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Abstract
Nowadays, a wide range of enterprises are faced with big data processing in dif-
ferent domains such as transaction operations, business calculations and analytical 
computations. Large-scale computing is an approach for big data processing. Due to 
the cost of large-scale computing and limitations of enterprise budgets, it is hardly 
possible to process all the input data and therefore the Quality of Result (QoR) may 
be affected. SAIR is an approach to improve QoR of big data processing for aggre-
gative usages based on significance variety when there is a budget constraint. In this 
paper, the most significant data portions have been assigned to the most efficient 
resources in terms of time and cost. If the budget is still available, other data por-
tions have been assigned to remaining resources. In this approach, statistical meth-
ods and a sampling technique with a 95% of the confidence interval and 5% of error 
margin are used to identify the most and least significant data portions. By using 
this method, the users are able to improve QoR with respect to budget constraint 
and preferred finishing time. In the evaluation phase, applications from different 
domains such as document and text, transaction data and system logs are used. Our 
results indicate that SAIR improves QoR while meeting budget constraint for con-
sidered usages. This approach improves the QoR up to 15%, compared with the state 
of the art.
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1 Introduction

Quality of Result is a key concern in big data processing. One of the solutions 
for big data processing is warehouse scale processing in data center [1, 2]. Since 
a huge capacity of large-scale computing is required for big data processing, the 
cost of big data processing is of great value. Limitations of enterprise budgets 
may prevent them from processing all of the data and cause a reduction in QoR.

Aggregative applications are used widely in transaction operations, business 
calculations and analytical computations. An aggregative function is a function 
where some multiple values grouped together to form a single value, such as sum 
or average function. In this paper, we focus on aggregative applications and pre-
sent an approach to improve QoR in big data processing in case of budget con-
straint and preferred finishing time.

In previous work [3], we have shown that various portions of data from one or 
different sources have various significance in determining the final outcome. In 
current paper, we offer an approach to overcome the limitation of budget/time and 
improve the QoR.

Some previous works have also addressed Quality of Result. The most impor-
tant categories of them are as follows:

Improving QoR Some researchers have introduced frameworks to help the pro-
grammers and users for progressive analytics [4]. Our approach also is a frame-
work to help improving QoR in big data processing. Approximate computing is 
a kind of computation that generates acceptable QoR using fewer resources such 
as time or cost [5]. CPU energy reduction with acceptable QoR is considered in 
[6] where the authors run less significant tasks on unreliable hardware and more 
significant ones on the most reliable hardware. Researchers in [7] have offered 
a framework for increasing QoR for cloud providers. Using hardware accelera-
tors to improve QoR is discussed in [8, 9]. Some works find other techniques 
for increasing the QoR in big data processing [10]. Many prior researches tried 
to address the efficient resource management [11]. Definition of progress inter-
val by data sampling is the main concept of [12]. Authors in [13] have changed 
the MapReduce architecture to generate an approximate result in a progressive 
manner. Similar to our research, some researchers have introduced frameworks to 
help the programmers and users in progressive analytics [4].

Resource allocation Resource allocation is one of the approaches used for 
increasing QoR and managing the processing cost [7, 14]. Our approach also assigns 
more significant data portions to the most efficient resource to increase QoR.

Approximation The approximation is a solution to increase the performance 
of big data processing. Authors in [5, 13, 15, 16] use approximation for big data 
processing. In these researches, a certain QoR is expected.

Code, task and variable variety Code, task and variable variety are considered 
in [17], and some techniques and tools have been introduced to detect the most 
significant portion of code and variable in output quality. Selecting desirable split 
of data for feeding the pipeline is considered in [13].
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Nevertheless, the effect of significance variety of various portions of input data 
to improve QoR in case of budget limitation has not been previously explored. The 
input data consist of various data types from multiple resources. This fact leads to 
the different significance of various portions of data in the final result.

Based on the idea which is presented in paper [3], now we present “SAIR,” Sig-
nificance-aware Approach to Improve quality of Result, which is an approach to 
improve QoR in case of budget constraint and preferred finishing time in big data 
processing. For this goal, more significant data portions have been assigned to the 
most efficient resource in terms of time and cost. If the budget is still available, other 
data portions have been assigned to existing resources.

As Fig. 1 depicts, the high-level design of SAIR consists of three main parts. In 
the first part, the Significance Measure is defined to judge the difference between 
data portions. Significance Measure should be defined based on the functionality 
of the application. We use Significance Measure to define the significance of each 
portion. In the second part, a sampling method is presented to determine the signifi-
cance of each portion. In the third part, the data portions are assigned to the servers 
based on the budget/time constraint. Our algorithm estimates processing time and 
cost for each portion on the candidate server. The data portions are assigned to the 
servers, in such a way that, despite the time and budget constraints, the best quality 
of response is obtained. Finally, our approach is evaluated and is shown its perfor-
mance in different application types. 

1.1  Challenges

There are important parts of our proposed approach. These parts are explained 
below.

Targeted applications Our proposed approach can manage the QoR of aggrega-
tive applications and other similar functions effectively. These applications calculate 
aggregate functions such as Average, Sum, Count, Ratio and some other statistical 
calculations. In this application type, different parts of input data are independent of 
each other. Due to this independency, sampling can be used to determine the signifi-
cance of each data portion.

Significance determination This is the main part of our approach. Significance 
Measure is determined per application based on its functionality. To judge the different 

Fig. 1  SAIR overview
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impacts of data portions on the final result, the Significance Measure must be properly 
defined.

Sampling method A kind of sampling method is used to reduce amount of data 
needed to be processed. For achieving a meaningful difference between portions, desir-
able portion size is determined.

QoR-aware allocation Finally, in the Allocation section, the data portions are 
assigned to the efficient resources in terms of cost and time. Based on the significance 
variety, the data portions must be allocated to proper servers. This allocation achieves 
maximum QoR and meets the constraints.

1.2  Evaluation

Applications from several domains are used for SAIR evaluation. Domains like docu-
ment and text, transaction data, system logs and some others are used in our evalua-
tions. Specifications and price of servers are obtained from Amazon EC2. Experiments 
are run on three types of machines, an Intel Core-i7 2 core CPU at 2.8 GHz with 2 GB 
of RAM, an Intel Core-i7 4 core CPU at 2.8 GHz with 4 GB of RAM and an Intel 
Core-i7 8 core CPU at 2.8 GHz with 8 GB of RAM.

In Sect. 5, representative experimental results for some of these applications have 
been presented. These results show that SAIR allows users to meet budget limitations 
in an acceptable finishing time and achieve a desirable QoR.

1.3  Contributions

In summary, the following contributions are made in this paper: (1) We propose a gen-
eral set of mechanisms to improve QoR when having low budgets or finishing time 
limit, (2) we define the concept of “significance” for each application to illustrate the 
difference between data portions, (3) We define targeted applications for this approach 
based on their intra-data/program dependencies, (4) we benefit from different impact 
of various portions on the final result, and (5) via our experiments, we show that SAIR 
is applicable to many applications and it can significantly improve QoR when there is 
budget constraint.

1.4  Organization

The rest of the paper is organized as follows: Sect. 2 surveys the previous works. Sec-
tion 3 presents some examples to show the motivation of research. Section 4 presents 
and discusses the SAIR approach. Section 5 shows the experimental results. Finally, the 
paper is concluded and future works are discussed in Sect. 6 and 7.
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2  Related works

Improving QoR Similar to our work, some of the previous works have also focused 
on improving the Quality of Results. Approximate computing generates acceptable 
Quality of Result using less resources [5, 15]. Our approach also can provide a pro-
gressive approximation of result. By processing more significant data portions in the 
early steps, SAIR provides a fast approximation of the outcome. Authors in [18] have 
used sampling to overcome the resource limitation and have succeeded in improv-
ing Quality of Result. The authors in [19] have used an approximation to reduce 
computational requirements without significant reduction in Quality of Result. They 
have used their approach to compute scientific processing and have considered users 
preferences such as Quality of Result, Deadline and Budget. The authors in Sapprox 
[20] have noted the weakness of ApproxHadoop [15] and tried to offer a way to 
overcome it. They have used cluster sampling with unequal probability theory. It is 
very hard for users to define suitable Sampling Interval for the various condition of 
skew. Approaches and researches in approximate query processing are presented in 
[21]. BlinkDB [22] offers a solution to select samples for each query column set and 
uses samples to answer online queries in the distributed file system.

QoR-aware resource allocation Our approach has used a QoR-aware resource 
allocation algorithm for improving the QoR. Some of the previous works also have 
paid attention to this issue.

CPU energy reduction with acceptable Quality of Result is considered in [6]. 
Running less significant tasks on unreliable hardware and more significant ones on 
reliable hardware, with five benchmarks, had been evaluated. The benchmarks have 
different computational characteristics. In [23], the authors have performed a quanti-
tative study of OS behavior on scale-out data center workloads, taking into account 
the interferences between micro-architecture and OS execution. This investigation 
has shown that the performance of data center workloads is significantly dominated 
by preemptive OS activities in contemporary OS design. Accordingly, the authors 
have recommended that multi-kernel structure with more local resource allocation 
could be a leading trend for future OS design. Detecting DDoS attack with URL 
counting is the main concept of [24]. The authors have shown the impact of differ-
ent Hadoop clusters on the performance of the counter-based detector. Researchers 
in [7] also have offered a framework for Big Data Analytic Applications. This paper 
has presented an approach for maximizing resource utilization by assigning queries 
to existing VMs and reducing resource cost by executing queries on VMs with lower 
cost first. This approach reduces the load on expensive servers. The authors have 
recommended this approach to cloud providers and have predicted that their market 
share will be increased by using this method. Authors in [25] have described the 
Data Warehousing and Analytics Infrastructure at Facebook. Our approach has also 
focused on the challenge of the impact of Data Variety on the cost of big data pro-
cessing. Actually, a limited number of studies exist in this area.

Authors in [26] consider the characteristics of data for resource allocation. In 
this article, input data consist of text, image, video and audio. Authors presented 
an approach for sampling and estimating the volume and velocity of various types 
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of input data. Resources are allocated to input data based on its functionality and 
requirement. In our paper, aggregate applications have been considered and the 
impact of a variety of input data on the result has been evaluated. Variety that is 
one of the 4Vs of Big Data is considered in our paper. Authors in [26] showed 
that the allocation should be changed whenever data characteristics change in 
terms of type, volume or velocity. Our paper shows that the allocation should be 
changed whenever data characteristics change in terms of variety or source. The 
authors in [27] have considered a trade-off between the efficient resource alloca-
tion and the topology throughput. They have not considered the data variety in 
their work and their definition for throughput. Authors in [28] have presented a 
framework for obtaining and managing quality of answer for online data-inten-
sive services. They first provide fast interactive result by processing data from 
available and fast components and then improve Quality of Result by processing 
other data. The authors in [29] have considered the differences between the Cloud 
job tasks. They also have considered the user’s demands and have increased the 
users’ satisfaction. The problem of imbalanced sub-datasets and inefficient sam-
pling on sub-datasets over a Hadoop cluster has been investigated [30]. They have 
offered a solution to overcome the uneven sub-datasets distribution and balance 
workload among computational nodes. They have increased the performance of 
parallel data analysis.

Progressive processing Our solution has the ability to generate progressive 
results. There are other related researches in this area. Authors in [13] have changed 
the MapReduce architecture to generate an approximate result in a progressive man-
ner. They have introduced Hadoop Online Prototype (HOP) that is the pipelined ver-
sion of Hadoop. They have discussed the advantages and features of this framework 
in big data processing. Selecting desirable split of data for feeding the pipeline can 
increase the performance of this framework. Our research has focused on the selec-
tion of suitable data portions to utilize the servers and decrease the total cost and 
time of processing. Some works have focused on pruned large input data space, for 
example, dimension reduction for progressive processing [31–33]. Our approach 
also focuses on the impact of data variety on the outcome and therefore defines sig-
nificance for each application. The authors in [34] have proposed the combination 
of both the approximate and incremental computing, in order to use the benefits 
from the two. Their approach relies on computing over a subset of data items instead 
of the entire dataset to achieve low latency and efficient cluster utilization. By this 
approach, the users can manage the budget and accuracy of their processing. Our 
approach also helps users to improve the QoR of their processing in case of time and 
budget limitations.

Definition of progress interval by data sampling is the main concept of [12]. By 
this approach, the authors have introduced a scalable progressive computation. Our 
approach uses sampling for ranking data portions to have more efficient allocations. 
None of the works mentioned has used significance variety for increasing Quality 
of Result. Similar to our research, some researchers have introduced the frame-
works to help the programmers and users for progressive analytics [4]. Our proposed 
approach also is a framework to help the management of big data processing in 
terms of time, cost and performance.
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Code and task variety Code, task and data variety have a visible impact on gen-
erating the result. The authors in [17] have focused on the code and variable variety 
for increasing Quality of Result. They have offered an approach for software-based 
approximate computing. They have provided techniques and tools that capture the 
significance of various operations with respect to the output of applications. In con-
trast, our approach has focused on the data variety which causes significance vari-
ety. By processing the most significant portions of data with high-configuration 
resources, the final result is generated faster. In [35], a comparison between Spark 
and COMPSs is done. The authors have described the functionality of Spark with a 
focus on TRANSFORMATIONs and ACTIONs. WordCount, Kmeans and Terasort 
are considered in this paper. The authors have suggested their algorithm to be used 
for adapting and rewriting the applications. Spark platform is used in our approach 
for our experiments.

Deadline- and budget-aware Scheduling Our important constraints in this arti-
cle are the budget constraint and processing time limits. Some related works also 
addressed these issues. The main contribution of [14] is the scheduling issues with 
respect to deadline and limitation of the budget. This article has optimized the 
scheduling of MapReduce jobs at task level with respect to budget constraints. In 
this paper, the authors have focused on two aspects of optimization in scheduling.

• Given a fixed budget, how to select the machine from a candidate set efficiently, 
for each task, so that the total scheduling length of the job is the shortest length 
without breaking the budget.

• Given a fixed deadline D, how to select the machine from a candidate set effi-
ciently for each task, so that the total monetary cost of the job has the lowest cost 
without missing the deadline.

The authors in [36] focused on the reduction of the energy cost of clouds. They 
have offered a pricing policy to cloud providers for increasing the profit. The authors 
in [37] present an approach to select the most cost-effective configuration in a 
way that resource costs are minimized while the service level agreements (SLAs) 
associated with the workload are met. Our approach also has offered an approach 
to improve the Quality of Result while meeting time and budget limitations of the 
problem. The authors in [38] have presented an optimization approach to allocate a 
MapReduce job with a priori deadline guarantees.

No one has yet used the data variety for scheduling of Big Data jobs to improve 
QoR with respect to budget and expected finishing time constraints. In this paper, a 
novel data variety-aware approach to improve the QoR in case of budget and finish-
ing time constraint has been presented.

3  Motivation

Observations which motivated us for this research and idea have been presented in 
this section. For presenting motivation, some applications are used. These applica-
tions are derived from BigDataBench [39] and some other sources. First, input data 
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are divided into 0.5 GB portions, and then, all of the permutations of portions are 
analyzed. The incremental outcome after processing of each portion has been meas-
ured. By this reordering approach, the speed of generating outcome differs depend-
ing on the sequence of data portions. Figure 2 represents our observations. The ver-
tical axis shows the “Normalized Quality of Result,” and the horizontal axis shows 
the “amount of data processed.” As Fig. 2 shows, there is a large difference between 
the best and the worst sequences.

In Fig. 2, the blue line and the red line show the incremental result of the best and 
worst sequences of processed data portions. In WordCount application, when half 
of the data is processed, the result of the worst sequence is still 73% far from the 
final outcome, whereas the best sequence resulted in only 27% far. This large gap 
is due to the difference in the “significance” of each data portion. This fact can be 
used to increase the QoR in case of time and budget limitations. Similar behavior is 
observed for other aggregative applications that are considered in this paper.

In big data processing, limitation of time and/or cost is a common problem. So 
processing all of the data may be impossible. We came to the idea of using this dif-
ference in significance value to give different priorities to data portions. According 
to this priority, various portion sequences may be selected to be processed on het-
erogeneous servers. We worked on choosing these data portions and assigning them 
to the appropriate servers to overcome the lack of time and/or budget.

4  Proposed approach

In this section, our SAIR approach is presented. Our objective is to increase the 
Quality of Result while the budget constraint and finishing time limitations are met. 
Considering the available budget and preferred finishing time, it may not be possible 
to process all of the input data, so the Quality of Result (QoR) may be affected. Our 
proposed approach, SAIR, consists of three parts:

Significance definition step In the first step, the Significance Measure is deter-
mined for each application, based on its functionality. In this paper, aggregative 

Fig. 2  Quality of result of processing the data portions in various orders for WordCount benchmark with 
0.5 GB as the size of data portions



5768 H. Ahmadvand, M. Goudarzi 

1 3

applications have been considered (e.g., counting accesses to Web pages from a log 
file).

Sampling step Then, the sampling method is used. In this step, the input data are 
divided into some same-sized portions and the sampling technique is used to deter-
mine the significance of each data portion.

Allocation step Finally, in the Allocation section, each portion is assigned to an 
appropriate server, based on the objectives. Figure 1 shows our approach in general. 
These steps have been described in detail below:

4.1  Significance definition

A measure is needed for comparing different data portions according to their impact 
on the final result. So, the Significance Measure is defined for each application based 
on its mathematical operation.

Significance definition for each application Table  1 describes defined Signifi-
cance Measures for each application. The Significance Measure should indicate the 
amount of output generated and the degree of proximity to the final answer. For 
example, for applications that identify and count a particular pattern, the number 
of those specific patterns is considered as the Significance Measure. In Sorting and 
Indexing applications, the size of the produced middle file as the measure can be 
selected.

4.2  Sampling

Cochran sampling technique with a 95% confidence interval and 5% of error mar-
gin [40] has been used as the sampling technique. For example, in normal distribu-
tion, 385 samples should be selected to have 95% confidence interval and 5% of 
error margin. In our approach, 0.5 GB has been considered as portion size. Figure 3 
shows how to divide the data into equal size portions and divide the portions into 
frames that are equal in size. Since each frame is a 1 KB data and each frame is 
considered as one sample, the overhead of processing these samples is less than 1%. 
Due to the small size of frames, the distribution of intra-frame data can be consid-
ered as uniform distribution.

Table 1  Significance Measure determination for each data portion

Application name Significance Measure

WordCount The number of words in a portion
Grep The number of lines in which the match can be found in a portion
InvertedIndex The size of the output index files from a portion
URLCounting The number of certain URLs counted in a portion
Investment The volume of investments in different states that exist in a portion
Exchange The amount of transactions in exchange that exist in a portion
Health The number of heartbeats that exist in a portion
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This formula is valid, where N0 is the sample size, z2 is the abscissa of the normal 
curve that cuts off an area α at the tails (1 − α equals to the desired confidence level, 
e.g., 95%), e is the desired level of precision, p is the estimated proportion of an 
attribute that is present in the population, and q is 1 − p. The value for z is found in 
statistical tables, which calculates the area under the normal curve.

4.3  Allocation

In the Allocation step, according to the QoR, budget limitation and preferred finish-
ing time, each portion is assigned to the appropriate server. The allocation algorithm 
has been described first.

4.3.1  Allocation algorithm

Algorithm 1 describes our approach in Allocation Step.

4.3.1.1 Problem definition Our problem is the allocation of different data portions 
to servers to maximize the Quality of Result with the preferred finishing time and the 
budget available. The notation is represented in Table 2.

4.3.1.2 Problem statement Due to the budget limitation and preferred finishing 
time, the Quality of Result should be maximized.

(1)N0 = z2 ⋅ q ⋅ p∕e2

Fig. 3  Sampling of portions
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• Quality of Result The quality of the result consists of the significance of each 
single portion. The objective is maximizing the QoR [formula (2)].

• Finishing time Data portions may be processed in parallel. So, the total finish-
ing time is the finishing time of the longest processing. Formulae (3)–(5) indi-
cate the processing time. Based on the formula (1), processing time of each 
data portion depends on its server type. Formula (4) indicates that finishing 
time is the sum of processing time and latency time. Formula (5) presents the 
mathematical equation for finishing time.

• Budget required for processing The budget required for processing is com-
posed of the budget required for processing each data portion. The processing 
cost of each data portion is different according to the server on which it is pro-
cessed. Based on formula (6), the “Budget Required for Processing” for each 
portion is dependent on the associated server type and the processing time.

(2)QoR =

NP
∑

i=1

(

Significancei ∗ Yi
)

(3)PT
(

Pi

)

=

NS
∑

j

Yi ∗ Capj ∗ Xi,j ∗ PTi,j

(4)FT
(

Pi

)

= PT
(

Pi

)

+ LT
(

Pi

)

(5)FT = MAX
(

FT
(

Pi

))

Table 2  Parameters of algorithm 1

Symbol Description Symbol Description

FT Finishing time PTi,j The processing time of Pi on Sj

PFT Preferred finishing time Cj ith server cost per time unit
AB Available budget Capj 1, if jth server processing capacity is still 

available according to the deadline; 0, 
otherwise

BRP Budget required for processing LSP The least significant portion
QoR Quality of result MSP The most significant portion
Pi ith portion LES The least expensive server
Sj jth server TCP Time Critical path
Significancei The significance of ith portion NP Number of data portions
Yi 1, if Pi processed; 0, otherwise NS Number of servers
Xi,j 1, if Pi assigned to Sj; 0, otherwise LT Latency time
FTi Finishing time of Pi PT Processing time
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4.3.1.3 Problem formulation Formula (7) is the objective function, which should 
be maximized. Formulae (8) and (9) represent the constraints on budget limitation 
and preferred finishing time. The controllable parameter is “which portions are 
processed” and “assigning the portions to the servers” which are determined by the 
Algorithm 1 presented in the following subsection.

Subject to:

And,

Based on the formula (7), the Quality of Result should be maximized as objec-
tive function. Based on the formulae (8) and (9), two constraints exist in the prob-
lem. 1. Budget required for processing should be less than or equal to available 
budget. 2. Finishing time should be less than or equal to preferred finishing time.

4.3.1.4 SAIR allocation algorithm The heuristic presented below assigns data por-
tions to appropriate servers to obtain improved QoR. Pseudo-code of the algorithm 
is given in Algorithm 1.

Algorithm1. SAIR1 Allocation
1: Input: PFT, AB
2: output: FT, BRP
3: assign all portions to LES
4: while (!(all portions are assigned or removed )) 
5:       estimate(QoR, FT, BRP)
6:  if (BRP > AB)
7:      remove (amount of) LSP (to meet the AB) 
8:   end if
9:   if(FT > PFT)
10:    detect TCP 
11:    move MSP in TCP to higher server
12:  end if
13: end while

Lines 1–3 of the algorithm are initialization of variables. The loop in lines 
4–13 keeps running for the heuristic algorithm to satisfy the constraints and meet 

(6)BRP =

NP
∑

i=1

NS
∑

j=1

Capj ∗ Cj ∗ Yi ∗ Xi,j ∗ PTi,j

(7)Max(QoR)

(8)BRP ≤ AB

(9)FT ≤ PFT
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the objective function. Line 5 of our algorithm estimates the Quality of Result, 
finishing time and the budget required for processing of any portion on each 
server type. In lines 6–8, due to the budget constraint of the problem, if it is not 
possible to process all portions, we remove the less significant portions to meet 
the constraints. In lines 9–12, due to the finishing time constraint, we move the 
most significant portion in Time Critical Path to a higher configured server.

Feasibility analysis

• Due to the removal mechanism (line 7), this algorithm will certainly have result 
if the solution space is not empty. This algorithm removes the less significant 
portions so that the problem constraints are satisfied.

• If there is a solution to this problem, this algorithm will find it. However, it does 
not find all of the solutions to solve the problem.

• The solution found by this algorithm is not necessarily the optimal solution to 
this problem. This algorithm removes less important portion, and if there is a 
budget constraint, it does not check their significance. In the case of time con-
straint, this algorithm moves the most significant data portion in Time Critical 
Path to the stronger processing server.

Complexity analysis The algorithm time complexity in the worst case is of O 
(nm) where n represents the number of server types and m represents the number 
of data portions.

As line 3 of the algorithm indicates, all data portions have been assigned to the 
Least Expansive Server. The two mechanisms in our algorithm used to overcome 
the lack of time and budget are demonstrated in Fig. 4. In case of lack of budget, 
amount of the least significant portion has been removed and in case of lack of 
time the most significant portion in TCP has been moved to the higher configured 
server.

Fig. 4  Two mechanisms in the algorithm to overcome the lack of time and budget
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Time Critical Path is demonstrated in Fig. 5. Server with Time Critical Path 
is the server with maximum finishing time. As Fig. 5 shows, the finishing time of 
Server 2 determines the TCP.

4.3.2  Multi‑stage MapReduce

SAIR approach has been implemented as a kind of MapReduce that consists of 
some partial MapReduce. MapReduce is a programming model that is used widely 
for passive processing [41]. Hadoop and Spark are the best-known, publicly avail-
able implementations of MapReduce [42–44]. In this study, Apache Spark and Scala 
language have been used to implement this multi-stage MapReduce.

After the first action (Scala operation) on the input data, it is converted into Resil-
ient Distributed Dataset (RDD). These RDDs consist of (Key, value) pairs which 
make it possible to break a large MapReduce into smaller ones. The intermedi-
ate RDDs are stored in the storage and combined with other RDDs to produce the 
intermediate result or final outcome. Some actions in Scala programming language 
have been used for merging the RDDs, for example the “union” function combines 

Fig. 5  Time Critical path

Fig. 6  Overall view of multi-stage MapReduce processing in SAIR
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different RDDs [43, 44]. Using union function, the RDDs do not transfer on the net-
work, and this function just combines the address of RDDs to generate a new RDD 
[44]. Figure 6 shows the two-stage MapReduce. In this example, the input data are 
divided into two parts. Merging the RDDs is possible after the Map phase.

5  Evaluation

In this section, the experimental setup and the analysis of the results have been 
described.

5.1  Experimental setup

In the evaluation of our SAIR approach, six applications and three types of server con-
figurations have been used. Spark version 2.0 on Ubuntu12.04 is used as the framework 
of experiments. In the following paragraphs, the applications and datasets and then the 
server configurations and prices will be introduced.

Applications Some applications from BigDataBench and other sources are used to 
evaluate the SAIR approach. The followings are the name and a brief introduction of 
the mentioned applications:

• WordCount: This application counts the number of words in the file.
• Grep: It searches and counts a pattern in a file.
• InvertedIndex: This application is an index data structure storing a mapping from 

content to its locations in a database file.
• Health: This application calculates the number of heartbeats of volunteers.
• Investment: This application calculates the volume of investment in different states.
• URLCounting: It counts a certain URL in the input file.

Datasets Six benchmarks are used in evaluation step. Three of them are from Big-
DataBench suite [45] and three from other sources.

Our dataset is comprised of 50 GB of data from four different sources. This dataset 
is used in WordCount, Grep and InvertedIndex applications. The four data sources are 
IMDB, Gutenberg, Quotes and Wikipedia.

In our evaluation phase, health dataset [46] is also used, which consists of chest 
movements data, gathered from acceleration sensors attached to the human body. It also 
used Investment dataset [47] that surveys investments of various companies in different 
states in the USA. Log server dataset has been used in URLCounting application. For 
Health and Investment applications, the bootstrapping method is used for generating 
50 GB data as the input dataset [48].

We ran experiments on three types of machines, an Intel Core-i7 2 core CPU at 
2.8 GHz with 2 GB of RAM, an Intel Core-i7 4 core CPU at 2.8 GHz with 4 GB of 
RAM and an Intel Core-i7 8 core CPU at 2.8 GHz with 8 GB of RAM.

Server configuration Table 3 represents the configuration of servers we mentioned. 
We obtained the specifications and prices of servers from Amazon EC2 [49].
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5.2  Experimental results

We ran some scenarios to show our solution’s performance and compared it with 
other approaches. SAIR presented as a significance variety-aware approach and 
ApproxHadoop is its state of the art.

Naïve approaches are also used to compare with our approach. “NSVOS1” pre-
sents significance-variety-oblivious process of naïve MapReduce on the least expen-
sive server (LES). “NSVOS2” presents significance-variety-oblivious process of 
naïve MapReduce on a medium server. “NSVOS3” presents significance-variety-
oblivious processes of naïve MapReduce on the most expensive server (MES).

Figure 7 shows the QoR in all used benchmarks. We consider 70% of finishing 
time of naïve MapReduce on LES and 70% of Budget of naïve MapReduce on MES 
as the finishing time and available budget constraints. This scenario is shown in 
Fig. 7 as a normal status. As Fig. 7 illustrates, our approach improves the QoR of the 
mentioned workloads up to 12% compared with the state of the art and up to 26% 
compared with significance-variety-oblivious approaches. Therefore, our proposed 
approach can achieve better Quality of Result. The sensitivity analysis of the pro-
posed approach is presented below.

• Sensitivity to Budget and Finishing Time constraint

Figure 8 shows different conditions of time and budget constraints. T1 is the fin-
ishing time of naïve MapReduce on the least expensive of available resources. B1 
is the budget required for processing of naïve MapReduce on the most expensive of 
available resources. The SAIR approach is presented for every condition in Area1. 
In Area2, only time constraint exists, and therefore, more expensive (and config-
ured) servers can be used for processing. In Area4, only budget constraint exists, 
so less expensive (and configured) servers can be used. In Area3, there is no con-
straint. We also define three classes of constraints in the SAIR area and show these 
classes in Fig. 8. The Hard constraint is an area with extreme limitations. The Nor-
mal constraint has the normal limits, and the Soft constraint is the constraint with 
low limitations.

The proposed approach has been examined in different classes in terms of 
available budget and preferred finishing time. We have considered some values 
for AB and PFT in Soft, Normal and Hard areas. We consider 50%, 70% and 90% 
of T1 and B1 for Hard, Normal and Soft limitations. These values have been used 
for our experiments. In Hard constraint area, as user faced with more restrictions, 
our variety-aware approach makes a better result. In the Soft state, our approach 

Table 3  Server configurations Server CPU (core) RAM (GB) Price ($/h)

Server1 4 4 0.239
Server2 8 8 0.479
Server3 16 16 0.959
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improves QoR of workloads up to 5% compared with the state of the art and up 
to 22% compared with the significance-variety-oblivious approaches. Figure  7 
shows the result of our experiments. In the Normal state, our approach improves 
QoR of proposed applications up to 12% compared with the state of the art and 

Fig. 7  Comparison of variety-oblivious and variety-aware resource allocations for all benchmarks

Fig. 8  Different time and budget constraints
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26% compared with the significance-variety-oblivious approaches. Furthermore, 
in the Hard state, the QoR of considered workloads has been improved up to 15% 
compared with the state of the art and up to 28% compared with the significance-
variety-oblivious approaches. Generally, our approach makes better Quality of 
Result in case of more restrictions, compared to other approaches.

• Sensitivity of “Amount of data needed to be processed” to data portions variance

In this section, the impact of data portions variance on the amount of data needed 
to be processed will be examined. ApproxHadoop [15] has been considered as the 
state of the art. In ApproxHadoop approach, a two-level sampling method and the 
Student’s t-distribution have been considered and a small amount of input data have 
been sampled and processed [50]. However, the accuracy of the method depends 
on the data portions variance. In case of uneven distribution and multi sources, the 
variance between input data has been increasing. This issue causes increase in vol-
ume of samples. Our approach can dominate this issue. Based on the two-level sam-
pling formula, we should select small portion size and select some small data frames 
(based on Fig. 3) of all portions as the sample to reduce intra-portion variance [50]. 
By this approach, based on the two-level sampling formula, we decrease the intra-
portion size and dominate the effect of inter portion variance. So, amount of data 
needed to be processed are decreasing and acceptable Quality of Result is achieved 
by processing a small amount of data.

As Sect. 3 shows, when the data are composed of several sources, the variance 
between them is high and therefore their effect on the final answer will be different. 
In order to demonstrate the efficiency of our method, the following two scenarios 
have been designed:

1. In Fig. 9, input data are generated from the Wikipedia source in BigDataBench. 
This causes a small amount of data portions variance. As Fig. 9 shows, in this 
case, ApproxHadoop has acceptable performance.

Fig. 9  Compare SAIR and ApproxHadoop with data from single sources
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2. In Fig. 10, data are collected from four sources. These sources are IMDB, Guten-
berg, Quotes and Wikipedia. In this case, the intra- and inter-portions variance 
is a considerable amount and causes the accuracy of the ApproxHadoop method 
to reduce. The presented solution in ApproxHadoop [15] in case of very small 
amount of data portions variance generates acceptable result, but in case of high 
value of data, portions variance cannot generate a proper result. So, our signifi-
cance variety-aware approach can generate better Quality of Result in case of high 
value of inter/intra portions variance. Figure 10 also shows that ApproxHadoop 
does not guarantee an acceptable error bound in case of multi-source input data.

ApproxHadoop presents an approach with undefined sample size. This approach 
in case of uniform distribution has acceptable results. But data variety is one of 
main features of Big Data that causes data skew, and ApproxHadoop is not accu-
rate against this feature. We also present our approach that has acceptable results 
in every condition of data distribution and data variety. Our approach can surpass 
ApproxHadoop in case of data variety and skew.

As illustrated in Fig. 7, by SAIR approach that process data in a significance vari-
ety-aware way on the heterogeneous servers, our approach is able to achieve higher 
Quality of Result. Our approach permits the user to manage the process with regard 
to his limitations of processing.

The conclusion is that SAIR is successful in meeting preferred finishing time and 
budget constraints and it can achieve the highest Quality of Result. Unlike SAIR, 
ApproxHadoop, the significance variety oblivious and naïve MapReduce lack effec-
tive use of resources, and hence, they achieve a lower Quality of Result compared 
with our approach.

As additional conclusion, SAIR can surpass the traditional approaches in case of 
uneven distribution and impressive data variety. Previous works did not pay enough 
attention to the data variety. So, the users can use SAIR in such conditions.

Fig. 10  Compare SAIR and ApproxHadoop with data from various sources
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6  Conclusion

In this paper, we presented a significance-aware approach for increasing QoR in case 
of budget and time constraints for big data processing. We have considered aggrega-
tive functions including sum, count, average and ratio in this paper. The proposed 
approach tries to allocate the most efficient resource to more significant portions of 
data. By this approach, we are able to meet budget and preferred finishing time con-
straints. Experiments on the benchmarks demonstrated that our approach has supe-
rior performance comparing to its state of the art and some other approaches.

Definition of application type and the significance for each application are the 
first step of this approach. Sampling of data portions according to their signifi-
cance is the other step of this approach. The last step is the allocation algorithm. 
Our approach presents a solution for big data processing in case of budget limitation 
with regard to the preferred finishing time.

Advantages and disadvantages of SAIR and its state of the art are described 
below.

Advantages and disadvantages of SAIR:

• Good performance in every conditions of distribution and data skew
• Low overhead in every conditions of input data
• Simple to implement

Advantages and disadvantages of ApproxHadoop:

• Good performance in case of uniform distribution
• Unacceptable result in case of uneven distribution
• High overhead in case of uneven distribution

7  Future research

Many interesting directions exist for future research. First of them is estimating 
the total and partial processing capacity for all data or each data portion. By this 
approach, the user is able to rent suitable processing capacity. The user should con-
sider the amount of CPU usage, the memory usage and processing time for each 
portion on servers. Another area for future work is analyzing the impact of intra-/
inter-portion variance on Quality of Result in case of budget limitation.

Significance of our work We expected our work to be useful for many purposes: 
(a) Increasing QoR of big data processing in case of budget limitations, (b) a suitable 
approach for resource provisioning and allocation, (c) as a platform for approximate 
computing based on data variety and accelerating processing of the most significant 
data portions and (d) reducing time for generation of significant part of results.
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