the MapReduce architecture to generate an approximate result in a progressive man-
ner. They have introduced Hadoop Online Prototype (HOP) that is the pipelined ver-
sion of Hadoop. They have discussed the advantages and features of this framework
in big data processing. Selecting desirable split of data for feeding the pipeline can
increase the performance of this framework. Our research has focused on the selec-
tion of suitable data portions to utilize the servers and decrease the total cost and
time of processing. Some works have focused on pruned large input data space, for
example, dimension reduction for progressive processing [31–33]. Our approach
also focuses on the impact of data variety on the outcome and therefore defines sig-
nificance for each application. The authors in [34] have proposed the combination
of both the approximate and incremental computing, in order to use the benefits
from the two. Their approach relies on computing over a subset of data items instead
of the entire dataset to achieve low latency and efficient cluster utilization. By this
approach, the users can manage the budget and accuracy of their processing. Our
approach also helps users to improve the QoR of their processing in case of time and
budget limitations.

Definition of progress interval by data sampling is the main concept of [12]. By
this approach, the authors have introduced a scalable progressive computation. Our
approach uses sampling for ranking data portions to have more efficient allocations.
None of the works mentioned has used significance variety for increasing Quality
of Result. Similar to our research, some researchers have introduced the frame-
works to help the programmers and users for progressive analytics [4]. Our proposed
approach also is a framework to help the management of big data processing in
terms of time, cost and performance.

5766 H. Ahmadvand, M. Goudarzi

1 3

Code and task variety Code, task and data variety have a visible impact on gen-
erating the result. The authors in [17] have focused on the code and variable variety
for increasing Quality of Result. They have offered an approach for software-based
approximate computing. They have provided techniques and tools that capture the
significance of various operations with respect to the output of applications. In con-
trast, our approach has focused on the data variety which causes significance vari-
ety. By processing the most significant portions of data with high-configuration
resources, the final result is generated faster. In [35], a comparison between Spark
and COMPSs is done. The authors have described the functionality of Spark with a
focus on TRANSFORMATIONs and ACTIONs. WordCount, Kmeans and Terasort
are considered in this paper. The authors have suggested their algorithm to be used
for adapting and rewriting the applications. Spark platform is used in our approach
for our experiments.

Deadline- and budget-aware Scheduling Our important constraints in this arti-
cle are the budget constraint and processing time limits. Some related works also
addressed these issues. The main contribution of [14] is the scheduling issues with
respect to deadline and limitation of the budget. This article has optimized the
scheduling of MapReduce jobs at task level with respect to budget constraints. In
this paper, the authors have focused on two aspects of optimization in scheduling.

• Given a fixed budget, how to select the machine from a candidate set efficiently,
for each task, so that the total scheduling length of the job is the shortest length
without breaking the budget.

• Given a fixed deadline D, how to select the machine from a candidate set effi-
ciently for each task, so that the total monetary cost of the job has the lowest cost
without missing the deadline.

The authors in [36] focused on the reduction of the energy cost of clouds. They
have offered a pricing policy to cloud providers for increasing the profit. The authors
in [37] present an approach to select the most cost-effective configuration in a
way that resource costs are minimized while the service level agreements (SLAs)
associated with the workload are met. Our approach also has offered an approach
to improve the Quality of Result while meeting time and budget limitations of the
problem. The authors in [38] have presented an optimization approach to allocate a
MapReduce job with a priori deadline guarantees.

No one has yet used the data variety for scheduling of Big Data jobs to improve
QoR with respect to budget and expected finishing time constraints. In this paper, a
novel data variety-aware approach to improve the QoR in case of budget and finish-
ing time constraint has been presented.

3 Motivation

Observations which motivated us for this research and idea have been presented in
this section. For presenting motivation, some applications are used. These applica-
tions are derived from BigDataBench [39] and some other sources. First, input data

5767

1 3

SAIR: significance‑aware approach to improve QoR of big data…

are divided into 0.5 GB portions, and then, all of the permutations of portions are
analyzed. The incremental outcome after processing of each portion has been meas-
ured. By this reordering approach, the speed of generating outcome differs depend-
ing on the sequence of data portions. Figure 2 represents our observations. The ver-
tical axis shows the “Normalized Quality of Result,” and the horizontal axis shows
the “amount of data processed.” As Fig. 2 shows, there is a large difference between
the best and the worst sequences.

In Fig. 2, the blue line and the red line show the incremental result of the best and
worst sequences of processed data portions. In WordCount application, when half
of the data is processed, the result of the worst sequence is still 73% far from the
final outcome, whereas the best sequence resulted in only 27% far. This large gap
is due to the difference in the “significance” of each data portion. This fact can be
used to increase the QoR in case of time and budget limitations. Similar behavior is
observed for other aggregative applications that are considered in this paper.

In big data processing, limitation of time and/or cost is a common problem. So
processing all of the data may be impossible. We came to the idea of using this dif-
ference in significance value to give different priorities to data portions. According
to this priority, various portion sequences may be selected to be processed on het-
erogeneous servers. We worked on choosing these data portions and assigning them
to the appropriate servers to overcome the lack of time and/or budget.

4 Proposed approach

In this section, our SAIR approach is presented. Our objective is to increase the
Quality of Result while the budget constraint and finishing time limitations are met.
Considering the available budget and preferred finishing time, it may not be possible
to process all of the input data, so the Quality of Result (QoR) may be affected. Our
proposed approach, SAIR, consists of three parts:

Significance definition step In the first step, the Significance Measure is deter-
mined for each application, based on its functionality. In this paper, aggregative

Fig. 2 Quality of result of processing the data portions in various orders for WordCount benchmark with
0.5 GB as the size of data portions

5768 H. Ahmadvand, M. Goudarzi

1 3

applications have been considered (e.g., counting accesses to Web pages from a log
file).

Sampling step Then, the sampling method is used. In this step, the input data are
divided into some same-sized portions and the sampling technique is used to deter-
mine the significance of each data portion.

Allocation step Finally, in the Allocation section, each portion is assigned to an
appropriate server, based on the objectives. Figure 1 shows our approach in general.
These steps have been described in detail below:

4.1 Significance definition

A measure is needed for comparing different data portions according to their impact
on the final result. So, the Significance Measure is defined for each application based
on its mathematical operation.

Significance definition for each application Table 1 describes defined Signifi-
cance Measures for each application. The Significance Measure should indicate the
amount of output generated and the degree of proximity to the final answer. For
example, for applications that identify and count a particular pattern, the number
of those specific patterns is considered as the Significance Measure. In Sorting and
Indexing applications, the size of the produced middle file as the measure can be
selected.

4.2 Sampling

Cochran sampling technique with a 95% confidence interval and 5% of error mar-
gin [40] has been used as the sampling technique. For example, in normal distribu-
tion, 385 samples should be selected to have 95% confidence interval and 5% of
error margin. In our approach, 0.5 GB has been considered as portion size. Figure 3
shows how to divide the data into equal size portions and divide the portions into
frames that are equal in size. Since each frame is a 1 KB data and each frame is
considered as one sample, the overhead of processing these samples is less than 1%.
Due to the small size of frames, the distribution of intra-frame data can be consid-
ered as uniform distribution.

Table 1 Significance Measure determination for each data portion

Application name Significance Measure

WordCount The number of words in a portion
Grep The number of lines in which the match can be found in a portion
InvertedIndex The size of the output index files from a portion
URLCounting The number of certain URLs counted in a portion
Investment The volume of investments in different states that exist in a portion
Exchange The amount of transactions in exchange that exist in a portion
Health The number of heartbeats that exist in a portion

5769

1 3

SAIR: significance‑aware approach to improve QoR of big data…

This formula is valid, where N0 is the sample size, z2 is the abscissa of the normal
curve that cuts off an area α at the tails (1 − α equals to the desired confidence level,
e.g., 95%), e is the desired level of precision, p is the estimated proportion of an
attribute that is present in the population, and q is 1 − p. The value for z is found in
statistical tables, which calculates the area under the normal curve.

4.3 Allocation

In the Allocation step, according to the QoR, budget limitation and preferred finish-
ing time, each portion is assigned to the appropriate server. The allocation algorithm
has been described first.

4.3.1 Allocation algorithm

Algorithm 1 describes our approach in Allocation Step.

4.3.1.1 Problem definition Our problem is the allocation of different data portions
to servers to maximize the Quality of Result with the preferred finishing time and the
budget available. The notation is represented in Table 2.

4.3.1.2 Problem statement Due to the budget limitation and preferred finishing
time, the Quality of Result should be maximized.

(1)N0 = z2 ⋅ q ⋅ p∕e2

Fig. 3 Sampling of portions

5770 H. Ahmadvand, M. Goudarzi

1 3

• Quality of Result The quality of the result consists of the significance of each
single portion. The objective is maximizing the QoR [formula (2)].

• Finishing time Data portions may be processed in parallel. So, the total finish-
ing time is the finishing time of the longest processing. Formulae (3)–(5) indi-
cate the processing time. Based on the formula (1), processing time of each
data portion depends on its server type. Formula (4) indicates that finishing
time is the sum of processing time and latency time. Formula (5) presents the
mathematical equation for finishing time.

• Budget required for processing The budget required for processing is com-
posed of the budget required for processing each data portion. The processing
cost of each data portion is different according to the server on which it is pro-
cessed. Based on formula (6), the “Budget Required for Processing” for each
portion is dependent on the associated server type and the processing time.

(2)QoR =

NP
∑

i=1

(

Significancei ∗ Yi
)

(3)PT
(

Pi

)

=

NS
∑

j

Yi ∗ Capj ∗ Xi,j ∗ PTi,j

(4)FT
(

Pi

)

= PT
(

Pi

)

+ LT
(

Pi

)

(5)FT = MAX
(

FT
(

Pi

))

Table 2 Parameters of algorithm 1

Symbol Description Symbol Description

FT Finishing time PTi,j The processing time of Pi on Sj

PFT Preferred finishing time Cj ith server cost per time unit
AB Available budget Capj 1, if jth server processing capacity is still

available according to the deadline; 0,
otherwise

BRP Budget required for processing LSP The least significant portion
QoR Quality of result MSP The most significant portion
Pi ith portion LES The least expensive server
Sj jth server TCP Time Critical path
Significancei The significance of ith portion NP Number of data portions
Yi 1, if Pi processed; 0, otherwise NS Number of servers
Xi,j 1, if Pi assigned to Sj; 0, otherwise LT Latency time
FTi Finishing time of Pi PT Processing time

5771

1 3

SAIR: significance‑aware approach to improve QoR of big data…

4.3.1.3 Problem formulation Formula (7) is the objective function, which should
be maximized. Formulae (8) and (9) represent the constraints on budget limitation
and preferred finishing time. The controllable parameter is “which portions are
processed” and “assigning the portions to the servers” which are determined by the
Algorithm 1 presented in the following subsection.

Subject to:

And,

Based on the formula (7), the Quality of Result should be maximized as objec-
tive function. Based on the formulae (8) and (9), two constraints exist in the prob-
lem. 1. Budget required for processing should be less than or equal to available
budget. 2. Finishing time should be less than or equal to preferred finishing time.

4.3.1.4 SAIR allocation algorithm The heuristic presented below assigns data por-
tions to appropriate servers to obtain improved QoR. Pseudo-code of the algorithm
is given in Algorithm 1.

Algorithm1. SAIR1 Allocation
1: Input: PFT, AB
2: output: FT, BRP
3: assign all portions to LES
4: while (!(all portions are assigned or removed))
5: estimate(QoR, FT, BRP)
6: if (BRP > AB)
7: remove (amount of) LSP (to meet the AB)
8: end if
9: if(FT > PFT)
10: detect TCP
11: move MSP in TCP to higher server
12: end if
13: end while

Lines 1–3 of the algorithm are initialization of variables. The loop in lines
4–13 keeps running for the heuristic algorithm to satisfy the constraints and meet

(6)BRP =

NP
∑

i=1

NS
∑

j=1

Capj ∗ Cj ∗ Yi ∗ Xi,j ∗ PTi,j

(7)Max(QoR)

(8)BRP ≤ AB

(9)FT ≤ PFT

5772 H. Ahmadvand, M. Goudarzi

1 3

the objective function. Line 5 of our algorithm estimates the Quality of Result,
finishing time and the budget required for processing of any portion on each
server type. In lines 6–8, due to the budget constraint of the problem, if it is not
possible to process all portions, we remove the less significant portions to meet
the constraints. In lines 9–12, due to the finishing time constraint, we move the
most significant portion in Time Critical Path to a higher configured server.

Feasibility analysis

• Due to the removal mechanism (line 7), this algorithm will certainly have result
if the solution space is not empty. This algorithm removes the less significant
portions so that the problem constraints are satisfied.

• If there is a solution to this problem, this algorithm will find it. However, it does
not find all of the solutions to solve the problem.

• The solution found by this algorithm is not necessarily the optimal solution to
this problem. This algorithm removes less important portion, and if there is a
budget constraint, it does not check their significance. In the case of time con-
straint, this algorithm moves the most significant data portion in Time Critical
Path to the stronger processing server.

Complexity analysis The algorithm time complexity in the worst case is of O
(nm) where n represents the number of server types and m represents the number
of data portions.

As line 3 of the algorithm indicates, all data portions have been assigned to the
Least Expansive Server. The two mechanisms in our algorithm used to overcome
the lack of time and budget are demonstrated in Fig. 4. In case of lack of budget,
amount of the least significant portion has been removed and in case of lack of
time the most significant portion in TCP has been moved to the higher configured
server.

Fig. 4 Two mechanisms in the algorithm to overcome the lack of time and budget

5773

1 3

SAIR: significance‑aware approach to improve QoR of big data…

Time Critical Path is demonstrated in Fig. 5. Server with Time Critical Path
is the server with maximum finishing time. As Fig. 5 shows, the finishing time of
Server 2 determines the TCP.

4.3.2 Multi‑stage MapReduce

SAIR approach has been implemented as a kind of MapReduce that consists of
some partial MapReduce. MapReduce is a programming model that is used widely
for passive processing [41]. Hadoop and Spark are the best-known, publicly avail-
able implementations of MapReduce [42–44]. In this study, Apache Spark and Scala
language have been used to implement this multi-stage MapReduce.

After the first action (Scala operation) on the input data, it is converted into Resil-
ient Distributed Dataset (RDD). These RDDs consist of (Key, value) pairs which
make it possible to break a large MapReduce into smaller ones. The intermedi-
ate RDDs are stored in the storage and combined with other RDDs to produce the
intermediate result or final outcome. Some actions in Scala programming language
have been used for merging the RDDs, for example the “union” function combines

Fig. 5 Time Critical path

Fig. 6 Overall view of multi-stage MapReduce processing in SAIR

5774 H. Ahmadvand, M. Goudarzi

1 3

different RDDs [43, 44]. Using union function, the RDDs do not transfer on the net-
work, and this function just combines the address of RDDs to generate a new RDD
[44]. Figure 6 shows the two-stage MapReduce. In this example, the input data are
divided into two parts. Merging the RDDs is possible after the Map phase.

5 Evaluation

In this section, the experimental setup and the analysis of the results have been
described.

5.1 Experimental setup

In the evaluation of our SAIR approach, six applications and three types of server con-
figurations have been used. Spark version 2.0 on Ubuntu12.04 is used as the framework
of experiments. In the following paragraphs, the applications and datasets and then the
server configurations and prices will be introduced.

Applications Some applications from BigDataBench and other sources are used to
evaluate the SAIR approach. The followings are the name and a brief introduction of
the mentioned applications:

• WordCount: This application counts the number of words in the file.
• Grep: It searches and counts a pattern in a file.
• InvertedIndex: This application is an index data structure storing a mapping from

content to its locations in a database file.
• Health: This application calculates the number of heartbeats of volunteers.
• Investment: This application calculates the volume of investment in different states.
• URLCounting: It counts a certain URL in the input file.

Datasets Six benchmarks are used in evaluation step. Three of them are from Big-
DataBench suite [45] and three from other sources.

Our dataset is comprised of 50 GB of data from four different sources. This dataset
is used in WordCount, Grep and InvertedIndex applications. The four data sources are
IMDB, Gutenberg, Quotes and Wikipedia.

In our evaluation phase, health dataset [46] is also used, which consists of chest
movements data, gathered from acceleration sensors attached to the human body. It also
used Investment dataset [47] that surveys investments of various companies in different
states in the USA. Log server dataset has been used in URLCounting application. For
Health and Investment applications, the bootstrapping method is used for generating
50 GB data as the input dataset [48].

We ran experiments on three types of machines, an Intel Core-i7 2 core CPU at
2.8 GHz with 2 GB of RAM, an Intel Core-i7 4 core CPU at 2.8 GHz with 4 GB of
RAM and an Intel Core-i7 8 core CPU at 2.8 GHz with 8 GB of RAM.

Server configuration Table 3 represents the configuration of servers we mentioned.
We obtained the specifications and prices of servers from Amazon EC2 [49].

5775

1 3

SAIR: significance‑aware approach to improve QoR of big data…

5.2 Experimental results

We ran some scenarios to show our solution’s performance and compared it with
other approaches. SAIR presented as a significance variety-aware approach and
ApproxHadoop is its state of the art.

Naïve approaches are also used to compare with our approach. “NSVOS1” pre-
sents significance-variety-oblivious process of naïve MapReduce on the least expen-
sive server (LES). “NSVOS2” presents significance-variety-oblivious process of
naïve MapReduce on a medium server. “NSVOS3” presents significance-variety-
oblivious processes of naïve MapReduce on the most expensive server (MES).

Figure 7 shows the QoR in all used benchmarks. We consider 70% of finishing
time of naïve MapReduce on LES and 70% of Budget of naïve MapReduce on MES
as the finishing time and available budget constraints. This scenario is shown in
Fig. 7 as a normal status. As Fig. 7 illustrates, our approach improves the QoR of the
mentioned workloads up to 12% compared with the state of the art and up to 26%
compared with significance-variety-oblivious approaches. Therefore, our proposed
approach can achieve better Quality of Result. The sensitivity analysis of the pro-
posed approach is presented below.

• Sensitivity to Budget and Finishing Time constraint

Figure 8 shows different conditions of time and budget constraints. T1 is the fin-
ishing time of naïve MapReduce on the least expensive of available resources. B1
is the budget required for processing of naïve MapReduce on the most expensive of
available resources. The SAIR approach is presented for every condition in Area1.
In Area2, only time constraint exists, and therefore, more expensive (and config-
ured) servers can be used for processing. In Area4, only budget constraint exists,
so less expensive (and configured) servers can be used. In Area3, there is no con-
straint. We also define three classes of constraints in the SAIR area and show these
classes in Fig. 8. The Hard constraint is an area with extreme limitations. The Nor-
mal constraint has the normal limits, and the Soft constraint is the constraint with
low limitations.

The proposed approach has been examined in different classes in terms of
available budget and preferred finishing time. We have considered some values
for AB and PFT in Soft, Normal and Hard areas. We consider 50%, 70% and 90%
of T1 and B1 for Hard, Normal and Soft limitations. These values have been used
for our experiments. In Hard constraint area, as user faced with more restrictions,
our variety-aware approach makes a better result. In the Soft state, our approach

Table 3 Server configurations Server CPU (core) RAM (GB) Price ($/h)

Server1 4 4 0.239
Server2 8 8 0.479
Server3 16 16 0.959

5776 H. Ahmadvand, M. Goudarzi

1 3

improves QoR of workloads up to 5% compared with the state of the art and up
to 22% compared with the significance-variety-oblivious approaches. Figure 7
shows the result of our experiments. In the Normal state, our approach improves
QoR of proposed applications up to 12% compared with the state of the art and

Fig. 7 Comparison of variety-oblivious and variety-aware resource allocations for all benchmarks

Fig. 8 Different time and budget constraints

5777

1 3

SAIR: significance‑aware approach to improve QoR of big data…

26% compared with the significance-variety-oblivious approaches. Furthermore,
in the Hard state, the QoR of considered workloads has been improved up to 15%
compared with the state of the art and up to 28% compared with the significance-
variety-oblivious approaches. Generally, our approach makes better Quality of
Result in case of more restrictions, compared to other approaches.

• Sensitivity of “Amount of data needed to be processed” to data portions variance

In this section, the impact of data portions variance on the amount of data needed
to be processed will be examined. ApproxHadoop [15] has been considered as the
state of the art. In ApproxHadoop approach, a two-level sampling method and the
Student’s t-distribution have been considered and a small amount of input data have
been sampled and processed [50]. However, the accuracy of the method depends
on the data portions variance. In case of uneven distribution and multi sources, the
variance between input data has been increasing. This issue causes increase in vol-
ume of samples. Our approach can dominate this issue. Based on the two-level sam-
pling formula, we should select small portion size and select some small data frames
(based on Fig. 3) of all portions as the sample to reduce intra-portion variance [50].
By this approach, based on the two-level sampling formula, we decrease the intra-
portion size and dominate the effect of inter portion variance. So, amount of data
needed to be processed are decreasing and acceptable Quality of Result is achieved
by processing a small amount of data.

As Sect. 3 shows, when the data are composed of several sources, the variance
between them is high and therefore their effect on the final answer will be different.
In order to demonstrate the efficiency of our method, the following two scenarios
have been designed:

1. In Fig. 9, input data are generated from the Wikipedia source in BigDataBench.
This causes a small amount of data portions variance. As Fig. 9 shows, in this
case, ApproxHadoop has acceptable performance.

Fig. 9 Compare SAIR and ApproxHadoop with data from single sources

5778 H. Ahmadvand, M. Goudarzi

1 3

2. In Fig. 10, data are collected from four sources. These sources are IMDB, Guten-
berg, Quotes and Wikipedia. In this case, the intra- and inter-portions variance
is a considerable amount and causes the accuracy of the ApproxHadoop method
to reduce. The presented solution in ApproxHadoop [15] in case of very small
amount of data portions variance generates acceptable result, but in case of high
value of data, portions variance cannot generate a proper result. So, our signifi-
cance variety-aware approach can generate better Quality of Result in case of high
value of inter/intra portions variance. Figure 10 also shows that ApproxHadoop
does not guarantee an acceptable error bound in case of multi-source input data.

ApproxHadoop presents an approach with undefined sample size. This approach
in case of uniform distribution has acceptable results. But data variety is one of
main features of Big Data that causes data skew, and ApproxHadoop is not accu-
rate against this feature. We also present our approach that has acceptable results
in every condition of data distribution and data variety. Our approach can surpass
ApproxHadoop in case of data variety and skew.

As illustrated in Fig. 7, by SAIR approach that process data in a significance vari-
ety-aware way on the heterogeneous servers, our approach is able to achieve higher
Quality of Result. Our approach permits the user to manage the process with regard
to his limitations of processing.

The conclusion is that SAIR is successful in meeting preferred finishing time and
budget constraints and it can achieve the highest Quality of Result. Unlike SAIR,
ApproxHadoop, the significance variety oblivious and naïve MapReduce lack effec-
tive use of resources, and hence, they achieve a lower Quality of Result compared
with our approach.

As additional conclusion, SAIR can surpass the traditional approaches in case of
uneven distribution and impressive data variety. Previous works did not pay enough
attention to the data variety. So, the users can use SAIR in such conditions.

Fig. 10 Compare SAIR and ApproxHadoop with data from various sources

5779

1 3

SAIR: significance‑aware approach to improve QoR of big data…

6 Conclusion

In this paper, we presented a significance-aware approach for increasing QoR in case
of budget and time constraints for big data processing. We have considered aggrega-
tive functions including sum, count, average and ratio in this paper. The proposed
approach tries to allocate the most efficient resource to more significant portions of
data. By this approach, we are able to meet budget and preferred finishing time con-
straints. Experiments on the benchmarks demonstrated that our approach has supe-
rior performance comparing to its state of the art and some other approaches.

Definition of application type and the significance for each application are the
first step of this approach. Sampling of data portions according to their signifi-
cance is the other step of this approach. The last step is the allocation algorithm.
Our approach presents a solution for big data processing in case of budget limitation
with regard to the preferred finishing time.

Advantages and disadvantages of SAIR and its state of the art are described
below.

Advantages and disadvantages of SAIR:

• Good performance in every conditions of distribution and data skew
• Low overhead in every conditions of input data
• Simple to implement

Advantages and disadvantages of ApproxHadoop:

• Good performance in case of uniform distribution
• Unacceptable result in case of uneven distribution
• High overhead in case of uneven distribution

7 Future research

Many interesting directions exist for future research. First of them is estimating
the total and partial processing capacity for all data or each data portion. By this
approach, the user is able to rent suitable processing capacity. The user should con-
sider the amount of CPU usage, the memory usage and processing time for each
portion on servers. Another area for future work is analyzing the impact of intra-/
inter-portion variance on Quality of Result in case of budget limitation.

Significance of our work We expected our work to be useful for many purposes:
(a) Increasing QoR of big data processing in case of budget limitations, (b) a suitable
approach for resource provisioning and allocation, (c) as a platform for approximate
computing based on data variety and accelerating processing of the most significant
data portions and (d) reducing time for generation of significant part of results.

5780 H. Ahmadvand, M. Goudarzi

1 3

References

 1. Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the design
of warehouse-scale machines, vol 8.3, 2nd edn. Morgan & Claypool, San Rafael, pp 1–154

 2. Gantz J, Reinsel D (2012) The digital universe in 2020: big data, bigger digital shadows, and biggest
growth in the far east. IDC iView IDC Anal Future 2007:1–16

 3. Ahmadvand H, Goudarzi M (2017) Using data variety for efficient progressive big data processing
in warehouse-scale computers. IEEE Comput Archit Lett 16(2):166–169

 4. Fekete J-D, Primet R (2016) Progressive analytics: a computation paradigm for exploratory data
analysis. arXiv preprint arXiv, vol. 1607.05162

 5. Mittal S (2016) A survey of techniques for approximate computing. ACM CSUR 48:62
 6. Parasyris K, Vassiliadis V, Antonopoulos CD, Lalis S, Bellas N (2017) Significance-aware program

execution on unreliable hardware. ACM TACO 14(2):12
 7. Zhao Y, Calheiros RN, Gange G, Ramamohanarao K, Buyya R (2015) SLA-based resource schedul-

ing for big data analytics as a service in cloud computing environments. In: 2015 44th International
Conference on Parallel Processing (ICPP)

 8. Honjo T, Oikawa K (2013) Hardware acceleration of hadoop mapreduce. In: 2013 IEEE Interna-
tional Conference on in Big Data

 9. Shan Y, Wang B, Yan J, Wang Y, Xu N, Yang H (2010) FPMR: MapReduce framework on FPGA.
In: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays

 10. Polato I, Ré R, Goldman A, Kon F (2014) A comprehensive view of Hadoop research—a systematic
literature review. J Netw Comput Appl 46:1–25

 11. Mashayekhy L, Movahed Nejad M, Grosu D, Zhang Q, Shi W (2015) Energy-aware scheduling of
mapreduce jobs for big data applications. IEEE Trans Parallel Distrib Syst 26(10):2720–2733

 12. Chandramouli B, Goldstein J, Quamar A (2013) Scalable progressive analytics on big data in the
cloud. Proc VLDB Endow 6:1726–1737

 13. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy K, Sears R (2010) MapReduce online. In
Nsdi

 14. Wang Y, Shi W (2013) On optimal budget-driven scheduling algorithms for MapReduce jobs in the
hetereogeneous cloud. Technical report TR-13–02, Carleton University

 15. Goiri I, Bianchini R, Nagarakatte S, Nguyen TD (2015) Approxhadoop: bringing approximations to
mapreduce frameworks. ACM SIGARCH Comput Archit News 43:383–397

 16. Ahmadvand H, Goudarzi M, Foroutan F (2019) Gapprox: using Gallup approach for approximation
in big data processing. J Big Data 6(1):20

 17. Vassiliadis V, Riehme J, Deussen J, Parasyris K, Antonopoulos CD, Bellas N, Lalis S, Naumann U
(2016) Towards automatic significance analysis for approximate computing. In: 2016 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO)

 18. Chen Y, An A (2016) Approximate parallel high utility itemset mining. Big Data Res 6:26–42
 19. Zamani AR, AbdelBaky M, Balouek-Thomert D, Rodero I, Parashar M (2017) Supporting data-

driven workflows enabled by large scale observatories. In: IEEE 13th International Conference on
e-Science (e-Science), Auckland, New Zealand

 20. Zhang X, Wang J, Yin J (2016) Sapprox: enabling efficient and accurate approximations on sub-
datasets with distribution-aware online sampling. Proc VLDB Endow 10(3):109–120

 21. Li K, Li G (2018) Approximate query processing: what is new and where to go? Data Sci Eng
3(4):379–397

 22. Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I (2013) BlinkDB: queries with
bounded errors and bounded response times on very large data. In: Proceedings of the European
Conference on Computer Systems (EuroSys)

 23. Zheng C, Zhan J, Jia Z, Zhang L (2013) Characterizing os behavior of scale-out data center work-
loads. In: The Seventh Annual Workshop on the Interaction amongst Virtualization, Operating Sys-
tems and Computer Architecture (WIVOSCA 2013)

 24. Lee Y, Lee Y (2011) Detecting ddos attacks with hadoop. In: Proceedings of The ACM CoNEXT
Student Workshop

 25. Thusoo A, Shao Z, Anthony S, Borthakur D, Jain N, Sarma JS, Murthy R, Liu H (2010) Data ware-
housing and analytics infrastructure at Facebook. In: Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data

5781

1 3

SAIR: significance‑aware approach to improve QoR of big data…

 26. Kaur N, Sood SK (2017) Efficient resource management system based on 4Vs of big data streams.
Big Data Research

 27. Jiang Y, Huang Z, Tsang DHK (2018) Towards max–min fair resource allocation for stream big data
analytics in shared clouds. IEEE Trans Big Data 4(1):130–137

 28. Kelley J, Stewart C, Morris N, Tiwari D, He Y, Elnikety S (2017) Obtaining and managing answer
quality for online data-intensive services. ACM TOMPECS 2(2):11

 29. Li C, Zhu L, Liu Y, Luo Y (2017) Resource scheduling approach for multimedia cloud content man-
agement. J Supercomput 73(12):5150–5172

 30. Wang J, Zhang X, Yin J, Wang R, Wu H, Han D (2018) Speed up big data analytics by unveiling the
storage distribution of sub-datasets. IEEE Trans Big Data 4(2):231–244

 31. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems.
ACM TODS 30:41–82

 32. Tan K-L, Eng P-K, Ooi BC (2001) Efficient progressive skyline computation. VLDB 1:301–310
 33. Zhang D, Du Y, Xia T, Tao Y (2006) Progressive computation of the min-dist optimal-location

query. In: Proceedings of the 32nd International Conference on Very Large Data Bases
 34. Krishnan DR, Quoc DL, Bhatotia P, Fetzer C, Rodrigues R (2016) IncApprox: a data analytics sys-

tem for incremental approximate computing. In: Proceedings of the 25th International Conference
on World Wide Web. International World Wide Web Conferences Steering Committee

 35. Conejero J, Corella S, Badia RM, Labarta J (2018) Task-based programming in COMPSs to con-
verge from HPC to big data. Int J High Perform Comput Appl 32(1):45–60

 36. Qiu C, Shen H, Chen L (2018) Towards green cloud computing: demand allocation and pric-
ing policies for cloud service brokerage. IEEE Trans Big Data. https ://doi.org/10.1109/TBDAT
A.2018.28233 30

 37. Mian R, Martin P, Vazquez-Poletti JL (2012) Provisioning data analytic workloads in a cloud.
Future Gen Comput Syst 29(6):1452–1458

 38. Malekimajd M, Ardagna D, Ciavotta M, Gianniti E, Passacantando M, Rizzi AM (2018) An optimi-
zation framework for the capacity allocation. J Supercomput 74(10):5314–5348

 39. BigDataBench. http://prof.ict.ac.cn/. Accessed 15 Feb 2019
 40. Cochran WG (2007) Sampling techniques. Wiley, Hoboken
 41. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun

ACM 51(1):107–113
 42. Welcome to Apache™ Hadoop®! http://hadoo p.apach e.org/. Accessed 15 Feb 2019
 43. Apache Spark™—lightning-fast cluster computing. http://www.spark -proje ct.org/. Accessed 15 Feb

2019
 44. RDD Programming Guide. https ://spark .apach e.org/docs/lates t/rdd-progr ammin g-guide .html.

Accessed 15 Feb 2019
 45. Wang L, Zhan J, Luo C, Zhu Y, Yang Q, He Y, Gao W, Jia Z, Shi Y, Zhang S, Zheng C, Lu G, Zhan

K, Li X, Qiu B (2014) Bigdatabench: a big data benchmark suite from internet services. In: 2014
IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)

 46. UCI Machine Learning Repository. https ://archi ve.ics.uci.edu/ml/datas ets/MHEAL TH%20Dat aset.
Accessed 15 Feb 2019

 47. Sample CSV Data. https ://suppo rt.spati alkey .com/spati alkey -sampl e-csv-data/. Accessed 15 Feb
2019

 48. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other
measures of statistical accuracy. Stat Sci 1(1):54–75

 49. Amazon EC2 Dedicated Instances. https ://aws.amazo n.com/ec2/purch asing -optio ns/dedic ated-insta
nces/. Accessed 15 Feb 2019

 50. Lohr SL (2009) Sampling: design and analysis. Cengage Learning, Boston

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/TBDATA.2018.2823330
https://doi.org/10.1109/TBDATA.2018.2823330
http://prof.ict.ac.cn/
http://hadoop.apache.org/
http://www.spark-project.org/
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://archive.ics.uci.edu/ml/datasets/MHEALTH%20Dataset
https://support.spatialkey.com/spatialkey-sample-csv-data/
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

	SAIR: significance-aware approach to improve QoR of big data processing in case of budget constraint
	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Evaluation
	1.3 Contributions
	1.4 Organization

	2 Related works
	3 Motivation
	4 Proposed approach
	4.1 Significance definition
	4.2 Sampling
	4.3 Allocation
	4.3.1 Allocation algorithm
	4.3.1.1 Problem definition
	4.3.1.2 Problem statement
	4.3.1.3 Problem formulation
	4.3.1.4 SAIR allocation algorithm

	4.3.2 Multi-stage MapReduce

	5 Evaluation
	5.1 Experimental setup
	5.2 Experimental results

	6 Conclusion
	7 Future research
	References

