
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:5475–5506
https://doi.org/10.1007/s11227-019-02796-8

1 3

Implementation of scalable bidomain‑based 3D cardiac
simulations on a graphics processing unit cluster

Ehsan Esmaili1 · Ali Akoglu1 · Salim Hariri1 · Talal Moukabary2

Published online: 16 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Computational models of the human cardiac cells provide detailed properties of
human ventricular cells. The execution time for a realistic 3D heart simulation based
on these models is a major barrier for physicians to study and understand the heart
diseases, and evaluate hypotheses rapidly toward developing treatments. Graphics
processing unit (GPU)-based parallelization efforts to this date have been shown to
be more effective than parallelization efforts on the CPU-based clusters in terms of
addressing the 3D cardiac simulation time challenge. In this paper, we review all
GPU-based studies and investigate both the cardiac cell models and cardiac tissue
models in 3D space. We propose algorithmic optimizations based on red black suc-
cessive over-relaxation method for reducing the number of simulation iterations and
convergence method for dependence elimination between neighboring cells of the
heart tissue. We investigate data transfer reduction and 2D mesh partitioning strate-
gies, evaluate their impact on thread utilization, and propose a strongly scalable car-
diac simulation. Our implementation results with reducing the execution time by a
factor of five compared to the state-of-the-art baseline implementation. More impor-
tantly, our implementation is an important step toward achieving real-time cardiac
simulations as it achieves the strongest scalability among all other cluster-based
implementations.

Keywords  Cardiac simulation · Bidomain model · Graphics processing unit (GPU) ·
GPU cluster

 *	 Ehsan Esmaili
	 esmaili@email.arizona.edu

	 Ali Akoglu
	 akoglu@ece.arizona.edu

1	 Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721,
USA

2	 Carondelet Heart and Vascular Institute - Cardiology West, 445 N. Silverbell Rd., #201, Tucson,
AZ 85745, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02796-8&domain=pdf

5476	 E. Esmaili et al.

1 3

1  Introduction

Chronic heart failure (CHF) occurs when the heart is damaged and unable to suf-
ficiently pump blood throughout the body. CHF affects millions of Americans each
year, and it is the leading cause of hospitalization of the patients over the age of 65
[1]. In addition, cardiac arrhythmias and sudden cardiac death, specifically due to
ventricular tachycardia (VT) and ventricular fibrillation (VF) in patients with CHF,
are among the most common causes of death in the industrialized world [2]. Despite
decades of research, the relationship between CHF and VT/VF is poorly understood.

Computational models of the human cardiac cells exist and provide detailed
properties of human ventricular cells, such as the major ionic currents, calcium tran-
sients, and action potential duration (APD) restitution, and important properties of
wave propagation in human ventricular tissue, such as conduction velocity (CV) res-
titution (CVR). The complexity of detailed 3D models has led cardiac researchers
to less accurate models, such as the monodomain model, that are computationally
tractable. However, for studying cases such as the defibrillation in which the stimuli
are applied extracellularly, the bidomain model is the desirable method.

Several studies [3–23] have focused on making 3D heart simulations a feasible
option for cardiac researchers through exploitation of high-performance comput-
ing systems and parallelization of various cardiac models.

The program architecture of heart simulation involves iterative and inherently
data parallel computations over cardiac cells, which makes it an ideal match for the
fine-grained parallel computing capability offered by the GPUs. In our earlier work
[3], we presented the parallel implementation of 3D heart simulation for a tissue
size of 256 × 256 × 256 cells and reported an execution time reduction factor of 637
based on a single GPU (Tesla C1060) over the serial version executing on a single
CPU. In this study, we revisit our earlier implementation and map it onto a cluster
of Nvidia K20X GPUs. We propose algorithmic optimizations, which significantly
reduce the amount and the complexity of computations needed and accordingly
reduce the execution time by a factor of two for the tissue size of 256 × 256 × 256 .
Moreover, we evaluate the scalability of our earlier implementation on a multi-GPU
system. We show that the intensive amount of data transfer overhead between the
GPUs poses as a bottleneck from scalability point of view. Therefore, we investigate
ways to achieve a strong scalability through reduction in the amount of data trans-
ferred among the GPUs and 2D mesh partitioning strategies. We show that there is a
tight coupling between the data partitioning strategy and utilization of the threading
power of the GPUs. We evaluate the impact of various partitioning strategies to min-
imize the data communication overhead while maximizing the thread utilization on
a single GPU basis and identify the optimal partitioning strategy. We implement a
strongly scalable cardiac simulation, which provides the strongest scalability among
all other cluster-based implementations [15, 16] to the best over our knowledge. We
show that the scalable and algorithmically optimized implementation reduces the
execution time by up to a factor of five compared to our earlier work. We finally
extend our analysis to monodomain model and show that our data partitioning
approach when applied to this model also results in a scalable implementation.

5477

1 3

Implementation of scalable bidomain-based 3D cardiac…

This paper is organized as follows. In Sect. 2, mathematical foundations of the
cardiac simulation and numerical strategies for describing the electrical behavior of
heart are presented. In Sect. 3, we give an overview of the related work. In Sect. 4,
we discuss the details of our parallelization approach on a single GPU, introduce
two algorithmic optimizations, and evaluate the impact of our optimizations on the
execution time performance. In Sect. 5, we present our optimization strategies for
achieving strong scalability on a GPU cluster, which involves data reduction and 2D
mesh partitioning among the GPUs. This is followed by Sect. 6, in which we discuss
the implementation of a less accurate model and expose the trade-off between exe-
cution time and simulation accuracy. Finally, we present our conclusions in Sect. 7.

2 � Mathematical model

Modeling the electrophysiological behavior of the heart involves coupling a cell
model with a tissue model. A cell model provides the description of electrical
activities that produce cardiac action potentials (APs). A tissue model provides the
description of interactions among the cardiac cells. There is a large body of work
on capturing the behavior of a heart cell through models that primarily vary in a
number of variables with a trade-off in computation complexity and model accu-
racy. Similarly, tissue models have been introduced offering a choice between the
accuracy and computation complexity. In the following subsections, we justify our
choices for the cell and tissue models with a brief overview on each.

2.1 � Cardiac cell models

Cardiac cell models [24–31] describe the electrical activities at the cellular level by
taking into account both physical and chemical properties of that cell.

The excitement of a cell against a stimulus generates a charging followed by a
discharging activity within the cell, and forms the AP. The voltage difference is the
source of current flow in the form of change in ionic (sodium, and calcium) concen-
trations across a single cell. The voltage level is determined by the equations gov-
erning that specific cell model.

The TNNP [26] is a model with 19 variables, which includes detailed properties of
human ventricular cells. This model has been shown to provide highly accurate analysis
for clinical applications [27]. As shown by [32], TNNP offers the best trade-off between
accuracy and computation time. For example, Karma [24] is a model successfully used for
preserving important properties of cardiac cells including AP rate of rise, APD and CVR
curves. This model is based on only two variables (membrane voltages and a gate variable)
offering high computation efficiency. However, it offers limited accuracy in generating the
AP curve, since it does not take into account critical phenomena such as spatial inhomo-
geneities, and electromechanical coupling, which play an important role for studying the
abnormal heart rhythm [24]. The IMW [25] is a superior model than the TNNP since it
is formed of 67 variables offering higher accuracy in describing the cardiac cell. How-
ever, the tight dependencies between operations over these variables as shown by Bartocci

5478	 E. Esmaili et al.

1 3

et al. [9] turn the execution into a sequential flow with limited parallelism. This makes this
model less clinically applicable in comparison with the TNNP model.

The TNNP model is widely used by Majumder et al. [33, 34] and Nayak et al. [35]
to study alternans and electrical instability, ionic current abnormalities, effects of inho-
mogeneities, and relationships between CV and fibroblast coupling parameters.

In TNNP model, the AP, which describes electrophysiological behavior of a single
cell, is modeled by a set of ordinary differential equations (ODEs) as shown in (1) and
(2) where Vm is membrane voltage, t is time, Istim is the externally applied stimulus cur-
rent, Cm is the cell capacitance per unit surface area, Iion is the total membrane ionic
current, Si are variables (ion concentrations and gates) that contribute to the modeling
of Iion , and f is a function.

Iion consists of several types of ionic currents ( Na+ , Ca2+ , K+ , etc.) as shown in (3).

Each ionic current is calculated based on the membrane voltage, ion concentrations,
and gates ( Si ). The full specifications of these equations are presented in [26].

2.2 � Cardiac tissue models

A cardiac tissue can be modeled as bidomain or monodomain. Bidomain refers to
regions both inside a cardiac cell (intracellular) and its surrounding cells (extracellu-
lar) as shown in Fig. 1. The monodomain model is an approximation of the bidomain
model, which assumes extracellular region has infinite conductivity. Although mono-
domain model is not as physiologically accurate as the bidomain model, it is utilized in
large-scale simulations, since it allows reducing the computation complexity. However,
for studying certain cases such as the defibrillation in which the stimuli are applied
extracellularly, the bidomain model is the desirable method [36]. Defibrillation is a
treatment for life-threatening cardiac dysrhythmias such as VT and VF. Therefore, we
focus on implementing the bidomain model as a general-purpose solution for studying
a wide range of heart diseases such as VT/VF.

The bidomain model is formulated by a series of data-dependent partial differential
equations (PDEs) for describing the electrical interactions of cardiac cells.

The bidomain PDEs are shown in (4) and (5), where � is conductivity, Φ is poten-
tial, Vm is membrane voltage, which is the potential difference between intercellular
and extracellular potential ( Vm = Φi − Φe ), Iion is the ionic current represented by the
TNNP model and Istim is the stimulus applied on a cell or a region of cells.

(1)
dVm

dt
= −

Iion(Vm, Si) + Istim

Cm

(2)
dSi

dt
= f (t, Si)

(3)
Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK + IpCa + IpK + IbCa + IbNa

(4)−∇.(�o∇Φo) = Cm

�Vm

�t
+ Iion + Istim

5479

1 3

Implementation of scalable bidomain-based 3D cardiac…

The space surrounding each cell is termed as the interstitial region. Intracellular
and interstitial regions are bounded by the extracellular region. The parameters that
belong to specific region of a cell are denoted by subscripts of o, i, and e, which
stand for intracellular, extracellular, and interstitial region, respectively.

The PDEs simply state that the current flow entering the intracellular region leaves
the extracellular region by crossing the interstitial region (cell membrane).

Boundary conditions are necessary to solve the PDEs. We assume cardiac tissue is
surrounded in a saline bath. As an electrically isolated medium, no charge can be accu-
mulated on the surface of the tissue. This can be formulated using (6).

The first step to solve ODEs and PDEs is temporally and spatially discretization of
the equations for which there are different methods, namely finite element method
(FEM) and finite difference methods (FDM). Although FEM is better suited for
solving PDEs in the environments with irregular geometry, FDM methods are more
efficient in terms of execution time considering environment with regular geometry
[37]. Therefore, we use FDM to approximate the aforementioned equations with dif-
ference equations. The difference equation obtained from discretizing the continu-
ous domains (1) and (2) using forward difference method are shown in (7) and (8),
respectively. We use central difference method to approximate (4)–(6) which are
presented in (9)–(11).

(5)∇.((�i + �o)∇Φo) = −∇.�i∇Vm

(6)∇2Φe = 0

(7)(Vm)
n+1 = (Vm)

n −
Δt

Cm

(Iion + Istim)

(8)(Si)
n+1 = (Si)

n + Δt(f (t, ((Si)
n))

Fig. 1   The equivalent electric circuit of cardiac cell based on bidomain model

5480	 E. Esmaili et al.

1 3

In the discretized form of (7)–(11), Δt is time step; Δx , Δy , and Δz are spatial steps;
n represents the index of time step; and (i, j, k) represents mesh node indices in 3D
space. Based on Taylor’s series expansion [37], the truncation error for the first order
forward method is proportional to Δt and for the second-order central difference

(9)

(Φo)
n
i,j,k

=
Term1 + Term2 + (Iion + Istim)

n
i,j,k

2
∑

i,j,k(�ix + �ox)∕Δx
2

Term1 = (�ix + �ox)
(Φo)

n
i+1,j,k

+ (Φo)
n
i−1,j,k

Δx2

+ (�iy + �oy)
(Φo)

n
i,j+1,k

+ (Φo)
n
i,j−1,k

Δy2

+ (�iz + �oz)
(Φo)

n
i,j,k+1

+ (Φo)
n
i,j,k−1

Δz2

Term2 = �ix

(Vm)
n
i+1,j,k

+ (Vm)
n
i−1,j,k

− 2(Vm)
n
i,j,k

Δx2

+ �iy

(Vm)
n
i,j+1,k

+ (Vm)
n
i,j−1,k

− 2(Vm)
n
i,j,k

Δy2

+ �iz

(Vm)
n
i,j,k+1

+ (Vm)
n
i,j,k−1

− 2(Vm)
n
i,j,k

Δz2
)

(10)

(Vm)
n+1
i,j,k

= (Vm)
n
i,j,k

−
Δt

Cm

{
�ox

(Φo)
n
i+1,j,k

+ (Φo)
n
i−1,j,k

− 2(Φo)
n
i,j,k

Δx2

+ �oy

(Φo)
n
i,j+1,k

+ (Φo)
n
i,j−1,k

− 2(Φo)
n
i,j,k

Δy2

+ �oz

(Φo)
n
i,j,k+1

+ (Φo)
n
i,j,k−1

− 2(Φo)
n
i,j,k

Δz2

}

(11)

(Φe)
n
i,j,k

=
1

2
(

�ex

Δx2
+

�ey

Δy2
+

�ez

Δz2

)

{
�ex

(Φe)
n
i+1,j,k

+ (Φe)
n
i−1,j,k

Δx2

+ �ey

(Φe)
n
i,j+1,k

+ (Φe)
n
i,j−1,k

Δy2
+ �ez

(Φe)
n
i,j,k+1

+ (Φe)
n
i,j,k−1

Δz2

}

5481

1 3

Implementation of scalable bidomain-based 3D cardiac…

method truncation error is proportional to Δx2 , assuming same spatial steps in each
of the three directions. This is how we model a cardiac tissue with a mesh of cells.

3 � Related work

Cardiac models have been parallelized in numerous forms on various platforms that
resulted in significant speed-ups [3–23]. Among these studies, the graphics process-
ing unit (GPU)-based parallelization efforts to this date have been shown to be much
more effective than parallelization over the CPU clusters [8, 12, 16]. Therefore, our
focus is on the GPU-based implementations in this paper. We review all GPU-based
studies here to set the stage for our contributions as we investigate both the cardiac
cell and tissue models equations in 3D space.

The study by Biffard and Leon [4] is one of the first investigations, which dem-
onstrates the benefits of GPU for heart cell simulations. They use a 2D automaton
model to implement cardiac tissue simulation on a GPU, where next state of each
cell depends on its current state and the state of its neighboring cells. In the automa-
ton model, cell updates are governed by fixed set of rules rather than differential
equations. As a result, this approach simplifies the computation complexity with a
trade-off in simulation accuracy.

Rocha et al. [5] investigate the 2D implementation of monodomain equations
solvers for TNNP and LR-I [28] cardiac ionic models. They compare their imple-
mentation on a quad-core CPU with the one on an Nvidia GPU. Similar to the con-
clusions of the study by Vigmond et al. [6], they show that ODEs are better suited
for parallelization on the GPU over the PDEs, and for the cardiac simulations, PDEs
are the bottleneck.

Amorim et al. [7] compare OpenGL and CUDA implementations of the 2D bido-
main equations in terms of performance and programmability. For each program-
ming approach, they evaluate the impact of various implementation strategies on
performance, and show the best strategy implemented in CUDA results in reduc-
ing the execution time by 22% more than the one implemented in OpenGL on a
GeForce 8800GT GPU.

Amorim et al. [8] use the CellML [38] standard based on Extensible Markup Lan-
guage (XML) for describing the cardiac cell models. They approach the problem of
parallelizing differential equation solvers on GPUs through tool-assisted loop con-
versions. Specifically, they convert the differential equations embedded in a CellML
file to a CUDA library that can be used in cardiac simulation. This allows them to
rapidly evaluate multiple 2D cardiac models (TNNP, LR-I, MSH [29], BNK [30]) in
terms of their computational complexity and execution time with mesh sizes rang-
ing from 128 × 128 to 1024 × 1024 . Their results indicate that the implementations
of all the models on GPU run faster than the implementations on CPU. The speed-
up gained from TNNP and LR-I models is higher than the MSH and BNK models
as they offer better parallelization on the GPU. However, as opposed to the TNNP
model, LR-I model is not applicable to human heart because it has been developed
for describing AP in a single cell of guinea pigs heart.

5482	 E. Esmaili et al.

1 3

Bartocci et al. [9] exhaustively investigate the complexity of 2D cardiac mod-
els with number of state variables ranging from two-variable Karma [24] model
to 67-variable IMW [25] model. They present a detailed analysis on the effect of
shared and texture memories on execution time, and show that texture memory-
based implementation has better performance in terms of execution time for all the
models and all the mesh sizes. Even though texture memory-based implementation
is applicable for 3D simulation, it is not suitable for achieving high performance as
updating texture memory directly from the device memory is not supported for the
3D objects [39].

There is a natural trade-off between accuracy of the 3D heart simulations and
efficiency of the underlying parallel computations. Utilizing shorter time step ( Δt )
provides higher simulation accuracy while increasing the number of iterations and
in turn increasing the execution time linearly. Therefore, identifying the time step is
a balance between simulation accuracy and the execution time. One approach to deal
with this trade-off problem is to adjust the time step duration at run time based on
the phase of the simulation. Garcia et al. [10, 11] evaluate the impact of adaptively
adjusting the time step on execution time and accuracy in a series of studies. In their
earlier work [10], based on the 1D heart model, they show that the dynamic time
step method implemented on a single GPU allows reducing the execution time of
the simulations by 25%. However, for the case of CHF type of studies, heart cells go
through unexpected and irregular transactions, which force a reduction in the time
step. In their subsequent study [11], they show that the overhead of calculations used
for determining the new step in each iteration becomes prohibitive particularly for
cases where sudden changes in APs occur frequently. Therefore, the authors con-
clude that even though dynamically adjusting the time step amount helps improve
the simulation accuracy, this method results in increasing the execution time.

Jararweh et al. [12] evaluate speed-up gain when porting cardiac simulation from
CPU platform to GPU platform. For the cardiac simulation, they utilize the TNNP
cell model and bidomain tissue model. Moreover, they exploit a machine learning
approach to further speed up their simulation on a single GPU. This approach is
based on the fact that rate of changes in potential of the cell over time varies in vari-
ous phases of the AP. Therefore, not all the phases of AP require the same time reso-
lution. Their implementation adjusts the time step for each phase with a machine
learning method based on the values of five time-dependent gates. By utilizing this
approach, they achieve a six times speed-up over the traditional approach (fixed
time step). However, their approach suffers from a misclassification rate of 16.38%.
Recently, we proposed a new method for detecting the phase of 3D heart simulation
and evaluated based on the monodomain model [13]. We achieved a misclassifica-
tion rate of 1% and reduced the execution time by a factor of 28.4 on a single GPU
and 191 on a 16-GPU-based implementation. After presenting our implementation
approach for the bidomain model, later we will revisit our monodomain implemen-
tation, show that some of the parallelization strategies used for the bidomain model
are applicable to the monodomain model and quantify the speed-up achieved over
the monodomain implementation as well.

Yu et al. [14] propose a 3D anatomic model of the human heart along with a car-
diac electrophysiological model. They map the compute-intensive ODE and PDE

5483

1 3

Implementation of scalable bidomain-based 3D cardiac…

solvers onto the GPU. In addition, the authors use OpenGL for visualizing anatomic
cardiac model. Even though they are able to simulate the entire APD in real time,
the implementation is not practical for accurately analyzing the cardiac cells since
they simplify the model significantly by excluding the micro-scale details of ionic
and molecular cell properties.

Chai et al. [15] perform a high-resolution 3D cardiac simulation by solving
monodomain ODE equations for two different heart models using two different dif-
ferential equation solvers. They analyze the execution time and scalability of the
implementation on a GPU cluster using up to 128 GPUs. Although they implement a
strongly scalable partitioning strategy, they are not able to achieve linear scalability.

We are aware of other heart simulations using GPU such as [16–19]. However,
these studies target animal heart such as rabbit and sheep. These models significantly
differ from human heart in various aspects, namely shape, structure, and properties
of the cells, which make them unsuitable for clinical studies involving human heart.
In this study, our simulation targets practical medical application for treatment and
study of human heart disease; therefore, we exclude them from our analysis. How-
ever, we will refer to the implementation of Neic et al. [16] when evaluating the par-
allel efficiency (scalability) of our implementation as it is the state of the art in terms
of scalable bidomain implementation on a GPU cluster to the best of our knowledge.

In summary, human heart simulations have mainly concentrated on single GPU-
based implementations. More recent studies have benefited from the GPU clusters
[15, 16]. Based on them, we observe that scalability of the implementation is an
important barrier.

In Table 1, we show the categorization of GPU-based cardiac simulation studies
in terms of the cell and tissue models they are built on along with the tissue size, tis-
sue dimension and programming approach as each of these features plays a critical
role on the simulation quality and execution time performance

4 � Implementation details

We use Extremely LarGe Advanced TechnOlogy (El Gato) computing system at
the University of Arizona. This system includes 2176 Intel cores, Mellanox FDR
InfiniBand network with a fully non-blocking fat tree topology, 26TB of RAM,
140 Nvidia Tesla K20X GPUs, 40 5110P Intel PHIs, and 190TB of DDN SFA12K
shared storage. The Mellanox FDR InfiniBand network has Raw Signaling Rate of
14.1 Gb/s, Effective Data Rate of 13.64 Gb/s, and Aggregated ( 4× ) Throughput of
54.5 Gb/s. It can achieve latency as low as 0.7 ms. Each GPU node includes two
Tesla K20X GPUs and two 8-core Intel Xeon Processors (E5-2650 v2 2.60 GHz
with 256 GB 1800 MHz RAM). This node has PCIe Gen3 x16 bus with the speed
of 15.75 GB/s. We use a single Xeon processor in this system for measuring the
execution time of the sequential code. The K20X has 6 GB of global memory. Dur-
ing our simulations on a single GPU, we target mesh sizes from 32 × 32 × 32 to
256 × 256 × 256 due to the global memory limitation. During our simulations on
GPU clusters for conducting scalability analysis, for each mesh size we vary the

5484	 E. Esmaili et al.

1 3

Table 1   Features of other implementations including cell and tissue models, platform, programming lan-
guage, tissue size and dimension

Ref Cell model Tissue model Platform Language Tissue size Dim

[4] Cellular automaton NA GPU/CPU C++ 512 × 512 2D
OpenGL 1024 × 1024

2048 × 2048

[5] TNNP Monodomain GPU/CPU OpenMP 161 × 161 2D
LR-I CUDA 321 × 321

641 × 641

[6] Mahajan Bidomain 4 GPUs OpenMP 0.05 × 106 NA
CPU CUDA 0.1 × 106

0.5 × 106

1.0 × 106

5.0 × 106

[7] A. L. Hodgkin Bidomain GPU/CPU CUDA 1024 × 1024 2D
A. F. Huxley OpenGL

[8] LRI Monodomain GPU OpenMP 128 × 128 2D
TNNP 4 CPU CUDA 256 × 256

MSH 512 × 512

BNK 1024 × 1024

[9] Karma Monodomain GPU/CPU CUDA 512 × 512 2D
BCF 1024 × 1024

BR 1536 × 1536

TP 2048 × 2048

IMW
[10] Courtemanche Monodomain GPU/CPU CUDA 300 1D

OpenMP
[11] Courtemanche Monodomain GPU/CPU CUDA 163842 3D
[12] TNNP Bidomain GPU CUDA 64 × 64 × 64 3D

CPU cluster 128 × 128 × 128

256 × 256 × 256

512 × 512 × 512

[14] Cellular automaton NA GPU/CPU CUDA 728321 3D
OpenGL

[15] Bueno-Orovio Monodomain 128 GPUs MPICH2 126 × 126 × 26 3D
Grandi CUDA 501 × 501 × 101

1001 × 1001 × 201

2001 × 2001 × 401

[16] Rabbit Bidomain 20 GPUs MPI 41 × 106 3D
CUDA

[17] Rabbit Monodomain GPU/CPU C++ 128 × 120 × 114 3D
CUDA

[18] TNNP Monodomain GPU/CPU CUDA 200 × 200 × 300 3D
OpenGL

5485

1 3

Implementation of scalable bidomain-based 3D cardiac…

number of GPUs from 1 to 16. We also increase the mesh size to 512 × 512 × 512
and conduct execution time and scalability evaluations on 4, 8, and 16 GPU configu-
rations. For obtaining accurate timing measurements on the system, we request the
required nodes for exclusive use with no other job running on that node. By doing
so, scheduler solely runs our job on the requested nodes. We use CUDA version 8.0
and OpenMPI version 1.8 for internode communications.

We also use the parallel efficiency metric for measuring the scalability of our
implementation and comparing with respect to other implementations. Parallel effi-
ciency is the ratio of speed-up to the number of processing elements. The efficiency
value of one indicates linear scalability, whereas the value below one indicates sub-
linear efficiency [40].

In the following subsections, we first present the sequential and single GPU
implementations. We then present our optimization strategies on a single GPU with
performance analysis.

4.1 � Sequential implementation

We first solve (7) and (8) to obtain voltage values at each time step. Then, we
use these values to solve bidomain equations (9)–(11) for potential values. As
shown in these equations, potential of each cell is expressed as a function of its
six neighboring cells in 3D space. This generates a system of equations for a
given mesh size of 256 × 256 × 256 . There are two classes of iterative methods to
solve difference equations, namely stationary and non-stationary methods. In gen-
eral, non-stationary iterative methods provide a better convergence and accuracy.
However, in this study we utilize the stationary Jacobi iterative method similar
to [7, 12], which provides SIMD-level parallelism making it an ideal match for
parallelizing on the GPU architecture. In this method, we start with initial val-
ues for 256 × 256 × 256 unknown potentials, and execute several (spatial) itera-
tions to approximate the unknown values. The approximations at a given iteration
are based on the values from previous iteration. As we go through spatial itera-
tions, the approximations become more accurate; that is, the error of evaluation
becomes smaller. To calculate the error of this numerical method, in our earlier
work [3] we used the Euclidean norm as shown in (12).

(12)‖es‖2 =
�

�

i,j,k

�
(Φo)

s
i,j,k

− (Φo)
s−1
i,j,k

�2

Table 1   (continued)

Ref Cell model Tissue model Platform Language Tissue size Dim

[19] Sheep Monodomain GPU/CPU CUDA 317 × 204 × 109 3D

5486	 E. Esmaili et al.

1 3

This equation calculates the sum of the squares of the difference between the new
potential and the old potential in consecutive spatial iterations for all of the cells in
the 3D mesh. In this equation, s represents the index of spatial step. The error toler-
ance ( � = ‖es‖∕‖e0‖ ) of 10−1 as the convergence criteria is used in Jacobi iterative
method. We set the time step ( Δt ) to 0.02 ms. Therefore, simulation of one APD
(360 ms) needs 18,000 time steps. Space step indicates the level of spatial resolu-
tion. We set the space step to 0.03 mm in all 3D directions ( Δx , Δy , and Δz ). These
values are the same as the ones suggested by Ten Tusscher et al. [26].

As explained in Algorithm 1, the cardiac simulation starts with an initiali-
zation of the TNNP model variables including voltage, time-dependent gates,
and ionic currents. This phase is followed by a time-stepping loop executed for
18,000 temporal iterations of a single AP. This loop involves the ODE solvers
of TNNP model, a space-stepping loop for solving the system of PDEs of bido-
main model, potential update, and voltage update stages. The stimuli are applied
to certain cells at specific time steps during the simulation based on the dynamic
restitution protocol [26].

Figure 2 shows the execution time of simulating 3D cardiac tissues with vari-
ous mesh sizes ranging from 32 × 32 × 32 to 512 × 512 × 512 cells on a general-
purpose processor. As we can see, the execution time increases linearly with the
mesh size. We also observe that 10 temporal iterations of cardiac simulation for
a mesh compromised of 512 × 512 × 512 cells (134 million) on a CPU take 221
min which corresponds to about 9 months for the simulation of an APD (18,000
temporal iterations). We report this execution time only for highlighting the sig-
nificance of the computation time for 3D simulations, which is prohibitive for
conducing medical studies on CHF.

In the following subsections, we will present our implementation and optimiza-
tion approaches incrementally. We first present the single GPU-based implementa-
tion followed by two algorithmic optimizations.

Fig. 2   Cardiac simulation (10 temporal iterations) time (s) on a CPU with respect to change in mesh size
(based on logarithmic scale base 8) shows linear increase in execution time

5487

1 3

Implementation of scalable bidomain-based 3D cardiac…

Algorithm 1 Cardiac Simulation
1: Initialize of Data Structures ()
2: for each timestep in Simulation do
3: for each cell in the mesh do
4: Solve for Si in (8) Solve TNNP cell model
5: Calculate Iion in (3)
6: Solve for Vm in (7)
7: while Φo not converged do Solve potential
8: Solve for Φo in (9)
9: Solve for Φe in (11) Solve boundary condition
10: Update Φo

11: Solve for Vm in (10) Solve membrane voltage
12: Update Vm

4.2 � Single GPU implementation

In our earlier GPU-based implementation, the CPU still remains in charge of the
control flow of simulation that was explained in Algorithm 1, while the compute-
intensive tasks are offloaded to the GPU. We create a kernel for each stage of the
simulation flow as shown in Fig. 3a. The CPU executes the loops involved in the
simulation and launches the kernels on the GPU. We employ the data parallelization

(a)

(b)

Fig. 3   Execution flow with two parallelization strategies a 4-kernel; b 6-kernel

5488	 E. Esmaili et al.

1 3

at cell level for the ODE solvers of TNNP model; that is, we distribute the work-
load by assigning the required computations of each cell to one thread. Based on
(9)–(11), the membrane voltage and intracellular potential of each cell are computed
using the data from the cell itself together with the six neighboring cells also known
as seven-point stencil computation. The parallelization for this task is also imple-
mented at cell level.

[3] conducted a series of experiments on parallelization and task partitioning
strategies for the GPU architecture using Tesla C1060 GPU. Figure 3b shows the
best-case task partitioning strategy with six kernels. However, the performance
difference in terms of execution time between 6-kernel-based and 4-kernel-based
implementations shows a negligible difference of 1%. In addition, in [3], the time
step was chosen to be 0.035 ms, which required only 10,000 time steps to complete
the simulation. In this study, we increase the number of time steps by increasing
the resolution of the simulation. Since each temporal iteration requires six kernel
launches for this implementation, based on the second strategy, the kernel launch
overhead is expected to increase. Therefore, in this study, we choose to keep our task
partitions compact to reduce kernel launch overhead and partition the tasks into four

(a) (b)

Fig. 4   Instances (a) of the data structure (b) for 256 × 256 × 256 mesh. Thread blocks are organized in z
direction

Table 2   Statistics of hardware utilization and performance metrics by a single GPU for Kernel (K) 1, 2,
3, and 4 ( 256 × 256 × 256 mesh, 100 temporal iterations)

K# Reg-
isters/
thread

Average time (%) Multiproces-
sor activity
(%)

Achieved
occupancy
(%)

Executed IPC Bandwidth (GB/s)

1 34 11.72 99.95 68.53 1.73 133.31
2 53 12.72 99.94 47.05 2.76 96.98
3 11 71.88 99.83 93.27 1.29 57.46
4 10 2.76 99.79 91.21 1.55 107.41

5489

1 3

Implementation of scalable bidomain-based 3D cardiac…

kernels only. In this implementation, we employ standard GPU memory optimiza-
tion strategies such as coalesced memory accesses.

As the access to global memory is costly, minimizing these memory transac-
tions is crucial in program performance. One of the effective strategies to reduce
the bandwidth is memory coalescing. The memory coalesced access happens
when the threads in the block access the continuous address from the memory. To
this end, we use a proper data structure similar to the one in [3]. This data struc-
ture contains 22 arrays of variables including 19 variables of TNNP [26] model
(ion and gate values), membrane voltage, new membrane voltage, and total ionic
current as shown in Fig. 4. When scanning the 3D space, the access pattern is
also designed in such a way that subsequent threads access the subsequent cells to
ensure coalescing.

For the case of 256 × 256 × 256 , we report the hardware utilization values and
performance metrics in Table 2. As reported in this table, the archived occupan-
cies of Kernels 1 and 2 are lower than Kernels 3 and 4, because of the higher
number of registers per thread. The K20X is capable of running 2048 threads per
multiprocessor. Hence, for achieving the maximum occupancy, Kernel 2 needs
53 × 2048 = 106K registers per multiprocessor, which exceeds the number of
available registers (64K) per multiprocessor. In the memory bandwidth column,
we see that the Kernel 3 has a lower bandwidth in comparison with the other ker-
nels. The reason is that in Kernel 3, there are two memory transactions (one write
and one read) per thread, while in the other kernels there are seven transactions
(six reads and one write) per thread as shown in (7)–(11). As seen in the table,
Kernel 3 is more compute-intensive in terms of execution time than the other ker-
nels while achieving low bandwidth utilization. Therefore, as a part of our opti-
mization strategy we target particularly this kernel and investigate algorithmic
optimizations as we will discuss in the following subsection.

Table 3 shows how the execution time for Nimmagadda’s implementation [3]
scales on the K20x GPU with respect to its published implementation on the Tesla
C1060 GPU. It is a reasonable assumption that the execution time scales linearly

Table 3   Execution time (s) for the Nimmagadda’s [3] implementation based on a single K20X GPU
(baseline) ( 256 × 256 × 256 mesh, 18,000 temporal iterations)

Implementation GPU model # of processor
core

Processor core
clock (MHz)

Execution time (s)

Nimmagadda et al. [3] C1060 240 1296 12240
Nimmagadda et al. [3] K20X 2688 732 2451

Table 4   The execution time (s) for the implementations with the error tolerance ( � ) of 10−1 , and 10−3
(baseline); Kernel 3 elimination; and RBSOR method ( 256 × 256 × 256 mesh, 18,000 temporal itera-
tions)

Implementation � = 10−1 � = 10−3 (baseline) Kernel 3 elimination RBSOR

Execution time 2451 19106 11733 8691

5490	 E. Esmaili et al.

1 3

with number of processor cores, and processor core clock of the underlying GPU.
Based on these two hardware features, we would expect to observe about six times
reduction in execution time, which is almost consistent with what we achieve based
on Table 3.

The drawback of the implementation by Nimmagadda et al. [3] is its error toler-
ance ( � ) of 10−1 . As shown by recent studies [41], the error tolerance should be less
than 10−3 . Therefore, in this study we reduce the error of the numerical method used
for solving the PDEs by employing an error tolerance of 10−3 instead of 10−1 . This
two orders of magnitude increase in the resolution results in a linear increase in the
execution time to 19,106 s as reported in Table 4. For the remainder of this paper, all
the implementations are based on the new error tolerance value. This implementa-
tion forms the baseline for our evaluations.

4.3 � Algorithmic optimizations

Figure 5 shows how various kernels contribute to the total execution time. As we
can see, 44% of the execution time is spent on Kernel 3, which calculates the error
of solving the PDEs. To remove this calculation overhead, we utilize the maximum
norm in (13) as the criteria for error calculation instead of Euclidean norm.

To make sure that the accuracy of simulation is consistent by using different error
criteria, we choose error tolerance in such a way that the number of spatial iterations
remains unchanged. Based on the max norm criteria, we need to calculate the maxi-
mum over all the cells similar to Euclidean norm. However, we slightly modify the
iterative process of deciding whether to perform next spatial iteration or not. To do
so, instead of calculating the maximum norm, and then comparing it with an error

(13)‖es‖∞ = max
i,j,k

�(Φo)
s
i,j,k

− (Φo)
s−1
i,j,k

�

Fig. 5   The percentage of the time spent on various kernels of the program ( 256 × 256 × 256 mesh)

5491

1 3

Implementation of scalable bidomain-based 3D cardiac…

tolerance (global error), each thread can compare the error of calculation at each
cell (local error) with the error tolerance and update a global variable only if the
local error exceeds the error tolerance. In this approach, each thread can update the
global variable in parallel because of the lack of data dependency between threads
for performing this operation. Therefore, at each spatial iteration, by the time the last
unknown variable is solved we have the error calculated as well and we are able to
eliminate Kernel 3 without an overhead for Kernel 2. As a result of the elimination,
the execution time is improved by 39% as reported in Table 4.

As shown in Fig. 5, most of the simulation time is spent on solving the PDEs,
because as opposed to the ODEs, they are calculated using the Jacobi itera-
tive method that takes several spatial iterations. One way to reduce this time is to
decrease the number of spatial iterations needed for solving the PDEs. To do so,
we use successive over-relaxation (SOR) [42] iterative method instead of Jacobi
method. Considering (9), the difference between these two methods is that in Jacobi
method, the values of (Φo)

s+1 in the cells are not calculated until entire iteration (s)
is calculated, while in SOR method, the values of (Φo)

s are used for the computation
of (Φo)

s+1 as soon as they are calculated. In other words, in a particular iteration,
with Jacobi method, all the known values are from previous iteration, while in the
SOR method, the values used for computations include both the new values calcu-
lated in the current iteration and values from the previous iteration. Therefore, the
SOR method has a faster rate of convergence because it uses the values as soon as
they become available.

However, when it comes to parallel computations, SOR method suffers from
data dependency between calculations of each cell during each spatial iteration. To

Fig. 6   Red/black reordering technique

5492	 E. Esmaili et al.

1 3

overcome this issue, we utilize the red/black SOR (RBSOR) method [42], which
resolves this data dependency. In this method, the cells are divided into two subsets
with different colors (red and black) such that there is no data dependency between cal-
culations of the cells with the same color as shown in Fig. 6. Therefore, the calculations
of the cells with the same color can be parallelized. The PDEs are solved in two phases.
First, the calculations of the red cells are performed and they are updated as shown in
(14) where i + j + k is even. This is followed by calculating and updating black cells
as shown in (15) where i + j + k is odd. In (14) and (15), Term2 is the same as the
one in (9) and � is relaxation parameter. This parameter affects convergence rate of the
BRSOR iterative method. There are analytical approaches for determining the relaxa-
tion parameter [43]. However, we take an experimental approach by programmatically
sweeping and evaluating various relaxation parameters. To do so, we run Algorithm 1
and count the total number of iterations to solve (9) for � values in the range 1–2 with
step size of 0.01 as suggested by [44]. Then, we pick the � value that results with the
lowest number of iterations. Our analysis shows that relaxation parameter of 1.83 pro-
vides the best convergence rate.

(14)

(Φo)
s+1
i,j,k

= (1 − �)(Φo)
s
i,j,k

+ �

�
Term1 + Term2 + (Iion + Istim)

s
i,j,k

2
∑

i,j,k(�ix + �ox)∕Δx
2

�

Term1 = (�ix + �ox)
(Φo)

s
i+1,j,k

+ (Φo)
s
i−1,j,k

Δx2

+ (�iy + �oy)
(Φo)

s
i,j+1,k

+ (Φo)
s
i,j−1,k

Δy2

+ (�iz + �oz)
(Φo)

s
i,j,k+1

+ (Φo)
s
i,j,k−1

Δz2

(15)

(Φo)
s+1
i,j,k

= (1 − �)(Φo)
s
i,j,k

+ �

�
Term1 + Term2 + (Iion + Istim)

s
i,j,k

2
∑

i,j,k(�ix + �ox)∕Δx
2

�

Term1 = (�ix + �ox)
(Φo)

s+1
i+1,j,k

+ (Φo)
s+1
i−1,j,k

Δx2

+ (�iy + �oy)
(Φo)

s+1
i,j+1,k

+ (Φo)
s+1
i,j−1,k

Δy2

+ (�iz + �oz)
(Φo)

s+1
i,j,k+1

+ (Φo)
s+1
i,j,k−1

Δz2
Table 5   Comparison of Kernel 2 implementations based on Jacobi and RBSOR methods on a single
GPU ( 256 × 256 × 256 mesh, 100 temporal iterations)

Numerical
method

Grid size Block size Average time
(ms)

Throughput
(GB/s)

Spatial itera-
tions

Total time (s)

Jacobi 65536 256 4.554 191.65 13492 61.44
RBSOR 32768 256 2.937 145.74 7564 44.43

5493

1 3

Implementation of scalable bidomain-based 3D cardiac…

In the first phase, the calculations of red cells depend only on the data from black
cells, which are available from previous iterations and vice versa in the second
phase. Table 5 shows the statistics for the two implementations of Kernel 2 using
Jacobi and RBSOR. Based on RBSOR method, Kernel 2 operates on the half of
the cells (either black or red) at a time, while in Jacobi-based method it operates
on all the cells at a time. Therefore, we launch Kernel 2 in RBSOR implementation
with half of the thread blocks that we launched in Jacobi implementation. Accord-
ingly, we expect that the average execution time to be reduced by 50%; however, the
results in Table 5 show that the execution time is reduced by 35%. This is because,
in RBSOR-based implementation, the accesses of threads to global memory are
strided. This non-coalesced accesses cause reduction in memory throughput and
accordingly increase in the execution time of the kernel as shown in Table 5. The
coalesced memory access pattern can be achieved by reordering of cells such that
the cells with the same color are grouped. However, since different kernels operate
on the 3D mesh of the cells, reordering affects their functionality. Despite the non-
coalesced access pattern, the total execution time of Kernel 2 is reduced by 36%. As
reported in Table 4, the total execution time of this kernel is accordingly improved
by 26% in comparison with the implementation with Kernel 3 elimination. This
is because of the reduction in the total number of spatial iterations for solving the
PDEs. We will refer to this implementation as algorithmically optimized (AO) ver-
sion. In overall, we conclude that the RBSOR and the Kernel 3 elimination-based
implementation reduce the execution time by a factor of two.

Fig. 7   Partitioning of the 3D mesh across four GPUs. The interface regions (shaded areas) have inter-
GPU data dependency, which are exchanged among GPUs. The numbers on partitions show the pro-
cesses number that controls the calculation of these partitions. The numbers on arrows show the order in
which the inter-GPU transfers are completed

5494	 E. Esmaili et al.

1 3

5 � GPU cluster implementation

Nimmagadda et al. [3] evaluated the scalability of the baseline implementation on
a four-GPU system with a single CPU as the controller and its DRAM acting as
the shared memory for the GPU devices using OpenMP. In this study, our aim is to
investigate the scalability of our baseline implementation on a distributed memory
system using message passing interface (MPI). In this parallel implementation, mul-
tiple processes are created and run on the host CPUs of a cluster. These CPU pro-
cesses are responsible for synchronization, launching the kernels, and data partition-
ing among the GPUs.

In the case of four GPUs, we divide the entire 3D mesh equally across the GPUs
with planes perpendicular to x direction as shown on Fig. 7. We refer to this as 1D
partitioning strategy. For the seven-point stencil calculation, each cell needs to com-
municate the membrane voltage to the neighboring cells in the 3D directions. With
this partitioning strategy, data associated with the cells in the interface regions are
exchanged between the GPUs. Data transfer from memory of one GPU device to

Fig. 8   Inter-GPU communication

Fig. 9   Scalability analysis based on the communication time over total time with respect to number of
GPUs ( 256 × 256 × 256 mesh, 18,000 temporal iterations)

5495

1 3

Implementation of scalable bidomain-based 3D cardiac…

the memory of the other GPU device is handled through the host CPU as shown in
Fig. 8.

The order of data transfer transactions between GPUs is also shown in Fig. 7.
Nodes 0 and 2 simultaneously send data using MPI_Send() routine to nodes 1 and 3,
respectively. MPI_Send() routine is a synchronous (blocking) operation, such that a
process does not return (blocked) until its data transfer has been completed. As soon
as processes 1 and 3 indicate the completion of data transfer, then processes 0 and 2
simultaneously send data to 1 and 3, respectively. After this transaction, processes 1
and 2 exchange their data in a similar fashion. Therefore, for this case, there are four
sequential data transfers in total. In half of the transactions, there are two parallel
data transfer and in the other half there is only one. We represent this as 1 and 2. It is
not suitable to utilize other communication methods such as collective communica-
tion (message broadcasting) and asynchronous communication for our application.
The collective communication method involves the communication among all pro-
cesses. However, in our application the data have to be exchanged between pairs of
nodes only. In asynchronous communication, as opposed to synchronous (blocking)
messaging, the send and receive operations are completed without waiting for com-
pletion of the data transfer. In our simulation, the next operation depends on the data
received from the MPI communication; therefore, all nodes need to complete data
transfer before starting the next iteration.

Figure 9 shows the breakdown of total execution time to computation and
communication time with respect to number of GPUs for the mesh size of
256 × 256 × 256 . We observe that this partitioning strategy is not scalable as the rate
of reduction in execution time reduces and starts saturating as we increase the num-
ber of GPUs. Nimmagadda’s implementation [3] showed almost linear reduction as
the number of GPUs is scaled from one to four on a shared memory system. We also
observe a similar trend in the distributed system-based implementation. In both of
the implementations, we observe the execution time reduces by a factor more than
3.6× using four GPUs. However, the current implementation does not show scalabil-
ity over eight and 16 GPUs. Figure 9 also shows the percentage ratio of communica-
tion time to total execution time for each GPU configuration. Despite the reduction

Fig. 10   MPI strided datatype for 512 × 512 × 512 mesh

5496	 E. Esmaili et al.

1 3

in computation time, the data transfer time overhead due to the MPI communication
becomes a performance bottleneck with the 1D partitioning strategy. To address this
scalability issue, we design and analyze two optimization strategies.

5.1 � Data reduction optimization

In the AO implementation, the whole data structure in the interface regions is trans-
ferred from one GPU to another GPU, while only membrane voltage (or intracel-
lular potential) is used for cell interaction calculations. To transfer this variable
individually, we create a strided MPI datatype. As shown in Fig. 10, the array of
membrane voltage is copied with the specified stride. Apart from strided MPI data
type, as the transfer is staged through CPU memory, we also utilize strided memory
copy between global and host memories. This reduction in the size of transferred
data results in less communication time and accordingly improved scalability. For
the mesh size of 512 × 512 × 512 , an instance of data structure contains the vari-
ables for 512 cells. In other words, it has 22 arrays, each of which consists of 512
elements. The elements of the array are floating point variables with the size of 4
bytes (B). Therefore, the size of an instance of the data structure is 512 × 22× 4B =
44KB. After using the strided MPI datatype, the size of transferred data for 512 cells
becomes 512 × 1 × 4B = 2KB since only the array of membrane voltage (or intra-
cellular potential) is transferred. This results in 95% reduction in the data transfer
amount for each time step of the simulation. As shown in Fig. 10, this optimization
approach reduces the communication time significantly (by a factor of 11); however,
by increasing the number of GPUs, the amount of the data needed to be exchanged
increases. To overcome this limitation factor, we introduce another partitioning
strategy in the next subsection.

5.2 � Partitioning optimization

In this subsection, we evaluate the impact of various mesh partitioning strategies
across multiple GPUs on communication time overhead and computation time. For
a configuration that offers multiple partitioning options, we present a case study on

Fig. 11   Possible partitioning strategies for the 3D mesh across 8 GPUs; a 1D partitioning, b 2D parti-
tioning, c 3D partitioning

5497

1 3

Implementation of scalable bidomain-based 3D cardiac…

partitioning strategies among eight GPUs. For this case, there are three possible par-
titioning strategies as shown in Fig. 11. As we can see from this figure, there are 7,
4, and 3 cuts for 1D Fig. 11a, 2D Fig. 11b and 3D Fig. 11c partitioning strategies,
respectively. Accordingly, the total data transfer for these partitioning strategies are
28KB, 32KB, and 6KB. Therefore, we expect 3D partitioning results in best com-
munication overhead. However, applying cuts in three directions limits the number
of threads per block on the GPU. Assume that for the mesh of 512 × 512 × 512 , we
apply cuts perpendicular to x and y directions. In this case as shown in Fig. 11b,
the threads are organized in z direction where each thread block operates on 512
cells with 512 threads concurrently. This would result in launching 262,144 thread
blocks ( 512 × 512 ). When we apply the cut in 3 directions Fig. 11c, then we divide
the mesh size perpendicular to z direction by half reducing the number of threads
per block to 256. This would result in doubling the number of thread blocks. The
K20X GPUs have 14 multiprocessors, and the maximum number of resident blocks
per multiprocessor is 16. Plus, there can be a maximum of 224 active thread blocks
on the device. Therefore, the thread blocks are scheduled iteratively in rounds.
Reducing the thread block size doubles the number of iterations. Given that each
thread is assigned to a single cell and the operations over the single cell are the same
across the threads, the execution time for a thread block of size 256 and size 512 is
expected to be close to each other. Intuitively, we expect 3D scenario to increase the
execution time by a factor of 2.

Therefore, we conclude that the 2D partitioning is the desirable strategy for our
cluster-based simulation. Now that we have concluded the advantage of 2D parti-
tioning, we analyze the communication time overhead with respect to number of
GPUs based on the 1D and 2D partitioning strategies identified for each configura-
tion. For the 1D partitioning, as shown in Table 6, we see an increase in the com-
munication time with the number of GPUs. This is because of the increase in the
number of parallel data transfers. For the 2D partitioning strategy, we see a decrease

Table 6   Statistics of 1D and 2D partitioning strategies (PS) for 512 × 512 × 512 mesh and 18,000 tempo-
ral iterations (the letter in the parenthesis shows the direction with which the cut is associated)

PS Metric # of GPUs

4 8 16

1D Size of interface 512 × 512 512 × 512 512 × 512

of parallel transactions per iteration 1, 2 3, 4 7, 8
Data transfer per iteration 12 KB 28 K 60 KB
Total communication time (s) 20.90 26.38 31.45

2D Size of interface (x) 512 × 256 512 × 256 512 × 128

of parallel transactions per iteration (x) 2 2, 4 4, 8
Size of interface (y) 512 × 256 512 × 128 512 × 128

of parallel transactions per iteration (y) 2 4 4, 8
Data transfer per iteration 4 KB 7 KB 6 KB
Total communication time (s) 19.92 18.18 16.78

5498	 E. Esmaili et al.

1 3

in communication with respect to the number GPUs. That is because despite an
increase in number of parallel data transfers, the total data transfer decreases. There-
fore, we conclude that the size of data transfer has a stronger effect than number of
parallel data transfers. Although the contribution of data transfer overhead is small
relative to the time spent on computation, as the number of GPUs increases the rela-
tive importance of the data transfer overhead will become an important factor in
terms of the scalability of the implementation. Therefore, the partitioning strategy
and quantifying its benefits are an important task.

As reported in Table 6, we present the total amount of data transfers between
neighboring GPU pairs during each iteration for the case of 512 × 512 × 512 . For
the worst-case scenario, a single GPU sends 2KB of data and receives the same
amount of data during each iteration. Throughout the 18,000 steps, the total amount
of data transfers is around 70MB. This data are transferred between GPUs on the
same node through PCIe bus and between GPUs on different nodes through the net-
work. As mentioned in Sect. 4, the bandwidth of the network and PCIe bus is 54.5
Gb/s and 15.75 GB/s, respectively. Therefore, the communication overhead of our
implementation is far from stressing the PCIe bus or network bandwidth.

5.3 � Results

We present the total execution time for the final version of our implementation,
which benefits from both algorithmic and communication optimizations for various
mesh sizes with respect to the number of GPUs in Fig. 12. Since we set the thread
block size equal to the mesh size, Kernel 2 is launched with (32 × 32)∕2 = 512

Fig. 12   Execution time (s) for final implementations with various mesh sizes over 1 to 16 GPUs (18,000
temporal iterations)

5499

1 3

Implementation of scalable bidomain-based 3D cardiac…

thread blocks for the 32 × 32 × 32 mesh. However, not all the thread blocks can be
executed simultaneously because of two limitations, namely maximum of 16 thread
blocks and 2028 threads per multiprocessor. Based on these limitations, simulating
this mesh would take three rounds to complete on a single GPU and two rounds to
complete on two GPUs. Subsequent GPU configurations (4, 8 and 16) would com-
plete the execution in one round. Therefore, we do not observe any improvement in
execution time if we utilize more than four GPUs. Apart from this, we observe that
the execution time increases with 8 and 16 GPUs compared to the 4-GPU configura-
tion, because communication time in these two configurations is higher than the 4
GPU configuration. The number of rounds for the mesh size of 64 × 64 × 64 is 10, 5,
3, 2, and 1 for the configurations with 1, 2, 4, 8, and 16 GPUs, respectively. For this
and the larger meshes (128, 256, and 512), we observe that execution time improves
as we increase the number of GPUs because of the decreasing trend in the number
of rounds. We use the same approach for analyzing the execution time over vari-
ous mesh sizes. On a single GPU, for the mesh sizes ranging from 32 × 32 × 32 to
256 × 256 × 256 , there are 3, 10, 37, 293 rounds of executions, respectively. There-
fore, the execution time increases with the mesh size. It is worth mentioning that the
execution time is not exactly proportional to the number of the rounds, because the
reported numbers of rounds are based on the Kernel 2 only. Even though the number
of rounds varies across different kernels, our analysis is still fairly accurate because
more than 90% of the computation time is spent on Kernel 2.

To show the scalability of the final version, we report the parallel effi-
ciency of the final implementations for meshes with 128 × 128 × 128 ≈ 2M ,
256 × 256 × 256 ≈ 17M , and 512 × 512 × 512 ≈ 134M cells as well as one of the
state-of-the-art bidomain implementations by Neic et al. [16] in Table 7. Besides
using a different cell model (rabbit ventricles), the implementation by Neic et al.
[16] is based on a cluster with Nvidia Tesla C2070 GPUs each with 6 GB RAM.
The data presented in Table 7 are generated based on the execution time results
reported in [16]. Since this is one of the only two studies on a GPU cluster and
achieves a very good scalability, we treat it as a benchmark for evaluating the quality
of our implementation.

Starting with two GPUs, as we double the resources up to 16 GPUs, the parallel
efficiency decreases with a fast rate for the final implementation with 2M cells. The
parallel efficiency over all the number of GPUs improves for the larger meshes. That
is because the ratio of the communication to computation time increases by utiliz-
ing more number of GPUs, and accordingly the overhead of partitioning the data

Table 7   The parallel efficiency
of the final implementations and
Neic et al. [16] with respect to
the number of GPUs

Implementation (cells) # of GPUs

2 4 8 16

Final (2M) 0.94 0.84 0.70 0.52
Final (17M) 1 0.95 0.91 0.85
Final (134M) – 1 1 1
Neic et al. [16] (41M) 1 1 0.96 0.75

5500	 E. Esmaili et al.

1 3

becomes a performance bottleneck. Improvement obtained from partitioning the
workload among multiple GPUs needs a reasonable ratio of the computation to com-
munication similar to the cases of 256 × 256 × 256 and 512 × 512 × 512 . Therefore,
for small mesh sizes, one GPU is the best hardware configuration for simulation.

The parallel efficiency of Neic et al. [16] implementation with 41M cells outper-
forms the final implementation for 256 × 256 × 256 mesh up to 8 GPUs. However,

Fig. 13   Excitation propagation in a cardiac tissue with 32 × 32 × 32 cells

5501

1 3

Implementation of scalable bidomain-based 3D cardiac…

for 16 GPUs, final implementation has better parallel efficiency. This shows that for
the higher number of GPUs, our implementation has stronger scalability than Neic
et al. [16]. The significance of our work is shown by the final implementation for
512 × 512 × 512 mesh which has completely linear scalability. Finally, we conclude
that the final implementation is scalable to higher number of GPUs, if sufficient
amount of workload for computation is provided for each GPU.

The serial code written in a naive way takes 844 hours to complete on a sin-
gle CPU core at 2.6 GHz with 256 GB memory for a 256 × 256 × 256 mesh. Serial
version, of course, can be restructured for multithreaded and vectorized forms by
a performance programmer with SIMDization techniques for further performance
improvement. Our aim is to simply set a reference point for the CPU execution time

Fig. 14   Spiral wave in a 256 × 256 tissue

(a) (b)

Fig. 15   AP curves of a single cardiac in a our implementation; b Ten Tusscher’s implementation [26]

5502	 E. Esmaili et al.

1 3

and not a performance comparison. With the final implementation on 16 GPUs, we
achieve a reduction in 4787× over the serial implementation.

5.4 � Correctness of implementation

We visualize the propagation of electrical waves through the simulation that is writ-
ten to the text files, and then they are processed for offline visualization. Figure 13
shows the excitation propagation in 3D cardiac tissue in different time steps. Figure 13
at t = 60ms shows position of the applied stimulus and its propagation through the
whole tissue in the subsequent time steps. We conduct some experiments to validate
the 3D simulation with spiral wave propagation shown in Fig. 14. We compare the AP
curves for each cell between our implementation and the TNNP with the tissue size of
16 × 16 × 16 . The relative root mean square (RRMS) error between the two implemen-
tations is 1.32 × 10−3 , which is comparable with the results reported in [5]. Figure 15
shows the two AP curves for a single cell. The literature in cardiac simulation finds
such RRMS acceptable [45].

6 � Monodomain implementation

The monodomain model is a simplification of the bidomain model in which it is
assumed that the anisotropic ratio for the intra- and extracellular domains is equal, that
is �i = k�e . As a result, we can derive the relationship between ionic and transmem-
brane voltage shown in (16) using (4) and (5).

(16)−∇.(�i∇Vm) = Cm

�Vm

�t
+ Iion + Istim

Fig. 16   Execution time (s) comparison of bidomain, the baseline and optimized monodomain implemen-
tations with respect to number of GPUs ( 256 × 256 × 256 mesh, 18,000 temporal iterations)

5503

1 3

Implementation of scalable bidomain-based 3D cardiac…

Using the center difference formula [37], we discretize (16) as shown in (17).

For solving bidomain equations, an iterative method is inevitable because of the
system of dependent PDEs (9)–(11); however, the monodomain equation (17) can
be solved using Euler forward method. Since this method is not iterative, the algo-
rithmic optimizations, namely Kernel 3 elimination and RBSOR method, are not
applicable to this implementation. Nevertheless, other optimizations applied to the
bidomain model such as the 2D partitioning, data reduction, memory coalescing are
applicable to this model. Figure 16 shows the execution time of monodomain imple-
mentation with the GPU and MPI communication optimizations versus the bido-
main implementation over various numbers of GPUs. As we can see, the execution
time of bidomain is greater than the one for monodomain by a factor of seven inde-
pendent of the number of GPUs because of the time spent on solving the system of
bidomain PDEs. Recently, we introduced an autonomic framework [13] that allows
the end user to set the desired execution time and simulation accuracy as two con-
straints. The framework relies on machine learning to adjust the granularity of the
simulation time step for meeting the accuracy requirement and the number of GPUs
for meeting the execution time requirement. In this framework, we implemented the
baseline version of the monodomain model. Figure 16 compares the execution time
of this baseline monodomain implementation and the one with the applicable opti-
mizations discussed in this paper. Since the algorithmic optimizations are not appli-
cable to the monodomain model, there is no difference in execution time for the case
of single GPU. However, as we increase the number of GPUs, the speed-up with
respect to the baseline monodomain implementation improves, which is similar to
what we observed for the bidomain implementations shown in Fig. 16.

7 � Conclusion

Simulating one APD (360 ms real time) for a 256 × 256 × 256 mesh takes 844
hours on a high-end general-purpose processor. We were able to reduce the total
execution time from 844 hours to 145 min on a single GPU benefiting from elimi-
nating the overhead of the error calculation and RBSOR method. Apart from the
algorithmic optimization and fined-grained parallelization (cell level) on GPU
architecture, we exploited coarse-grained parallelization (mesh partitioning) on
high-performance computing systems, which provides not only higher scale of

(17)

(Vm)
n+1
i,j,k

= (Vm)
n
i,j,k

+ Δt

{
�ix

(Vm)
n
i+1,j,k

+ (Vm)
n
i−1,j,k

− 2(Vm)
n
i,j,k

Δx2

+ �iy

(Vm)
n
i,j+1,k

+ (Vm)
n
i,j−1,k

− 2(Vm)
n
i,j,k

Δy2

+ �iz

(Vm)
n
i,j,k+1

+ (Vm)
n
i,j,k−1

− 2(Vm)
n
i,j,k

Δz2

}
−

Δt

Cm

(Iion + Istim)

5504	 E. Esmaili et al.

1 3

execution time improvement, but also the capability of simulating tissues with
the size of the whole organ of the human heart. Implementing this hybrid par-
allelization approach, we were able to scale down execution time from 145 to
10 min. Moreover, we address the challenges of design and implementation of a
linearly scalable solution to exploit potential of HPC systems. We identified the
bottlenecks associated with MPI communication overhead. We achieve parallel
efficiency of one for the mesh size of 512 × 512 × 512 cells that minimizes the
communication overhead.

Finally, our implementation is a step toward achieving real-time cardiac simu-
lations, which would help physicians to better understand the behavior of a com-
plex system, and evaluate multiple hypotheses rapidly toward developing patient-
specific treatments for CHF.

Acknowledgements  This material is based upon the work supported by the National Science Foundation
under Grant No. CNS 1624668 I/UCRC: Industry/University Cooperative Research Center for Cloud and
Autonomic Computing.

References

	 1.	 Desai AS, Stevenson LW (2012) Rehospitalization for heart failure: predict or prevent? Circula-
tion 126(4):501–506

	 2.	 Cheng A, Dalal D, Butcher B, Norgard S, Zhang Y, Dickfeld T, Eldadah ZA, Ellenbogen KA,
Guallar E, Tomaselli GF (2013) Prospective observational study of implantable cardioverter-
defibrillators in primary prevention of sudden cardiac death: study design and cohort description.
J Am Heart Assoc 2(1):e000083

	 3.	 Nimmagadda VK, Akoglu A, Hariri S, Moukabary T (2012) Cardiac simulation on multi-GPU
platform. J Supercomput 59(3):1360–1378

	 4.	 Biffard R, Leon LJ (2003) Cardiac tissue simulation using graphics hardware. In: Proceedings
of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, 2003. IEEE, vol 3, pp 2838–2840

	 5.	 Rocha BM, Campos FO, Amorim RM, Plank G, dos Santos RW, Liebmann M, Haase G (2011)
Accelerating cardiac excitation spread simulations using graphics processing units. Concurr
Comput Pract Exp 23(7):708–720

	 6.	 Vigmond EJ, Boyle PM, Leon LJ, Plank G (2009) Near-real-time simulations of biolelectric activity
in small mammalian hearts using graphical processing units. In: Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009. IEEE, pp 3290–3293

	 7.	 Amorim R, Haase G, Liebmann M, Dos Santos RW (2009) Comparing CUDA and OpenGL
implementations for a Jacobi iteration. In: HPCS’09. International Conference on High Perfor-
mance Computing & Simulation, 2009. IEEE, pp 22–32

	 8.	 Amorim RM, Rocha BM, Campos FO, dos Santos RW (2010) Automatic code generation for
solvers of cardiac cellular membrane dynamics in GPUs. In: 2010 Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 2666–2669

	 9.	 Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka SA, Fenton FH (2011) Toward real-time
simulation of cardiac dynamics. In: Proceedings of the 9th International Conference on Compu-
tational Methods in Systems Biology. ACM, pp 103–112

	10.	 Garcia VM, Liberos A, Climent AM, Vidal A, Millet J, Gonzalez A (2011) An adaptive step size
GPU ODE solver for simulating the electric cardiac activity. In: Computing in Cardiology, 2011.
IEEE, pp 233–236

	11.	 García-Molla VM, Liberos A, Vidal A, Guillem M, Millet J, Gonzalez A, Martínez-Zaldívar FJ,
Climent AM (2014) Adaptive step ODE algorithms for the 3D simulation of electric heart activ-
ity with graphics processing units. Comput Biol Med 44:15–26

5505

1 3

Implementation of scalable bidomain-based 3D cardiac…

	12.	 Jararweh Y, Jarrah M, Hariri S (2012) Exploiting GPUs for compute-intensive medical appli-
cations. In: 2012 International Conference on Multimedia Computing and Systems (ICMCS).
IEEE, pp 29–34

	13.	 Esmaili E, Akoglu A, Ditzler G, Hariri S, Moukabary T, Szep J (2017) Autonomic management
of 3D cardiac simulations. In: 2017 International Conference on Cloud and Autonomic Comput-
ing (ICCAC). IEEE, pp 1–9

	14.	 Yu D, Du D, Yang H, Tu Y (2014) Parallel computing simulation of electrical excitation and
conduction in the 3D human heart. In: 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE, pp 4315–4319

	15.	 Chai J, Wen M, Wu N, Huang D, Yang J, Cai X, Zhang C, Yang Q (2013) Simulating cardiac
electrophysiology in the era of GPU-cluster computing. IEICE Trans Inf Syst 96(12):2587–2595

	16.	 Neic A, Liebmann M, Hoetzl E, Mitchell L, Vigmond EJ, Haase G, Plank G (2012) Acceler-
ating cardiac bidomain simulations using graphics processing units. IEEE Trans Biomed Eng
59(8):2281–2290

	17.	 Higham J, Aslanidi O, Zhang H (2011) Large speed increase using novel GPU based algorithms
to simulate cardiac excitation waves in 3D rabbit ventricles. In: Computing in Cardiology, 2011.
IEEE, pp 9–12

	18.	 Zhang L, Wang K, Zuo W, Gai C (2014) G-Heart: a GPU-based system for electrophysiological
simulation and multi-modality cardiac visualization. J Comput 9(2):360–368

	19.	 Xia Y, Wang K, Zhang H (2015) Parallel optimization of 3D cardiac electrophysiological model
using GPU. Comput Math Methods Med 2015:1–10

	20.	 Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y, Dunn SJ,
Fletcher AG, Harvey DG et al (2013) Chaste: an open source C++ library for computational
physiology and biology. PLoS Comput Biol 9(3):e1002970

	21.	 Yang J, Chai J, Wen M, Wu N, Zhang C (2013) Solving the cardiac model using multi-core CPU
and many integrated cores (MIC). In: 2013 IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC_EUC). IEEE, pp 1009–1015

	22.	 Langguth J, Lan Q, Gaur N, Cai X, Wen M, Zhang CY (2016) Enabling tissue-scale cardiac
simulations using heterogeneous computing on Tianhe-2. In: 2016 IEEE 22nd International Con-
ference on Parallel and Distributed Systems (ICPADS). IEEE, pp 843–852

	23.	 Arevalo HJ, Vadakkumpadan F, Guallar E, Jebb A, Malamas P, Wu KC, Trayanova NA (2016)
Arrhythmia risk stratification of patients after myocardial infarction using personalized heart
models. Nat Commun 7:11437

	24.	 Karma A (1994) Electrical alternans and spiral wave breakup in cardiac tissue. Chaos: an Inter-
disciplinary. J Nonlinear Sci 4(3):461–472

	25.	 Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left-ventricular
epicardial myocyte. Biophys J 87(3):1507–1525

	26.	 Ten Tusscher K, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue.
Am J Physiol-Heart Circ Physiol 286(4):H1573–H1589

	27.	 Ten Tusscher KH, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tis-
sue model. Am J Physiol-Heart Circ Physiol 291(3):H1088–H1100

	28.	 Luo Ch, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization,
repolarization, and their interaction. Circ Res 68(6):1501–1526

	29.	 Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG,
Karma A et al (2008) A rabbit ventricular action potential model replicating cardiac dynamics at
rapid heart rates. Biophys J 94(2):392–410

	30.	 Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, Rasmusson RL (2004) Computer model of action
potential of mouse ventricular myocytes. Am J Physiol-Heart Circ Physiol 287(3):H1378–H1403

	31.	 Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated
Ca dynamics within the ventricular myocyte. Biophys J 87(5):3351–3371

	32.	 Nickerson DP, Hunter PJ (2010) Cardiac cellular electrophysiological modeling. Cardiac electro-
physiology methods and models. Springer, Boston, pp 135–158

	33.	 Majumder R, Nayak AR, Pandit R (2011) Scroll-wave dynamics in human cardiac tissue: lessons
from a mathematical model with inhomogeneities and fiber architecture. PLOS ONE 6(4):e18052

	34.	 Majumder R, Nayak AR, Pandit R (2012) Nonequilibrium arrhythmic states and transitions in a
mathematical model for diffuse fibrosis in human cardiac tissue. PLoS ONE 7(10):e45040

5506	 E. Esmaili et al.

1 3

	35.	 Nayak AR, Shajahan T, Panfilov A, Pandit R (2013) Spiral-wave dynamics in a mathematical model
of human ventricular tissue with myocytes and fibroblasts. PloS ONE 8(9):e72950

	36.	 Smaill BH, Hunter PJ (2010) Computer modeling of electrical activation: from cellular dynamics to
the whole heart. Cardiac electrophysiology methods and models. Springer, Boston, pp 159–185

	37.	 Morton KW, Mayers DF (2005) Numerical solution of partial differential equations: an introduction.
Cambridge University Press, Cambridge

	38.	 Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ (2003) An overview of
CellML 1.1, a biological model description language. Simulation 79(12):740–747

	39.	 Nvidia Corporation (2017) Nvidia CUDA C programming guide, version 8.0. https​://docs.nvidi​
a.com/cuda/cuda-c-progr​ammin​g-guide​/. Accessed June 2017

	40.	 Eager DL, Zahorjan J, Lazowska ED (1989) Speedup versus efficiency in parallel systems. IEEE
Trans Comput 38(3):408–423

	41.	 Arioli M (2004) A stopping criterion for the conjugate gradient algorithm in a finite element method
framework. Numer Math 97(1):1–24

	42.	 Zhang C, Lan H, Ye Y, Estrade BD (2005) Parallel SOR iterative algorithms and performance eval-
uation on a Linux cluster. Technical report, Naval Research Laboratory Stennis Space Center MS
Oceanography Division

	43.	 Hadjidimos A (2000) Successive overrelaxation (SOR) and related methods. J Comput Appl Math
123(1–2):177–199

	44.	 Hackbusch W (1994) Iterative solution of large sparse systems of equations, vol 95. Springer, New
York

	45.	 Marsh M (2012) An assessment of numerical methods for cardiac simulation. Ph.D. thesis, Univer-
sity of Saskatchewan

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

	Implementation of scalable bidomain-based 3D cardiac simulations on a graphics processing unit cluster
	Abstract
	1 Introduction
	2 Mathematical model
	2.1 Cardiac cell models
	2.2 Cardiac tissue models

	3 Related work
	4 Implementation details
	4.1 Sequential implementation
	4.2 Single GPU implementation
	4.3 Algorithmic optimizations

	5 GPU cluster implementation
	5.1 Data reduction optimization
	5.2 Partitioning optimization
	5.3 Results
	5.4 Correctness of implementation

	6 Monodomain implementation
	7 Conclusion
	Acknowledgements
	References

